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X is a projective nonsingular curve of genus g ≥ 2 defined over an
algebraicaly closed field of positive characteristic. We will denote the function
field of X by F . The automorphism group of F will be denoted by G and it is
a finite group.

1. Weierstrass semigroups
2. G-module structure of polydifferentials
3. Deformation theory of curves with automorphisms
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1. The Weierstrass semigroup ΣP at the place P of F is the subsemigroup
of the natural numbers that consists of all numbers i ∈ N such that there
is an f ∈ F with (f)∞ = iP .

2. All numbers in the Weierstrass semigroup at P are called pole numbers.
The set N− ΣP is finite and consists of g elements. The elements of
N− ΣP are called gaps. All gaps are ≤ 2g − 1.



Ramification Filtration
Weierstrass semigroups and ramification filtration Motivation Examples

University of the Aegean University of Athens – 5 / 28

1.
G(P ) = {g ∈ G : g(P ) = g}.

2. The group G admits the following ramification filtration

G0 ≥ G1 = · · · = Gi1 > Gi1+1 = · · · = Gi2 > Gi2+1 = · · · = Gs > {1}.

Let t be a local uniformizer at P . The groups Gi are defined by
Gi = {g ∈ G(P ) : vP (g(t)− t) ≥ i+ 1}.
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Aim: Relate ramification filtration and the Weierstrass semigroup.
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Aim: Relate ramification filtration and the Weierstrass semigroup.
Let m be the smaler pole number not divisible by p. Consider the space
L(mP ), and fix a base. There is faithful representation of

ρ : G1(P ) → L(mP ).
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Aim: Relate ramification filtration and the Weierstrass semigroup.
Let m be the smaler pole number not divisible by p. Consider the space
L(mP ), and fix a base. There is faithful representation of

ρ : G1(P ) → L(mP ).

Moreover denote by fm the function with (f)∞ = mP . Assume that
fm = 1

tm . Consider the cocycle a(σ) = σ(fm)− fm ∈ 〈f0, . . . , fm−1〉k,
(fi)∞ = iP . Then

σ(t) = t(1 + α(σ)tm)−1/m
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Aim: Relate ramification filtration and the Weierstrass semigroup.
Let m be the smaler pole number not divisible by p. Consider the space
L(mP ), and fix a base. There is faithful representation of

ρ : G1(P ) → L(mP ).

Moreover denote by fm the function with (f)∞ = mP . Assume that
fm = 1

tm . Consider the cocycle a(σ) = σ(fm)− fm ∈ 〈f0, . . . , fm−1〉k,
(fi)∞ = iP . Then

σ(t) = t(1 + α(σ)tm)−1/m

= t−
1

m
t−|vt(α(σ)|+m+1 + · · ·

σ ∈ Gm−|vt(α(σ)|.
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Aim: Relate ramification filtration and the Weierstrass semigroup.
Let m be the smaler pole number not divisible by p. Consider the space
L(mP ), and fix a base. There is faithful representation of

ρ : G1(P ) → L(mP ).

Moreover denote by fm the function with (f)∞ = mP . Assume that
fm = 1

tm . Consider the cocycle a(σ) = σ(fm)− fm ∈ 〈f0, . . . , fm−1〉k,
(fi)∞ = iP . Then

σ(t) = t(1 + α(σ)tm)−1/m

= t−
1

m
t−|vt(α(σ)|+m+1 + · · ·

σ ∈ Gm−|vt(α(σ)|.
Every jump in the ramification filtration is the difference of two pole

numbers.
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Deformation of the couple (X,G) over the local Artin ring A is a proper,
smooth family of curves

X → Spec(A)

together with a group homomorphism G→ AutA(X ) and a G-equivariant
isomorphism φ from the fibre over the closed point of A to the original curve
X:

φ : X ×Spec(A) Spec(k) → X.



Deformation Theory
Weierstrass semigroups and ramification filtration Motivation Examples

University of the Aegean University of Athens – 9 / 28

Two deformations X1,X2 are considered to be equivalent if there is a
G-equivariant isomorphism ψ that reduces to the identity in the special fibre
and making the following diagram commutative:

X1
ψ

//

##G
GG

GG
GG

GG
X2

{{ww
ww
ww
ww
w

SpecA
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The problem of determining deformations reduces to a “configuration problem
of points” and a local problem.
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The problem of determining deformations reduces to a “configuration problem
of points” and a local problem.
Local problem: For every wild ramified point P fix a represetnation

ρ : G(P ) → Autk[[t]].
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The problem of determining deformations reduces to a “configuration problem
of points” and a local problem.
Local problem: For every wild ramified point P fix a represetnation

ρ : G(P ) → Autk[[t]].

