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Volumes of a Random Polytope
in a Convex Set

L. DALLA AND D. G. LARMAN

ABSTRACT. The classical result of Blaschke on the expected areas of triangles
in a plane convex body is extended to the expected areas of the convex hull
of n points in a plane convex body.

Let K bea convex body in Euclidean d-space R Ifn points X, ..., X,
are randomly and independently selected from K, the convex hull
K(x,, ..., x,) of these points can be interpreted as a random polytope with
at most n vertices. The expected value of the volume of this polytope is
defined by

m(n,K):(VolK)‘”/ / VOIK (X, ..., X)) dX,, ..., d, .
xleK xeK

In [1], H. Groemer has shown that for fixed volume m(n, K) attains its
minimum value when, and only when, K is an ellipsoid. In {2], I. Barany
and D. G. Larman show that for n large

d-1
(1) (l—cln_z/dH)VolKgm(n,k)5 (l—cz-(—l-qg—%)———> VolK,

where ¢, depends on d and c, depends on K. Further, for n large,
polytopes behave like the r.h.s. of (1) and ellipsoids like the Lh.s. of (1).

Consequently it is reasonable to conjecture that for fixed volume the max-
imum of m(n, K) will be obtained at a polytope and perhaps even at a
simplex. We shall prove that for d = 2 the maximum is attained at a trian-
gle and, in general, that m(xn, P) is a maximum taken over all d-polytopes
with at most d + 2 vertices when P is a d-simplex. It is worth remarking
that Blaschke [5] showed that the maximum of m(3, K) in two dimensions is
attained exactly when K is a triangle. A comprehensive survey is contained
in a recent article by R. Schneider [6].
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THEOREM 1. Let K be a convex body in R®. Then, if T 2 denotes a
triangle of the same area as K ,

m(n, K) <m(n, T2)
with strict inequality if K is any polygon other than a triangle.

REMARK. It seems reasonable to conjecture that equality holds in Theorem
1 only if K is a triangle. Also the methods of Theorem 1 can be applied to
show that m(n, C) < m(n, T3) for all convex cylinders C in R’ of the
same volume as the simplex T,

THEOREM 2. Let P be a d-polytope in R? with at most d + 2 vertices
and let T be a d-simplex of the same volume as P. Then

m(n, Py< m(n, T
with equality if and only if P is a d-simplex.

REMARK. The methods used in Theorem 2 can be applied to many other
polytopes. The first case in which some modification of the method cannot
obviously be used seems to be the dodecahedron in R,

LemMa 1. If n, p are positive integers greater than 2, then there exists a
convex polygon K., of area 1, with at most p vertices and

m(n, K) < m(n, Ky)
for any other convex polygon K, of area 1, with at most p vertices.

ProoF. By a result of F. John [3], we may suppose that each convex poly-

gon K considered contains a disk of radius 14/2/v/3 and is contained in

a concentric disk of radius %\/2/ V3. So the convex bodies being consid-

ered form a compact metric space in the Hausdorff metric. As m(n, K) is

a continuous function of K in the Hausdorff metric, Lemma 1 follows.
REMARK. The existence of maximal bodies from a given class in other

situations considered in Theorem 2 may be proved in a similar way.

We next need a lemma proved by H. Groemer [1]. If q = (¢, ..., q;_;)

1

is a point of R andif z € R, the point (g, ..., q,_,, z) of R? will be

denoted by (q, z).
LEMMA 2. Let H be the hyperplane which consists of all points x; = 0

andlet ¢, ...,c, be n given pointin H, where n>d. If z, ..., z, are
real numbers, put Z =(z,, ..., z,) and
(2) V(Z) = Vol(conv((c,, z,), ..., (¢,, z,))) -

Then, if Z' and Z" are two points of R",
vz +4z" < vz +iv(z

1

).
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For completeness we give the proof of Lemma 2.

Proor. Let
! 1 ! 1 " 1 / 1 "
K = conv((c,, 32, +52()s .+ 5 (€5 52, +5Z,))s
/5 ! !
K = conv((c,, z,), ..., (¢,, 2,)),
1" 14 1
K" = conv((c;, z{), ..., (¢,, z,))-

The sets K, K',K” have the same orthogonal projection C =
conv(c,...,¢,) on H. If x € C, let (x,X) and (x,x’) denote the
upper and lower points in X', and similarly let (x, X ) and (x, x) denote
the upper and lower points in K. Let K* denote the convex body whose
upper and lower points are (x, %(’XJ +%")) and (x, %(1’4—1")) , respectively,
x € C. Then

VolK™ = [(3(F - )+ §(x" - x"))dx = §V(Z') + §V(Z")
Also, as (c;, iz;+iz)eK,i=1,...,n,
KcK",

and hence VolK = V(3Z'+1Z") < 1v(Z') + LV (Z"), as required.

Proor oF THEOREM 1. We shall assume that all bodies considered have
area 1. By Lemma 1, let Q be a polygon with at most p vertices with
m(n, K) < m(n, Q) for any other polygon K, of area 1, with at most p
vertices.

We shall show that Q is a triangle. Suppose not. Then @ has vertices
P\P,P,---P, r>4,with PP,, P,P,, ..., PP consecutive edges. We may
suppose that there is a Cartesian coordinate system (x, , x,) with P, P inthe
positive direction of the x,-axis and P, = (0, 0). The line PP, extended
will cut the x,-axis at (0, —B) and the line P,_, P, extended will cut the
x,-axis at (0, a). We suppose, without loss of generality, that 0 <a < .

Let P;“ =(0,a) and P, = (0, —a). Consider now the two polygons
Q" = conv(P1+, Py o s B_y)s Q =conv(P ,P,,...,P).

