On the Principal Ideal Theorem in Arithmetic Topology

Dimoklis Goundaroulis¹ Aristides Kontogeorgis²

¹Department of Mathematics
National Technical Univeristy of Athens

²Department of Mathematics
University of the Aegean

Samos, June 1 2007
Table of Contents

1. Introduction

2. Galois Extensions and Galois Branched Covers

3. The Principal Ideal Theorem

4. The Main Result

5. The Seifert Theorem

6. Bibliography
Some History

- At the beginning of the 60’s D. Mumford and B. Mazur observed some analogies between the properties of 3-Manifolds and of Number Fields.

- Together with analogies developed by M. Morishita, N. Ramachadran, A. Reznikov and J.-L. Waldspurger, the foundations of ”Arithmetic Topology” were set.

- The main tool for translating notions of one theory to the other is the MKR-dictionary (named after Mazur, Kapranov and Reznikov).

- It is not known why such a translation is possible. We will present a very basic version of this dictionary.
Some History

At the beginning of the 60’s D. Mumford and B. Mazur observed some analogies between the properties of 3-Manifolds and of Number Fields.

Together with analogies developed by M. Morishita, N. Ramachadran, A. Reznikov and J.-L. Waldspurger, the foundations of ”Arithmetic Topology” were set.

The main tool for translating notions of one theory to the other is the MKR-dictionary (named after Mazur, Kapranov and Reznikov).

It is not known why such a translation is possible. We will present a very basic version of this dictionary.
At the beginning of the 60’s D. Mumford and B. Mazur observed some analogies between the properties of 3-Manifolds and of Number Fields.

Together with analogies developed by M. Morishita, N. Ramachadran, A. Reznikov and J.-L. Waldspurger, the foundations of ”Arithmetic Topology” were set.

The main tool for translating notions of one theory to the other is the MKR-dictionary (named after Mazur, Kapranov and Reznikov).

It is not known why such a translation is possible. We will present a very basic version of this dictionary.
At the beginning of the 60’s D. Mumford and B. Mazur observed some analogies between the properties of 3-Manifolds and of Number Fields.

Together with analogies developed by M. Morishita, N. Ramachadran, A. Reznikov and J.-L. Waldspurger, the foundations of ”Arithmetic Topology” were set.

The main tool for translating notions of one theory to the other is the MKR-dictionary (named after Mazur, Kapranov and Reznikov).

It is not known why such a translation is possible.

We will present a very basic version of this dictionary.
At the beginning of the 60’s D. Mumford and B. Mazur observed some analogies between the properties of 3-Manifolds and of Number Fields.

Together with analogies developed by M. Morishita, N. Ramachadran, A. Reznikov and J.-L. Waldspurger, the foundations of ”Arithmetic Topology” were set.

The main tool for translating notions of one theory to the other is the MKR-dictionary (named after Mazur, Kapranov and Reznikov).

It is not known why such a translation is possible. We will present a very basic version of this dictionary.
Closed, oriented, connected, smooth 3-manifolds correspond to the schemes $\text{Spec} \mathcal{O}_K$, where K is an algebraic number field.

A link in M corresponds to an ideal in \mathcal{O}_K and a knot in M corresponds to a prime ideal in \mathcal{O}_K.

\mathbb{Q} corresponds to the 3-sphere S^3.

The class group $\text{Cl}(K)$ corresponds to $H_1(M, \mathbb{Z})$.

Finite extensions of number fields L/K correspond to finite branched coverings of 3-manifolds $\pi : M \to N$. A branched cover M of a 3-manifold N is given by a map π such that there is a link L of N with the following property: The restriction map $\pi : M \setminus \pi^{-1}(L) \to N \setminus L$ is a topological cover.
The MKR Dictionary

- Closed, oriented, connected, smooth 3-manifolds correspond to the schemes $\text{Spec} \mathcal{O}_K$, where K is an algebraic number field.

- A link in M corresponds to an ideal in \mathcal{O}_K and a knot in M corresponds to a prime ideal in \mathcal{O}_K.

- \mathbb{Q} corresponds to the 3-sphere S^3.

- The class group $\text{Cl}(K)$ corresponds to $H_1(M, \mathbb{Z})$.