Then define the folowing deformation functor:

DP : C → Sets,

A 7→

{

lifts G(P ) → Aut(A[[t]]) of ρ modulo conjugation
by an element of ker(AutA[[t]] → k[[t]])

}
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The problem of determining deformations reduces to a “configuration problem
of points” and a local problem.
Local problem: For every wild ramified point P fix a represetnation

ρ : G(P ) → Autk[[t]].

Then define the folowing deformation functor:

DP : C → Sets,

A 7→

{

lifts G(P ) → Aut(A[[t]]) of ρ modulo conjugation
by an element of ker(AutA[[t]] → k[[t]])

}

The group Autk[[t]] is ugly. Someone prefers to work with linear
representations.
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The deformation functor sattisfies certain assumptions (Schlessinger criteria)
such that

D(k[ǫ]/ǫ2) is a vector space.

Problem: Compute the dimension of D(k[ǫ]).

D(k[ǫ]/ǫ2) = H1(X,G, TX)
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such that
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Problem: Compute the dimension of D(k[ǫ]).

D(k[ǫ]/ǫ2) = H1(X,G, TX)

= H1(X/G, πG∗ (TX))⊕H0(X/G,R1πG∗ (TX)) Bertin-Mézard 2000
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such that
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X )G K. 2007
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The deformation functor sattisfies certain assumptions (Schlessinger criteria)
such that

D(k[ǫ]/ǫ2) is a vector space.

Problem: Compute the dimension of D(k[ǫ]).

D(k[ǫ]/ǫ2) = H1(X,G, TX)

= H1(X/G, πG∗ (TX))⊕H0(X/G,R1πG∗ (TX)) Bertin-Mézard 2000

= H0(X,Ω⊗2
X )G K. 2007

dimkH
1(X/G, πG∗ (TX)) = 3gX/G − 3 +

r
∑

µ=1

⌈ nµ
∑

i=0

(e
(µ)
i − 1)

e
(µ)
0

⌉

.
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H0(X/G,R1πG∗ (TX)) =
r
⊕

ν=1

H1(G(Pi), T̂X,Pi
)
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H1(G(Pi), T̂X,Pi
)

T̂X,Pi
is the ÔX,x module generated by d

dt with the adjoint action.
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dt with the adjoint action.

H1(G(Pi), T̂X,Pi
) is just ordinary group cohomology.
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T̂X,Pi
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dt with the adjoint action.

H1(G(Pi), T̂X,Pi
) is just ordinary group cohomology.

■ Bertin-Mézard 2000 Z/pZ
■ Cornelissen-Kato 2002: Ordinary curves
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Artin-Schreier extensions are easy to manage.
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Artin-Schreier extensions are easy to manage. One is tempted to go up the
whole p-extensions step by step using Artin-Schreier p-extensions and
LHS-spectral sequence to relate cohomology of G/H,H,G.
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H0(X/G,R1πG∗ (TX)) =
r
⊕

ν=1

H1(G(Pi), T̂X,Pi
)

T̂X,Pi
is the ÔX,x module generated by d

dt with the adjoint action.

H1(G(Pi), T̂X,Pi
) is just ordinary group cohomology.

■ Bertin-Mézard 2000 Z/pZ
■ Cornelissen-Kato 2002: Ordinary curves

Artin-Schreier extensions are easy to manage. One is tempted to go up the
whole p-extensions step by step using Artin-Schreier p-extensions and
LHS-spectral sequence to relate cohomology of G/H,H,G. The difficult part
to handle using this approach is the computation of the kernel of the
transgretion map.
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H0(X/G,R1πG∗ (TX)) =
r
⊕

ν=1

H1(G(Pi), T̂X,Pi
)

T̂X,Pi
is the ÔX,x module generated by d

dt with the adjoint action.

H1(G(Pi), T̂X,Pi
) is just ordinary group cohomology.

■ Bertin-Mézard 2000 Z/pZ
■ Cornelissen-Kato 2002: Ordinary curves

Artin-Schreier extensions are easy to manage. One is tempted to go up the
whole p-extensions step by step using Artin-Schreier p-extensions and
LHS-spectral sequence to relate cohomology of G/H,H,G. The difficult part
to handle using this approach is the computation of the kernel of the
transgretion map. We have been able to use this approach only for very
special cases of groups.
(K 2007, elementary abelian covers)
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Determine the G-module structure of H0(X,Ω⊗m) in positive characteristic
when G is a p-group.
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Determine the G-module structure of H0(X,Ω⊗m) in positive characteristic
when G is a p-group.
Only partial results known: Several authors put restrictions on

1. Group Structure (cyclic, elementary abelian)
2. Ramification filtration (weakly ramification, i.e. G2(P ) = {1})
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3. This Lecture: One point covers.
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when G is a p-group.
Only partial results known: Several authors put restrictions on

1. Group Structure (cyclic, elementary abelian)
2. Ramification filtration (weakly ramification, i.e. G2(P ) = {1})
3. This Lecture: One point covers.

