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The decomposition group G (P) of a point on X admits the
following ramification filtration

G (P) = G0(P) ⊃ G1(P) ⊃ G2(P) ⊃ . . . , (1)

Gi (P) = {σ ∈ G (P) : vP(σ(t))− t ≥ i + 1}, and t is a local
uniformizer at P and vP is the corresponding valuation.
Faithful representation of G1(P) in GL(L(mP)), where

L(iP) := {f ∈ k(X )∗ : div(f ) + iP ≥ 0} ∪ {0}.
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Lemma

Let 1 ≤ m ≤ 2g − 1 be the smallest pole number not divisible by
the characteristic. There is a faithful representation

ρ : G1(P) → GL
(
L(mP)

)
(2)

Proof.
It is clear that the space L(mP) is preserved by any automorphism
in G1(P). Hence we have the desired representation ρ. Let f be a
function with pole at P of order m. We can write f as f = u/tm,
where u is a unit in the local ring OP . Since (m, p) = 1, Hensel’s
lemma implies that u is an m-th power so the local uniformizer can
be selected so that f = 1/tm. Let σ ∈ G1(P) be an element that
acts trivially on L(mP). Then σ(1/tm) = 1/tm and σ(t) = ζt.
Order of σ is p and (p,m) = 1 we have that ζ = 1, and σ is the
identity element of G1(P).
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1 The flag of vector spaces L(iP) for i ≤ m is preserved, so the
representation matrices are upper triangular, or in other words
G1(P) is a subgroup of the Borel group of the flag.

2 We assume that m = m0 > m1 > · · · > mr = 0, are the pole
numbers ≤ m. Therefore, a basis for the vector space L(mP)
is given by{
1,

ui

tmi
,
1
tm

: where 1 < i < r , p | mi and ui are certain units
}

With respect to this basis, an element σ ∈ G1(P) acts on
1/tm by

σ
1
tm

=
1
tm

+
r∑

i=1

ci (σ)
ui

tmi
,

and then it maps the local uniformizer t to

σ(t) =
ζt

(1 +
∑r

i=1 ci (σ)ui tm−mi )1/m ,
(3)

where ζ is an m-th root of 1. Deformations of Curves with automorphisms
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1 Among wildly ramified covers the simplest are the weakly
ramified covers i.e. covers where G2(P) = {1} at all ramified
points.

2 In our setting it seems that the simplest covers are the ones
with 2-dimensional representations attached at wild
ramification points.

3 Curves with 2-dimensional representations have only one jump
in their ramification filtration at P , and that jump occurs at
m, where m is the first non zero pole number.

4 The group G1(P) has to be elementary abelian.
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Remark

There are curves with two dimensional represenations attached to
wild points:

F :
n∑
ν=0

anypν
=

m∑
µ=0

bµxµ, (4)

so that m 6≡ 0 mod p, an, a0, b0 6= 0, n ≥ 1,m ≥ 2, studied by H.
Stichtenoth. Let P∞ be the unique place above the place p∞ of
the function field k(x). Weierstrass semigroup at P∞ is given by
mZ≥0 + pnZ≥0. Select m < pn the first pole number is 0 and the
second is m therefore d = 2. The ramification filtration of
G = Gal(F/k(x)) at P∞ is given by:

G0(P∞) = G1(P∞) = · · · = Gm(P∞) = Gal(F/k(x)) > Gm+1(P∞) = {1}.
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The relation to deformation theory

Problem:

DP : C → Sets,A 7→


lifts G (P) → Aut(A[[t]]) of ρ mod-
ulo conjugation with an element
of ker(AutA[[t]] → k[[t]])


A is a local Artin Λ-algebra with residue field k . For the mixed
characteristic case we consider Λ to be a complete Noetherian local
ring with residue field k . Usually Λ is an algebraic extension of the
ring of Witt vector W (k). For the equicharacteristic case we take
Λ = k .
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An easier problem

Automorphism groups of formal power series is a difficult
object to understand.
For a k-algebra A with maximal ideal mA, consider the
multiplicative group Ln(A) < GLn(A), of invertible lower
triangular matrices with entries in A, and invertible elements λ
in the diagonal, such that λ− 1 ∈ mA.
Consider the following functor from the category C of local
Artin k-algebras to the category of sets

