
DIMACS Seήes Ιτι Discrete Mathematics
and Theoretical Computer Science
Volume 4,1991

Applied Geometry
and Discrete Mathematics

ΤΗΕ VICTOR ΚLEE FESTSCHRIFT

Volumes of a Raodom Polytope
ίο a Coovex Set

L. DALLA AND D. G. LARMAN

ABSTRACT. The c!assica! resu!t of B!aschke οτι the expected areas of triang!es
ίτι a p!ane convex body is extended to the expected areas of the convex hull
of n points ίη a p!ane convex body.

Let Κ be a conνex body ίη Euclidean d-space Rd
• If n points ΧΙ' •.. , xn

are randomly and independently selected from Κ, the conνex hull
Κ(Χι, ... , xn) ofthese points can be interpreted as a random polytope with
at most n νertices. The expected νalue of the νolume of this polytope is
defined by

m(n, Κ) = (VolK)-n r ... r Υοl(Κ(Χι, ... , Xn)) dxl, ••• , dxn.
JXlEK JXEK

Ιτι [1], Η. Groemer has shown that for fixed νolume m(n, Κ) attains its
minimum νalue when, and οηlΥ when, Κ is an ellipsoid. Ιτι [2], Ι. Barany
and D. G. Larman show that for n large

(1) (1-cln-2/d+l)VolK ~ m(n, k) ~ (I-C2 (lOg:)d-l) ΥοlΚ,

where cl depends οτι d and c2 depends οτι Κ. Further, for n large,
polytopes behaνe like the r.h.s. of (1) and ellipsoids like the l.h.s. of (1).

Consequently ίι is reasonable to conjecture that for fixed νolume the max-
imum of m(n, Κ) will be obtained at a polytope and perhaps eνen at a
simplex. We shall proνe that for d = 2 the maximum is attained at a trian-
gle and, ίη general, that m(n, Ρ) is a maximum taken oνer all d-polytopes
with at most d + 2 νertices when Ρ is a d -simplex. It is worth remarking
that Blaschke [5] showed that the maximum of m(3, Κ) ίτι two dimensions is
attained exactly when Κ is a triangle. Α comprehensiνe surνey is contained
ίη a recent article by R. Schneider [6].
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THEOREM 1. Let Κ be α convex body in R2
. Then, if τ2 denotes α

triangZe ΟΙ the same area as Κ,

m(n, Κ) ::; m(n, τ2
)

with strict inequaZity if Κ is any poZygon other than α triangle.

REMARK. It seems reasonable to conjecture that equality holds ίn Theorem
1 only if Κ is a tήangΙe. Also the methods of Theorem 1 can be applied to
show that m(n, C) ::; m(n, T3)for all convex cylinders C ίn R3 of the
same volume as the simplex τ3

.

THEOREM2. Let Ρ be α d -polytope in Rd with at most d + 2 vertices
and Zet Τ d be α d -simpZex ΟΙ the same voZume as Ρ. Then

m(n, Ρ) ::; m(n, Td
)

with equality if and onZy if Ρ is α d-simpZex.

REMARK. The methods used ίn Theorem 2 can be applied to many other
polytopes. The first case ίn which some modification of the method cannot
obviously be used seems to be the dodecahedron ίn R3

•

LEMMA1. 11 n, Ρ are positive integers greater than 2, then there exists α
convex poZygon ΚΟ' ΟΙarea 1, with at most Ρ vertices and

m(n, Κ) ::; m(n, Κο)

l0r any other convex poZygon Κ, ΟΙarea 1, with at most Ρ vertices.

PROOF. ΒΥa result of F. John [3], we may suppose that each convex poly-

gon Κ considered contains a disk of radius 1V2/V3 and is contained ίn

a οοαοοαττίο disk of radius ~V2/V3. So the οοανοτ bodies being οοτιείά-
ered form a compact metric space ίτι the Hausdorff metric. As m(n, Κ) is
a οοτιιίαιιοιιε function of Κ ίn the Hausdorff metric, Lemma 1 follows.

REMARK. The existeηce of maximal bodies from a given class ίη other
situations coηsidered ίn Theorem 2 may be proved ίn a similar way.

We ηext need a lemma proved by Η. Groemer [1]. If q = (ql' ... , qd-l)

is a point of Rd
-
l aηd if Ζ Ε ffi., the point (ql' ... , qd-l ' Ζ) of Rd will be

denoted by (η, Ζ).

LEMMA2. Let Η be the hyperpZane which consists ΟΙ all points xd = Ο
and Zet Cl' ••• 'Cn be n given point in Η, where n > d. 11 Ζι ' ... , Zn are
reaZnumbers, put Ζ = (Ζι ' ... , zn) and

(2) V(Z) = Vol(conv((cl, Ζι), ... , (cn, Zn))).