Notice that Q* hasonly r—1 vertices and that Q~ has r (or possibly r—1
if a = B) vertices. By the definition of @,

(3) mn, Q") <mn,Q), mn,Q )<mn, Q).

Now Q, O, and Q™ have the same orthogonal projection (0, ) onto the
x,-axis. Let (P,, P,) extended meet the x,-axisin (0, J), where 0 <J < y.
Let ¢;, ..., ¢, be any choice of n numbers in the interval [0, y]. Let the
vertical line through (c;, 0) meet Q, Q~, Q" in the intervals [(c,, a,—1,),
(c;vay + D)1, [(e;af = 1), (¢c;sa; +1)1, [(e;, &f = 1), (¢;, o +1,)], re-
spectively, i =1, ..., n. Of course, if 6 < ¢, <y, then all three intervals
are equal. In any case, all three intervals will have the same length. Let
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Z(t)=((a;+1;), ..., (o, +1,)),

ZYt) = ((a] +1,), ..., (ap +1)),

Z (t)=((a; +1)),...,(a, +1,)),
Then Z(t) = 1Z7(t)+ {Z7(t) and so, by Lemma 2,
4) V(Z(1) < 3V(Z7 (1) + 4V(Z7(1).
Consequently, integrating (4) over ¢,, ..., ¢, and then over ¢,, ..., c,, we
conclude from (4) that
(5) m(n, Q) < im(n, Q%) +4m(n, Q7).
However, suppose P, is a vertex of Q whose orthogonal projection onto
the x -axisis (0, y) and we choose points (c,, ¢,), ..., (¢,, t,) on (P, P)
with ¢, <&, ¢, >6. Then,if t* = (¢],..., 1), V(Z(t) =0, V(ZT(t)) >

0, and V(Z (t")) > 0. So, by continuity, we have an improvement on (5)
to

(6) m(n, Q) <imn, Q") +imn, Q7).

Thus (6) contradicts the maximality of m(n, Q). Consequently Q is a tri-
angle. Finally, since any convex body in R* can be approximated arbitrarily
closely from within and without by polygons, we conclude that Theorem 1
holds.

PrROOF OF THEOREM 2. We first note that every d-polytope P with d +
2 vertices is either (i) pyramidal about one of its vertices or (ii) (affinely
equivalent to) the convex hull of an r-simplex 7' and a (d — r)-simplex
V i , 1 <r<d-1,in orthogonal r- and (d — r)-dimensional subspaces,
respectively, such that 0 € relint 77 N relint  ad (see Griinbaum [4, p. 97]).

So let P be a d-polytope of unit volume with at most d + 2 vertices
at which maxm(n, P') is achieved, where the maximum is taken over all
d-polytopes P’ of unit volume with at most d +2 vertices. We suppose that
P has form (ii) and hence show that there exists another polytope P* of
form (i) at which the maximum is also achieved.

(7)
We suppose that 7" is embedded in the r-space determined by the first r

coordinates and that 79" is embedded in the (d — r)-subspace determined
by the last 4 —r coordinates. Let e, denote the dth unit vector, which in

our case lies in aff 79" . Consider T" + te,, t real. There exists a > 0
such that 77 + e, meets the relative interior of 7% for |¢| < & but (say)
T" + ae, meets the relative boundary of y i
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We shall show that
P =conv(T" +ae,, T°7)
satisfies m(n, P*) = m(n, P) which will establish (5). Let
P~ =conv(T" —ae,, T*")

and let Q denote the orthogonal projection of P, P*, and P~ onto the
(d — 1)-subspace x; = 0. Let ¢ = (¢,,...,4,_,,0) € Q. Then the line

Zq ={(x;, ..o x):x,=¢,,...,%X;_, =q,_,} meets P in a line segment
determined by ¢, < x, < q; ,say,and ¢ =(¢;,...,49,_,,9;) and gt =
s coenllip g q;) are boundary points of P. Now every boundary point z

of P has the unique representation z = Ax+(1—A)y, where x € relbd 7" and
y erelbd T?™". Consequently ¢~ = Ax + (1 — A)y, for unique x € relbd 7"
and y € relbd 797", and q* = Ax + (1 — A)y’, for unique y € relbd 797",
y — in the direction of e, .

Consider P* and the same point q € Q. The line £, meets P" in a line
segment determined by ¢; " <x,<q;",and ¢ " =(q,, ..., qy_;-q; ),
and ¢ =(q,,...,4,_,,4 ") are boundary points of P". Then

q =ix+(1-Ay+lae;, q =ix+(1-Ay +ice,
and hence
(8) a; =q; +ia, q, =gq; +ia.
Similarly, for the corresponding ¢~ , ¢ of P~
(9) g =4, —ie, ¢ =g -ia.
So, using (8) and (9), the line £ , cuts P~ , P*,and P in line segments of the
same length, with P~ and P" also having unit volume. Thus if q,...,4q,
is any choice of points in Q, if Z = (z,,..., z,), where z; = ¢q,; +1;,
Ogtigq;—qi;, i=1,...,n,if Z+=(z;r,... ,z:),where Z;’=q;i+
tLi+ha, i=1,..., n,andif 2~ =(z,,..., z,),where z; =q,,+t,—Aa,
i=1,...,n,then Z=1Z"+1Z" and so, by Lemma 2,

vz)y<ivizh+ivz".
Hence, as in Theorem 1,
m(n, P) < tm(n, P*)+ im(n, P7)

and hence m(n, P*)=m(n, P~) = m(n, P), which establishes (7).

We repeat this process within the base of the polytope P which is pyra-
midal about one of its vertices and for which m(n, P) is maximal until
the base becomes a (two-dimensional) square. A further application reduces
the square to a triangle and hence P to a d-simplex as required. We may
produce strict inequality by arguing as in (6) of the proof of Theorem 1.
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