Math. Nachr. 128 (1985) 131—135

The n-Dimensional Hausdorff Measure of the n-Skeleton
of a Convex W-Compact Set (Body)

By LeoNI Darra of Athens

{Received December 28, 1983)

1. Introduction

When C is a convex weakly compact set in a normed linear space E and % is a non-
negative integer, the n-skeleton of C, denoted by skel, C, consists of those points of C
that do not lie in the relative interior of any (n 4 1)-dimensional convex subset of C.
In this paper, we study the n-dimensional HAUSDORFF measure of the n-skeleton of a
convex w-compact set, where n is a positive integer.

A convex body is a bounded closed convex set having nonempty interior. In the
case that C is & convex body in a reflexive BANACH space we may regard C as a weakly
compact convex set with nonempty interior. In this case J. LINDENSTRAUSS and R. R.
PrELPS [6] have proved that the set of the extreme points of C is uncountable, that
is the 0-dimensional HausDoRFF measure of skely C is not o-finite. Using this result,
we prove that skel, C' has no o-finite n-dimensional HAUSDORFF measure for any posi-
tive integer n. /

2. The Results
"The following theorems will be proved.

Theorem 1. Let C be a w-compact convex set of infinite dimension in a normed linear
space E. If H*(.) denotes the n-dimensional HAUSDORFF measure then H%(skel, C) = 4 oo
foreveryn = 1,2, ...

Theorem 2. If C is a convex body in a reflexive BANACH space then the n-dimensional
HAUSDORFF measure of skel, C 75 not o-finite foranyn = 1,2, ...
At first we quote and prove two lemmata that will be used in the proof of Theorem 1.

Lemma 1. If X is a compact convex set in the EUCLIDean space E*, containing a unit
cube of dimensionn, 1 < n <k — 1then H(skel, Z) =k + 1 — n,

Proof. By Theorem 1 in [1] we have that

)
1) Hr(skel, 2) = e

_— k
ka(k — n) a(n) o(Ey_n 0 Z) dpty— p(Eix-)

where a(r) is the content of the r-dimensional unit ball, the integral is taken over those
(k¢ — n)-dimensional flats that intersect the interior of 2 and ny(E;_, n X) is the number

9#
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of the extreme points of the intersection of X with a (n — k)-flat E,_,. Then
(2) ng(Byn N &)=k +1—m.

Since X contains a unit cube of dimension n, the uf_ -measure of (k¢ — n)-flats, that
intersect Z, is greater than or equal of the uf_,-measure of (k — n)-flats that intersect
the n-dimensional unit cube. But the measure of the (k — n)-flats in E* that meet a

k
unit cube of dimension n is ka(k — n) a(n) / ( ) Hence, using (1) and (2), we
k—n
have that

Hgkel, £y =k +1—mn
and this conclude the proof of the lemma.

Lemma 2. Let C be a w-compact set in a normed linear space E and n be a linear pro-
jection from E onto a subspace F. Then

Skel, #(C) S n(skel, C) for n + 1 < dim F.
Proof. Let y € skel, n(C). We consider the following cases.

Case 1. Suppose y € skel, 7(C). Then y is an extreme point of n(C). We have that
F = nYy) n C is w-compact and convex. If g in F is the mid-point (¢, + ¢,)/2 of two
points ¢,, ¢; of C then x(p) = (n(cl) + n:(cz))/2. Since y is an extreme point of #(C), we
have that z{c,) = n(cz) = ¥, 80 ¢,, ¢; € F. This implies that F is an extreme face of C.
If z is an extreme point of F, then x must also be an extreme point of C. This implies
that x € F n ext C. Therefore y = n(z) € n(ext C). Hence skely #(C) & n(skel, C).

i1
Case 2. Let y € skel; 7(C) — \ skel; n(C), 1 < ¢ < n. Then there exists a face 4
j=1

of n(C) of dimension 7 such th’at yerelint A, Tet F =a1(4)nC and p € F, and
¢1, €3 € C ag in case 1. Then n(p) = (:t(cl) + 7:(02))/2 € 4 and since A4 is an extreme face
of n(C), we have x(c,), n(c,) € A. So ¢,, c, € F, that is F is an extreme face of C of co-
dimension (k — z).

Let x € ext (ﬂ“(y) a 0) € F. Since n~1(y) has co-dimension k the co-dimension of
7"Y(y) n C relative to the face F is 7. Then the faces of F, whose relative interior con-
tains x have dimension at most 7. Hence z € skel; ¥ < skel; C as F is an extreme face
of C.

Therefore

i-1
skel, #(C) — U skel; 7(C) S n(skel; ), 1<isn
j=0
and !

skel, (C) = skely #(C) u 0 [skel,- a(C) — 'CJI skel; n(C’)] < n(skel, C).
i=1 j=0

Proof of Theorem 1. Let » = 1 and £ = n + 1, n being fixed but arbitrary, We
suppose that the zero vector belongs to C. Let {e;, e, ..., €,} be a set of linearly inde-
pendent unit vectors in E, and K, be the unit cube of dimension n.

After C has been scaled and translated in a suitable way, we may suppose that K,
ie a subset of C. Let {e, ,,, ..., &} be a set of linearly independent unit vectors in E such
that the set {e,, ..., ¢} spans the subspace E* of E of dimension k.
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Let 7, be the identity map on E*. Then m, has a linear extension » defined from E
into E* such that |lz|| < 1. (see [3] p. 105). Therefore n(K,) = m(K,) = K, S =(0).
Hence z(C) is a compact convex set in E*, that contains the n-dimensional unit cube K,.