Knowledge of the G-module structure of H0(X,Ω⊗m) implies the
H0(X,Ω⊗m)G.
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Determine the G-module structure of H0(X,Ω⊗m) in positive characteristic
when G is a p-group.
Only partial results known: Several authors put restrictions on

1. Group Structure (cyclic, elementary abelian)
2. Ramification filtration (weakly ramification, i.e. G2(P ) = {1})
3. This Lecture: One point covers.

Knowledge of the G-module structure of H0(X,Ω⊗m) implies the
H0(X,Ω⊗m)G. This is linear algebra and can be done by a computer but it is
not easy to do by hand for certain groups (more on this later).

■ K. 2008 Z/pnZ using results from S. Nakajima
■ K-Köck 2010 Weakly ramified curves
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Every p-Galois extension of k[[t]] can be globalized:

L

G

X

G
��

Quot(k[[t]]) P
1
k

The cover X → P
1
k has only one ramified point P such that G(P ) = G and

the localization of X → P
1
k gives rize to the extension L/k((t)).
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Let X → P
1(k) be a cover with only one full ramified point and Galois group

G = Gal(X/P1) a p-group.
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Let X → P
1(k) be a cover with only one full ramified point and Galois group

G = Gal(X/P1) a p-group.
Construction of a basis for the m-holomorphic polydifferentials of X
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Let X → P
1(k) be a cover with only one full ramified point and Galois group

G = Gal(X/P1) a p-group.
Construction of a basis for the m-holomorphic polydifferentials of X

div(df⊗m1 ) =

(

−2mph +m
∞
∑

i=0

(ei − 1)

)

P,

which in turn is equal to m(2gX − 2)P by Riemann-Hurwitz formula.
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Proposition:

1. The set fidf1, deg div(fi) ≤ 2gX − 2 is a basis for the space of
holomorphic differentials for X.
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holomorphic differentials for X.

2. The set fidf
⊗m
1 , deg div(fi) < m(2gX − 2) is a basis for the space of

holomorphic differentials for X.
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Proposition:

1. The set fidf1, deg div(fi) ≤ 2gX − 2 is a basis for the space of
holomorphic differentials for X.

2. The set fidf
⊗m
1 , deg div(fi) < m(2gX − 2) is a basis for the space of

holomorphic differentials for X.

Proof: All m-holomorphic differentials are of the form fdf⊗m1 . Therefore the
condition for being holomorphic is translated to the condition
f ∈ L(m(2gX − 2)P ). Therefore the linear independent elements fidf

⊗m
1

with deg divfi = mi ≤ m(2gX − 2) form a basis for ΩX(m).
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Remark: For the m > 1 case we fist observe that the space of
m-holomorphic differentials has dimension

dimL(mW ) = m(2g − 2) + 1− g = (2m− 1)g − 2m+ 1.

On the other hand side the number of fi such that deg div(fi) ≤ m(2g − 2)
can be computed as follows:
In the interval [0, 2g − 1] there are g such elements. In the interval
(2g − 1,m(2g − 2)] there are m(2g − 2)− (2g − 1) = 2mg − 2m− 2g + 1
elements. In total there are 2mg− 2m− 2g+1+ g = (2m− 1)g− 2m+1 and
this coincides with the dimension of the space of m-holomorphic differentials.
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Corrolary: The Weierstrass semigroup at P is symmetric, i.e., 2g− 1 is a gap.
Proof: Recall that the set of gaps (elements in the natural numbers that are
not in the Weierstrass semigroup) has g elements {i1 = 1, . . . , ig ≤ 2g − 1}.
If 2g − 1 is a gap then then there are g-pole numbers iµ with iµ ≤ 2g − 2 and
the number of pole numbers ≤ 2g − 2 equals g (0 is always a pole number).
If 2g − 1 is a pole number then we can form only g − 1 holomorphic
differentials of the form fidf1.
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Let f1 be the function corresponding to the first not trivial pole number m1.
The action of σ ∈ G on f1 is given by σ(f1) = f1 + α1(σ). Notice that the
multiples of νm1 correspond to powers fν1 that are acted on by σ by

σfν1 = (f1 + a1)
ν = fν1 +

ν−1
∑

µ=0

(

ν

µ

)

a1(σ)
ν−µfµ1 .
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Let f1 be the function corresponding to the first not trivial pole number m1.
The action of σ ∈ G on f1 is given by σ(f1) = f1 + α1(σ). Notice that the
multiples of νm1 correspond to powers fν1 that are acted on by σ by

σfν1 = (f1 + a1)
ν = fν1 +

ν−1
∑

µ=0

(

ν

µ

)

a1(σ)
ν−µfµ1 .