Then, ίl Ζ' and Ζ/Ι are two points ΟΙ Rn
,

V( !Ζ'+ !Ζ/Ι) ::; !V(Z') + ! V(Z/I).
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For completeness we give the proof of Lemma 2.
PROOF. Let

Κ (( ι Ι ι ι") (ι ι Ι "))= conv CI' 2:Ζ1 + 2:Ζ1 , ••• , Cn' 2:Zn + 2:Zn '

ΚΙ = conv((cl, Z~), , (cn, Z~)),

κ" = conv((cl, Z~), , (cn, Z~)).

The sets Κ, κΙ, Κ" have the same orthogonal projection C
conv( ci ' ... ,cn) οτι Η. If χ Ε C, let (Χ, χ) and (Χ, :ΚΙ) denote the
upper and Ιοινετ points ίn ΚΙ , and similarly let (Χ, χΙ) and (Χ, :Κ'') denote
the upper and 10wer points ίη κ". Let κ* denote the convex body whose
upper and Ιοινοτ points are (Χ, !(χ +χΙ)) and (Χ, !(:κΙ+:κ")) , respectively,
Χ Ε c. Then

VoIK* =!(!(χ' - :κΙ) + !(:χ" - :Κ'')) dx = !V(Z') + !V(z").

ΑΙ ( Ι Ι ι'') Κ . 1so, as ci' 2: Ζί + 2: Ζί Ε ,Ι = , ... , n ,

KcK*,

and hence VolK = V(!Z' + !Ζ") ::::;!V(Z') + !V(z") , as required.
Ρεοοε OF THEOREM1. We shall assume that all bodies considered have

area 1. ΒΥ Lemma 1, let Q be a polygon with at most Ρ vertices with
m(n, Κ) ::::;m(n, Q) for any other polygon Κ, of area 1, with at most Ρ
vertices.

We shall show that Q is a triangle. Suppose nοΙ Then Q has vertices
ΡιΡ2Ρ3 ... Pr, r ~ 4, with ΡιΡ2 ' Ρ2Ρ3, ••• ,PrPI consecutive edges. We may
suppose that there is a Cartesian coordinate system (ΧΙ' Χ2) with P2Pr ίn the
positive direction of the x2-axis and Ρι == (Ο, Ο). The line Ρ3Ρ2 extended
will cut the x2-axis at (Ο, -β) and the line Pr-I Pr extended will cut the
x2-axis at (Ο, α). We suppose, without Ιοεε of generality, that Ο < α ::::;β .

Let Ρ( = (Ο, α) and Ρι- = (Ο, -α). Consider now the two polygons

Q+ = conv(P~ , Ρ2, •.• , Pr-l) , Q- = conv(Pl- , Ρ2, ••• , Pr)·

Notice that Q+ has only r - 1 vertices and that Q- has r (or possibly r - 1
if α = β) vertices. ΒΥ the definition of Q,

(3) m(n, Q+) ::::;m(n, Q), m(n, Q-) ::::;m(n, Q).

Now Q, Q+ , and Q- have the same orthogonal projection (Ο, γ) onto the
xl-axis. Let (Ρ2' Pr) extended meet the xl-axis ίυ (Ο, δ) , where Ο < δ < γ.
Let Cl' ... 'Cn be any choice of n numbers ίτι the interval [Ο, γ]. Let the
verticalline through (ci, Ο) meet Q, Q- , Q+ ίn the intervals [(ci, αί -Ιί),

(ci, αι + Ιί)] , [(ci, α~ -Ιί), (ci, α~ + Ιί)] , [(ci, α7 -Ιί), (Ci, α7 + Ιί)] , re-
spectively, ί = 1, ... , n. Of course, if δ ::::;ci ::::;γ, then all three interva1s
are equal. Ιτι any case, all three intervals will have the same length. Let
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(ί, ί = 1, ... , n, satisfy Itil ~ lί and consider the following points, where
t = ((ί, ••• , tn) :

Z(t) = ((αl + tl), ••• , (απ + tn)),

Z+(t) = ((α7 + tl), ••• , (α; + tn)),

Z-(t) = ((α~ +tl), ••. , (α~ +tn)),

Then Z(t) = !Z+(t) + !Z-(t) and so, by Lemma 2,

(4) V(Z(t)) ~ !V(Z+ (t)) + !V(Z- (t)) .

Consequently, integrating (4) over tl, ••. , tn and then over C1' ••• , Cn, we
conclude from (4) that

(5) m(n, Q) ~ !m(n, Q+) + !m(n, Q-).

However, suppose Ps is a vertex of Q whose orthogonal projection onto
the xl-axisis (Ο, γ) andwechoosepoints (cl' tl), •.• , (cn, tn) οτι (Ρι' Ps)

with C1 < δ, Cn > δ. Then, if t* = υ; , ... , t~), V(Z(t)) = Ο, V(Z+(t*)) >
Ο, and V(Z- (t*)) > Ο. So, by continuity, we have an improvement ωι (5)
to

(6) Ι + Ι -m(n, Q) < '2m(n, Q )+ '2m(n, Q ).

