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Abstract— The paper presents a new framework for complex
support vector regression (SVR) as well as Support Vector
Machines (SVM) for quaternary classification. The method
exploits the notion of widely linear estimation to model the input-
out relation for complex-valued data and considers two cases:
1) the complex data are split into their real and imaginary parts
and a typical real kernel is employed to map the complex data
to a complexified feature space and 2) a pure complex kernel is
used to directly map the data to the induced complex feature
space. The recently developed Wirtinger’s calculus on complex
reproducing kernel Hilbert spaces is employed to compute the
Lagrangian and derive the dual optimization problem. As one
of our major results, we prove that any complex SVM/SVR task
is equivalent with solving two real SVM/SVR tasks exploiting
a specific real kernel, which is generated by the chosen complex
kernel. In particular, the case of pure complex kernels leads to the
generation of new kernels, which have not been considered before.
In the classification case, the proposed framework inherently
splits the complex space into four parts. This leads naturally
to solving the four class-task (quaternary classification), instead
of the typical two classes of the real SVM. In turn, this
rationale can be used in a multiclass problem as a split-class
scenario based on four classes, as opposed to the one-versus-all
method; this can lead to significant computational savings. Exper-
iments demonstrate the effectiveness of the proposed framework
for regression and classification tasks that involve complex
data.

Index Terms— Classification, complex kernels, complex
valued data, regression, support vector machines, widely linear
estimation.

I. INTRODUCTION

THE support vector machine (SVM) framework has
become a popular toolbox for addressing real-world

Manuscript received May 1, 2013; revised February 18, 2014 and June 7,
2014; accepted June 24, 2014. Date of publication July 30, 2014; date of
current version May 15, 2015. This work was supported in part by the
European Union, European Social Fund, and in part by the Greek National
Funds through the Operational Program Education and Lifelong Learning,
National Strategic Reference Framework-Research Funding Program: Aristeia
under Grant I: 621.

P. Bouboulis is with the Department of Informatics and Telecom-
munications, University of Athens, Athens 15784, Greece (e-mail:
panbouboulis@gmail.com).

S. Theodoridis is with the Department of Informatics and Telecommu-
nications, University of Athens, Athens 15784, Greece, and also with the
Research Academic Computer Technology Institute, Patra 26500, Greece
(e-mail: stheodor@di.uoa.gr).

C. Mavroforakis is with the Data Management Laboratory, Department
of Computer Science, Boston University, Boston, MA 02215 USA (e-mail:
cmav@bu.edu).

L. Evaggelatou-Dalla is with the department of Mathematics, University of
Athens 15784, Greece (e-mail: ldalla@math.uoa.gr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2014.2336679

applications that involve nonlinear classification and regression
tasks. In its original form, the SVM method is a nonlinear
generalization of the Generalized Portrait algorithm, which
has been developed in the former USSR in the 1960s. The
introduction of nonlinearity was carried out via a compu-
tationally elegant way known today as the kernel trick [1].
Usually, this trick is applied in a black-box rationale, where
one simply replaces dot products with a positive definite kernel
function. The successful application of the kernel trick in
SVMs has sparked a new breed of techniques for addressing
nonlinear tasks, the so-called kernel-based methods. Currently,
kernel-based algorithms constitute a popular tool employed
in a variety of scientific domains, ranging from adaptive
filtering [2], [3] and image processing to biology and nuclear
physics [1], [4]–[18]. The key mathematical notion underlying
these methods is that of reproducing kernel Hilbert spaces
(RKHS). These are inner product spaces in which the point
wise evaluation functional is continuous. Through the kernel
trick, the original data are transformed into a higher dimen-
sional RKHS H (possibly of infinite dimension), and linear
tools are applied to the transformed data in the so-called
feature space H. This is equivalent to solving a nonlinear
problem in the original space. Furthermore, inner products
in H can efficiently be computed via the specific kernel
function κ associated with the RKHS H, disregarding the
actual structure of the space. Recently, this rationale has been
generalized, so that the task simultaneously learns the so-called
kernel in some fashion, instead of selecting it a priori in the
context of multiple kernel learning (MKL) [19]–[22].

Although the theory of RKHS has been developed by
mathematicians for general complex spaces, most kernel-based
methods employ real kernels. This is largely due to the fact
that many of them originated as variants of the original SVM
formulation, which was targeted to treat real data. However,
in modern applications, complex data arise frequently in areas
as diverse as communications, biomedicine, radar, and so on.
Although all the respective algorithms that employ complex
data (e.g., in communications) can also be cast in the real
domain (disregarding any type of complex algebra), by split-
ting the complex data into two parts and working separately,
this approach usually leads to more intricate expressions and
tedious calculations. The complex domain provides not only
a convenient and elegant representation for such data, but also
a natural way to preserve their characteristics and to handle
transformations that need to be performed.

Hence, the design of SVMs suitable for treating problems
of complex and/or multidimensional outputs has attracted
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some attention in the machine learning community. Perhaps
the most complete works, which attempt to generalize the
SVM rationale in this fashion, are: 1) Clifford SVM [23] and
2) division algebraic SVR [24]–[26]. In Clifford SVM, the
authors use Clifford algebras to extend the SVM framework
to multidimensional outputs. Clifford algebras belong to a type
of associative algebras, which are used in mathematics to
generalize the complex numbers, quaternions, and several
other hyper complex number systems. On the other hand,
in division algebraic SVR, division algebras are employed
for the same purpose. These are algebras, closely related to
the Clifford algebras, where all nonzero elements have mul-
tiplicative inverses. In a nutshell, Clifford algebras are more
general, and they can be employed to create a general algebraic
framework (i.e., addition and multiplication operations) in any
type of vector spaces (e.g., R, R

2, R
3, . . . ), while the division

algebras are only four: the real numbers, the complex numbers
(R2), the quaternions (R4), and the octonions (R8). This is
due to the need for inverses, which can only be satisfied
in these four vector spaces. Although Clifford algebras are
more general, their limitations (e.g., the lack of inverses)
make them a difficult tool to work with, compared with the
division algebras. Another notable attempt that pursues similar
goals is the multiregression SVMs of [27], where the outputs
are represented simply as vectors, and an ε-insensitive loss
function is adopted. Unfortunately, this approach does not
result in a well-defined dual problem. In contrast to the more
general case of hyper complex outputs, where applications
are limited [28], complex-valued SVMs have been adopted
by a number of authors for the beam forming problem
(see [29], [30]), although restricted to the simple linear case.

It is important to emphasize that most of the aforementioned
efforts to apply the SVM rationale to complex and hyper
complex numbers are limited to the case of the output data.1

These methods consider a multidimensional output, which
can be represented, for example, as a complex number or
a quaternion, while the input data are real vectors. In some
cases, complex input data are considered as well, but in a
rather trivial way, i.e., splitting the data into their real and
imaginary parts. Moreover, these methods employ real-valued
kernels to model the input-out relationship, breaking it down to
its multidimensional components. However, in this way, many
of the rich geometric characteristics of complex and hyper
complex spaces are lost.

