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The socle and finίte-dimensionality οί a semiprime Banach algebra

by
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Abstract. ΑΠ finite-dimensional semiprime Banach algebras are semisimple.

The purpose of this paper is to give a characterization of the elements of
the socle of a semiprime Banach algebra. If Α is a semiprime Banach algebra
we prove that soc Α nrad Α = :Ο], and t ESOC Α if and οηlΥ if dim (ι At) <
+ 00 (i.e. tAt has finite dimension). This extends a result of Alexander ίη [1]
concerning semisimple Banach algebras, and is used to prove that the
elements of soc Α are algebraic and that Α is finite-dimensional if and οηlΥ if
Α = soc Α (and ίυ this case Α is forced to be semisimple). This completes
Tullo's assertion ίη Theorem 5 of [8J. We also give a different proof of
Tullo's result.

Αιι element s of Α is called single if whenever asb = Ο for some α, b ίτι Α,
at least one of as or sb is zero. We say that an element t of Α acts compactly
if the map α ~ tat (Α ~ Α) is compact. If the algebra Α has τιο minimal ideals
we define socA = :0].

Ιτι general, notationand terminology used are as ίη [3J. All the algebras
and subspaces considered will be over the complex field.

Single elements that act compactly have proved to have a close connec-
tion with the elements of the minimal ideals of the algebra.

More precisely, with a slight modification (see e.g. [5] or [6J) ίτι the
proofs of Theorem 4 and Corol1ary 5 ίτι [4] one can easίly deduce Theorem
1 and Corollary 2 below (see also [7] for an alternative approach).

THEoREM 1. Let s αΜ t be nonzero compαctly acting single elements of α
semiprime Banach algebra Α, and s,t Ifrad Α. Then:

(ί) There exist minimal idempotents e and f such thαt s = se and t = ft.
(ίί) The dimension of tAs is at most 1.

From Theorem 1 we find that if s Φ rad Α and s is a compactly acting
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single element of Α then As (sA) is a minimal left (right) ideal of Α. The
converse is also valid and so we have

COROLLARY2. The socle of Α consists of αΙΙ .fίnite sums of compactly
acting single elements of Α that are not in rad Α.

PROPOSITION3. Let Α be α semiprime Banach algebra. Then soc Α nrad Α
= (Ο}.

Proof. Suppose οτι the contrary that there exists a nonzero element t in
socAnradA. Then tΦΙaη(sοcΑ) ([3], ρ. 162, Lemma 4). This implies that
ty =J: Ο for some Υ ESOC Α and so from Corollary 2, ts =J: Ο for some compactly
acting single element s of Α whichis not in rad Α. As is then a left minimal
ideal of Α and since (Ο] =J: Ats ~ As we have As = Ats c socAnrad Α, which
is a contradiction (since rad Α does not contain nonzero idempotents).

COROLLARY4. Let Α be α semiprime Banach algebra. Then:
(i) socA c lan(radA) = ran(radA).

(ii) radA c lan(socA) = ran(socA).

Proof. This follows immediately from Proposition 3 above and Lemma
4, ρ. 162 of [3].

LEMMA5. Let Α be an algebra that has proper left ideals, let Χ be α
.finite-dimensional subspace of Α, and let t be α nonzero element of Α. 1!
Χ nL =J: : Ο] for every left ideal L of Α contained in At, then At contains α left
minimal idea/ of Α.

Proof. We distinguish two cases:
Case 1: Χ nL = Χ nL for any two left ideals L,L c At. Since

Χ nL =J: :0] for every left ideal L c At, it is clear that the intersection of all
such L's is nonzero and therefore it is a rninimal left ideal of Α.

Case 2: There exist two left ideals Lt, L2 of Α contained ία At such
that :0] =J: Χ nL2 ~ Χ nLt. Then from the assumptions we have :0] =J: Χ nL
for every left ideal L c L2 C At.