Since # is non expansive, we have that

H"(skel, C) = H"(n(skel, C)).
By lemma 2

skel, n(C) & n(skel, C).
By lemma 1

H%(skel, z(0)) =k +1—mn

so H*%(skel, C) = H"(n(skel,, O)) 2 k-+1—mn Hence H¥gke,C) =2k + 1 —n an
this holds for every £ = n -+ 1. Hence H"(skel, ) = + oo foreveryn = 1,2, ...

This proves the theorem.

In the proof of Theorem 2 the following definitions are used:

Definition 1. The map f: X —> Y is said to be a homeomorphism of class 0, 1 between
the topological spaces X and Y if and only if
i) fis 1 — 1, continuous and
ii) for every closed subset F of X, the set f(F) is a G, subset of ¥.

Definition 2. If W is a subset of I¥* X I, where I = [0, 1] and & is a map from ¥ X1
into I, we say that k(., y), y € I is a selector of W if and only if for each =, € I*, h(z, y)
€ W,, = {(zg,2) € I¥ X I: (29,2) € W}

Proof of Theorem 2. Let C be a convex body in the reflexive BANACH space K
In any reflexive BANACH space E, there exists a separable infinite dimensional closed
subspace F and a linear projection II of norm 1 from E onto F [Prop. 1, 7]. Then I7(C)
is a convex body in the separable reflexive BANACH space F. By lemma 2, if the n-dimen-
sional HAUSDORFF measure of skel, I7(C) is not o-finite, then the n-dimensional Havus-
DPORFF measure of skel, C is not o-finite. Hence we may suppose that the space K is
separable. The convex body C is compact, metrizable (in the weak topology).

By Theorem 1 in [5] skel, C is an absolute G,-set in the closed set C. Hence skel, €
is & BorEL set in E. By § 36, III, Vol. I in [4] there exists a mapping /: K — F from a
closed subset K of the set of the irrationals in [0, 1] onto E, such that f is & homeo-
morphism of class 0, 1. Let n: E — E¥, be a projection of E on the EucLIDean space E*
of dimension k. Then we may suppose that I* = [0, 1}* < int 2(C).

Let x € I*, then a~1{z) is a hyperplane of co-dimension k and C n n~1(z) is a convex
body of infinite dimension. Then by Corollary 1.2 in [6] the set ext (C n zn~1(z)) is un-
countable. Since n71(z) is of co-dimension k we have that

ext (O’ n n‘l(x)) C skel, C

so for every x € I* the set skel, [C n z~1(z)] is uncountable.
Let E¥! = E* X E' and consider K to be a subset of the interval {(0, y), 0 € E*,
0 < y < 1}. We define a map ¢: K — E* X E' such that

o) = (=(f®), v).
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Then
(i) pisa 1 — 1 map.
(if) @ is & continuous as = and f are.
(iii) ¢! is continuous on p(K) (as projection map).
The set skel, C is a BOREL set so f~(skel, C) is a BOREL subset of K as f is continuous
and (p( ~1(gkel, C’)) = W' is a BoREL subset if E**1 as ¢! is continuous. Then as
skel, [C n 2~ Y(z)] is uncountable, W, = {(z, y) € E**1: (z,y) € W, x € E* is an un-
countable set for each z € I*, Let W = W’ n (I* X I). By Theorem 7 in [2] there exists
a map h: I* X I — I such that:
(i) kis an X (I* X I) measurable map, where ¥ (/*) denotes the family of the LEBESGUE
measurable subsets of I*, » being an integer;
(ii) for each x € I, h(z, ) is a BoOREL isomorphism of I into W, = {(z, y) € E*+':
(x,y) € W, x € E¥ and
(iii) for each y, A(-, y) is an ¥ (I*) measurable selector of W.

Let {4, :y € Wy} be the uncountable family of these selectors. Then A4, n 4, = 6
for y &y’ and H%A4,) > 0. Then D, = f(p~'(4,)) is an H*-measurable set in 7' as f
and ¢! are continuous., Hence skel, C contains an uncountable family {D,} ¢y, Wwith
HYD,) > 0 and D, n D,. = @ for y = y'. Therefore skel, C' has no o-finite H*-measure
(8], p. 123, Theorem 58).

Finally we give an example of a convex closed bounded set with empty interior in
a reflexive BanacH space such that skel, C has o¢-finite n-dimensional HAUSDORFF
measure for n = 0, 1, ... This shows that the assumption of the non-emptiness of the
interior of the set C in Theorem 2 can not be removed.

Example. Let {; denote the space of all sequences x = {x,, #, ...}. of scalar such that
X |z,]? < +o00 and {e}i2, be the set
w=1
€ = {0! 0) 0, "'}
e =1{1,0,0,...)
e, = {0,1/2,0,...} andsoon.

Let C =con | U ¢,). Then C is a convex closed set in /, with empty interior. The set

n=0 00

of the extreme points of C is U {e,} and its n-skeleton is
n=0
skel, C = U U con {e, €, ..., €} -

k= 056 <igp-<insk—1

We have H"(con {exs €, - e,')) < +c0. Hence the n-dimensional skeleton has g-finite
n-dimensional HAUSDORFF measure for every n = 0.
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