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1. Introduction It 15 known that in the n-dimensional Euclidean space
E" and in an n-dimensional Minkowski space M“, a convex compact
set of constant width has the property that every two parallel support hy-
perplanes are at the same distance apart (see [1], [2]).

Closely related to the sets of constant width is a class of sets, called di-
ametrically complete sets which have the property that the mere addition
of a single point increases their diameter. In the case of the n-dimensional
Euclidean space, it is known that these two classes of sets coincide (see
(2], [9]).

In this paper, we generalize the above notions to an arbitrary normed
space of infinite dimension and we examine whether several known proper-
ties in the case of E', hold also true for the above spaces.

In their work, Eagleston [3] and Soltan [8] characterize among the Min-
kowski spaces those which have the property that the diametrically comple-
te sets are homothetic to the unit ball. Here, it is proved that infinite di-
mensional spaces with the above property do not exist among the reflexive
spaces.

Throughout this paper, E denotes a (real) normed space and E’ its
topological dual with the supremum norm.

2. The width of a set in a direction
2.1. Definition. Let C be a bounded convex set in E and fc E,
with # 0. We call the non-negative real number

e
= Il

the width of C in the directfion [.

[ sup f(x) —ﬂfﬁ‘x,i}

woC

By the Riesz Representiation Theorem, we can easily conclyde that the
above definition of the width of a set coincides with the usual definition of
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the width, given in the n-dimensional Minkowski space M", (see [1], [9]).
2.2. Definition. Let C de a bounded convex sef in E. We define the
minimal width of C to be the non-negative real number
w=inf [B{f) : feE\0}}
2.3. Definition. Let C be a bounded convex set in E We say that C

i5 a set of constant width iif B{f) s constant for everv e E°, with
F=0

Siries B{I}=B{ﬁ

if B(f) is constant for every f= E° with [|fij = 1.

Remark. The open and closed balls in E are sets of constant width. Ob-
viously, their width B{f) in every direction f, is equal to their diameter.

}, we may say that C is a set of constant width

In an n-dimensional Minkowski space M", the width of a compact convex
C in a direction u, is the distance between the two supporting hyper-
planes of C which are orthogonal to u  (see [9]). An analogous result
holds in the case of a normed space, as it is shown in the next Proposition.

2.4. Proposition. Let C be a bounded convex sef in E and B{f) be
the width of C in the direction f where fe E* \ [0}. Let also H| and
H} denote the hyperplanes

[ﬁEE:@JIﬂpﬂ’x}‘, {éEE: ﬁzJ:'::;gﬁxJJ
respacﬁve.{;-r. T.'I‘len
B(f) = d(H; Hf)
where diH; Hi) is the distance between the hyperplanes H} and Hj
Proof. We consider the points y, z of Hj and H] respectively, then

Bif) = — | sup f(x) — inf f(x)] =
O = it

=l _
—”mmm flz2)]l = llv —z|| |,
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that is,
Bify < |lv—2z2I ,

and this for every ye H and z € Hi. Hence
B(f) < d(H;, Hi) . (1).

Conversely now, let v be a point of Hf and a be a reil number, with
a > 1. Since

Ifll = sup f(x)
=1

there exists e £ E, with ||| = 1, such that

LR
| |fle}| = = (2).
Clearly, fle) # 0. We put
>: : 2 e
2=yt | inf ) —sup 0] 75
then
fl2) = fly) + [ inf i{x) — sup f{x) l =inffx)
wal el wel
since v« H. Thus, z is a point of Hj
Mow, if diy, z) is the distance between the points v, 2, we have
g _ e llell _
= B - Ifl ———
ifle))
and from {2) we get
d(H;, Hi) = BIf) (3).

Hence, the result follows from (1) and (3).
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3. Properties of sets of constant width

In this section we shall be concerned with the relation between sets of
constant width and diametrically complete sets, We also study the boundary
of sets of constant width.

3.1. Definition. Let K be a nonempty, bounded set in E. The set K
is said to be diametrically complete iff it is not contained strictly in any
set of the same diameter, '

Remark. As far as we know, the diametrically complete sets are refered
also as complete sets (see for example [1], [2], [9]), or as diametrically
maximal sets (see [3]), to aveid confusion with the topological use of the
word “complete”.

It is known that in the n-dimensional Euclidean space E, a diametri-
cally complete set is a point or it has non-empty interior (see [2], p. 125).
As it follows from the Proposition we quole below, the diametrically com-
plete sets of an arbitrary normed space E have the same property.

3.2.. Proposition. If K is a diametrically complete set in E, then, it is
either a point or it has non-empfy interior.

Proof. Since the convex hull operation and the clocure operation do not
increase the diameter, we conclude that K is convex and closed.

Let d be the diameter of K. If d =0 then, since K is non-empty, it
is a point.

Now, if d >0, we suppose that K has empty interior. So for every
el and €0, there exists y¢ K such that

lx—yll =«
Furthermore, since K is convex, we may suppose that for every x e K
and &> 0, there exists v ¢ K such that
|2 = vl =& {1).

