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Abstract. All finite-dimensional semiprime Banach algebras are semisimple.

The purpose of this paper is to give a characterization of the elements of

the socle of a semiprime Banach algebra. If 4 is a semiprime Banach algebra
we prove that socAnrad 4 = |0}, and tesoc 4 if and only if dim(tAr) <
+ 00 (i.e. tAr has finite dimension). This extends a result of Alexander in [1]
concerning semisimple Banach algebras, and is used to prove that the
elements of soc A are algebraic and that A4 is finite-dimensional if and only if
A =socA (and in this case 4 is forced to be semisimple). This completes
Tullo’s assertion in Theorem 5 of [8]. We also give a different proof of
Tullo’s result.
’ An element s of A is called single if whenever asb = 0 for some a, b in A,
at least one of as or sb is zero. We say that an element  of A acts compactly
if the map a —tat (4 — A) is compact. If the algebra A has no minimal ideals
we define socA = {0}, ‘

In general, notation-and terminology used are as in [3]. All the algebras
and subspaces considered will be over the complex field.

Single elements that act compactly have proved to have a close connec-
tion with the elements of the minimal ideals of the algebra.

~ More precisely, with a slight modification (see e.g. [5] or [6]) in the
proofs of Theorem 4 and Corollary 5 in [4] one can easily deduce Theorem
1 and Corollary 2 below (see also [7] for an alternative approach).

THEOREM 1. Let s and t be nonzero compactly acting single elements of a
semiprime Banach algebra A, and s,ité¢rad A. Then:

(i) There exist minimal idempotents e and f such that s = se and t = f1.

(ii) The dimension of tAs is at most 1.

From Theorem 1 we find that if s¢rad 4 and s is a compactly acting
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single element of 4 then As (sA) is a minimal left (right) ideal of A. The
converse is also valid and so we have

CoroLLARY 2. The socle of A consists of all finite sums of compactly
acting smgle elements of A that are not in rad A.

PROPOSITION 3. Let A be a semiprime Banach algebra. Then soc Arnrad A
-
I O g

Proof. Suppose on the contrary that there exists a nonzero element ¢ in
soc Anrad A. Then t¢lan(soc A) ([3], p. 162, Lemma 4). This implies that
ty # 0 for some y esoc A and so from Corollary 2, ts # 0 for some compactly
acting single element s of 4 which'is not in rad A. As is then a left minimal
ideal of A and since {0} # Ats = As we have As = Ars < soc Anrad A, which
is a contradiction (since rad A does not contain nonzero idempotents).

CoOROLLARY 4. Let A be a semiprime Banach algebra. Then:
(i) soc A < lan(rad A) = ran(rad A).
(i) rad A < lan(soc 4) = ran(soc A).

Proof. This follows immediately from Proposition 3 above and Lemma
4, p. 162 of [3].

LEMMA 5. Let A be an algebra that has proper left ideals, let X be a
finite-dimensional subspace of A, and let t be a nonzero element of A. If
XL # 0! for every left ideal L of A contained in At, then At contains a left
minimal ideal of A.

Proof. We distinguish two cases:

Case 1: XnL=XnL for any two left ideals L, = At. Since
XL # {0} for every left ideal L < Az, it is clear that the intersection of all
such L’s is nonzero and therefore it is a minimal left ideal of A.

Case 2: There exist two left ideals L;, L, of A4 contained in At such
that {0! # XnL, & XL,. Then from the assumptions we have |0} # XL
for every left ideal L < L, — At.

Therefore, either XL = XL, for all such L's, which leads to case 1,
or there exists a left ideal L; < L, such that

10} # XLy & XL, € XNL,.
Since X has finite dimension we deduce the existence of a finite sequehce
Ly, ..., L, of left ideals of 4 contained in At such that
0 # XL % ... EXnL, £ XnL, and XnL,=XnL# 0]

for every left ideal L & L,. The intersection of such L’s is clearly a minimal
feft ideal of A.
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LEMMA 6. Let t be a nonzero element of a semiprime Banach algebra A
such that tAt has finite dimension. Then t €soc A.

In particular, there exist a finite set {eq, ..., e,! of minimal idempotents
and ty, ..., t,_1 €A such that t =te;+te,+ ... +t,_8,.

Proof We put X =tAt, and suppose that dim(tAr) = n. Then from
Lemma 5 the left principal ideal At contains a minimal idempotent ¢, = a, f,
for some a; €A4. We put ¢, =t—te;. Then

1, Aty = (t—te,) A(t—te)) < tA(t—te;) = tA(t—ta, 1) C 1AL,

_However, the inclusion tAt(1 —e;) < rAt-is strict because te; = ta, t is in tAt,
is nonzero and cannot be of the form tat(1 —e;). Hence

dim(t; At;) < dim(tA1).

If t; # 0, by a similar argument we can find a minimal idempotent ¢, so
that
dim(t, At,) < dim(t, At,)
for t, =t;—tye,.
A finite number of repetitions of this process gives an element

f* =lel+l‘162+ e +Ik_1ek€SOCA,

for some k < n, such that (t—t*) A(t—*) = {0!. Hence r =r* since A is
semiprime.

THEOREM 7. Let A be a semiprime Banach algebra. Then t esoc A if and
only if the dimension of tAt is finite.

Proof. If tesocA4, then t =s;+ ... +s, is a finite sum of compactly
acting single elements not in radA (Corollary 2) and therefore
tAt <Y 7.1 5; As;. Since s;As; has dimension at most 1 (Theorem 1) it
follows that dim(tA4f) < + co.

Conversely, if dim(tAf) < + oo then t esoc 4 from Lemma 6. In particu-
lar, t = 0 if and only if tAr = |0}, since A is semiprime.

CoroLLARY 8. Let A be a semiprime Banach algebra. If A has finite
dimension then:

(i) A =socA.

(i) A is semisimple.

Proof. If 4 has finite dimension, then tAt has finite dimension for every
t€A. Hence A < soc A. Since the reverse inclusion is also valid we have 4
=SOoC A.

From Proposition 3 above and Corollary 20, p. 126 of [3] we now have
rad A =rad(socA) =socAnrad 4 = {0}, ie. 4 is semisimple.
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CoROLLARY 9. Let A be a semiprime Banach algebra. Then every element
of soc A is algebraic.

Proof. If tesoc A, then dim(tAf) = n < +c0. Hence the elements 3,
, ..., I""* are linearly dependent and therefore there are 4, 4,, ..., 4,,, €C
not all zero with A, 3 +/4,t44 ... +4,,,t""* =0.

f4

CoroLrArRY 10 (Tullo). Let A be a semiprime Banach algebra and A
=50cA. Then A is semisimple and finite-dimensional.

Proof. A is semisimple as in the proof of Corollary 8. Also, every
element of A4 is algebraic (Corollary 9) and therefore A is finite-dimensional
(Corollary 1 in [2]).

We summarize the results concerning the finite-dimensionality of the
algebra in the following

TuroreM 11. Let A be a semiprime Banach algebra. Then the following
conditions are equivalent:

(i) A has finite dimension.

(i) A =socA.

Moreover, if (i) (and therefore (ii)) is valid, then A is semisimple.

Remark. If 4 is a semiprime Banach algebra and A =soc 4, then 4 is
compact (Lemma 12, p. 177 of [3]) and therefore A has a discrete structure
space (Theorem 18, p. 180 of [3]).
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