- Finite extensions of number fields L/K correspond to finite branched coverings of 3-manifolds $\pi : M \to N$. A branched cover M of a 3-manifold N is given by a map π such that there is a link L of N with the following property: The restriction map $\pi : M \setminus \pi^{-1}(L) \to N \setminus L$ is a topological cover.
The MKR Dictionary

- Closed, oriented, connected, smooth 3-manifolds correspond to the schemes \(\text{Spec} \mathcal{O}_K \), where \(K \) is an algebraic number field.
- A link in \(M \) corresponds to an ideal in \(\mathcal{O}_K \) and a knot in \(M \) corresponds to a prime ideal in \(\mathcal{O}_K \).
- \(\mathbb{Q} \) corresponds to the 3-sphere \(S^3 \).
- The class group \(\text{Cl}(K) \) corresponds to \(H_1(M, \mathbb{Z}) \).
- Finite extensions of number fields \(L/K \) correspond to finite branched coverings of 3-manifolds \(\pi : M \rightarrow N \). A branched cover \(M \) of a 3-manifold \(N \) is given by a map \(\pi \) such that there is a link \(L \) of \(N \) with the following property: The restriction map \(\pi : M\setminus\pi^{-1}(L) \rightarrow N\setminus L \) is a topological cover.
Closed, oriented, connected, smooth 3-manifolds correspond to the schemes $\text{Spec}\mathcal{O}_K$, where K is an algebraic number field.

A link in M corresponds to an ideal in \mathcal{O}_K and a knot in M corresponds to a prime ideal in \mathcal{O}_K.

\mathbb{Q} corresponds to the 3-sphere S^3.

The class group $\text{Cl}(K)$ corresponds to $H_1(M, \mathbb{Z})$.

Finite extensions of number fields L/K correspond to finite branched coverings of 3-manifolds $\pi : M \to N$. A branched cover M of a 3-manifold N is given by a map π such that there is a link L of N with the following property: The restriction map $\pi : M\setminus \pi^{-1}(L) \to N\setminus L$ is a topological cover.
The MKR Dictionary

- Closed, oriented, connected, smooth 3-manifolds correspond to the schemes $\text{Spec} \mathcal{O}_K$, where K is an algebraic number field.
- A link in M corresponds to an ideal in \mathcal{O}_K and a knot in M corresponds to a prime ideal in \mathcal{O}_K.
- \mathbb{Q} corresponds to the 3-sphere S^3.
- The class group $\text{Cl}(K)$ corresponds to $H_1(M, \mathbb{Z})$.
- Finite extensions of number fields L/K correspond to finite branched coverings of 3-manifolds $\pi : M \rightarrow N$. A branched cover M of a 3-manifold N is given by a map π such that there is a link L of N with the following property: The restriction map $\pi : M \setminus \pi^{-1}(L) \rightarrow N \setminus L$ is a topological cover.
Main Differences between the two Theories

- The group $\text{Cl}(K)$ is always finite, while $H_1(M, \mathbb{Z}) = \mathbb{Z}^r \oplus H_1(M, \mathbb{Z})_{\text{tor}}$ is not.

- The Algebraic translation of the Poincare Conjecture is false!

 One should expect that \mathbb{Q} would be the only number field with no unramified extensions. That is not true. Indeed,

Theorem

If $d < 0$ and the class group of $L = \mathbb{Q}(\sqrt{d})$ is trivial then L has no unramified extensions. There are precisely 9 such values of $d : -1, -2, -3, -7, -11, -19, -43, -67, -163$.

- Let $M_1 \rightarrow M$ a covering of 3-manifolds. A knot K in M does not necessarily lift to a knot in M_1, while every prime ideal $p \triangleleft \mathcal{O}_K$ gives rise to an ideal $p\mathcal{O}_L$. L/K is a Galois number fields extension.
Main Differences between the two Theories

- The group $\text{Cl}(K)$ is always finite, while $H_1(M, \mathbb{Z}) = \mathbb{Z}^r \oplus H_1(M, \mathbb{Z})_{\text{tor}}$ is not.

- The Algebraic translation of the Poincare Conjecture is false!