Therefore, either Χ nL = Χ nL2 for all such L's, which leads ιο case 1,
or there exists a left ideal L3 c L2 such that

[Ο] #- XnL3 ~ XnL2 ~ XnLt·

Since Χ has finite dimension we deduce the existence of a finite sequence
Lt, ... , Lk of left ideals of Α contained ίυ At such that

[Ο] #- XnLk ~ .•• ~XnL2 ~ XnLl and XnLk = XnL #- :0]

for every left ideal L ~ Lk• The intersection of such Ls is clearly a minimal
left ideal of Α.
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LEMMA6. Let t be α nonzero element of α semiprime Bαnαch αlgebrα Α
such thαt tAt hαs .fίnite dimension. Then t ESOCΑ.

1n pαrticulαr, there exist α .fίnite set (et, ... , en) of minimαl idempotents
αnd ti, ... ,tn-tEA such thαt t=teI+tIe2+.··· +tn-ten.

Proof. We put Χ = tAt, and suppose that dim(tAt) = n. Then from
Lemma 5 the left principal ideal At contains a minimal idempotent el = αι t,
for some αι ΕΑ. We put t ι = t - tet. Then

(ι Ati = (t-tet)A(t-tet) c tA(t-tet) = tA(t-tαt t) c tAt.

_However, the inclusion tAt(l-et) c tAt,is strict because tet = tαt t is ίη tAt,
is nonzero and cannot be of the form tαt(l-et). Hence

dim(tt Ati) < dim(tAt).

If tl =1= Ο, by a similar argument we can find a minimal idempotent e2 so
that

for t2 = tl -tl e2'
Α finite number of repetitions of this process glves an element

t*=teI+tIe2+ ... +tk_tekEsocA,

for some k ~ n, such that (t - t*) Α (t - t*) = [Ο]. Hence t = t*, since Α is
semiprime.

THEoREM7. Let Α be α semiprime Bαnαch αlgebrα. Then t ESOCΑ if αnd
only if the dimension of tAt is .fίnite.

Proof. If tEsocA, then t = sl + ... +sn is a finite sum οί' compactly
acting single elements not ίη rad Α (Corollary 2) and therefore
tAt c Σi,j= ι SiAsj• Since S;ASj has dimension at most 1 (Theorem 1) ίτ
follows that dim(tAt) < + ω.

Conversely, if dim (tAt) < + ω then t ESOCΑ from Lemma 6. Ιn particu-
lar, t = Ο if and only if tAt = (Ο), since Α is semiprime.

COROLLARY8. Let Α be α semiprime Bαnαch αlgebrα. 1! Α hαs .fίnite
dimension then:

(ί) Α = socA.
(ίί) Α is semisimple.

Proof. If Α has finite dimension, then tAt has finite dimension for every
t ΕΑ. Hence Α c soc Α. Since the reverse inclusion ίε also valid we have Α
= socA.

From Proposition 3 above and Corollary 20, ρ. 126 of [3] we now have
radA = rad(socΑ) = socAnradA = (Ο), ί.ο. Α is semisimple.
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COROLLARY9. Let Α be α semiprime Bαnαch αlgebrα. Then every element
ο! soc Α is αlgebrαic.

Proof. If tEsocA, then dim(tAt) = n < +00. Hence the elements t3,

t4, ... , fn+4 are linearly dependent and therefore there are λι, λ2, ... , λn+ ι Ε C
not all zero with λιt3+λ2t

4+ ... +λn+ιt
n+4=0.

COROLLARY10 (Tullo). Let Α be α semiprime Bαnαch αlgebrα αΜ Α
= soc Α. Then Α is semisimple αnd .finite-dimensionαl.

Proof. Α is semisimple as ίn the proof of Corollary 8. Also, every
element of Α is algebraic (Corollary 9) and therefore Α is finite-dimensional
(Corollary 1 ίη [2]).

We summarize the results concerning the finite-dimensionality of the
algebra ίn the following

THEOREM11. Let Α be α semiprime Bαnαch αlgebrα. Then the following
conditions αre equivαlent:

(ί) Α hαsfinite dimension.
(ίί) Α = soc Α.
Moreover, if (ί) (αnd therefore (ίί)) is vαlid, then Α is semisimple.

Remark. If Α is a semiprime Banach algebra and Α = socA, then Α is
compact (Lemma 12, ρ. 177 of [3]) and therefore Α has a discrete structure
space (Theorem 18, ρ. 180 of [3]).
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