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1. Introduction

The purpose of this paper is to investigate the n-skeleton of the closed unit
ball B of a C*-algebra A.

The O-skeleton has been studied by R. Kadison[2],S. Sakai [6]
and P. Miles({3] Let K be a closed convex set in a normed space. We define
n-skeleton of K (n=0, 1, 2, . . .) the set skel, K, of all points of K not belonging in
the relative interior of (n+ 1)-dimensional subsets of K (where dimensionality is
considered in the underlying real space). In particular skel,K coincides with the
set ext K of all extreme points of K.

It is well known that a commutative C*-algebra 4 with unit is isometrically
isomorphic to the space C(X), of all continuous functions on a compact,
Hausdorff space X. R. P hel psin [5] has proved that in the commutative case
B is the closed convex hull of its extreme points.

In section 2 below we give a complete characterization of skel, B and skel,B
for commutative C*-algebras, as well as some properties of skel,B, n>2. In the
case of non-commutative C*-algebra we give characterization of skel, B and some
properties of skel,B. The main tool used is the concept of single elements,
introduced by J. E rd o sin [1]. An element s of an algebra A is called single, iff
whenever asb=0 (a, be ), then at least one of as, sb is zero.

Notation and terminology used is the sameasin M. Takesaki[7, p.47-
49] and J. Tolke-J Wills [8, p.13-20]

2. Commutative case

Theorem 2.1. Let S be the closed unit ball of C(X). A function fe S belongs to
the skel,S if and only if, |fl=1—|s|, where s€S is a single element of C(X).

P r o o f. Suppose fe skel,S. We may assume that f¢extS, for if fe S, then we
may take s=0. Hence, there exists at least one point ¢ in X, such that |f(f)|<1. We
claim that there exists exactly one ¢, in X, with |f(t)| < 1. Suppose that there exist
at least two distinct points t,, t, in X, with |f(¢;)| <1, j=1, 2. Since X is a compact
Hausdorff space we can find compact disjoint neighbourhoods V;, V, of ¢,, t,
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respectively, with [f(f)]<1, teV;uV,. By Urysohn’s Lemma there exist
continuous functions g;, j=1, 2 such that g;(t =1 g;(V9)=0 and g;(X)=[0, 1],
Jj=1,2. Denote a;=sup{|f(t)|:te V;},j=1, 2. Then the functions K"’ =f+(1—a;)g;,
) -—f—-(l a)g;,j=1,2 K =f+i(1—a,)g,, h¥=f—i(1—a,)g, are points in §

andf-——(h“)+h‘2’)] 1,2,3. Since a;< 1, j=1, 2 we can easily see that f, K", j=1,

2, 3 are affinely independent, contradicting the fact that feskel,S. Hence for
every feskel,S \ ext S there exists exactly one point ¢, in X with {f(t,)]<1. As fis
continuous t, is an isolated point of X. We define a function s: X —C, by s(t,)=1
—|f(t)], s(®=0, t+#t,. Since ¢, is an isolated point of X, s is continuous and
clearly a single element in C(X), with ||s]|<1. We now have [fl=1—]s|.

Conversely, let fe S such that [f]=1—]s| where seS is a single element in
C(X). We may assume that s#0, for if s=0 then feext S < skel,S. If Lt r.eX,
t,#t, and s(t,).s(t,) #0, then there exist disjoint neighbourhoods U,, U, of 1, t,,
respectively, and functions h, ge C(X) with h(t,).g(t;)#0, h(V])=0, and g(}3)=0.
Then k-s-g=0 and hs#0, sg#0. This is a contradiction since s is a single element
in C(X). Therefore s(t;)#0. for exactly one point t; € X. This entails |f(z}!=1,
t#t, and [f(t,)| < 1. Suppose now that ferelint B, where B is a convex subset of §
and relint B is the relative interior of B. Then the expression of |f]| and the strict
convexity of the norm of C, implies that dim B<2 and so feskel,S. The proof is
complete.

From Theorem 1 we have the following corollaries.

Corollary 2.2 Iet feS. Then fe skel,S if and only if f"eskel,S, n=1,2,3.....

Corollary 2.3. If fe skel,S, then there exist an exreme point g of S and a single
element s€8§ such that f=g—s. Also for any extreme point g of S, there exists a
‘single element seS such that the point g—s=f belongs to skel,S.

It is known that if ge S, then g is not in ext § if and only if there exists
he C(X), h#0, such that | g(t)|+]|h(t)| <1 for each t in X (see [4]). From the proof
of Theorem 1, we may obtain a corresponding characterization for points not
belonging to skel,S. This is stated in the following corollary.