F : A ∈ Ob(C) 7→


liftings of ρ : G (P) → Ln(k)
to ρA : G (P) → Ln(A) modulo
conjugation by an element
of ker(Ln(A) → Ln(k))


Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

An easier problem

Automorphism groups of formal power series is a difficult
object to understand.
For a k-algebra A with maximal ideal mA, consider the
multiplicative group Ln(A) < GLn(A), of invertible lower
triangular matrices with entries in A, and invertible elements λ
in the diagonal, such that λ− 1 ∈ mA.
Consider the following functor from the category C of local
Artin k-algebras to the category of sets

F : A ∈ Ob(C) 7→


liftings of ρ : G (P) → Ln(k)
to ρA : G (P) → Ln(A) modulo
conjugation by an element
of ker(Ln(A) → Ln(k))


Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

An easier problem

Automorphism groups of formal power series is a difficult
object to understand.
For a k-algebra A with maximal ideal mA, consider the
multiplicative group Ln(A) < GLn(A), of invertible lower
triangular matrices with entries in A, and invertible elements λ
in the diagonal, such that λ− 1 ∈ mA.
Consider the following functor from the category C of local
Artin k-algebras to the category of sets

F : A ∈ Ob(C) 7→


liftings of ρ : G (P) → Ln(k)
to ρA : G (P) → Ln(A) modulo
conjugation by an element
of ker(Ln(A) → Ln(k))


Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

An easier problem

Automorphism groups of formal power series is a difficult
object to understand.
For a k-algebra A with maximal ideal mA, consider the
multiplicative group Ln(A) < GLn(A), of invertible lower
triangular matrices with entries in A, and invertible elements λ
in the diagonal, such that λ− 1 ∈ mA.
Consider the following functor from the category C of local
Artin k-algebras to the category of sets

F : A ∈ Ob(C) 7→


liftings of ρ : G (P) → Ln(k)
to ρA : G (P) → Ln(A) modulo
conjugation by an element
of ker(Ln(A) → Ln(k))


Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

Global Deformation functors

Deformation of the couple (X ,G ) over the local Artin ring A is a
proper, smooth family of curves

X → Spec(A)

together with a group homomorphism G → AutA(X ) together with
a G -equivariant isomorphism φ from the fibre over the closed point
of A to the original curve X :

φ : X ⊗Spec(A) Spec(k) → X .

Two deformations X1,X2 are considered to be equivalent if there is
a G -equivariant isomorphism ψ that reduces to the identity in the
special fibre and making the following diagram commutative:

X1
ψ //

##FFFFFFFF X2

{{xxxxxxxx

SpecADeformations of Curves with automorphisms
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Global Deformation Functor

The global deformation functor is defined:

Dgl : C → Sets,A 7→


Equivalence classes
of deformations of
couples (X ,G ) over A


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Local Global Principle

Dloc =
∏

DPi

Pi runs over all wild ramified points.
There is a smooth morphism φ : Dgl → Dloc

The global deformation ring Rgl and the deformation rings Ri
of the deformation functors DPi are related

Rgl = (R1⊗̂R2⊗̂ · · · ⊗̂Rr )[[U1, . . . ,UN ]],

where N = dimk H1(X/G , πG
∗ (TX )), and Ri is the deformation

ring of DPi .
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Relative Ramification

Lemma

Let X → SpecA be an A-curve, admitting a fibrewise action of the
finite group G, where A is a Noetherian local ring. Let S = SpecA,
and ΩX/S , ΩY/S be the sheaves of relative differentials of X over S
and Y over S, respectively. Let π : X → Y be the quotient map.
The sheaf

L(−DX/Y) = Ω−1
X/S ⊗S π

∗ΩY/S .

is the ideal sheaf the horizontal Cartier divisor DX/Y . The
intersection of DX/Y with the special and generic fibre of X gives
the ordinary branch divisors for curves.
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Lifting matrix representations

Assumptions:
R is a complete local regular integer domain.
X → SpecR be a deformation of the couple (X ,G ).
P is a wild ramified point of the special fibre X .
There is a a 2-dimensional representation
ρ : G1(P) → GLk(H0(X ,L(mP))) attached to P .
There is a G -invariant horizontal divisor that intersects the
special fibre at mP . Not always possible!

