The *n*-Dimensional Hausdorff Measure of the *n*-Skeleton of a Convex *W*-Compact Set (Body)

By LEONI DALLA of Athens

(Received December 28, 1983)

1. Introduction

When C is a convex weakly compact set in a normed linear space E and n is a nonnegative integer, the *n*-skeleton of C, denoted by $\text{skel}_n C$, consists of those points of C that do not lie in the relative interior of any (n + 1)-dimensional convex subset of C. In this paper, we study the *n*-dimensional HAUSDORFF measure of the *n*-skeleton of a convex w-compact set, where n is a positive integer.

A convex body is a bounded closed convex set having nonempty interior. In the case that C is a convex body in a reflexive BANACH space we may regard C as a weakly compact convex set with nonempty interior. In this case J. LINDENSTRAUSS and R. R. PHELPS [6] have proved that the set of the extreme points of C is uncountable, that is the 0-dimensional HAUSDORFF measure of skel₀ C is not σ -finite. Using this result, we prove that skel_n C has no σ -finite *n*-dimensional HAUSDORFF measure for any positive integer n.

2. The Results

The following theorems will be proved.

Theorem 1. Let C be a w-compact convex set of infinite dimension in a normed linear space E. If $H^{\bullet}(.)$ denotes the n-dimensional HAUSDORFF measure then $H^{\bullet}(\text{skel}_{n} C) = +\infty$ for every n = 1, 2, ...

Theorem 2. If C is a convex body in a reflexive BANACH space then the n-dimensional HAUSDORFF measure of skel_n C is not σ -finite for any n = 1, 2, ...

At first we quote and prove two lemmata that will be used in the proof of Theorem 1.

Lemma 1. If Σ is a compact convex set in the EUCLIDean space E^k , containing a unit cube of dimension $n, 1 \leq n \leq k-1$ then $H^n(\operatorname{skel}_n \Sigma) \geq k+1-n$.

Proof. By Theorem 1 in [1] we have that

(1)
$$H^{n}(\operatorname{skel}_{n} \Sigma) = \frac{\binom{k}{n}}{ka(k-n) a(n)} \int n_{0}(E_{k-n} \cap \Sigma) d\mu_{k-n}^{k}(E_{k-n})$$

where a(r) is the content of the *r*-dimensional unit ball, the integral is taken over those (k - n)-dimensional flats that intersect the interior of Σ and $n_0(E_{k-n} \cap \Sigma)$ is the number

of the extreme points of the intersection of Σ with a (n-k)-flat E_{k-n} . Then

(2)
$$n_0(E_{k-n} \cap \Sigma) \geq k+1-n.$$

Since Σ contains a unit cube of dimension n, the μ_{k-n}^k -measure of (k-n)-flats, that intersect Σ , is greater than or equal of the μ_{k-n}^k -measure of (k-n)-flats that intersect the *n*-dimensional unit cube. But the measure of the (k-n)-flats in E^k that meet a unit cube of dimension n is $k a(k-n) a(n) / {\binom{k}{k-n}}$. Hence, using (1) and (2), we have that

$$H^n(\operatorname{skel}_n \Sigma) \geq k+1-n$$

and this conclude the proof of the lemma.

Lemma 2. Let C be a w-compact set in a normed linear space E and π be a linear projection from E onto a subspace F. Then

 $\operatorname{Skel}_{n} \pi(C) \subseteq \pi(\operatorname{skel}_{n} C) \text{ for } n+1 < \dim F.$

Proof. Let $y \in \text{skel}_n \pi(C)$. We consider the following cases.

Case 1. Suppose $y \in \operatorname{skel}_0 \pi(C)$. Then y is an extreme point of $\pi(C)$. We have that $F = \pi^{-1}(y) \cap C$ is w-compact and convex. If ϱ in F is the mid-point $(c_1 + c_2)/2$ of two points c_1, c_2 of C then $\pi(\varrho) = (\pi(c_1) + \pi(c_2))/2$. Since y is an extreme point of $\pi(C)$, we have that $\pi(c_1) = \pi(c_2) = y$, so $c_1, c_2 \in F$. This implies that F is an extreme face of C. If x is an extreme point of F, then x must also be an extreme point of C. This implies that $x \in F \cap \operatorname{ext} C$. Therefore $y = \pi(x) \in \pi(\operatorname{ext} C)$. Hence $\operatorname{skel}_0 \pi(C) \subseteq \pi(\operatorname{skel}_0 C)$.

Case 2. Let $y \in \text{skel}_i \pi(C) - \bigcup_{j=1}^{i-1} \text{skel}_j \pi(C)$, $1 \leq i \leq n$. Then there exists a face A of $\pi(C)$ of dimension i such that $y \in \text{relint } A$. Let $F = \pi^{-1}(A) \cap C$ and $\varrho \in F$, and $c_1, c_2 \in C$ as in case 1. Then $\pi(\varrho) = (\pi(c_1) + \pi(c_2))/2 \in A$ and since A is an extreme face of $\pi(C)$, we have $\pi(c_1), \pi(c_2) \in A$. So $c_1, c_2 \in F$, that is F is an extreme face of C of co-dimension (k - i).