One should expect that \mathbb{Q} would be the only number field with no unramified extensions. That is not true. Indeed,

Theorem

If $d < 0$ and the class group of $L = \mathbb{Q}(\sqrt{d})$ is trivial then L has no unramified extensions. There are precisely 9 such values of d:

$-1, -2, -3, -7, -11, -19, -43, -67, -163$.

- Let $M_1 \to M$ a covering of 3-manifolds. A knot K in M does not necessarily lift to a knot in M_1, while every prime ideal $p \triangleleft \mathcal{O}_K$ gives rise to an ideal $p\mathcal{O}_L$. L/K is a Galois number fields extension.
Main Differences between the two Theories

- The group $\text{Cl}(K)$ is always finite, while $H_1(M, \mathbb{Z}) = \mathbb{Z}^r \oplus H_1(M, \mathbb{Z})_{\text{tor}}$ is not.

- The Algebraic translation of the Poincare Conjecture is false!

 One should expect that \mathbb{Q} would be the only number field with no unramified extensions. That is not true. Indeed,

 Theorem

 *If $d < 0$ and the class group of $L = \mathbb{Q}(\sqrt{d})$ is trivial then L has no unramified extensions. There are precisely 9 such values of d: $-1, -2, -3, -7, -11, -19, -43, -67, -163$.***

- Let $M_1 \to M$ a covering of 3-manifolds. A knot K in M does not necessarily lift to a knot in M_1, while every prime ideal $p \triangleleft \mathcal{O}_K$ gives rise to an ideal $p\mathcal{O}_L$. L/K is a Galois number fields extension.
Main Differences between the two Theories

- The group $Cl(K)$ is always finite, while $H_1(M, \mathbb{Z}) = \mathbb{Z}^r \oplus H_1(M, \mathbb{Z})_{tor}$ is not.
- The Algebraic translation of the Poincare Conjecture is false!
 One should expect that \mathbb{Q} would be the only number field with no unramified extensions. That is not true. Indeed,

Theorem

*If $d < 0$ and the class group of $L = \mathbb{Q}(\sqrt{d})$ is trivial then L has no unramified extensions. There are precisely 9 such values of $d : -1, -2, -3, -7, -11, -19, -43, -67, -163$.***

- Let $M_1 \rightarrow M$ a covering of 3-manifolds. A knot K in M does not necessarily lift to a knot in M_1, while every prime ideal $p \triangleleft \mathcal{O}_K$ gives rise to an ideal $p\mathcal{O}_L$. L/K is a Galois number fields extension.
Main Differences between the two Theories

- The group $\text{Cl}(K)$ is always finite, while $H_1(M, \mathbb{Z}) = \mathbb{Z}^r \oplus H_1(M, \mathbb{Z})_{\text{tor}}$ is not.
- The Algebraic translation of the Poincare Conjecture is false!
 One should expect that \mathbb{Q} would be the only number field with no unramified extensions. That is not true. Indeed,

Theorem

*If $d < 0$ and the class group of $L = \mathbb{Q}(\sqrt{d})$ is trivial then L has no unramified extensions. There are precisely 9 such values of $d : -1, -2, -3, -7, -11, -19, -43, -67, -163$.***

- Let $M_1 \rightarrow M$ a covering of 3-manifolds. A knot K in M does not necessarily lift to a knot in M_1, while every prime ideal $p \triangleleft \mathcal{O}_K$ gives rise to an ideal $p\mathcal{O}_L$. L/K is a Galois number fields extension.
Let $G = Gal(\mathbb{L}/\mathbb{K})$ and q be a prime ideal in \mathcal{O}_L.

Definition

The decomposition group of q, $D_q \subset G$ is the subgroup of G preserving q,

$$D_q = \{ q \in G : g(q) = q \}$$

- The quotient \mathcal{O}_L/q is a finite field.
- The image of the homomorphism $D_q \rightarrow Gal(\mathcal{O}_L/q)$ consists of exactly those automorphisms of \mathcal{O}_L/q which fix the subfield, \mathcal{O}_K/p, $p = \mathcal{O}_K \cap q$.
- The kernel of this homomorphism, I_q is called the inertia group of q.
- We have the following exact sequence,

$$0 \rightarrow I_q \rightarrow D_q \rightarrow Gal(\mathcal{O}_L/q/\mathcal{O}_K/p) \rightarrow 0$$
Let $G = Gal(\mathbb{L}/\mathbb{K})$ and q be a prime ideal in \mathcal{O}_L.