Then:
there is a free R-module M of rank 2 generated by 1, f̃ so that
M := 〈1, f̃ 〉R ⊂ H0((X ,L(αD))), where 1 ≤ α ∈ N and
M ⊗R k = H0(X ,L(mP)).
the representation ρ can be lifted to a representation

ρ̃ : G1(P) → GLR(〈1, f̃ 〉R).
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special fibre at mP . Not always possible!

Then:
there is a free R-module M of rank 2 generated by 1, f̃ so that
M := 〈1, f̃ 〉R ⊂ H0((X ,L(αD))), where 1 ≤ α ∈ N and
M ⊗R k = H0(X ,L(mP)).
the representation ρ can be lifted to a representation

ρ̃ : G1(P) → GLR(〈1, f̃ 〉R).
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Lifting Matrix Representations

The basis element f̃ is of the form

f̃ =
1

(Tm + am−1Tm−1 + · · ·+ a1T1 + a0)
u(T ), (5)

where a0, . . . , am−1 ∈ mR and u(T ) is a unit in R[[T ]] reducing to
1 modmR .
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Finding the horizontal divisor D

Problem: Two horizontal divisors can collapse to the same point in
the special fibre There are conditions:

For a curve X and a branch point P of X we will

arP(σ) =
s∑

i=1

arPi (σ).

denote by iG ,P the order function of the filtration of G at P .
The Artin representation of the group G is defined by
arP(σ) = −fP iG ,P(σ) for σ 6= 1 and
arP(1) = fP

∑
σ 6=1 iG ,P(σ)

The integer iG ,P(σ) is equal to the multiplicity of P × P in the
intersection of ∆.Γσ in the relative A-surface X ×SpecA X ,
where ∆ is the diagonal and Γσ is the graph of σ.

Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

Finding the horizontal divisor D

Problem: Two horizontal divisors can collapse to the same point in
the special fibre There are conditions:

For a curve X and a branch point P of X we will

arP(σ) =
s∑

i=1

arPi (σ).

denote by iG ,P the order function of the filtration of G at P .
The Artin representation of the group G is defined by
arP(σ) = −fP iG ,P(σ) for σ 6= 1 and
arP(1) = fP

∑
σ 6=1 iG ,P(σ)

The integer iG ,P(σ) is equal to the multiplicity of P × P in the
intersection of ∆.Γσ in the relative A-surface X ×SpecA X ,
where ∆ is the diagonal and Γσ is the graph of σ.

Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

Finding the horizontal divisor D

Problem: Two horizontal divisors can collapse to the same point in
the special fibre There are conditions:

For a curve X and a branch point P of X we will

arP(σ) =
s∑

i=1

arPi (σ).

denote by iG ,P the order function of the filtration of G at P .
The Artin representation of the group G is defined by
arP(σ) = −fP iG ,P(σ) for σ 6= 1 and
arP(1) = fP

∑
σ 6=1 iG ,P(σ)

The integer iG ,P(σ) is equal to the multiplicity of P × P in the
intersection of ∆.Γσ in the relative A-surface X ×SpecA X ,
where ∆ is the diagonal and Γσ is the graph of σ.

Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

Finding the horizontal divisor D

Problem: Two horizontal divisors can collapse to the same point in
the special fibre There are conditions:

For a curve X and a branch point P of X we will

arP(σ) =
s∑

i=1

arPi (σ).

denote by iG ,P the order function of the filtration of G at P .
The Artin representation of the group G is defined by
arP(σ) = −fP iG ,P(σ) for σ 6= 1 and
arP(1) = fP

∑
σ 6=1 iG ,P(σ)

The integer iG ,P(σ) is equal to the multiplicity of P × P in the
intersection of ∆.Γσ in the relative A-surface X ×SpecA X ,
where ∆ is the diagonal and Γσ is the graph of σ.

Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

Numerical conditions

Corollary

Assume that V = G1(P) is an elementary abelian group with more
than one Z/pZ components. If V can be lifted to characteristic
zero, then |V |

p | m + 1.