Corollary 2.4. If g€ S. then g is not in skel,S if and only if there exist h;e C(X),
j=1, 2, 3 linearly indepentend, such that [g(t) [+1h;()|=1 for each tin X

Proposition 2.5.I¢t S be the closed unit ball in C(X). Then skel,S=ext S.
Proof Clearly ext S < skel,S. Let feskel;S. Since skel,S < skel,S from

Theorem 1 we have |fi=1—]|s|, for some single element seS of C (X] If s#0, then
If(t)i<1 and |f(t)]=1, r#t,. The functions ¢{, ¢{®, k=1, 2 defined by
=) =f) for t#t, t,, k=1, 2,

o) =f(ty) +e, (P(Z)(H):f(tl)—&

Ot =f(ty) +ie, @PAty)=f(t,)—ie

with e=1—|f(t,)|>0, are continuous, belong to S and f——(qo‘”-{-(p‘z’) k=1,2.1t
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' is clear that f, ¢{, k=1, 2 are affinely independent, contradicting the fact that
feskel;S. Hence s=0, so |f|=1. This implies skel,S < ext S.

Proposition 2.6. 1) If skel,S=ext § for some n=2, then C(X) does not contain
non-zero single elements.

2) If C(X) does not contain non-zero single elements, then skel,S=extS$, for
any integer n=2.

Proof 1) As skel,S = skel,S, then skel,S=extS§ (1). From Theorem 1 it
follows that if 0 is a single element in C(X), then the functions fe S, |f|=1 _ B

fisll
are in skel,S\extS, contradicting (1). :

2) Let n=2 and f skel,S\ext S. A similar argument as in the proof of
Theorem 1 gives m points t,, 5, ..., ,in X, ISmsn—1, with |f(t)|<1,j=1,2,.
.., m.The continuity offimpﬁes thatt,,t,,...,t,are isolated points of X. Hence the
functions s;e C(X) defined by s;(¢;)#0, s{t)=0, t#t;, j=1, 2, ..., m are single
elements, contradicting our hypothesis. Hence skel,S=extS for any nx=32.

Corollary 2.7. The following propositions are equivalent.

i} skel,S=ext S. for any n=2;

il) C(X) does not contain non-zero single elements;

ili) X is a perfect set, i. e. does not contain isolated points;
iv) C(X) does not contain minimal ideals.

Corollary 2.8, If X is a perfect set and-H is a support hyperplane of the ba‘ll Sof
C(X), then cither dim{Sn H)=0 or dim(Sn H)= + 0.

Proposition 2.9. If skel,S contains a single element, then either dim C (X)=2 or
dim C(X)=4.

Proof. Let s be a single element in C(X) and seskel,S. If seext S, then
s(t)#0, s(t)=0 for teX\{t,} and also |s|=1, which proves that X is a
singleton, X ={t,} and so dim C ({t,})=2. If seskel,S\ext S, then by Theorem 1
|s(t;)]<1and|s(t)|=1 for te X\{¢,}. On the other hand, there exists ¢, € X, such
that |s(t,)|#0 and |s(¢)| =0 for te X\{r,}. Hence X contains exactly two points
ty, t;, and dim C({t,, t,})=4.

Corollary 2.10. If skel,S contains a single element then C{(X)=soc(C (X)),
where soc(C(X)) is the socle of the algebra C(X).

3. Non-commutative case

Throughout in this section 4 denotes a non-commutative C*-algebra with
unit. We also denote by 4, the convex cone of all positive elements of 4. In order
to find properties of the 1 and 2 skeleton of the closed unit ball B of 4, we quote

-the following Lemma.

“ Lemma 3.1. Iet S be the closed unit ball in C(X). Then we have
1) A function fe S n C . (X) belongs to skel,(Sn C, (X)) if and only if, there
exist seSNC (X), a single element of C(X) and P, a projection of C (X), such that f

=r—S.
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2) If f¢skel (S N C, (X)), then there exist hy, h,e C, (X), Wlth hy#h, and fh,,
Jfhy linearly mdependent such that

Iif(1+h,)zll<1 j=1 2.

2 It feskel (SN C. (X)), then there exist projections g,, g,€C(X) and

0<4: ..dquely determined such that, f=Ag,+(1—2)g,.

Proof 1) Let feskel,(Sn C, (X)). Since ext(Sn C. (X)) is the set of
projections of C(X), (see [7, p. 47]). We may assume that f¢ext(Sn C, (X))
(otherwise take s=0) and therefore, there exists at least one point ¢t in X, with
0<f(tf)<1. We now claim that there exists exactly one point ¢, € X, such that
0<ft)<l.Ifty, t,€X, ty#1, and 0<f(t;) <1 j=1, 2, we can find V,, ¥, disjoint
compact neigbourhoods of t;, t,, respectively and g;e C(X), with the property
gi(t)=1 g;(V/)={0} and g(X)=[0, 1]. Then we can find 0<g<1 such that

(1) f(xeg)’, f(lxeg)eSnC.(X), j=1, 2.

It is easy to see that &fg,, &fg, are linearly independent Hence f——((f

+¢fg;) +(f—¢efg), j=1, 2, with (ftefg)eSn C,(X) j=1, 2, which contradlcts
the fact that fe skel (Sn C (X)). Let now fe skel (5n.C, (X)) Then if we take
the projection P wnh P(t)= f (t), t#t,, P(t)=1 and cons1der the single element s
such that s(f)=0 t#t,, s()=1—f(t,), then we have f=P-s.