Definition

The decomposition group of q, $D_q \subset G$ is the subgroup of G preserving q,

$$D_q = \{ q \in G : g(q) = q \}$$

- The quotient \mathcal{O}_L/q is a finite field.
- The image of the homomorphism $D_q \rightarrow Gal(\mathcal{O}_L/q)$ consists of exactly those automorphisms of \mathcal{O}_L/q which fix the subfield, \mathcal{O}_K/p, $p = \mathcal{O}_K \cap q$.
- The kernel of this homomorphism, l_q is called the inertia group of q.
- We have the following exact sequence,

$$0 \rightarrow l_q \rightarrow D_q \rightarrow Gal(\mathcal{O}_L/q/\mathcal{O}_K/p) \rightarrow 0$$
The order of I_q, denoted by e_q, is called the ramification index.

The order of $\text{Gal}(O_L/q/O_K/p)$ will be denoted by f_q.

The ideal pO_L decomposes uniquely as a product of prime ideals, $p_1^{e_1} \cdots p_g^{e_g}$, where e_i is the ramification index of p_i.

Theorem

Under the above assumptions,

- G acts transitively on $p_1 \cdots p_g$,
- $e_1 = \ldots = e_g := e$ and $f_{p_1} \cdots f_{p_g} := f$,
- $|G| = efg$.
The order of I_q, denoted by e_q is called the ramification index.

The order of $Gal(\mathcal{O}_L/q/\mathcal{O}_K/p)$ will be denoted by f_q.

The ideal $p\mathcal{O}_L$ decomposes uniquely as a product of prime ideals, $p_1^{e_1} \cdots p_g^{e_g}$, where e_i is the ramification index of p_i.

Theorem

Under the above assumptions,

- G acts transitively on $p_1 \cdots p_g$,
- $e_1 = \ldots = e_g := e$ and $f_{p_1} \cdots f_{p_g} := f$,
- $|G| = efg$.
Galois Extensions and Galois Branched Covers

- The order of l_q, denoted by e_q is called the ramification index.
- The order of $\text{Gal}(\mathcal{O}_L/q/\mathcal{O}_K/p)$ will be denoted by f_q.
- The ideal $p\mathcal{O}_L$ decomposes uniquely as a product of prime ideals, $p_1^{e_1} \ldots p_g^{e_g}$, where e_i is the ramification index of p_i.

Theorem

Under the above assumptions,

- G acts transitively on $p_1 \ldots p_g$,
- $e_1 = \ldots = e_g := e$ and $f_{p_1} \ldots f_{p_g} := f$,
- $|G| = efg$.
The order of I_q, denoted by e_q, is called the ramification index.

The order of $\text{Gal}(O_L/q/O_K/p)$ will be denoted by f_q.

The ideal pO_L decomposes uniquely as a product of prime ideals, $p_1^{e_1} \cdots p_g^{e_g}$, where e_i is the ramification index of p_i.

Theorem

Under the above assumptions,

- G acts transitively on $p_1 \cdots p_g$,
- $e_1 = \ldots = e_g := e$ and $f_{p_1} \cdots f_{p_g} := f$,
- $|G| = efg$.
Let G be a group that acts on a 3-manifold M and the map $p : M \to M/G$ is a branched covering.

- The subgroup $D_K \subset G$ contains all the elements which map a knot $K \subset M$ to itself and is called the decomposition group of K.
- We assume that the action of D_K on K is orientation preserving.
- The image of the natural homomorphism $D_K \to \text{Homeo}(K)$ is exactly the group of deck transformations, $\text{Gal}(K/K')$, of the covering $K \to K' = K/D_K$.
- The kernel of this homomorphism, I_K, is called the inertia group of K.
- $0 \to I_K \to D_K \to \text{Gal}(K/K') \to 0$.
- $|I_K| = e_K$ and $|\text{Gal}(K/K')| = f_K$.
Let G be a group that acts on a 3-manifold M and the map $p : M \to M/G$ is a branched covering.