Proof.
The group V acts on the generic fibre, where the possible
stabilizers of points are cyclic groups. Since V is not cyclic it can
not fix any point Pi in the intersection of the branch locus with the
generic fibre. Only a cyclic component of V can fix a point Pi .
Since V act on the set of points Pi , each orbit has |V |/p elements.
For any element σ ∈ V the Artin representation arPi (σ) = 1 (no
wild ramification at the generic fibre). The number of {Pi} is
m + 1 and the desired result follows.

Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

Conditions for the existence of D

We are looking for a G1(P)-invariant divisor intersecting the special
fibre at mP
Let T = {P̄i}i=1,...,s be the set of horizontal branch divisors that
restricts to P in the special fibre of X . This space is acted on by
G1(P), since P̄i are all components of the branch divisor. Each of
the P̄i is fixed by some element of G but not necessarily by the
whole group G1(P), unless G1(P) is isomorphic to Z/pZ.
Let O(T ) be the set of orbits of T under the action of the group
G1(P), on T . A horizontal divisor D supported on T , is invariant
under the action of G1(P) if and only if, the divisor D is of the
form:

D =
∑

C∈O(T )

nC
∑
P∈C

P,

i.e., horizontal Cartier divisors that are in the same orbit of the
action of G1(P) must appear with the same weight in D.
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Easy numerical conditions

If one orbit of G1(P) acting on T is a singleton, i.e., there is a
P̄i fixed by the whole group G1(P), then the semigroup∑

C∈O(T )

nC#C , nC ∈ N,

is the semigroup of natural numbers, and we are done. This is
the case when the group G1(P) is cyclic.
If #T 6≡ 0modp then there is at least one orbit that is a
singleton. Indeed, if all orbits have more than one element
then all orbits must have cardinality divisible by p, and since
the set T is the disjoint union of orbits it must also have
cardinality divisible by p.

Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

Easy numerical conditions

If one orbit of G1(P) acting on T is a singleton, i.e., there is a
P̄i fixed by the whole group G1(P), then the semigroup∑

C∈O(T )

nC#C , nC ∈ N,

is the semigroup of natural numbers, and we are done. This is
the case when the group G1(P) is cyclic.
If #T 6≡ 0modp then there is at least one orbit that is a
singleton. Indeed, if all orbits have more than one element
then all orbits must have cardinality divisible by p, and since
the set T is the disjoint union of orbits it must also have
cardinality divisible by p.

Deformations of Curves with automorphisms



Representing G1(P) in vector space automorphisms
Deformation theory of curves with automorphisms

Computation with infinitesimals
Beyond Infenitesimals

Lemma

If m is the first pole number that is not divisible by the
characteristic, and p - m + 1 then there is an orbit that consists of
only one element.

Proof.
Since G1(P) is abelian Pi in the same orbit are fixed by the same
subgroup H ⊂ G1(P). Fix a Pi . Its orbit has pa elements 0 ≤ a. If
a = 0 then Pi is fixed by the whole group G1(P). Consider all Pj ’s
fixed by 〈σ〉. If their orbits have more than one element then the
union of their orbits has order a power of p. This implies that the
sum of the Artin representations at the generic fibre is divisible by p
while on the special fibre it is m + 1, a contradiction.
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Limited application in lifting from positive characteristic

If the elementary abelian group G1(P) has more than two cyclic
components, then there is no horizontal G1(P)-invariant divisor D
contained in the branch locus and intersecting the special fibre at P
with multiplicity m.
Indeed, since the stabilizers of elements in the generic fibre are
cyclic groups of order p, all orbits of elements are divisible by p.
Therefore, a G1(P)-invariant divisor should have degree divisible by
p. This, can not happen since (m, p) = 1.
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2-dimensional representations

σ

(
1
tm

)
=

1
tm

+ c(σ),

Define the following representation of V to automorphisms of
formal powerseries rings:

ρ : V → Aut(k[[t]]),

σ 7→ ρσ,

where

ρσ(t) =
t

(1 + c(σ)tm)1/m
= t

(
1 +

∞∑
ν=1

(
−1/m
ν

)
c(σ)νtνm

)
.
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Small extensions

Let
0→ kerπ → A′ → A→ 0

be a small extension, i.e. kerπ ·mA′ = 0, where mA′ ,mA are the
maximal ideals of A,A′ respectively. Assume we have the following
data:

C (σ) = c(σ) + δ(σ)

λ(σ) = 1 + λ1(σ),
f̃ = f + ∆.