Let m2 be the next pole number not divisible by m1 that corresponds to a
new function f2. The polynomial ring k[f1, f2] contains all functions that
correspond to the subsemigroup generated by the pole numbers m1,m2.
Moreover if σ(f2) = f2 + a2(σ) then we can extend this action to k[f1, f2].
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Let f1 be the function corresponding to the first not trivial pole number m1.
The action of σ ∈ G on f1 is given by σ(f1) = f1 + α1(σ). Notice that the
multiples of νm1 correspond to powers fν1 that are acted on by σ by

σfν1 = (f1 + a1)
ν = fν1 +

ν−1
∑

µ=0

(

ν

µ

)

a1(σ)
ν−µfµ1 .

Let m2 be the next pole number not divisible by m1 that corresponds to a
new function f2. The polynomial ring k[f1, f2] contains all functions that
correspond to the subsemigroup generated by the pole numbers m1,m2.
Moreover if σ(f2) = f2 + a2(σ) then we can extend this action to k[f1, f2].
We can go on by defining the action on the generators fν of the semigroup up
to the element fm.
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Remark: The elements aν(σ) = (σ − 1)fν are (not necessarily trivial)
cocycles in H1(G, k[f1, . . . , fν−1]).



Understanding the representation
Weierstrass semigroups and ramification filtration Motivation Examples

University of the Aegean University of Athens – 20 / 28

Remark: The elements aν(σ) = (σ − 1)fν are (not necessarily trivial)
cocycles in H1(G, k[f1, . . . , fν−1]).
Definition: Define a weighted degree function on k[f1, . . . , fν ] by
deg(fν) = mν .
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Remark: The elements aν(σ) = (σ − 1)fν are (not necessarily trivial)
cocycles in H1(G, k[f1, . . . , fν−1]).
Definition: Define a weighted degree function on k[f1, . . . , fν ] by
deg(fν) = mν .
There are finite many generators of the Weierstrass semigroup. Let r be their
number. Define kℓ[f1, . . . , fr] to be the vector space generated by elements of
the degree ≤ ℓ.
Remark: The space of (m)- holomorphic differentials is isomorphic to
km(2gX−2)[f1, . . . , fr].
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Remark: The elements aν(σ) = (σ − 1)fν are (not necessarily trivial)
cocycles in H1(G, k[f1, . . . , fν−1]).
Definition: Define a weighted degree function on k[f1, . . . , fν ] by
deg(fν) = mν .
There are finite many generators of the Weierstrass semigroup. Let r be their
number. Define kℓ[f1, . . . , fr] to be the vector space generated by elements of
the degree ≤ ℓ.
Remark: The space of (m)- holomorphic differentials is isomorphic to
km(2gX−2)[f1, . . . , fr].
This allows us to compute the dimension of H0(X,Ω⊗2)G which is equal to
the dimension of the complement of the vector space generated by
ai(g), i = 1, . . . , r g ∈ G.
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Understanding the structure for the indecomposable summands is complicated
but all the information is inside the representation matrix.
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Understanding the structure for the indecomposable summands is complicated
but all the information is inside the representation matrix.
We have a cover X → P

1, with only one fully ramified point Q 7→ P . The
semigroup of P at P1 is just the semigroup of natural numbers. If x is in the
rational function field with (x)∞ = P then (xn)∞ = nP .
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Understanding the structure for the indecomposable summands is complicated
but all the information is inside the representation matrix.
We have a cover X → P

1, with only one fully ramified point Q 7→ P . The
semigroup of P at P1 is just the semigroup of natural numbers. If x is in the
rational function field with (x)∞ = P then (xn)∞ = nP .
The elements xn seen as elements in the function field of X are in the
Weierstrass semigroup of Q and (xn)∞,X = psn. The G-invariant functions in
L(kP ) have pole numbers divisible by pn.
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Understanding the structure for the indecomposable summands is complicated
but all the information is inside the representation matrix.
We have a cover X → P