Let $x \in \text{ext}(\pi^{-1}(y) \cap C) \subseteq F$. Since $\pi^{-1}(y)$ has co-dimension k the co-dimension of $\pi^{-1}(y) \cap C$ relative to the face F is *i*. Then the faces of F, whose relative interior contains x have dimension at most *i*. Hence $x \in \text{skel}_i F \subseteq \text{skel}_i C$ as F is an extreme face of C.

Therefore

$$\operatorname{skel}_i \pi(C) - \bigcup_{j=0}^{i-1} \operatorname{skel}_j \pi(C) \subseteq \pi(\operatorname{skel}_i C), \quad 1 \leq i \leq n$$

and

$$\operatorname{skel}_n \pi(C) = \operatorname{skel}_0 \pi(C) \cup \bigcup_{i=1}^n \left[\operatorname{skel}_i \pi(C) - \bigcup_{j=0}^{i-1} \operatorname{skel}_j \pi(C) \right] \subseteq \pi(\operatorname{skel}_n C).$$

Proof of Theorem 1. Let $n \ge 1$ and $k \ge n + 1$, n being fixed but arbitrary. We suppose that the zero vector belongs to C. Let $\{e_1, e_2, \ldots, e_n\}$ be a set of linearly independent unit vectors in E, and K_n be the unit cube of dimension n.

After C has been scaled and translated in a suitable way, we may suppose that K_n is a subset of C. Let $\{e_{n+1}, \ldots, e_k\}$ be a set of linearly independent unit vectors in E such that the set $\{e_1, \ldots, e_k\}$ spans the subspace E^k of E of dimension k.

Let π_k be the identity map on E^k . Then π_k has a linear extension π defined from E into E^k such that $\|\pi\| \leq 1$. (see [3] p. 105). Therefore $\pi(K_n) = \pi_k(K_n) = K_n \subseteq \pi(C)$. Hence $\pi(C)$ is a compact convex set in E^k , that contains the *n*-dimensional unit cube K_n . Since π is non-expansive, we have that

Since π is non expansive, we have that

$$H^n(\operatorname{skel}_n C) \geq H^n(\pi(\operatorname{skel}_n C))$$

By lemma 2

 $\operatorname{skel}_n \pi(C) \subseteq \pi(\operatorname{skel}_n C).$

By lemma 1

 $H^n(\operatorname{skel}_n \pi(C)) \geq k+1-n$

so $H^n(\operatorname{skel}_n C) \ge H^n(\pi(\operatorname{skel}_n C)) \ge k+1-n$. Hence $H^n(\operatorname{skel}_n C) \ge k+1-n$ and this holds for every $k \ge n+1$. Hence $H^n(\operatorname{skel}_n C) = +\infty$ for every $n = 1, 2, \ldots$

This proves the theorem.

In the proof of Theorem 2 the following definitions are used:

Definition 1. The map $f: X \rightarrow Y$ is said to be a homeomorphism of class 0, 1 between the topological spaces X and Y if and only if

i) f is 1 - 1, continuous and

ii) for every closed subset F of X, the set f(F) is a G_{σ} subset of Y.

Definition 2. If W is a subset of $I^k \times I$, where I = [0, 1] and h is a map from $I^k \times I$ into I, we say that h(., y), $y \in I$ is a selector of W if and only if for each $x_0 \in I^k$, $h(x_0, y) \in W_{x_*} = \{(x_0, z) \in I^k \times I : (x_0, z) \in W\}.$

Proof of Theorem 2. Let C be a convex body in the reflexive BANACH space EIn any reflexive BANACH space E, there exists a separable infinite dimensional closed subspace F and a linear projection Π of norm 1 from E onto F [Prop. 1, 7]. Then $\Pi(C)$ is a convex body in the separable reflexive BANACH space F. By lemma 2, if the *n*-dimensional HAUSDORFF measure of skel_n $\Pi(C)$ is not σ -finite, then the *n*-dimensional HAUS-DORFF measure of skel_n C is not σ -finite. Hence we may suppose that the space E is separable. The convex body C is compact, metrizable (in the weak topology).

By Theorem 1 in [5] skel_k C is an absolute G_{σ} -set in the closed set C. Hence skel_k C is a BOREL set in E. By § 36, III, Vol. I in [4] there exists a mapping $f: K \to E$ from a closed subset K of the set of the irrationals in [0, 1] onto E, such that f is a homeomorphism of class 0, 1. Let $\pi: E \to E^k$, be a projection of E on the EUCLIDEEAN space E^* of dimension k. Then we may suppose that $I^k = [0, 1]^k \subseteq \operatorname{int} \pi(C)$.

Let $x \in I^k$, then $\pi^{-1}(x)$ is a hyperplane of co-dimension k and $C \cap \pi^{-1}(x)$ is a convex body of infinite dimension. Then by Corollary 1.2 in [6] the set ext $(C \cap \pi^{-1}(x))$ is uncountable. Since $\pi^{-1}(x)$ is of co-dimension k we have that

$$\operatorname{ext}(C \cap \pi^{-1}(x)) \subseteq \operatorname{skel}_k C$$

so for every $x \in I^k$ the set $\operatorname{skel}_k [C \cap \pi^{-1}(x)]$ is uncountable.