The subgroup $D_K \subset G$ contains all the elements which map a knot $K \subset M$ to itself and is called the decomposition group of K.

We assume that the action of D_K on K is orientation preserving.

The image of the natural homomorphism $D_K \to \text{Homeo}(K)$ is exactly the group of deck transformations, $\text{Gal}(K/K')$, of the covering $K \to K' = K/D_K$.

The kernel of this homomorphism, I_K, is called the inertia group of K.

$0 \to I_K \to D_K \to \text{Gal}(K/K') \to 0$.

$|I_K| = e_K$ and $|\text{Gal}(K/K')| = f_K$.

Let G be a group that acts on a 3-manifold M and the map $p : M \to M/G$ is a branched covering.

The subgroup $D_K \subset G$ contains all the elements which map a knot $K \subset M$ to itself and is called the decomposition group of K.

We assume that the action of D_K on K is orientation preserving.

The image of the natural homomorphism $D_K \to \text{Homeo}(K)$ is exactly the group of deck transformations, $\text{Gal}(K/K')$, of the covering $K \to K' = K/D_K$.

The kernel of this homomorphism, I_K, is called the inertia group of K.

$0 \to I_K \to D_K \to \text{Gal}(K/K') \to 0$.

$|I_K| = e_K$ and $|\text{Gal}(K/K')| = f_K$.

Let G be a group that acts on a 3-manifold M and the map $p : M \to M/G$ is a branched covering.

The subgroup $D_K \subset G$ contains all the elements which map a knot $K \subset M$ to itself and is called the decomposition group of K.

We assume that the action of D_K on K is orientation preserving.

The image of the natural homomorphism $D_K \to \text{Homeo}(K)$ is exactly the group of deck transformations, $\text{Gal}(K/K')$, of the covering $K \to K' = K/D_K$.

The kernel of this homomorphism, I_K, is called the inertia group of K.

$0 \to I_K \to D_K \to \text{Gal}(K/K') \to 0$.

$|I_K| = e_K$ and $|\text{Gal}(K/K')| = f_K$.
Let G be a group that acts on a 3-manifold M and the map $p : M \to M/G$ is a branched covering.

The subgroup $D_K \subset G$ contains all the elements which map a knot $K \subset M$ to itself and is called the decomposition group of K.

We assume that the action of D_K on K is orientation preserving.

The image of the natural homomorphism $D_K \to \text{Homeo}(K)$ is exactly the group of deck transformations, $\text{Gal}(K/K')$, of the covering $K \to K' = K/D_K$.

The kernel of this homomorphism, I_K, is called the inertia group of K.

$$0 \to I_K \to D_K \to \text{Gal}(K/K') \to 0.$$

$|I_K| = e_K$ and $|\text{Gal}(K/K')| = f_K$.
Let G be a group that acts on a 3-manifold M and the map $p : M \to M/G$ is a branched covering.

The subgroup $D_K \subset G$ contains all the elements which map a knot $K \subset M$ to itself and is called the decomposition group of K.

We assume that the action of D_K on K is orientation preserving.

The image of the natural homomorphism $D_K \to \text{Homeo}(K)$ is exactly the group of deck transformations, $\text{Gal}(K/K')$, of the covering $K \to K' = K/D_K$.

The kernel of this homomorphism, I_K, is called the inertia group of K.

$0 \to I_K \to D_K \to \text{Gal}(K/K') \to 0$.

$|I_K| = e_K$ and $|\text{Gal}(K/K')| = f_K$.

Galois Extensions and Galois Branched Covers
Let G be a group that acts on a 3-manifold M and the map \(p : M \rightarrow M/G \) is a branched covering.

The subgroup \(D_K \subset G \) contains all the elements which map a knot \(K \subset M \) to itself and is called the decomposition group of \(K \).

We assume that the action of \(D_K \) on \(K \) is orientation preserving.

The image of the natural homomorphism \(D_K \rightarrow \text{Homeo}(K) \) is exactly the group of deck transformations, \(\text{Gal}(K/K') \), of the covering \(K \rightarrow K' = K/D_K \).