In this paper, we adopt an alternative rationale. To be in
line with the current trend in complex signal processing, we
employ the so-called widely linear estimation process, which
has been shown to perform better than the conventional linear
estimation process [31]–[35]. This means that we model the
input-out relationship as a sum of two parts. The first is linear
with respect to the input vector, while the second is linear
with respect to its conjugate. Furthermore, we consider two
cases to generalize the SVM framework to complex spaces.
In the first one, the data are split into their real and imaginary
parts, and typical well-established real kernels are employed to

1In [23], the authors also consider a Gabor kernel function which takes
multivector inputs.

map the data into a complexified RKHS. This scenario bears
certain similarities with other preexisting techniques that also
split the output into two parts (see [25]). The difference with
our technique is that the widely linear estimation process is
employed to model the input-out relationship of the SVM.
In the second case, the modeling takes place directly into
complex RKHS, which are generated by pure complex ker-
nels,2 instead of real ones. In that fashion, the geometry of
the complex space is preserved. Moreover, we show that in
the case of complex SVMs, the widely linear approach is a
necessity, as the alternative path would lead to a significantly
restricted model. To compute the gradients, which are required
by the Karush–Kuhn–Tucker (KKT) conditions and the dual,
we employ the generalized Wirtinger Calculus introduced
in [16]. As one of our major results, we prove that working
in a complex RKHS H, with a pure complex kernel κC,
is equivalent to solving two problems in a real RKHS H,
albeit with a specific real kernel κR, which is induced by the
complex κC. It must be pointed out that these induced kernels
are not trivial. For example, the exploitation of the complex
Gaussian kernel results in an induced kernel different from the
standard real Gaussian Radial Basis Function.

To summarize, the main contribution of our work is the
development of a complete mathematical framework suitable
for treating any SVR/SVM task that involves complex data,
in an elegant and uniform manner. Moreover, we provide
a new way of treating a special multiclassification problem
(i.e., quaternary classification). Our emphasis in this paper
is to outline the theoretical development and to verify the
validity of our results via some simulation examples. The
paper is organized as follows. In Section II, the main math-
ematical background regarding RKHS is outlined, and the
differences between a real RKHS and a complex RKHS
are highlighted. The main contributions of the paper can
be found in Sections III and IV, where the theory and the
generalized complex SVR and SVM algorithms are developed,
respectively. The complex SVR developed there is suitable for
general complex-valued function estimation problems defined
on complex domains. The proposed complex SVM rationale,
on the other hand, is suitable for quaternary (i.e., four class)
classification, in contrast to the binary classification carried out
by the real SVM approach. The experiments that are presented
in Section V demonstrate certain cases where the use of the
pure complex Gaussian kernel in the SVR rationale offers sig-
nificant advantages over the real Gaussian kernel. In the SVM,
besides the new case of quaternary classification, experiments
also show how the exploitation of complex data improves
the classification accuracy. Finally, Section VI contains some
concluding remarks.

II. REAL AND COMPLEX RKHS

We devote this section to present the notation that is
adopted in the paper and to summarize the basic mathematical
background regarding RKHS. Throughout the paper, we will
denote the set of all integers, real and complex numbers,

2The term pure complex kernels refers to complex-valued kernels with
complex variables that are complex analytic.
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by N, R, and C, respectively. The imaginary unit is denoted
as i , while z∗ denotes the conjugate of z. Vector or matrix
valued quantities appear in boldfaced symbols.

An RKHS [36] is a Hilbert space H over a field F for
which there exists a positive definite kernel function κ :
X × X → F with the following two important properties:
1) for every x ∈ X , κ(· , x) belongs to H and 2) κ has the so-
called reproducing property, i.e., f (x) = 〈 f, κ(·, x)〉H, for all
f ∈ H, in particular κ(x, y) = 〈κ(·, y), κ(·, x)〉H. The map
� : X → H : �(x) = κ(·, x) is called the feature map of H.
In the case of complex spaces (i.e., F = C), the inner product
is sesquilinear (i.e., linear in one argument and antilinear in the
other) and Hermitian, i.e., κ(x, y) = (〈κ(·, x), κ(·, y)〉H)∗ =
κ∗(y, x). In the real case, however, this is simplified to
κ(x, y) = 〈κ(·, y), κ(·, x)〉H = 〈κ(·, x), κ(·, y)〉H. In the
following, we will denote a complex RKHS by H and a real
RKHS by H. Moreover, to distinguish the two cases, we will
use the notations κR and �R to refer to a real kernel and its
corresponding feature map, instead of the notation κC, �C,
which is reserved for pure complex kernels.

A variety of kernel functions can be found in the
respective literature [1], [4], [6], [37], [38]. In this
paper, we will use the popular real Gaussian kernel,
i.e., κRν,t (x, y) := exp

(−t
∑ν

k=1(xk − yk)
2
)
, defined for

x, y ∈ R
ν , and the complex Gaussian kernel, i.e.,

κCν,t (z,w) := exp
(−t

∑ν
k=1(zk − w∗

k )2
)
, where z,w ∈ C

ν ,
zk denotes the kth component of the complex vector z ∈ C

ν

and exp(·) is the extended exponential function in the complex
domain. In both cases, t is a free positive parameter that
controls the shape of the kernel.

Besides the complex RKHS produced by the associated
complex kernels, such as the aforementioned ones, one may
construct a complex RKHS as a Cartesian product of a real
RKHS with itself, in a fashion similar to the identification of
the field of complex numbers, C, to R

2. This technique is
called complexification of a real RKHS and the respective
Hilbert space is called complexified RKHS. Let X ⊆ R

ν

and define the spaces X 2 ≡ X × X ⊆ R
2ν and X =

{x + i y; x, y ∈ X } ⊆ C
ν , where the latter is equipped with

a complex inner product structure. Let H be a real RKHS
associated with a real kernel κR defined on X 2 × X 2 and let
〈·, ·〉H be its corresponding inner product. Then, every f ∈ H
can be regarded as a function defined on either X 2 or X,
i.e., f (z) = f (x + i y) = f (x, y). Moreover, we define the
Cartesian product of H with itself, i.e., H2 = H×H. It is easy
to verify that H2 is also a Hilbert space with inner product

〈 f , g〉H2 = 〈 f r , gr 〉H + 〈 f i , gi 〉H (1)

for f = ( f r , f i ), g = (gr , gi ). Our objective is to enrich H2

with a complex structure (i.e., with a complex inner product).
To this end, we define the space H = { f = f r + i f i ;
f r , f i ∈ H} equipped with the complex inner product

〈 f, g〉H =〈 f r , gr 〉H+〈 f i , gi 〉H+i
(〈 f i , gr 〉H−〈 f r , gi 〉H

)

(2)

for f = f r + i f i , g = gr + igi . It is not difficult to verify
that the complexified space H is a complex RKHS with kernel

κ [38]. We call H the complexification of H. It can readily be
seen that although H is a complex RKHS, its respective kernel
is real (i.e., its imaginary part is equal to zero). To complete
the presentation of the complexification procedure, we need a
technique to implicitly map the data samples from the complex
input space to the complexified RKHS H. This can be done
using the simple rule

�̄C(z) = �̄C(x + i y) = �̄C(x, y)