Conversely, let fe S n C, (X) and f= P —s for some projection P of C(X) and
seSnC,(X) a single element of C(X). Then, if ferelint G, where G is a convex
subset of SNnC,.(X), we can easily check that dim G<1, and so
feskel, (S C, (X)) 2) If f¢skel, (SN C, (X)) then there exist at least two
points tl, tzeX with 0<f(t)<1,j=1, 2 We take h;=¢g; j=1, 2, as in relation (1)
of part 1). By construction, h;, -1 2 beleng in $nC +(X) are linearly
independent and | f(1 +4;)* ||<1 1 2.

3) If feext(SnC, (X)), then take Ai=1 and f=g,. If
feskel, (SN C (X)) \ext(SnC (X)), by part 1) we have {)=f), t;ét1 and
0<f(t;)<1. Consider the projections defined by g, (f)=g,(@)=f(t), t#t; g, (t)
=1 and g, (t;)=90 and for A=f(t;) we have f=4g, +(1—A)g,. The uniqueness of
%, g1, g» 18 obvious. '

Theorem 3.2. If B is the closed unit ball of the C*-algebra A with unit, then
skel, B=ext B.

Proof. The set ext B is the collection of points x € B such that xx*, x*x are
projections and (1—x*x) 4 (1 —xx*)={0} (see [7, p. 48]). Let x € skel, B. Suppose
that x*x is not a projection. We take E be the C*-subalgebra of 4 generated by
x*x and the unit 1. Then E is a commutative C*-algebra with unit and is
isometrically isomorphic to C (X), for some X compact, Hausdorff space. Then we
can find (in the same way as in Lemma 1, 1)) a point ae E, such that x*xa#0,

I x*x(1+a)? | £1, []x x(1+a% | £1. Then x—l{(x+xa )+ {x— xa)}——{(x+txa)

+(x—ixa)} where [ xal| = bx*x(1 + ) ST -t ixal = Ix*x(1+ A S1,
and x, x+xa, x+ixa are affinely independent. This is a contradiction, as
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xeskel, B. Hence x*x and therefore xx* are projections. We claim that (1 —x*x) 4

(1—-xx*)={0}. For if not, then there exists a point a=(1—x*x)a (1—xx*) eB

with a#0. Then as x*x, xx* are projections we have that | x+a|=|x+ia]=1
1 1 .

(see [7, p. 48]) and x=3((x+a)+(x—a)= (x+ia)+(x—ia).  This is a

contradiction, as xeskel,B. Hence (1—x*x)B (1—xx*)={0} and this implies
(1—x*x)4 (1—xx*)={0}. The proof is now complete.

Corollary 3.3. Iet E be a normed space. If the closed unit ball of E contains an
edge in its boundary, then there is no way to define multiplication and an involution
on E making it a C*-algebra.

Theorem 3.4. Let x & skel, B, where B is the closed unit ball of the C*-algebra A.
Then

x*x=Ax; +(1—A)x,,
for some projections x, x, and 0SA<1. If in addition x*x is a projection then
dim(l—x*x)4 (1—-xx*)Z2.
P r o o f. Let xeskel,B\ext B, for if x € ext B then we have nothing to prove.

We take the C*-subalgebra E of A generated by x*x and the unit. If
x*x¢skel; (BNE,), then by Lemma 1, 2) there exist a,, a,€E, with

1
x*xa,, x*xa, independent and || x*x(14+4a)?||£1, j=1,2. Then x=§((x+xa1)
1 1
+(x—xa,)= —2—((x+xa J+H(x—xa ;)= 5((x+ixa J+(x—ixa ,)) where |[x

xaj=lx*x(1+a PI'?*<1, j=1, 2, |xtixa,|=|x*x(1+4%)|"*<1 and
x, x+Xxa;, x+xa,, x+ixa, are affinely independent, contradicting the assumtion
xeskel,B. Hence x*xeskel, (BNE,), therefore by Lemma 1, 3) there exist
projections x;, x,€4, 0<A<1 with x*x=14x, +(1 —4)x ,. Suppose, now, that x*x
isitself a projection. Then xx* is a projection, too. If b, b,, b,&(1 —x*x)B (1 — xx*)
are linearly independent then [x+b;j=1, j=1, 2, 3 (see [7, p. 48]) and

1
X =§((x +b J+(x—b ), j=1,2, 3, which is impossible as xeskel,B. This entails

dim (1-x*x)B (1—xx*)<2 and dim (1—x*x)4 (1—xx*)<2.

4. Questions

The following problems might be of interest:
: L. g?haracterize the n-skeleton of the closed unit ball B, of a C*-algebra
or n=3.

2. Can one answer in the affirmative that x eskel, B iff x*x=Ax,+(1—A)x,
where x,, x, are projections and dim(1—x*x)A4(1—xx*)<27?



88 L. Dalla, S. Giotopoulos, N. Katseli

3. For the commutative case it was proved that the boundary of the closed

unit ball B of a C*-algebra A contains a 2-face iff A contains a non-zero single
element (see prop. 1.6). Can we say the same the for non-commutative case?
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