Thus (6) contradicts the maximality of m(n, Q). Consequently Q is a ιτί-
angle. Finally, since any convex body ία R2can be approximated arbίtraήΙΥ
closely from within and without by polygons, we conclude that Theorem 1
holds.

PROOF ΟΡ THEOREM2. We first note that every d-polytope Ρ with d +
2 vertices is either (ί) pyramidal about one of its vertices or (ίί) (affinely
equivalent to) the convex hull of an r-simplex Τ' and a (d - r)-simplex
Td

-
r
, 1 ~ r ~ d - 1, ίη orthogonal r- and (d - r)-dimensional subspaces,

respectively, such that Ο ε relint τ' n relint Td
-, (see Grϋnbaum [4, ρ. 97]).

So let Ρ be a d-polytope of unit volume with at most d + 2 vertices
at which max m(n, Ρ') is achieved, where the maximum is taken over all
d-polytopes Ρ' of unit volume with at most d +2 vertices. We suppose that
Ρ has form (ίί) and hence show that there exists another .polytope ρ* of
form (ί) at which the maximum is also achieved.

(7)

We suppose that Τ' is embedded ία the r-space determined by the first r
coordinates and that Td

-, is embedded ίτι the (d - r)-subspace determined
by the last d - r coordinates. Let ed denote the dth unit vector, which ίη
our case lies ίτι affTd

-,. Consider Τ' + ted, t real. There exists α > Ο
such that Τ' + ted meets the relative ίτιιοτίοτ of Td

-, for Itl < α but (say)
Τ' + aed meets the relative boundary of Td

-,.
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We shall show that
+ ( r d-r)Ρ = conv Τ + aed, Τ

satisfιes m(n, ρ+) = m(n, ρ) which will establish (5). Let
- r d-rΡ = conv(T - aed, Τ )

and let Q denote the orthogonal projection of Ρ, ρ+ , and Ρ- onto the
(d - 1)-subspace xd = Ο. Let q = (ql' ... , qd-I ' Ο) Ε Q. Then the line
fq = {(ΧΙ' ... ,xd): χι = qI' ... ,xd_) = qd-I} meets Ρ ίτι a line segment
determined by q; ::; xd ::; q; , say, and q- = (q) ' ... , qd-I' q;) and q+ =
(qI' ... , qd-I ' q;) are boundary points of Ρ. Now every boundary point Ζ

of Ρ has the unique representation Ζ = λΧ+(1- λ)Υ , where Χ Ε relbd Τ r and
Υ Ε relbd Td-r

• Consequently q- = λΧ + (1 - λ)Υ, for unique Χ Ε relbd Tr

and Υ Ε relbd Td-r
, and q+ = λΧ + (1 - λ)Υ' , for unique Υ' Ε relbd Td-r

,

Υ' - Υ ίη the direction of ed.

Consider ρ+ and the same point q Ε Q. The line fq meets ρ+ ία a line
. d b -+ ++ -+ ( -+)segment determtne Υ qd ::; Xd ::; qd ,and q = qI"'" qd-I ,qd '

and q++ = (qI ' ... , qd-I ,q++) are boundary points of ρ+ . Then

q-+ =λΧ+(I-λ)Υ+λαed, q++ =λχ+(I-λ)Υ' +λαed

and hence
-+ - ++ +(8) qd = qd +λα, qd = qd +λα.

Similarly, for the cοπeSΡοndίng q-- , q+- of Ρ- ,
- +- +(9) qd = qd - λα, qd = qd - λα .

So, using (8) and (9), the line fq cuts Ρ- , ρ+ ,and Ρ ίn line segments ofthe
same length, with Ρ- and ρ+ also having unit volume. Thus if ηι ' ... , qn
ίε any choice of points ίn Q, if Ζ = (Ζι, ... , Zn)' where Ζί = q;j + tj,

Ο + - . 1 'f Ζ+ (+ +) h + -::; tj::; qid - qid' Ι = , ... , n, 1 = Ζι, ... , Zn ,W ere Ζί = qid +
tί+λα, ί = 1, ... , n, and if Ζ- = (Z~ ' ... , Z~), where Ζ; = qίd+tί-λα,
ί = 1, ... , n, then Ζ = ~Z' + ~Z/I and so, by Lemma 2,

V(Z) ::; ~V(Z') + ~V(z/I).

Hence, as ία Theorem 1,
Ι + ι -m(n, ρ) ::; '2m(n, Ρ ) + '2m(n, Ρ )

and hence m(n, ρ+) = m(n, Ρ-) = m(n, ρ) , which establishes (7).
We repeat this process within the base of the polytope Ρ which is pyra-

midal about one of its vertices and for which m(n, ρ) is maximal until
the base becomes a (two-dimensional) square. Α further application reduces
the square to a triangle and hence Ρ to a d-simplex as required. We may
produce ειτίοι inequality by arguing as ίn (6) of the proof of Theorem 1.
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