= �R(x, y) + i�R(x, y) (3)

where �R is the feature map of the real reproducing kernel κR,
i.e., �R(x, y) = κR(·, (x, y)) and z = x + i y. As a
consequence, we observe that

〈�̄C(z), �̄C(z′)〉H = 2〈�R(x, y),�R(x′, y′)〉H
= 2κR((x′, y′), (x, y))

for all z, z′ ∈ H. We have to emphasize that a complex
RKHS H (whether it is constructed through the complexifi-
cation procedure, or it is produced by a complex kernel) can,
always, be represented as a Cartesian product of a Hilbert
space with itself, i.e., we can, always, identify H with a double
real space H2. Furthermore, the complex inner product of H

can always be related to the real inner product of H as in (2).
To compute the gradients of real-valued cost functions,

which are defined on complex domains, we adopt the rationale
of Wirtinger’s calculus [39]. This was brought into light
recently [32], [33], [40] as a means to compute, in an efficient
and elegant way, gradients of real-valued cost functions that
are defined on complex domains (Cν), in the context of
widely linear processing [34], [41]. It is based on simple rules
and principles, which bear a great resemblance to the rules
of the standard complex derivative, and it greatly simplifies
the calculations of the respective derivatives. The difficulty
with real-valued cost functions is that they do not obey the
Cauchy–Riemann conditions and are not differentiable in the
complex domain. The alternative to Wirtinger’s calculus would
be to consider the complex variables as pairs of two real ones
and employ the common real partial derivatives. However, this
approach, usually, is more time consuming and leads to more
cumbersome expressions. In [16], the notion of Wirtinger’s
calculus was extended to general complex Hilbert spaces,
providing the tool to compute the gradients that are needed
to develop kernel-based algorithms for treating complex data.
In [42], the notion of Wirtinger calculus was extended to
include subgradients in RKHS.

III. COMPLEX SUPPORT VECTOR REGRESSION

We begin the treatment of the complex case with the
complex SVR rationale, as this is a direct generalization of
the real SVR. Suppose we are given training data of the form
{(zn, dn); n = 1, . . . , N} ⊂ X × C, where X = C

ν denotes
the space of input patterns. As zn is complex, we denote its
real part by xn and its imaginary part by yn , respectively,
i.e., zn = xn + i yn , n = 1, . . . , N . Similarly, we denote
the real and the imaginary parts of dn , i.e., dn = dr

n + idi
n,

n = 1, . . . , N by dr
n and di

n .
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Fig. 1. Function κr
C

((·, ·)T , (0, 0)T ) of the induced real feature space of the
complex Gaussian kernel.

A. Dual Channel SVR

A straightforward approach for addressing this problem
(as well as any problem related with complex data) is by
considering two different problems in the real domain. This
technique is usually referred to as the dual real channel
(DRC) approach [34]. That is, the training data are split into
two sets {((xn, yn)T , dr

n); n = 1, . . . , N} ⊂ R
2ν × R and

{((xn, yn)
T , di

n); n = 1, . . . , N} ⊂ R
2ν × R, and an SVR is

performed on each set of data using a real kernel κR and its
corresponding RKHS. We will show in the following sections
that the DRC approach is equivalent to the complexification
procedure [16] described in Section II. The latter, however,
often provides a context that enables us to work with complex
data compactly and elegantly, as one may employ Wirtinger
calculus to compute the respective gradients and develop
algorithms directly in complex form [16].

In contrast to the complexification procedure, we emphasize
that the pure complex approach (where one directly exploits a
complex RKHS) considered in the next subsection is quite dif-
ferent from the DRC rationale. We will develop a framework
for solving such a problem on the complex domain employing
pure complex kernels, instead of real ones. Nevertheless, we
will show that using complex kernels for SVR is equivalent
with solving two real problems using a real kernel. This kernel,
however, is induced by the selected complex kernel and it is
not one of the standard kernels appearing in machine learning
literature. For example, the use of the complex Gaussian kernel
induces a real kernel, which is not the standard real Gaussian
RBF (Fig. 1). We demonstrated in [31] and [42], although in
a different context than the one we use here, that the DRC
approach and the pure complex approaches give, in general,
different results. Depending on the case, the pure complex
approach might show increased performance over the DRC
approach and vice versa.

B. Pure Complex SVR

Prior to the development of the generalized complex SVR
rationale, we investigate some significant properties of the
complex kernels. In the following, we assume that H is a
complex RKHS with kernel κC. We can decompose κC into
its real and imaginary parts, i.e., κC(z, z′) = κr

C
(z, z′) +

iκ i
C
(z, z′), where κr

C
(z, z′), κ i

C
(z, z′) ∈ R. As any complex

kernel is Hermitian (Section II), we have κ∗
C
(z, z′) = κC(z′, z)

and hence we take

κr
C
(z, z′) = κr

C
(z′, z) (4)

κ i
C
(z, z′) = −κ i

C
(z′, z). (5)

Lemma 3.1: The imaginary part of any complex kernel, κC,
satisfies

N∑

n,m=1

cncmκ i
C
(zn, zm) = 0 (6)

for any N > 0 and any selection of c1, . . . , cN ∈ C and
z1, . . . , zN ∈ X .

Proof: Exploiting (5) and rearranging the indices of the
summation we get

N∑

n,m=1

cncmκ i
C
(zn, zm) = −

N∑

n,m=1

cncmκ i
C
(zm, zn)

= −
N∑

m,n=1

cmcnκ i
C
(zn, zm).

Hence, 2
∑N

n,m=1
cncmκ i

C
(zn, zm) = 0 and the result follows

immediately.
Lemma 3.2: If κC(z, z′) is a complex kernel defined on

C
ν × C

ν , then its real part

κr
C

((
x
y

)
,

(
x′
y′

))
= Re(κC(z, z′)) (7)

where z = x + i y, z′ = x′ + i y′, is a real kernel defined
on R

2ν × R
2ν . We call this kernel the induced real kernel

of κC.
Proof: As relation (4) implies, κr

C
is symmetric. Moreover,

let N > 0, α1, . . . , αN ∈ R and z1, . . . , zN ∈ X . As κC is
positive definite, we have

N∑

n,m=1

αnαmκC(zn, zm) ≥ 0.

However, splitting κC into its real and imaginary parts and
exploiting Lemma 3.1, we take

N∑

n,m=1

αnαmκC(zn, zm)

=
N∑

n,m=1

αnαmκr
C
(zn, zm) + i

N∑

n,m=1

αnαmκ i
C
(zn, zm)

=
N∑

n,m=1

αnαmκr
C
(zn, zm).

Hence
N∑

n,m=1

αnαmκr
C
(zn, zm) ≥ 0.

As a last step, recall that κr
C

may be regarded as
defined either on C

ν × C
ν or R

2ν × R
2ν . This leads to

N∑

n,m=1

αnαmκr
C

((
xn

yn

)
,

(
xm

ym

))
≥ 0.
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We conclude that κr
C

is a positive definite kernel on
R

2ν × R
2ν .