Finally, we may assume without loss of generality that the origin o be-
longs to the relative interior of K. Then, there exists & > 0, with
g < 2d, such that

wrcAK), lIxl Ea=xecK (2},
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where A(K) is the affine hull of K.
Smce o e K, from (1) follows that there exist v, ¢ K, with

Eo
I¥all = —=

for every ne IN. But K is a diametrically complete set, so for every
ne N, there exists a point 2z, = K, such that

Hyn — 2ol| > d
Hence,

' £y
d 2 [lo = 2|l = f|znll = l2a — ¥nll — [Iml] > d = o
and taking n — 4+ =, we have
lm flzoll = d

s0 there exists ke N, such that

Nzull =d — % > ) (3
Put now
e
ST

then, we AlK) and |lw|| =&. Thus, by (2) w is a point of K.
Finally, from {3} we have

2
A

dz|w—all =

£n * +nl|=fu+lli'-kll3"

Eil En
-Iu-d__: =k
>R 3 l:]n-l-2

which is a contradiction. Therefore, the set K has non-empty interior,

MNext, we give a Corollary the proof of which is obwvious.
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3.3. Corollary. A diametrically complete set in E has dimension either
equal to the dimension of E, or equal lo zero.

In the n-dimensional Euclidean space E", a closed convex set of
constant width is a diametrically complete set and vice versa (see [2], p.
123). In an n-dimensional Minkowki space M" the direct implication holds
isee [1]), but the converse is not true in general (see [3]). In a normed spa-
ce E, the direct implication is also true, as we can see from the following
Theorem. '

3.4. Theorem. Lot K be a bounded, closed and convex set in E.
If K is a set of contant width then it is diametrically complefe.

In order to prove the Theorem 3.4. we shall need the [ﬂllm.rinlg Lemma.

35. Lemma. Let C be a bounded, convex set in E. I d is the dia-
meter of €, then :

d = sup [B{f) : f< E°, ifif = 1}

Proof: Let f < E°, with ||fll = 1. For an arbitrary & > 0, there
exist x, %2 e C, such that

E
fr) + — > eup i), fixe) — — < inf f(x) .
2 Wil 2
Then
B < flx) + 5 — flxa) + 5= flxi —xa) + e <
= — %l tesd+e.
So

Blf) =d (1).

Conversely now, let & >0, then there exist xs, wo = C, such that

l|% = woll > d =g .
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If I is the 1-dimensional linear subspace of E generated by x — wi,
we define the linear functional
fb:t—R",
with
fo (Mxo = va)) = A lla —wll , e R .
Clearly,

Il =1 .

and by the Hahn-Banach Theorem, f, extends to a linear functional f,
on E that satisfies

il =1.

Then,
Bif:) = sgcph{xi = inf filx) = filxe) = fifys) = filxo = yo) =
= folxo — wo) = lixo —wuli >d — g,
and hence,
sup [(B{fy : fE", If =1} =2 B{fi) >d — e,
for arbitrary &> 0. So
sup [Bify : fe E°, |Iffl =1} = d (2).

From (1) and (2), we get the desired result,

3.6. Corollary. A bounded, convex set in E is a set of constant width
iff its diamefer is equal to its minimal width.

Proof. This is an immediate consequence of the Lemma 3.5 and the de-
finition of the minimal width.

The proof of Theorem 3.4. Let d be the diameter of K, then, sin-
ce K is a set of constant width, we have from Lemma 3.5 that

d = B{f) ,
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for every fe E°, with. [[f| =1 Letalso z bea point of E, such
that z ¢ K. By the hypothesis that K is a convex and closed set, there
exist a linear functional f ¢ E", with ||f] = 1 and a real number a
such that '

KCixeE:f{x)<a) (1)
and
fizl >a (2).
We put
e=fz)—a>=0.

Then there exist %, vo e K, 51:11:11 that

f(xo) > supf(x) ~ -Z- , flye) < inf fix) + 5

Mow, we have
lz — wall = Iflz — woll = iz — wo) {3),

because wwe K and so f(z) > a > flw), as it follows from the relations
(1) and (2).

Alsn

fiz — w} = [f{z) — fxa)] + [f(xa) — flwa)] =
>fz)—a+Blif)—e=e+d—e=d (4),
From (3) and (4), we get
Iz =l =d ,

which shows that the diameter of the set K U [z] is strictly greater than
the diameter of K. Hence, since the point z is chosen arbitrarily, it fol-
lows that K is a diametrically complete set.

3.7. Corollary. A bounded convex and closed set of constani widih
in E is either a point or it has non-empiy interior.

Proof. See Proposition 3.2 and Theorem 3.4,

In the n-dimensional Euclidean space E" the boundary points of a
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bounded, closed and convex set of constant width are exposed points (see
[2]). In a normed space this is not true in general, since a bounded convex
and closed set of constant width (for example a closed ball) may not have
extreme points. Nevertheless, we shall show that this property holds for a
reflexive Banach space. )

3.8. Theorem. Let E be a reflexive Banach space with a sirictly con-
vex norm. If K is a bounded, convex and closed set of consfant width

in E, then, every boundary point of K is an exposed point.