Where δ(σ), λ1(σ) ∈ mA′ , ∆ ∈ mA′((t)).
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Then we have:

ρ̃σ (f + ∆)) = λ(σ)(f + ∆) + c(σ) + δ(σ).

This implies that (f = 1/tm):

ρ̃σ

(
1
tm

)
=
λ(σ)

tm
+ c(σ) +

(
δ(σ) + λ(σ)∆− ρ̃σ∆

)
,

or equivalently:

ρ̃σ(t) = ρσ(t) + t

( ∞∑
ν=0

(
−1/m
ν

) ν∑
k=1

(
ν

k

)
E kc(σ)ν−ktmν

)
, (6)

where

E = δ(σ) + λ(σ)∆− ρ̃σ∆ +
λ1(σ)

tm
∈ mA′((t)).
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Suppose that we can extend ρσ(t) to a homomorphism
ρ̃σ,A ∈ AutA[[t]]. A further extension of ρσ over A′ is then given by

ρ̃σ,A′(t) = ρ̃σ,A(t) + ρ′σ(t),

where ρ′σ(t) ∈ kerπ[[t]]. Since ∆ ∈ mA′((t)) and since
kerπ ·mA′ = 0

ρ̃σ,A′(∆) = ρ̃σ,A(∆).

Thus, equation (6) allows us to compute the value of ρ̃σ,A′(t) from
the value of ρ̃σ,A(t).
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First Order infinitesimals

V is the elementary abelian group G1(P).

V = ⊕s
i=1Vi

where Vi ∼= Z/pZ.
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First Order infinitesimals

Proposition

Let m + 1 =
∑

i≥0 bipi be the p-adic expansion of m. If⌊
2b0
p

⌋
=
⌊

b0+bν−1
p

⌋
for all 2 ≤ ν ≤ s, then the map

Ψ : H1(V , TO) →
s⊕

ν=1

H1(Vν , TO), (7)

sending v 7→
∑s

ν=1 resV→Vi v is an isomorphism. Moreover

H1(V , TO) ∼=
m+1⊕

i=2,( i/m
p−1)=0

bi
1
t i
, (8)

where bi ∈ Hom(V , k).
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Comparison

The map
TO → k[[t]]/tm+1 (9)

f (t)
d
dt
→ f (t)/tm+1

is a V -equivariant isomorphism.

Proposition

Assume that P is a wild ramified point of X with a two dimensional
representation attached to it. An extension ρ̃σ gives rise to the
following cocyle in H1(V , 1

tm+1 k[[t]]):

α(σ) =
1
m

λ1(σ)

tm
+ λ1(σ)c(σ)− δ(σ) +

m−1∑
µ=0

2m − µ

m
aµ,1c(σ)

tm−µ

 ,

modulo elements in A[[t]]. Deformations of Curves with automorphisms
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modulo elements in A[[t]]. Deformations of Curves with automorphisms
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ρ̃σ(t) =
λ(σ)−

1
m t(

1 + tmc(σ)
)1/m(1 + E1tm

1+c(σ)tm
)1/m

Also
d
dε
ρ̃σ ◦ ρ−1

σ

∣∣∣∣
ε=0

is the image of ρ̃ in H1(V , 1
tm+1 k[[t]]).
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Some conclusions

Corollary

If G1(P) = Z/pZ or if the assumptions of proposition 3.1 hold then
the tangent vector corresponding to 0 6= d

dt ∈ H1(V , TO) is an
obstructed deformation.

Proof.

The element d
dt corresponds to 1

tm+1 ∈ H1(V , 1
tm+1 k[[t]]). It is

impossible to obtain a vector in the direction of 1
tm+1 using a matrix

representation, i.e. an element in F (·).
Notice that since we have assumed that the representation attached
to P is two dimensional we have that m > 1.
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More obstructions

Corollary

Assume that p - m + 1 and the assumptions for computing
H1(V , TO) hold. Assume also that V is an elementary abelian
group with more than one component. Unubstructed deformations
should satisfy bi (σ) = λic(σ) for some element λi ∈ k.