At this point, we are ready to present the SVR rationale in
complex RKHS. We transform the input data from X to H,
via the feature map �C, to obtain the data {(�C(zn), dn);
n = 1, . . . , N}. In analogy with the real case and extending
the principles of widely linear estimation to complex SVR,
the goal is to find a function T : H → C : T ( f ) =
〈 f, w〉H + 〈 f ∗, v〉H + c, for some u, v ∈ H, c ∈ C, which
is as flat as possible and has at most ε deviation from
both the real and imaginary parts of the actually obtained
values dn , for all n = 1, . . . , N . We emphasize that we
employ the widely linear estimation function S1 : H → C :
S1( f ) = 〈 f, w〉H + 〈 f ∗, v〉H instead of the usual complex
linear function3 S2 : H → C : S2( f ) = 〈 f, w〉H following the
ideas of [41], which are becoming popular in complex signal
processing [43]–[45] and have been generalized for the case
of complex RKHS in [42]. It has been established [46], [47]
that the widely linear estimation functions are able to
capture the second-order statistical characteristics of the input
data, which are necessary if noncircular4 input sources are
considered. Furthermore, as it has been shown in [31], the
exploitation of the traditional complex linear function excludes
a significant percentage of linear functions from being
considered in the estimation process. The correct and natural
linear estimation in complex spaces is the widely linear
one.

Observe that at the training points, i.e., �C(zn), T takes the
values T (�C(zn)). Following similar arguments as with the
real case, this is equivalent with finding a complex nonlinear
function g defined on X such that

g(z) = T ◦ �C(z) = 〈�C(z),w〉H + 〈�∗
C
(z), v〉H + c (8)

for some w, v ∈ H, c ∈ C, which satisfies the aforemen-
tioned properties. We formulate the complex SVR task as
follows:

min
w,v,c

1

2
‖w‖2

H
+ 1

2
‖v‖2

H
+ C

N

N∑

n=1

(
ξ r

n + ξ̂ r
n + ξ i

n + ξ̂ i
n

)

s. t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Re(〈�C(zn),w〉H + 〈�C(zn), v〉H + c − dn) ≤ ε+ ξ r
n

Re(dn − 〈�C(zn),w〉H − 〈�∗
C
(zn), v〉H − c) ≤ ε+ ξ̂ r

n

Im(〈�C(zn),w〉H + 〈�C(zn), v〉H + c − dn) ≤ ε+ ξ i
n

Im(dn − 〈�C(zn),w〉H − 〈�∗
C
(zn), v〉H − c) ≤ ε+ ξ̂ i

n

ξ r
n , ξ̂ r

n , ξ i
n, ξ̂ i

n ≥ 0

(9)

3All other attempts to generalize the SVR rationale to complex and hyper
complex spaces employed the standard complex linear function S2.

4Note that the issue of circularity has become quite popular recently in
the context of complex adaptive filtering. Circularity is intimately related
to rotation in the geometric sense. A complex random variable Z is called
circular, if for any angle φ both Z and Zeiφ (i.e., the rotation of Z by angle φ)
follow the same probability distribution [34].

To solve (9), we derive the Lagrangian and the KKT
conditions to obtain the dual problem. Thus we take

L = 1

2
‖w‖2 + 1

2
‖v‖2 + C

N

N∑

n=1

(
ξ r

n + ξ̂ r
n + ξ i

n + ξ̂ i
n

)

+
N∑

n=1

an
(
Re(〈�C(zn),w〉H+〈�C(zn), v〉H+c−dn)−ε−ξ r

n

)

+
N∑

n=1

ân
(
Re(dn−〈�C(zn),w〉H−〈�∗

C
(zn), v〉H−c)−ε−ξ̂ r

n

)

+
N∑

n=1

bn
(

Im(〈�C(zn),w〉H+〈�C(zn), v〉H+c−dn)−ε−ξ i
n

)

+
N∑

n=1

b̂n
(
Im(dn −〈�C(zn),w〉H−〈�∗

C
(zn), v〉H−c)−ε+ξ̂ i

n

)

−
N∑

n=1

ηnξ r
n −

N∑

n=1

η̂n ξ̂ r
n −

N∑

n=1

θnξ
i
n −

N∑

n=1

θ̂n ξ̂
i
n (10)

where an , ân , bn , b̂n , ηn , η̂n , θn , and θ̂n are the Lagrange
multipliers. To exploit the saddle point conditions, we employ
the rules of Wirtinger calculus for the complex variables on
complex RKHS as described in [16] and deduce that

∂L
∂w∗ = 1

2
w + 1

2

N∑

n=1

an�C(zn) − 1

2

N∑

n=1

ân�C(zn)

− i

2

N∑

n=1

bn�C(zn) + i

2

N∑

n=1

b̂n�C(zn)

∂L
∂v∗ = 1

2
v + 1

2

N∑

n=1

an�
∗
C
(zn) − 1

2

N∑

n=1

ân�
∗
C
(zn)

− i

2

N∑

n=1

bn�
∗
C
(zn) + i

2

N∑

n=1

b̂n�
∗
C
(zn)

∂L
∂c∗ = 1

2

N∑

n=1

an − 1

2

N∑

n=1

ân + i

2

N∑

n=1

bn − i

2

N∑

n=1

b̂n.

For the real variables, we compute the gradients in the
traditional way

∂L
∂ξ r

n
= C

N
− an − ηn,

∂L
∂ξ̂ r

n

= C

N
− ân − η̂n

∂L
∂ξ i

n
= C

N
− bn − θn,

∂L
∂ξ̂ i

n

= C

N
− b̂n − θn

for all n = 1, . . . , N .
As all gradients have to vanish for the saddle point condi-

tions, we finally take

w =
N∑

n=1

(ân − an)�C(zn) − i
N∑

n=1

(b̂n − bn)�C(zn) (11)

v =
N∑

n=1

(ân − an)�
∗
C
(zn) − i

N∑

n=1

(b̂n − bn)�
∗
C
(zn) (12)
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Fig. 2. Pure complex SVR. The difference with the dual channel approach is due to the incorporation of the induced real kernel κr
C

, which depends on the
selection of the complex kernel κC. In this context, one exploits the complex structure of the space, which is lost in the dual channel approach.

N∑

n=1

(ân − an) =
N∑

n=1

(b̂n − bn) = 0 (13)

ηn = C

N
− an η̂n = C

N
− ân

θn = C

N
− bn θ̂n = C

N
− b̂n (14)

for n = 1, . . . , N .
To compute |w|2

H
= 〈w,w〉H , we apply (11), Lemma 3.1,

the reproducing property of H, i.e., 〈�(zn),�(zm)〉H =
κC(zm , zn), and the sesqui-linear property of the inner product
of H to obtain

‖w‖2
H

=
N∑

n,m=1

(ân − an)(âm − am)κr
C
(zm , zn)

+
N∑

n,m=1

(b̂n − bn)(b̂m − bm)κr
C
(zm, zn)

+2
N∑

n,m=1

(ân − an)(b̂m − bm)κ i
C
(zm, zn).

Similarly, we have

‖v‖2
H

=
N∑

n,m=1

(ân − an)(âm − am)κr
C
(zm, zn)

+
N∑

n,m=1

(b̂n − bn)(b̂m − bm)κr
C
(zm , zn)

−2
N∑

n,m=1

(ân − an)(b̂m − bm)κ i
C
(zm , zn)

and
〈�C(zn),w〉H + 〈�∗

C
(zn), v〉H

2

=
N∑

m=1

(âm − am)κr
C
(zm, zn) + i

N∑

m=1

(b̂m −bm)κr
C
(zm , zn).