1, with only one fully ramified point Q 7→ P . The
semigroup of P at P1 is just the semigroup of natural numbers. If x is in the
rational function field with (x)∞ = P then (xn)∞ = nP .
The elements xn seen as elements in the function field of X are in the
Weierstrass semigroup of Q and (xn)∞,X = psn. The G-invariant functions in
L(kP ) have pole numbers divisible by pn.
Every indecomposable summand has exactly one invariant element, so the

number of indecomposable summands in L(nP ) is just
⌊

n
pn

⌋

.
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One point ramified curve:

H0(X,G, TC) = H0(X/G, πG∗ (X )⊕H1(G, T̂X).
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One point ramified curve:

H0(X,G, TC) = H0(X/G, πG∗ (X )⊕H1(G, T̂X).

dimH0(X/G, πG∗ (TX)) = −3 +

⌈ nµ
∑

i=0

(e
(µ)
i − 1)

e
(µ)
0

⌉

And
dimH0(X,G, TC) = dim k4gX−4[f1, . . . , fr]G.
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One point ramified curve:

H0(X,G, TC) = H0(X/G, πG∗ (X )⊕H1(G, T̂X).

dimH0(X/G, πG∗ (TX)) = −3 +

⌈ nµ
∑

i=0

(e
(µ)
i − 1)

e
(µ)
0

⌉

And
dimH0(X,G, TC) = dim k4gX−4[f1, . . . , fr]G.

We can now compute H1(G, T̂X).
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This implies that there is a faithfull representation of G on L(mP ) that has
dimension 2.
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This implies that there is a faithfull representation of G on L(mP ) that has
dimension 2.
The group G is elementary abelian, generated by elements σi.
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This implies that there is a faithfull representation of G on L(mP ) that has
dimension 2.
The group G is elementary abelian, generated by elements σi.
The space of “local holomorphic differentials” is km(2gX−2)[f ] with action

σif = f + c(σi)
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This implies that there is a faithfull representation of G on L(mP ) that has
dimension 2.
The group G is elementary abelian, generated by elements σi.
The space of “local holomorphic differentials” is km(2gX−2)[f ] with action

σif = f + c(σi)

σif
k = fk +

k−1
∑

ν=0

(

k

ν

)

fνc(σi)
k−ν
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This implies that there is a faithfull representation of G on L(mP ) that has
dimension 2.
The group G is elementary abelian, generated by elements σi.
The space of “local holomorphic differentials” is km(2gX−2)[f ] with action

σif = f + c(σi)

σif
k = fk +

k−1
∑

ν=0

(

k

ν

)

fνc(σi)
k−ν

We have to know when a binomial coefficient is zero mod p.
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For a module kℓ[f ] with the above action consider the p-adic expansion of
ℓ =

∑n
i=1 aip

i. Let χ : {0, . . . , p− 1} → {0, 1} be the function defined by:

χ(a) :=

{

1, if a 6= 0
0, if a = 0

.

Then

dim kℓ[f ]G =
n
∑

i=1

χ(ai).
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Let G be a cyclic group of order pn. We need n-jumps in the ramification
filtration so we need n generators for the semigroup. Let fm be function
corresponding to the first pole number prime to p. The values for the cocylce
a(gk) = gkfm − fm is determined by the cocycle condition

a(gk) = (1 + g + g2 + · · ·+ gk−1)a(g).
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Let G be a cyclic group of order pn. We need n-jumps in the ramification
filtration so we need n generators for the semigroup. Let fm be function
corresponding to the first pole number prime to p. The values for the cocylce
a(gk) = gkfm − fm is determined by the cocycle condition

a(gk) = (1 + g + g2 + · · ·+ gk−1)a(g).

The action of gν on a(g) can be described as follows:
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Select the basis (g − 1)kfm.
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Select the basis (g − 1)kfm.
Then on this basis the action is given by the Jordan matrix



















1 0 · · · · · · 0

1 1
. . .

...

0 1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 1


















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Select the basis (g − 1)kfm.
Then on this basis the action is given by the Jordan matrix



















1 0 · · · · · · 0

1 1
. . .

...

0 1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 1



















This matrix has k power

aij =







0 if i < j
1 if i = j
(

k
j−i

)

if j > i

In the above formula
(

k
µ

)

= 0 if µ > k.
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The jumps for the ramification filtration are given by

m− vt(a(g
pi)).
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The jumps for the ramification filtration are given by

m− vt(a(g
pi)).

Question: Can one prove the Hasse-Arf theorem this way?
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