Proof.
Condition p - m + 1 implies that every deformation is coming from
a matrix representation and condition follows by using the image of
deformations comming from matrix representations.
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Representing Matrix Deformations

Let H be a p-group with identity e and let ρ : H → Ln(k) be a
faithful representation of H. Let Λ[H, n] be the commutative
Λ-algebra generated by X g

ij for g ∈ H, 1 ≤ j ≤ i ≤ n, such that

X e
ij =

{
1 if i = j
0 if i 6= j

X gh
ij =

n∑
l=1

X g
il X

h
lj for g , h ∈ H and 1 ≤ i , j ≤ n. (10)

and
X g

ij = 0 for i < j and for all g ∈ H.
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Representing Matrix representations

For every Λ-algebra A we have a canonical bijection

HomΛ−Alg(Λ[H, n],A) ∼= Hom(H, Ln(A)),

where a Λ-algebra homomorphism f : Λ[H, n] → A corresponds to
the group homomorphism ρf that sends g ∈ H to the matrix
(f (X g

ij )).
The representation ρ : H → Ln(k) corresponds to a homomorphism
Λ[H, n] → k . Its kernel is a maximal ideal, which we denote by mρ.
We take the completion R(H) of Λ[H, n] at mρ. The canonical map
Λ[H, n] → R(H), gives rise to a map ρR(H) : H → Ln(R(H)), such
that the diagram:

H
ρR(H)//

=

��

Ln(R(H))

��
H

ρ // Ln(k)

is commutative.
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Elementary Abelian Groups

Equicharacteristic Deformations. Set xi = X gi
21 − c(gi ), gi

generates the group as a Z-module. R(H) := k[[x1, . . . , xn]].
Liftings to characteristic zero. Set yi = X gi

22 − 1. Condition∑p−1
ν=0(X

g
22)

ν = 0. and commuting relation
X g

21 − X h
21 + X g

22X
h
21 − X h

22X
g
21 = 0. Interesting case is that

with one component. After computing the conjugation classes
we obtain:

R ′ := Λ[[y ]]

/〈 p∑
ν=1

(
p
ν

)
yν−1

〉
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Obstructions

Lemma

Let ρ̃σ,A = {ρ̃σ,A(t)}σ∈V be a representation of V → AutA[[t]],
and consider the corresponding element in F (A). If this element in
F (A) can be lifted to an element in F (A′) then ρ̃σ,A can be lifted
to a representation V → AutA′[[t]].

Proof.
Consider extensions of the homomorphisms ρ̃σ,A′ ∈ AutA′[[t]] for
every σ ∈ V . The element ρ̃σ,A′ ρ̃τ,A′ ρ̃−1

στ,A′ is a 2-cocycle and gives
rise to a cohomology class in H2(V , TO). If the liftings are
comming from liftings of matrix representations then there is no
group theoretic obstruction in lifting ρ̃σ,A to ρ̃σ,A′ since a simple
computation shows that the lifts defined by satisfy the relations

ρ̃σ,A′ ◦ ρ̃τ,A′ = ρ̃στ,A′ .Deformations of Curves with automorphisms
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Proposition
Assume that the hypotheses of proposition relating matrix
representations to local representation hold. Consider the ring R1
defined by

R1 =

{
k in the equicharacteristic case
R ′ in the mixed characteristic case

Let b = 1 if p | m + 1 and b = 2 if p - m + 1. Let Σ be the subset
of numbers b ≤ i ≤ m so that

( i
m

p−1

)
= 0. Consider the ring

R̄ := R1[[Xi : i ∈ Σ]] and the k-vector space
W ⊂ H1(V , TO)/〈d/dt〉 generated by elements λic(σ)tm+1−i d

dt .
There is a surjection RP → R̄ that induces an isomorphism
W ∼= Hom(R̄, k[ε]/ε2). The Krull dimension of RP is equal to #Σ.
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