Eliminating ηn , η̂n , θn , θ̂n via (14), and w, v via the
aforementioned relations, we obtain the final form of the

Lagrangian

L = −
N∑

n,m=1

(ân − an)(âm − am)κr
C
(zm, zn)

−
N∑

n,m=1

(b̂n − bn)(b̂m − bm)κr
C
(zm, zn)

−ε

N∑

n=1

(an + ân + bn + b̂n)

+
N∑

n=1

dr
n(ân − an) +

N∑

n=1

di
n(b̂n − bn) (15)

where dr
n , di

n are the real and imaginary parts of the output dn ,
n = 1, . . . , N . This means that we can split the dual problem
into two separate maximization tasks:

maximize
a,â

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
N∑

n,m=1

(ân − an)(âm − am)κr
C
(zm, zn)

−ε

N∑

n=1

(ân + an) +
N∑

n=1

dr
n(ân − an)

s.t.
N∑

n=1

(ân − an) = 0 and an, ân ∈ [0, C/N] (16a)

and

maximize
b,b̂

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
N∑

n,m=1

(b̂n − bn)(b̂m − bm)κr
C
(zm, zn)

−ε

N∑

n=1

(b̂n + bn) +
N∑

n=1

di
n(b̂n − bn)

s.t
N∑

n=1

(b̂n − bn) = 0 and bn, b̂n ∈ [0, C/N]. (16b)

Observe that (16a) and (16b) are equivalent with the dual
problem of a standard real SVR task with kernel 2κr

C
. This

is a real kernel, as Lemma 3.2 establishes. Therefore (Fig. 2),
one may solve the two real SVR tasks for an , ân , cr and bn , b̂n ,
ci , respectively, using any one of the algorithms, which have
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Fig. 3. Hyperplane separates the space H into two parts, H+ and H−.

been developed for this purpose, and then combine the two
solutions to find the final nonlinear solution of the complex
problem as

g(z) = 〈�C(z),w〉H + 〈�∗
C
(z), v〉H + c

= 2
N∑

n=1

(ân − an)κ
r
C
(zn, z)

+2i
N∑

n=1

(b̂n − bn)κ
r
C
(zn, z) + c. (17)

In this paper, we are focusing mainly on the complex Gaussian
kernel. It is important to emphasize that, in this case, the
induced kernel κr

C
is not the real Gaussian RBF. Fig. 1 shows

the element κr
C
(·, (0, 0)T ) of the induced real feature space.

Remark 3.1: For the complexification procedure, we select
a real kernel κR and transform the input data from X to
the complexified space H, via the feature map �̄C, to obtain
the data {(�̄C(zn), dn); n = 1, . . . , N}. Following a similar
procedure as the one described above and considering that

〈�̄C(zn), �̄C(zm)〉H = 2κR(zm , zn)

we can easily deduce that the dual of the complexified SVR
task is equivalent to two real SVR tasks employing the
kernel 2κR. Hence, the complexification technique is identical
to the DRC approach.

IV. COMPLEX SUPPORT VECTOR MACHINE

A. Complex Hyperplanes

Recall that in any real Hilbert space H, a hyper plane
consists of all the elements f ∈ H that satisfy

〈 f, w〉H + c = 0 (18)

for some w ∈ H, c ∈ R. Moreover, as Fig. 3 shows, any
hyperplane of H divides the space into two parts, H+ =
{ f ∈ H; 〈 f, w〉H+ c > 0} and H− = { f ∈ H; 〈 f, w〉H+
c < 0}. In the traditional SVM classification task, the goal is
to separate two distinct classes of data by a maximum margin
hyper plane, so that one class falls into H+ and the other
into H− (excluding some outliers). To be able to generalize
the SVM rationale to complex spaces, firstly, we need to
determine an appropriate definition for a complex hyper plane.
The difficulty is that the set of complex numbers is not an
ordered one, and thus one may not assume that a complex
version of (18) divides the space into two parts, as H+ and H−
cannot be defined. Instead, we will provide a novel definition

of complex hyper planes that divide the complex space into
four parts. This will be our kick off point for deriving the
complex SVM rationale, which classifies objects into four
(instead of two) classes.

Lemma 4.1: The relations

Re(〈 f, w〉H + c) = 0 (19a)

Im(〈 f, w〉H + c) = 0 (19b)

for some w ∈ H, c ∈ C, where f ∈ H, represent two
orthogonal hyper planes of the doubled real space, i.e., H2, in
general positions.

Proof: Observe that

〈 f, w〉H = 〈 f r, wr 〉H + 〈 f i, wi 〉H + i(〈 f i, wr 〉H − 〈 f r, wi 〉H)

where f = f r + i f i , w = wr + iwi . Hence, we take
〈(

f r

f i

)
,

(
wr

wi

)〉

H2
+ cr = 0

and
〈(

f r

f i

)
,

(−wi

wr

)〉

H2
+ ci = 0

where c = cr +ici . These are two distinct hyper planes of H2.
Moreover, as

(−wi wr
)
(

wr

wi

)
= 0

the two hyper planes are orthogonal.
Lemma 4.2: The relations

Re
(〈 f, w〉H + 〈 f ∗, v〉H + c

) = 0 (20a)

Im
(〈 f, w〉H + 〈 f ∗, v〉H + c

) = 0 (20b)

for some w, v ∈ H, c ∈ C, where f ∈ H, represent two hyper
planes of the doubled real space, i.e., H2. Depending on the
values of w, v, these hyper planes may be placed arbitrarily
on H2.

Proof: Following a similar rationale as in the proof of
Lemma 4.1, we take:

〈(
f r

f i

)
,

(
wr + vr

wi − v i

)〉

H2
+ cr = 0

and
〈(

f r

f i

)
,

(−(wi + v i )
wr − vr

)〉

H2
+ ci = 0

where f = f r + i f i, w = wr + iwi, v = vr + iv i, c = cr + ici .

The following definition comes naturally.
Definition 4.1: Let H be a complex Hilbert space. We

define the complex pair of hyper planes as the set of all f ∈ H

that satisfy one of the following relations:
Re

(〈 f, w〉H + 〈 f ∗, v〉H + c
) = 0 (21a)

Im
(〈 f, w〉H + 〈 f ∗, v〉H + c

) = 0 (21b)

for some w, v ∈ H, c ∈ C.
Lemmas 4.1 and 4.2 demonstrate the significant difference

between complex linear estimation and widely linear
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Fig. 4. Complex pair of hyper planes separates the space of complex numbers
(i.e., H = C) into four parts.

estimation functions, which have been, already, pointed out in
Section III-B, albeit in a different context. The complex linear
case is quite restrictive, as the complex hyper planes are always
orthogonal. On the other hand, the widely linear case is more
general and covers all cases. The complex pair of hyper planes
(as defined by definition 4.1) divides the space into four parts

H++ =
{

f ∈ H; Re (〈 f, w〉H + 〈 f ∗, v〉H + c) > 0
Im (〈 f, w〉H + 〈 f ∗, v〉H + c) > 0

}

H+− =
{

f ∈ H; Re (〈 f, w〉H + 〈 f ∗, v〉H + c) > 0
Im (〈 f, w〉H + 〈 f ∗, v〉H + c) < 0

}

H−+ =
{

f ∈ H; Re (〈 f, w〉H + 〈 f ∗, v〉H + c) < 0
Im (〈 f, w〉H + 〈 f ∗, v〉H + c) > 0

}

H−− =
{

f ∈ H; Re (〈 f, w〉H + 〈 f ∗, v〉H + c) < 0
Im (〈 f, w〉H + 〈 f ∗, v〉H + c) < 0

}
.