The kernel of this homomorphism, \(I_K \), is called the inertia group of \(K \).

\[0 \rightarrow I_K \rightarrow D_K \rightarrow \text{Gal}(K/K') \rightarrow 0. \]

\[|I_K| = e_K \text{ and } |\text{Gal}(K/K')| = f_K. \]
Consider again the case of a group G acting on a manifold M, such that $p : M \rightarrow M/G$ is a branched covering. Let K be a knot in M, such that K/G is a knot in M/G.

$p^{-1}(K)$ is a link in M whose components we denote by $K_1, \ldots K_g$,

$$p^{-1}(K) = K_1 \cup \ldots \cup K_g.$$

Theorem (Sikora)

Under the above assumptions

- G acts transitively on $K_1, \ldots K_g$,
- $e_{K_1} \ldots e_{K_g} := e$ and $f_{K_1} = \ldots f_{K_g} := f$
- $|G| = efg.$
Consider again the case of a group G acting on a manifold M, such that $p : M \rightarrow M/G$ is a branched covering. Let K be a knot in M, such that K/G is a knot in M/G. $p^{-1}(K)$ is a link in M whose components we denote by $K_1, \ldots K_g$,

$$p^{-1}(K) = K_1 \cup \ldots \cup K_g.$$

Theorem (Sikora)

Under the above assumptions

- G acts transitively on $K_1, \ldots K_g$,
- $e_{K_1} \ldots e_{K_g} := e$ and $f_{K_1} = \ldots f_{K_g} := f$
- $|G| = efg.$
Consider again the case of a group G acting on a manifold M, such that $p : M \rightarrow M/G$ is a branched covering. Let K be a knot in M, such that K/G is a knot in M/G. $p^{-1}(K)$ is a link in M whose components we denote by K_1, \ldots, K_g,

$$p^{-1}(K) = K_1 \cup \ldots \cup K_g.$$

Theorem (Sikora)

Under the above assumptions

- G acts transitively on K_1, \ldots, K_g,
- $e_{K_1} \ldots e_{K_g} := e$ and $f_{K_1} = \ldots f_{K_g} := f$
- $|G| = efg$.

Let C_p be a cyclic group and $G = C_p$. Then each prime $q \triangleleft \mathcal{O}_L$ and each knot $K \subset M$ is either split, inert or ramified. If $p = q \cap \mathcal{O}_K$ the q is

- split if $p\mathcal{O}_L = q_1 \ldots q_p$, where q_1, \ldots, q_p are different prime, one of which is p. In this situation C_p permutes these primes.
- ramified if $p\mathcal{O}_L = q^p$. Here C_p fixes the elements of q.
- inert if $p\mathcal{O}_L = q$. In this situation C_p acts non-trivially on q.

Let $G = C_p$, then $p : M \to M/G$ is a branched covering. If $K \subset M$ satisfies the previous assumptions, then K is

- split if $p^{-1}(K) = K_1 \cup \ldots \cup K_p$, where K_1, \ldots, K_p are different knots. Here C_p cyclicly permutes these knots
- ramified if K/G is a component of the branching set. Here C_p fixes $p^{-1}(K/G) = K$.
- inert if $p^{-1}(K/G) = K$ and the C_p—action on K is non-trivial.
Let C_p be a cyclic group and $G = C_p$. Then each prime $q \triangleleft \mathcal{O}_L$ and each knot $K \subset M$ is either split, inert or ramified. If $p = q \cap \mathcal{O}_K$ the q is

- split if $p\mathcal{O}_L = q_1 \ldots q_p$, where q_1, \ldots, q_p, are different prime, one of which is p. In this situation C_p permutes these primes.
- ramified if $p\mathcal{O}_L = q^p$. Here C_p fixes the elements of q.
- inert if $p\mathcal{O}_L = q$. In this situation C_p acts non-trivially on q.