Let $E^{k+1} = E^k \times E^1$ and consider K to be a subset of the interval $\{(0, y), 0 \in E^k, 0 < y < 1\}$. We define a map $\varphi: K \to E^k \times E^1$ such that

$$\varphi(y) = (\pi(f(y)), y).$$

Then

- (i) φ is a 1 1 map.
- (ii) φ is a continuous as π and f are.
- (iii) φ^{-1} is continuous on $\varphi(K)$ (as projection map).

The set skel_k C is a BOREL set so $f^{-1}(\text{skel}_k C)$ is a BOREL subset of K as f is continuous and $\varphi(f^{-1}(\operatorname{skel}_k C)) = W'$ is a BOREL subset if E^{k+1} as φ^{-1} is continuous. Then as $\operatorname{skel}_k[C \cap \pi^{-1}(x)]$ is uncountable, $W_x = \{(x, y) \in E^{k+1} : (x, y) \in W, x \in E^k\}$ is an uncountable set for each $x \in I^k$. Let $W = W' \cap (I^k \times I)$. By Theorem 7 in [2] there exists a map $h: I^k \times I \to I$ such that:

- (i) h is an $\mathcal{L}(I^k \times I)$ measurable map, where $\mathcal{L}(I^n)$ denotes the family of the LEBESGUE measurable subsets of I^n , n being an integer;
- (ii) for each $x \in I^k$, $h(x, \cdot)$ is a BOREL isomorphism of I into $W_x = \{(x, y) \in E^{k+1}:$ $(x, y) \in W, x \in E^k$ and
- (iii) for each y, $h(\cdot, y)$ is an $\mathcal{L}(I^k)$ measurable selector of W.

Let $\{A_y: y \in W_0\}$ be the uncountable family of these selectors. Then $A_y \cap A_{y'} = \emptyset$ for $y \neq y'$ and $H^{k}(A_{y}) > 0$. Then $D_{y} = f(\varphi^{-1}(A_{y}))$ is an H^{k} -measurable set in T as f and φ^{-1} are continuous. Hence skel_k C contains an uncountable family $\{D_y\}_{y\in W_0}$ with $H^{k}(D_{y}) > 0$ and $D_{y} \cap D_{y'} = \emptyset$ for $y \neq y'$. Therefore skel_k C has no σ -finite H^{k} -measure ([8], p. 123, Theorem 58).

Finally we give an example of a convex closed bounded set with empty interior in a reflexive BANACH space such that $skel_n C$ has σ -finite *n*-dimensional HAUSDORFF measure for n = 0, 1, ... This shows that the assumption of the non-emptiness of the interior of the set C in Theorem 2 can not be removed.

Example. Let l_1 denote the space of all sequences $x = \{x_1, x_2, \ldots\}$. of scalar such that $\sum |x_n|^2 < +\infty$ and $\{e_i\}_{i=0}^{\infty}$ be the set

$$e_0 = \{0, 0, 0, \ldots\}$$

$$e_1 = \{1, 0, 0, \ldots\}$$

$$e_2 = \{0, 1/2, 0, \ldots\}$$
 and so on.

Let $C = \overline{\operatorname{con}} \left(\bigcup_{n=0}^{\infty} e_n \right)$. Then C is a convex closed set in l_2 with empty interior. The set of the extreme points of C is $\bigcup_{n=0}^{\infty} \{e_n\}$ and its *n*-skeleton is

$$\operatorname{skel}_{n} C = \bigcup_{\substack{k=n \ 0 \leq i_{1} < i_{1} \cdots < i_{n} \leq k-1}} \operatorname{con} \{e_{k}, e_{i_{1}}, \ldots, e_{i_{n}}\}.$$

We have $H^n(\operatorname{con}(e_k, e_{i_1}, \ldots, e_{i_n})) < +\infty$. Hence the *n*-dimensional skeleton has σ -finite *n*-dimensional HAUSDOBFF measure for every $n \ge 0$.

References

- [1] G. R. BURTON, Skeleta and sections of convex bodies, Mathematika 27 (1980) 97-103
- [2] D. CENZER and R. D. MAULDIN, Measurable parametrizations and selections, Transactions of the Amer. Math. Soc. 245 (1978) 399-408
- [3] M. M. DAY, Normed linear spaces, Springer-Verlag, Berlin 1962

- [4] K. KURATOWSKI, Topology, Academic Press, New York 1966
- [5] D. G. LARMAN and C. A. ROGERS, The finite dimensional skeletons of a compact convex set, Bull. London Math. Soc. 5 (1973) 145-153
- [6] J. LINDENSTRAUSS and R. R. PHELPS, Extreme point properties of convex bodies in Reflexive Banach spaces, Israel J. Math. 6 (1968) 39-48
- [7] J. LINDENSTRAUSS, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966) 967-970
- [8] C. A. ROGERS, Hausdorff measures, Cambridge 1970

Athens University Dept of Mathematics Panepistemiopolis, Athens 621 Greece