Fig. 4 demonstrates a simple case of a complex pair of hyper
planes that divides C into four parts. Note that, in some
cases, the complex pair of hyper planes might degenerate
into two identical hyper planes or two parallel hyper
planes.

B. Quaternary Complex SVM

The complex SVM classification task can be formulated
as follows. Suppose we are given training data, which
belong to four separate classes C++, C+−, C−+, C−−, i.e.,
{(zn, dn); n = 1, . . . , N} ⊂ X × {± 1 ± i)}. If dn = +1 + i ,
then the nth sample belongs to C++, i.e., zn ∈ C++, if
dn = 1−i , then zn ∈ C+−, if dn = −1+i , then zn ∈ C−+ and
if dn = −1−i , then zn ∈ C−−. Consider the complex RKHS H

with respective kernel κC. Following a similar rationale to the
real case, we transform the input data from X to H, via the
feature map �C. The goal of the SVM task is to estimate a
complex pair of maximum margin hyper planes that separates
the points of the four classes (Fig. 5). Thus, we need to
minimize

∥
∥∥
∥

(
wr + vr

wi − v i

)∥
∥∥
∥

2

H2
+

∥
∥∥
∥

(−(wi + v i )
wr − vr

)∥
∥∥
∥

2

H2

= ‖wr + vr ‖2
H + ‖wi −v i‖2

H + ‖(wi +v i )‖2
H + ‖wr − vr‖2

H
= 2‖wr‖2

H + 2‖wi‖2
H + 2‖vr ‖2

H + 2‖v i ‖2
H

= 2
(‖w‖2

H
+ ‖v‖2

H

)
.

Fig. 5. Complex pair of hyper planes that separates the four given classes.
The hyper planes are chosen so as to maximize the margin between the classes.

Therefore, the primal complex SVM optimization problem
can be formulated as

min
w,v,c

1

2
‖w‖2

H
+ 1

2
‖v‖2

H
+ C

N

N∑

n=1

(
ξ r

n + ξ i
n

)

s.t.

⎧
⎨

⎩

dr
n Re

(〈�C(zn),w〉H + 〈�∗
C
(zn), v〉H + c

) ≥ 1−ξ r
n

di
n Im

(〈�C(zn),w〉H + 〈�∗
C
(zn),w〉H + c

) ≥ 1−ξ i
n

ξ r
n , ξ i

n ≥ 0
for n = 1, . . . , N. (22)

The Lagrangian function becomes

L(w, v, a, b) = 1

2
‖w‖2

H
+ 1

2
‖v‖2

H
+ C

N

N∑

n=1

(ξ r
n + ξ i

n)

−
N∑

n=1

an
(
dr

n Re(〈�C(zn),w〉H + 〈�∗
C
(zn), v〉H + c)−1 + ξ r

n

)

−
N∑

n=1

bn
(
di

n Im(〈�C(zn),w〉H + 〈�∗
C
(zn),w〉H + c)−1+ξ i

n

)

−
N∑

n=1

ηnξ r
n −

N∑

n=1

θnξ
i
n

where an, bn, ηn , and θn are the positive Lagrange multipliers
of the respective inequalities, for n = 1, . . . , N . To exploit the
saddle point conditions of the Lagrangian function, we employ
the rules of Wirtinger calculus to compute the respective
gradients. Hence, we take

∂L

∂w∗ = 1

2
w − 1

2

N∑

n=1

andr
n�C(zn) + i

2

N∑

n=1

bndi
n�C(zn)

∂L

∂v∗ = 1

2
v − 1

2

N∑

n=1

andr
n�∗

C
(zn) + i

2

N∑

n=1

bndi
n�∗

C
(zn)

∂L

∂c∗ = 1

2

N∑

n=1

andr
n + i

2

N∑

n=1

bndi
n

and

∂L

∂ξ r
n

= C

N
− an − ηn,

∂L

∂ξ i
n

= C

N
− bn − θn

for n = 1, . . . , N . As all the gradients have to vanish,
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Fig. 6. Pure complex support vector machine.

we finally take

w =
N∑

n=1

(andr
n − ibndi

n)�C(zn)

v =
N∑

n=1

(andr
n − ibndi

n)�∗
C
(zn)

N∑

n=1

andr
n =

N∑

n=1

bndi
n = 0

and

an + ηn = C

N
, bn + θn = C

N

for n = 1, . . . , N . Following a similar procedure as in the
complex SVR case, it turns out that the dual problem can be
split into two separate maximization tasks:

maximize
a

N∑

n=1

an −
N∑

n,m=1

anamdr
ndr

mκr
C
(zm, zn)

s.t.

⎧
⎪⎨

⎪⎩

N∑

n=1

andr
n = 0

0 ≤ an ≤ C
N for n = 1, . . . , N

(23a)

and

maximize
b

N∑

n=1

bn −
N∑

n,m=1

bnbmdi
ndi

mκr
C
(zm, zn)

s.t.

⎧
⎪⎨

⎪⎩

N∑

n=1

bndi
n = 0

0 ≤ bn ≤ C
N for n = 1, . . . , N.

(23b)

Observe that, similar to the regression case, these prob-
lems are equivalent with two distinct real SVM (dual) tasks
employing the induced real kernel 2κr

C
. One may split the

(output) data into their real and imaginary parts, as Fig. 6
shows, solve two real SVM tasks employing any one of the
standard algorithms, and finally, combine the solutions to take

the complex labeling function

g(z) = sign
i

(〈�C(z),w〉H + 〈�∗
C
(z), v〉H + c

)

= sign
i

(

2
N∑

n=1

(andr
n + ibndi

n)κ
r
C
(zn, z) + cr + ici

)

where signi (z) = sign(Re(z)) + i sign(Im(z)).
Remark 4.1: Following the complexification procedure, as

in Remark 3.1, we select a real kernel κR and transform
the input data from X to the complexified space H, via the
feature map �̄C. We can easily deduce that the dual of the
complexified SVM task is equivalent to two real SVM tasks
employing the kernel 2κR.

Remark 4.2: It is evident that both the complex and the
complexified SVM can be employed for binary classification
as well. The advantage in this case is that one is able to handle
complex input data in both scenarios. Moreover, the popular
one-versus-one and one-versus-all strategies [1], [6], which
address multiclassification problems, can be directly applied to
complex inputs using either the complex or the complexified
binary SVM.