Let $G = C_p$, then $p : M \to M/G$ is a branched covering. If $K \subset M$ satisfies the previous assumptions, then K is

- split if $p^{-1}(K) = K_1 \cup \ldots \cup K_p$, where K_1, \ldots, K_p are different knots. Here C_p cyclicly permutes these knots
- ramified if K/G is a component of the branching set. Here C_p fixes $p^{-1}(K/G) = K$.
- inert if $p^{-1}(K/G) = K$ and the C_p—action on K is non-trivial.
Let \(C_p \) be a cyclic group and \(G = C_p \). Then each prime \(q \triangleleft \mathcal{O}_L \) and each knot \(K \subset M \) is either split, inert or ramified. if \(p = q \cap \mathcal{O}_K \) the \(q \) is

- split if \(p\mathcal{O}_L = q_1 \ldots q_p \), where \(q_1, \ldots, q_p \), are different prime, one of which is \(p \). In this situation \(C_p \) permutes these primes.
- ramified if \(p\mathcal{O}_L = q^p \). Here \(C_p \) fixes the elements of \(q \).
- inert if \(p\mathcal{O}_L = q \). In this situation \(C_p \) acts non-trivially on \(q \).

Let \(G = C_p \), then \(p : M \rightarrow M/G \) is a branched covering. If \(K \subset M \) satisfies the previous assumptions, then \(K \) is

- split if \(p^{-1}(K) = K_1 \cup \ldots \cup K_p \), where \(K_1, \ldots, K_p \) are different knots. Here \(C_p \) cyclicly permutes these knots
- ramified if \(K/G \) is a component of the branching set. Here \(C_p \) fixes \(p^{-1}(K/G) = K \).
- inert if \(p^{-1}(K/G) = K \) and the \(C_p \)–action on \(K \) is non-trivial.
Let C_p be a cyclic group and $G = C_p$. Then each prime $q < \mathcal{O}_L$ and each knot $K \subset M$ is either split, inert or ramified. If $p = q \cap \mathcal{O}_K$ the q is

- **split** if $p\mathcal{O}_L = q_1 \cdots q_p$, where p_1, \ldots, p_p, are different prime, one of which is p. In this situation C_p permutes these primes.
- **ramified** if $p\mathcal{O}_L = q^p$. Here C_p fixes the elements of q.
- **inert** if $p\mathcal{O}_L = q$. In this situation C_p acts non-trivially on q.

Let $G = C_p$, then $p : M \to M/G$ is a branched covering. If $K \subset M$ satisfies the previous assumptions, then K is

- **split** if $p^{-1}(K) = K_1 \cup \ldots \cup K_p$, where K_1, \ldots, K_p are different knots. Here C_p cyclicly permutes these knots.
- **ramified** if K/G is a component of the branching set. Here C_p fixes $p^{-1}(K/G) = K$.
- **inert** if $p^{-1}(K/G) = K$ and the C_p–action on K is non-trivial.
Split, Ramified and Inert Primes and Knots

Let C_p be a cyclic group and $G = C_p$. Then each prime $q \triangleleft \mathcal{O}_L$ and each knot $K \subset M$ is either split, inert or ramified. If $p = q \cap \mathcal{O}_K$ the q is

- split if $p\mathcal{O}_L = q_1 \ldots q_p$, where q_1, \ldots, q_p, are different prime, one of which is p. In this situation C_p permutes these primes.
- ramified if $p\mathcal{O}_L = q^P$. Here C_p fixes the elements of q.
- inert if $p\mathcal{O}_L = q$. In this situation C_p acts non-trivially on q.

Let $G = C_p$, then $p : M \rightarrow M/G$ is a branched covering. If $K \subset M$ satisfies the previous assumptions, then K is

- split if $p^{-1}(K) = K_1 \cup \ldots \cup K_p$, where K_1, \ldots, K_p are different knots. Here C_p cyclicly permutes these knots
- ramified id K/G is a component of the branching set. Here C_p fixes $p^{-1}(K/G) = K$.
- inert if $p^{-1}(K/G) = K$ and the C_p–action on K is non-trivial.
Let C_p be a cyclic group and $G = C_p$. Then each prime $q \triangleleft \mathcal{O}_L$ and each knot $K \subset M$ is either split, inert or ramified. If $p = q \cap \mathcal{O}_K$ the q is

- split if $p\mathcal{O}_L = q_1 \ldots q_p$, where p_1, \ldots, p_p, are different prime, one of which is p. In this situation C_p permutes these primes.
- ramified if $p\mathcal{O}_L = q^p$. Here C_p fixes the elements of q.
- inert if $p\mathcal{O}_L = q$. In this situation C_p acts non-trivially on q.