Proof. Corollary 3.7 implies that the interior of K s either non-empty
or K is exactly a point. In the latter case we have nothing to prove.

We assume that x is a boundary point of K Then, (see for example
[4], p. 64) there exist fcE° and ac R, such that

wmelyeE:fly)=a} , KCjyeE:fy) = a}.

Since K is weakly compactin E

f(xa) = supf{x) .
kK

Let also wo be a point of K, such that

flwa) = inf f{x) ,
wzh

then

- Ty =
B() = o [fe) — o] -

If d is the diameter of K, since K is a set of constant width, we
have from Lemma 3.5

Bif) = d
This implies that

d=f{¥4—!-fu]'

= e = d
m | %a = wall

and so
|%z = wol| = d {1).
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We suppose now that there exist x;, x3 & K, with = # x;, such that
= = (x + %)
H—E X1 Mz
then,

d= lixo = vl = [ 50 43 = g0 || = 5l = vu + 20— 3ol €
< 5 Ix = wl +El||n— voll <d .
Hence, the equality holds, i.e.
% — vo + %z — woll = [I%: = woll + Hx: — wll =2d .
Since, xi, X2, Vo e K necessarily
[ — well = llxz — wol| = d
But, by the hypothesis that the norm is strictly convex, we get
b T ol ¢
e l
which contradicts to (1), Thus, = is an extreme point of K.
Finally, we shall show that x: is an exposed point. We consider the set

% — wll = <d

H={ucu;ﬂﬂ=ﬂmn=mﬂx1[.
wel

whera { is the support functional of K at xa.
If % isapointof HNK, weput

z:.'{n+:ﬂl_
2

Clearly, z is a point of H and so it must be a boundary point
of K, for otherwise, the interior of K and H would have non-empty
intersection. But, by the previous, result z is also an extreme point
of K, which implies that
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Thus, x; is an exposed point of K.

3.9. Corollary. In a unfformly normed Banach space, every boundary
point of a closed convex set of constant width is an exposed point.

Proof. See for example [4], p. 162,

4. Diametrically complete sets in reflexive banach spaces

We know (see [3]) that there exist finite dimensional Banach spaces E
(n-Minkowski spaces), in which every diametrically complete set is “homo-
thetic” to the unit ball of E, Le. if K is a diametrically complete set in
E, then, there exist x e E and A =0, such that

K=x+ A5,
where S is the unit ball of E.

Here, we prove that reflexive Banach spaces of mfinite dimension with
the above property, do not exist.

4.1. Theorem. Let E be an infinite dimensional reflexive Banach spa-
ce. Then, there exists a diametrically complete set which is not homothetic
to the unit ball of E.

For the proof of the above Theorem, we shall need the following:
4.2. Lemma. Every bounded set in a normed space is contained in a di-
ametrically complete set of the same diameter,

Proof. Let E be a normed space and K be a non-empty bounded
subset of E. Let alse diM) denote the diameter of a bounded set
M i E. We consider the set

& ={BCE:B2K, dB)=dK) | .

& is a non-empty family of sets, partially ordered by the relation of the in-
clusion

If (Bt iz achainin & then the set
B= EE.
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is an upper bound of the chain in &, since B 2 K and d{B) = d(K).
Hence, by Zorn's Lemma, there exists a maximal set, A say, in § .

MNow, it suffices to show that the set A is diametncally complete. If this
is not true, then there would exist a point x in E, such that x ¢ A
and

diA U [x]} = d(A) = d(K) .

But
AUxIDAZK,

and so the set A U |x] belongs to & contradicting the maximality of
the set A. '

The proof of Theorem 4.1. For the space E there exists an infinite

dimensional separable Banach subspace, say E; (see [4], [T].

If every diametrically complete set in Es 15 homothetic to the unit ball
S of Es then, by modifying the methods in [8] we prove analogously
that the distance of any two extreme points of S 8 equal to 2. But
by [6] this is impossible for separable reflexive Banach spaces of infinite
dimension. Hence, there exists a set Ko in E,, which is diametrically
complete in Es but not homothetic to the unit ball 5 of Ea

By Lemma 4.2, K, is contained in a diametrically complete set K
in E with the same diameter, d say. We suppose that K is homothe-
tic to the unit ball S of E, ie thereexist xscE, A =0 such that

K=x+2A5.
Then

KME = (s 4+ A3) M E = x + A5 (1},

Now, if d(M) denotes the diameter of a bounded set M, we have
d=dKe) = d{K NE) =diK)=4d ,
which implies that
diKe) = d(K M Eo) .
But K; is a diametrically complete set in E, and so
Ke=KnNE;.
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Hence, by (1) we have that K, is homothetic to the unit ball S of Es
which is a contradiction.

Thus, the diametrically complete set K in E is not homothetic to the
unit ball of E.

Coneluding this paper we remark that the following problem remains still
open:

“Characterize the infinite dimensional normed spaces in which everv dia-
metrically complete set is homothetic to the unit ball”.
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