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1. Introduction 

When C is a convex weakly compact set in a normed linear space E and n is a non
negative integer, then-skeleton of C, denoted by skel,. 0, consists of those points of 0 
that do not lie in the relative interior of any (n + I)-dimensional convex subset of 0. 
In this paper, we study the n-dimensional HAUSDORFF measure of the n-skeleton of a 
convex w-compact set, where n is a positive integer. 

A convex body is a bounded closed convex set having nonempty interior. In the 
case that C is a convex body in a reflexive BANACH space we may regard 0 as a weakly 
compact convex set with nonempty interior. In this case J. L!NDENSTRAUSS and R. R. 
PHELPS [6] have proved that the set of the extreme points of C is uncountable, that 
is the 0-dimensional HAUSDORFF measure of skelo 0 is not a-finite. Using this result, 
we prove that skel" C has no a-finite n-dimensional HAusDORFF measure for any posi-
tive integer n. ' 

2. The Results 

· The following theorems will be proved. 

Theorem 1. Let C be a w-compact convex set of infinite dimension in a normed littear 
space E. If H•(.) denotes the n-dimensionalHAUSDORFF measure then H"(skel,. 0) = +oo 
for every n = 1, 2, ... 

Theorem 2. If Cis a convex body in a reflexive BANACH space then the n-dimensiondl 
HAUSDORFF measure of skel,. Cis not a-finite for any n = 1, 2, ... 

At first we quote and prove two lemmata that will be used in the proof of Theorem 1. 

Lemma 1. If Eisa compact convex set in the EuCLIDean space E", containing a unit 
cube of dimension n, 1 ~ n ~ k - 1 then H"(skel11 I:) :;::;; k + 1 - n. 

Proof. By Theorem 1 in [1] we have that 

(1) H"(skel,. I:) = (~) fno(Ek-n n I:) dfl:-n(Et_,.) 
ka(k- n) a(n) 

where a(r) is the content of the r-dimensional unit ball, the integral is taken over those' 
(k - n)-dimensional flats that intersect the interior of I: and n0 (Et-n n I:) is the number 
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of the extreme points of the intersection of l: with a (n - k)-flat Ek-n· Then 

(2) n0(Ek-n n .E) ~ k + 1 - n. 

Since l: contains a unit cube of dimension n, the 1-'LB-measure of (k - n)-flats, that 
intersect .E, is greater than or equal of the p~_,.-mcasure of (k - n)-flats that intersect 
the n-dimensional unit cube. But the measure of the (k- n)-flats in Ek that meet a 

unit cube of dimension n is ka(k- n) a(n)/(k ~ n)· Hence, using (1) and (2), we 
have that 

H"(skel,. E) ~ k + 1 - n 

and this conclude the proof of the lemma. 

Lemma 2. Let C be a w-compact set in a normed linear space E and n be a linear pro
jedion from E 01Uo a 8'Ub8pace F. Then 

Skel,. n(C) ~ n(skel,. C) for n + 1 < dim F. 

Proof. Let y E skel,. n(C). We consider the following cases. 

Case 1. Suppose y E skelo n(C). Then y is an extreme point of n(C). We have that 
F = n-1(y) n C is w-compact and convex. If e in F is the mid-point (c1 + c2)/2 of two 
points c1 , c2 of C then n(e) = (n(ct) + n(c2))j2. Since y is an extreme point of n(C), we 
have that n(ct) = n(~) = y, so c1 , c2 E F. This implies that F is an extreme face of C. 
If xis an extreme point ofF, then x must also be an extreme point of C. This implies 
that x E F n ext C. Therefore y = n(x) E n(ext C). Hence skel0 n(C) ~ n(skel0 C). 

i-1 
Case 2. Let y E skel1 n(C) - U skeli n(C), 1 ~ i ~ n. Then there exists a face A 

i=l 
of n(C) of dimension i such that y E relint A. I..et F = n-1(A) n C and e E F, and 
c1 , c2 E 0 as in case l. Then n(e) = (n(ct) + n(c2 )) /2 E A and since A is an extreme face 
of n(O), we have JJ(ct), n(c2) E A. So cl! c2 E F, that is F is an extreme face of C of co
dimension (k - i). 

Let x E ext {n-1(y) n C)~ F. Since n-1(y) has co-dimension k the co-dimension of 
n-1(y) n C relative to the face F is i. Then the faces of F, whose relative interior con
tains x have dimension at most i. Hence x E skel; F ~ skel; Cas F is an extreme face 
of C. 

'fherefore 

&nd 

i-1 

skel1 n(O) - U skel1 n(C) ~ n(skel; C), 
;-o 

skel11 n(C) = skelo n(C) u i~I [ skel; n(C) - ;9: skel1n(C)] ~ n(skel11 C). 

Proof of Theorem 1. Let n ~ 1 and k ~ n + 1, n being fixed but arbitrary. We 
suppose that the zero vector belongs to C. Let {el! e2 , •• • , e,.} be a set of linearly inde
pendent unit vectors in E, and K,. be the unit cube of dimension n. 

After 0 has been scaled and translated in a suitable way, we may suppose that K,. 
iB a subset of C. Let {etHI! ... , ek} be a set of linearly independent unit vectors in E such 
that the set {e1 , ... , ek} spans the subspace Ek of E of dimension k. 
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Let nk be the identity map on Ek. Then nk has a linear extension n defined from E 
into Ek such that llnll ~ 1. (see [3] p. 105). Therefore n(K,.) = n11(K,.) = K 11 ~ n(O). 
Hence n(O) is a compact convex set in Ek, that contains then-dimensional unit cube K,.. 

Since n is non expansive, we have that 

H"(skel,. C) ~ H"(n(skel,. 0)). 