V. EXPERIMENTS

To illuminate the advantages that are gained by the com-
plex kernels and to demonstrate the performance of the
proposed algorithmic schemes, we compare it with standard
real-valued techniques and the DRC approach under vari-
ous regression and classification scenarios. In the following,
we will refer to the pure complex kernel rationale and the
complexification trick, presented in this paper, using the
terms CSVR (or CSVM) and complexified SVR (or com-
plexified SVM), respectively. The DRC approach, outlined in
Section III-A, will be denoted as DRC-SVR. Recall that the
DRC approach is equivalent to the complexified rationale,
although the latter often provides for more compact formulas
and simpler representations. The following experiments were
implemented in MATLAB. The respective code can be found
in bouboulis.mysch.gr/kernels.html.
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Fig. 7. Real part (Re(sinc(z))) of the estimated sinc function from the
complex SVR. The points shown in the figure are the real parts of the noisy
training data used in the simulation.

Fig. 8. Imaginary part (Im(sinc(z))) of the estimated sinc function from the
complex SVR. The points shown in the figure are the imaginary parts of the
noisy training data used in the simulation.

Fig. 9. MSEs (the actual values of the function minus the estimated ones)
over 100 realizations of the complex SVR of the sinc function. The MSE of
all the estimated values over the complete set of 100 experiments was equal
to 0.054 (−15.75 dB).

A. SVR - Function Estimation
In this section, we perform a simple regression test on

the complex function sinc(z). An orthogonal grid of 33 × 9
actual points of the sinc function, corrupted by noise, was
adopted as the training data. Figs. 7 and 8 show the real
and imaginary parts of the reconstructed function using the
CSVR rationale. Note the excellent visual results obtained by
the corrupted training data. Figs. 9 and 10 and Table I compare
the square errors (i.e., |d̂n − sinc(zn)|2, where d̂n is the value
of the estimated function at zn) between the CSVR and the
DRC-SVR over 100 different realizations of the experiment.
In each realization, the sinc function was corrupted by white
noise of the form Z = X +iY , where X and Y are real random
variables following the Gaussian distribution with variances

TABLE I

MEAN SQUARE ERRORS (MSE), THE NUMBER OF SUPPORT VECTORS

AND THE COMPUTING TIME OVER 100 REALIZATIONS OF THE sinc

ESTIMATION EXPERIMENT

Fig. 10. MSEs (the actual values of the function minus the estimated ones)
over 100 realizations of the DRC regression of the sinc function. The MSE of
all the estimated values over the complete set of 100 experiments was equal
to 0.102 (−10.42 dB).

σ1 = 0.4 and σ2 = 0.3, respectively. As it is shown in Table I,
the DRC-SVR fails to capture the complex structure of the
function. On the other hand, the CSVR rationale provides
for an estimation function, which exhibits excellent charac-
teristics. A closer look at Figs. 9 and 10 reveals that at the
border of the training grid, the square error increases in some
cases. This is expected, as the available information (i.e., the
neighboring points), which is exploited by the SVR algorithm,
is reduced in these areas compared with the interior points of
the grid. Besides the significant decrease in the square error,
in these experiments, we also observed a significant reduction
in the computing time needed for the CSVR compared with
the DRC-SVR. In our opinion, this enhanced performance
(both in terms of MSE and computational time) is due to
the special structure of the sinc function. Recall that the sinc
is a complex analytic function, hence it is more natural to
use complex analytic functions (e.g., the complex Gaussian
kernel function), instead of real analytic functions (e.g., the
real Gaussian kernel), to estimate its shape. Both algorithms
were implemented in MATLAB on a computer with a Core i5
650 microprocessor running at 3.2 GHz.

In all the performed experiments, the SMO algorithm
was employed using the complex Gaussian kernel and the
real Gaussian kernel for the CSVR and the DRC-SVR,
respectively [48]. The parameters of the kernel for both the
complex SVR and the DRC-SVR tasks were tuned (using cross
correlation) to provide the smallestMSE. In particular for the
CSVR, the parameter of the complex Gaussian kernel was set
to t = 0.3, while for the DRC-SVR, the parameter was set to
t = 2. In both cases, the parameters of the SVR task were set
as C = 1000, ε = 0.1.
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TABLE II

VALUES OF C AND t THAT MINIMIZE THE MSE OF THE CSVR,

FOR THE CHANNEL IDENTIFICATION TASK

B. SVR - Channel Identification

In this section, we consider a nonlinear channel identifi-
cation task [32]. This channel consists of the 5-tap linear
component

t (n) =
5∑

k=1

h(k) · s(n − k + 1) (24)

where

h(k) = 0.432

(
1 + cos

(
2π(k − 3)

5

)
−

(
1 + cos

2π(k − 3)

10

)
i

)

for k = 1, . . . , 5, and the nonlinear component

x(n) = t (n) + (0.15 − 0.1i)t2(n).

This is a standard model that has been extensively used in the
literature for such tasks (see [16], [27], [31], [42], [49]). At
the receiver’s end, the signal is corrupted by white Gaussian
noise and then observed as yn . The signal-to-noise ratio (SNR)
was set to 15 dB. The input signal that was fed to the channel
had the form

s(n) =
(√

1 − ρ2 X (n) + iρY (n)
)

(25)

where X (n) and Y (n) are Gaussian random variables. This
input is circular for ρ = √

2/2 and highly noncircular if ρ
approaches zero or one [32]. The CSVR and the DRC-SVR
rationales were used to address the channel identification task,
which aims to discover the input-out relationship between
(s(n − L + 1), s(n − L + 2), . . . , s(n)), and y(n) (the para-
meter L was set to L = 5). In each experiment, a set of
150 pairs of samples was used to perform the training. After
training, a set of 600 pairs of samples was used to test the
estimation’s performance of both algorithms (i.e., to measure
the MSE between the actual channel output, x(n), and the
estimated output, x̂(n)). To find the best possible values of
the parameters, C and t , that minimize the MSE for both
SVR tasks, an extensive cross-validation procedure has been
employed (Tables II and III) in a total of 20 sets of data. Fig. 11
shows the minimumMSE, which has been obtained for all
values of the kernel parameter t versus the SVR parameter C
for both cases considering a circular input (Fig. 13). It is
evident that the CSVR approach significantly outperforms the
DRC-SVR rationale, both in terms of MSE and computational
time (Fig. 12). All the figures refer to the circular case. As the
results for the noncircular case are similar, they are omitted
to save space.

TABLE III

VALUES OF C AND t THAT MINIMIZE THE MSE OF THE DRC-SVR,

FOR THE CHANNEL IDENTIFICATION TASK

Fig. 11. MSE versus the SVR parameter C for both the CSVR and the
DRC-SVR rationales, for the channel identification task.

Fig. 12. Time (in seconds) versus MSE (dB) for both the CSVR and the
DRC-SVR rationales, for the channel identification task.

Fig. 13. Number of Support Vectors versus MSE (dB) for both the CSVR
and the DRC-SVR rationales, for the channel identification task.

C. SVR - Channel Equalization

In this section, we present a nonlinear channel equalization
task that consists of the linear filter (24) and the memoryless
nonlinearity

x(n) = t (n) + (0.1 − 0.15i) · t2(n).



