Project Number: HFRI-2022-20495
Discrete structures are a classical object of study for mathematicians.
Lately, there is an increasing interest on the subject, mainly, due to its
interaction with applied fields such as computer science, biology etc.
The involvement of analytic techniques is a key player in recent developments
in the analysis of large discrete structures.
Dylan J. Altschuler,
Carnegie Mellon University
Pandelis Dodos,
National and Kapodistrian University of Athens
Alexandros Eskenazis,
Institut de Mathematiques de Jussieu
Aggelos Georgakopoulos,
University of Warwick
Miltiadis Karamanlis,
National and Kapodistrian University of Athens
Noé De Rancourt,
Univerisité de Lille
Konstantinos Theotokatos, National and Kapodistrian University of Athens
Konstantin Tikhomirov,
Carnegie Mellon University
Stevo Todorcevic,
University of Toronto
Konstantinos Tyros, National and Kapodistrian University of Athens
Petros Valettas,
University of Missouri
Metric Poincaré inequalities for graphs
, with D. J. Altschuler, P. Dodos and K. Tikhomirov.
Discrete Poincaré inequalities and universal approximators for random graphs
, with D. J. Altschuler, P. Dodos and K. Tikhomirov.
A universal threshold for geometric embeddings of trees
, with D. J. Altschuler, P. Dodos and K. Tikhomirov.
A combinatorial approach to nonlinear spectral gaps
, with D. J. Altschuler, P. Dodos and K. Tikhomirov.