By lemma 2 

skel,. n(C) ~ n(skel,. 0). 

By lemma 1 

H"(skel,. n(C)) ~ k + 1 - n 

so H"(skel,. 0) ~ H"(n(skel .. 0)) ~ k + 1 - n. Hence H"(skel,. C)~ k + 1 - n aB 

this holds for every k ~ n + 1. Hence H"(skel,. C) = +oo for every n = 1, 2, ... 
This proves the theorem. 
In the proof of Theorem 2 the following definitions are used: 

Definition 1. The map f: X ~ Y is said to be a homeomorphism of class 0, 1 between 
the topological spaces X and Y if and only if 

i) f is 1 - 1, continuous and 
ii) for every closed subset F of X, the set f(F) is a Ga subset of Y. 

Definition 2. If W is a subset of ]It X I, where I = [0, 1] and h is a map from ]It X I 
into I, we say that h(., y), y E I is a selector of W if and only if for each x0 E Jk, h(x0, y) 
E W.r, = {(x0 , z) E [It X 1: (x0 , z) E W). 

Proof of Theorem 2. Let C be a convex body in the reflexive BANACH space E 
In any reflexive BANACH space E, there exists a separable infinite dimensional closed 
subspace F and a linear projection II of norm 1 from E onto F (Prop. 1, 7]. Then II(O) 
is a convex body in the separable reflexive BANACH space F. By lemma 2, if the n-dimen
sional fuusnoRFF measure of skel,. II( C) is not a-finite, then then-dimensional HAus
DORFF measure of skel,. C is not a-finite. Hence we may suppose that the space E i! 
separable. The convex body C is compact, metrizable (in the weak topology). 

By Theorem 1 in [5] skel11 Cis an absolute G0 -set in the closed set 0. Hence skel.t 0 
is a BoREL set in E. By § 36, III, Vol. I in [4] there exists a mapping f: K ~ E from a. 
closed subset K of the set of the irrationals in [0, 1] onto E, such that f is a homeo
morphism of class 0, 1. Let n: E ~ Ek, be a projection of Eon the EucLIDean space Ek 
of dimension k. Then we may suppose that ]It = [0, l]k ~ int n(O). 

Let x E Jk, then n-1(x) is a hyperplane of co-dimension 1c and C n n-1 (x) is a convex 
body of infinite dimension. Then by Corollary 1.2 in [6] the set ext (C n n-1(x)) is un
countable. Since n-1(x) is of co-dimension 1c we have that 

ext (0 n n-1(x)) ~ skelk C 

so for every x E ]It the set skelk [0 n n-1(x)] is uncountable. 
Let Ek+l = Ek X El and consider K to be a subset of the interval {(0, y), 0 E Ek, 

0 < y < 1}. We define a map cp: K ~ Ek X E1 such that 

cp(y) = (n(f(y)), y). 
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Then 

(i) rp is a 1 - 1 map. 
(ii) rp is a continuous as :n and I are. 

(iii) rp-1 is continuous on rp(K) (as projection map). 

The set ske4 0 is a BoREL set so l-1(skelk 0) is a BOREL subset of K as I is continuous 
and rp(l-1(ske4 0)) = W' is a BoREL subset if Ek+l as rp-1 is continuous. Then as 
skelt [0 n :n-1(x)] is uncountable, Wz = {(x, y) E Ek+l: (x, y) E W, x E Ek} is an un
countable set for each x E Ik. Let W = W' n (Ik X I). By Theorem 7 in [2] there exists 
a map h: Ik X I-+ I such that: 

(i) his an :t(Ik XI) measurable map, where:t(I") denotes the family of the LEBESGUE 
measurable subsets of I", n being an integer; 

(ii) for each x E It, h(x, ·) is a BoREL isomorphism of I into Wz = {(x, y) E Ek+l: 

(x, y) E W, x E Ell} and 
(iii) for each y, h(·, y) is an :t(Ik) measurable selector of W. 

Let {Av : y E W 0} be the uncountable family of these selectors. Then A 11 n A,. = 0 
for y =F y' and Hk(Av) > 0. Then D11 = l(rp-1(A11 )) is an Hit-measurable set in T as I 
e.nd rp,-1 are continuous. Hence skelt 0 contains an uncountable family {D11}11Ew, with 
H"(D11 ) > 0 and D 11 n D 11• = 0 for y =F y'. Therefore skelk 0 has no 0'-finite Hk-meaaupe 
([8], p. 123, Theorem 58). 

Finally we give an example of a convex closed bounded set with empty interior in 
a reflexive BANACH space such that skel .. 0 has 0'-finite n-dimensional HAusDORFF 
measure for n = 0, 1, ... This shows that the assumption of the non-emptineBB of the 
interior of the set 0 in Theorem 2 can not be removed. 

Example. Let {1 denote the space of all sequences x = {x1, x2, ••• }. of scalar such that 
E lx,.l 2 < +oo and {e;}~0 be the set 
..-1 

e0 = {0, 0, 0, ... } 

e1 = {1, 0, 0, ... } 

e2 = {0, 1/2, 0, ... } and so on. 

Let 0 =con ( U 611). Then 0 is a convex closed set in {2 with empty interior. The set 
11=0 co 

of the extreme points of 0 is U {e,.} and its n-skeleton is 
n-o 

co 

skel,. 0 = U U con {ek> e1,, • , ., e1.}. 
k-n O;:;!i,<ia"'<i.:;;k-1 

We have H"(con (e1" e1,, ... , e1.)) < +oo. Hence the n-dimensional skeleton has a-finite 
n-dimensional HAUSDORFF measure for every n ~ 0. 
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