BOUBOULIS et al.: COMPLEX SUPPORT VECTOR MACHINES FOR REGRESSION AND QUATERNARY CLASSIFICATION 1271

TABLE IV

VALUES OF C AND t THAT MINIMIZE THE MSE OF THE CSVR,

FOR THE CHANNEL EQUALIZATION TASK

TABLE V

VALUES OF C AND t THAT MINIMIZE THE MSE OF THE DRC-SVR,

FOR THE CHANNEL EQUALIZATION TASK

At the receiver end of the channel, the signal is corrupted by
white Gaussian noise and then observed as y(n). The signal-
to-noise ratio was set to 15 dB. The input signal that was fed
to the channels had the form

s(n) = 0.30
(√

1 − ρ2 X (n) + iρY (n)
)

(26)

where X (n) and Y (n) are Gaussian random variables.
The aim of a channel equalization task is to construct an

inverse filter, which acts on the output y(n) and reproduces
the original input signal as close as possible. To this end, we
apply the CSVR and DRC-SVR algorithms to a set of samples
of the form

((y(n + D), y(n + D − 1), . . . , r(y + D − L + 1)), s(n))

where L > 0 is the filter length and D the equal-
ization time delay (in this experiment, we set L = 5
and D = 2).

Similar to the channel identification case, in each experi-
ment, a set of 150 pairs of samples was used to perform the
training. After training, a set of 600 pairs of samples was used
to test the performance of both algorithms (i.e., to measure
the MSE between the actual input, s(n), and the estimated
input, ŝ(n)). To find the best possible values of the parame-
ters, C and t , that minimize the MSE for both SVR tasks,
an extensive cross-validation procedure has been employed
(Tables IV and V) in a total of 100 sets of data. Fig. 14 shows
the minimum MSE, which has been obtained for all values of
the kernel parameter t , versus the SVR parameter C , for both
cases considering a circular input. Figs. 15 and 16 show the
computational time and the support vectors versus the MSE.
The CSVR appears to achieve a slightly lower MSE for all

Fig. 14. MSE versus the SVR parameter C for both the CSVR and the
DRC-SVR rationales, for the channel equalization task.

Fig. 15. Time (in seconds) versus MSE (dB) for both the CSVR and the
DRC-SVR rationales, for the channel equalization task.

Fig. 16. Number of Support Vectors versus MSE (dB) for both the CSVR
and the DRC-SVR rationales, for the channel equalization task.

values of the parameter C , at the cost of a slightly increased
computational time. The results for the noncircular case are
similar.

D. SVM - Multiclass Classification

We conclude the experimental section with the classifica-
tion case. We performed two experiments using the popular
MNIST database of handwritten digits [50]. In both cases, the
respective parameters of the SVM tasks were tuned to obtain
the lowest error rate possible. The MNIST database contains
60 000 handwritten digits (from zero to nine) for training and
10 000 handwritten digits for testing. Each digit is encoded as
an image file with 28×28 pixels. To quantify the performance
of an SVM-like learning machine on the MNIST database, one
typically employs a one-versus-all strategy to the training set
(using the raw pixel values as input data) and then measures
the success using the testing set [51], [52].
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TABLE VI

ERROR RATES OF THE ONE-VERSUS-ALL CLASSIFICATION TASK FOR

THE 10 000 TESTING DIGITS OF THE MNIST DATABASE

TABLE VII

ERROR RATES OF THE ONE-VERSUS-THREE CLASSIFICATION TASK FOR

THE 0, 1, 2, AND 3 TESTING DIGITS OF THE MNIST DATABASE

In the first experiment, we compare the aforementioned
standard one-versus-all scenario with a classification task
that exploits complex numbers. In the complex variant, we
perform a Fourier transform to each training image and
keep only the 100 most significant coefficients. As these
coefficients are complex numbers, we employ a one-versus-
all classification task using the binary complexified SVM
rationale (Remark 4.2). In both scenarios, we use the first
6000 digits of the MNIST training set (instead of the complete
60 000 digits that are included in the database) to train the
learning machines and test their performances using the 10 000
digits of the testing set. In addition, we used the Gaussian
kernel with t = 1/64 and t = 1/1402, respectively. The SVM
parameter C has been set equal to 100 in this case as well.
The error rate of the standard real-valued scenario is 3.79%,
while the error rate of the complexified (one-versus-all) SVM
is 3.46% (Table VI). In both learning tasks, we used the SMO
algorithm to train the SVM. The total amount of time needed
to perform the training of each learning machine is almost the
same for both cases (the complexified task is slightly faster).

In Section IV, we discussed how the 4-classes problem is
inherent to the complex SVM. Exploiting the notion of the
complex pair of hyper planes (Fig. 4), we have shown that the
generalization of the SVM rationale to complex spaces directly
assumes quaternary classification. Using this approach,
the 4 classes problem can be solved using only two distinct
SVM tasks instead of the four tasks needed by the one-versus-
three or the one-versus-one strategies. The second experiment
compares the quaternary complex SVM approach with the
standard one-versus-three scenario using the first four digits
(0, 1, 2, and 3) of the MNIST database. In both cases, we
used the first 6000 such digits of the MNIST training set
to train the learning machines. We tested their performance
using the respective digits that are contained in the testing
set. The error rate of the one-versus-three SVM was 0.721%,
while the error rate of the complexified quaternary SVM was
0.866% (Table VII). However, the one-versus-three SVM task
required about double the time for training, compared with the
complexified quaternary SVM. This is expected, as the latter
solves half as many distinct SVM tasks as the first one. In both
experiments, we used the Gaussian kernel with t = 1/49 and
t = 1/1602, respectively. The SVM parameter C has been set
equal to 100 in this case also.

VI. CONCLUSION

A new framework for support vector regression and quater-
nary classification for complex data has been presented, based
on the notion of the widely linear estimation. Both complex
kernels as well as complexified real ones have been used. We
showed that this problem is equivalent to solving two separate
real SVM tasks employing an induced real kernel (Fig. 2). The
induced kernel depends on the choice of the complex kernel,
and it is different to the standard kernels used in the literature.
Although the machinery presented here might seem similar to
the dual channel approach, there are important differences.
The most important one is due to the incorporation of the
induced kernel κr

C
, which allows us to exploit the complex

structure of the space, which is lost in the dual channel
approach. As an example, we studied the complex Gaussian
kernel and showed, by example, that the induced kernel is
not the real Gaussian RBF. To the best of our knowledge, this
kernel has not appeared before in the literature. Hence, treating
complex tasks directly in the complex plane opens the way of
employing novel kernels.

Furthermore, for the classification problem, we have shown
that the complex SVM solves directly a quaternary problem,
instead of the binary problem, which is associated with the
real SVM. Hence, the complex SVM not only provides the
means for treating complex inputs, but also offers an alterna-
tive strategy to address multiclassification problems. In this
way, such problems can be solved significantly faster (the
computational time is almost the half), at the cost of increased
error rate. Although, in the present work, we focused on the
4 classes problem only, it is evident that the same rationale can
be carried out for any multidimensional problem, where the
classes must be divided into four groups each time, following
a rationale similar to the one-versus-all mechanism. This will
be addressed in future.
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