Let $G = C_p$, then $p : M \rightarrow M/G$ is a branched covering. If $K \subset M$ satisfies the previous assumptions, then K is

- split if $p^{-1}(K) = K_1 \cup \ldots \cup K_p$, where K_1, \ldots, K_p are different knots. Here C_p cyclicly permutes these knots.
- ramified if K/G is a component of the branching set. Here C_p fixes $p^{-1}(K/G) = K$.
- inert if $p^{-1}(K/G) = K$ and the C_p–action on K is non-trivial.
Let C_p be a cyclic group and $G = C_p$. Then each prime $q < \mathcal{O}_L$ and each knot $K \subset M$ is either split, inert or ramified. If $p = q \cap \mathcal{O}_K$ the q is

- split if $p\mathcal{O}_L = q_1 \ldots q_p$, where p_1, \ldots, p_p, are different prime, one of which is p. In this situation C_p permutes these primes.
- ramified if $p\mathcal{O}_L = q^p$. Here C_p fixes the elements of q.
- inert if $p\mathcal{O}_L = q$. In this situation C_p acts non-trivially on q.

Let $G = C_p$, then $p : M \rightarrow M/G$ is a branched covering. If $K \subset M$ satisfies the previous assumptions, then K is

- split if $p^{-1}(K) = K_1 \cup \ldots \cup K_p$, where K_1, \ldots, K_p are different knots. Here C_p cyclicly permutes these knots.
- ramified id K/G is a component of the branching set. Here C_p fixes $p^{-1}(K/G) = K$.
- inert if $p^{-1}(K/G) = K$ and the C_p–action on K is non-trivial.
Let C_p be a cyclic group and $G = C_p$. Then each prime $q < \mathcal{O}_L$ and each knot $K \subset M$ is either split, inert or ramified. if $\mathfrak{p} = q \cap \mathcal{O}_K$ the q is

- **split** if $\mathfrak{p}\mathcal{O}_L = q_1 \ldots q_p$, where q_1, \ldots, q_p, are different prime, one of which is \mathfrak{p}. In this situation C_p permutes these primes.
- **ramified** if $\mathfrak{p}\mathcal{O}_L = q^p$. Here C_p fixes the elements of q.
- **inert** if $\mathfrak{p}\mathcal{O}_L = q$. In this situation C_p acts non-trivially on q.

Let $G = C_p$, then $p : M \to M/G$ is a branched covering. If $K \subset M$ satisfies the previous assumptions, then K is

- **split** if $p^{-1}(K) = K_1 \cup \ldots \cup K_p$, where K_1, \ldots, K_p are different knots. Here C_p cyclicly permutes these knots
- **ramified** if K/G is a component of the branching set. Here C_p fixes $p^{-1}(K/G) = K$.
- **inert** if $p^{-1}(K/G) = K$ and the C_p–action on K is non-trivial.
The Number Fields Case

Theorem (The Principal Ideal Theorem)

Let K be a number field and let $K^{(1)}$ be the Hilbert class field of K. Let \mathcal{O}_K, $\mathcal{O}_{K^{(1)}}$ be the rings of integers of K and $K^{(1)}$ respectively. Let P be a prime ideal of $\mathcal{O}_{K^{(1)}}$. We consider the prime ideal

$$\mathcal{O}_K \triangleright p = P \cap \mathcal{O}_K$$

and let

$$p\mathcal{O}_{K^{(1)}} = (PP_2 \ldots P_r)^e = \prod_{g \in \text{CL}(K)} g(P)$$

be the decomposition of $p\mathcal{O}_{K^{(1)}}$ in $\mathcal{O}_{K^{(1)}}$ into prime ideals. The ideal $p\mathcal{O}_{K^{(1)}}$ is principal in $K^{(1)}$.

This theorem was conjectured by Hilbert and the proof was reduced to a purely group theoretic problem by E. Artin.
The Number Fields Case

Theorem (The Principal Ideal Theorem)

Let K be a number field and let $K^{(1)}$ be the Hilbert class field of K. Let \mathcal{O}_K, $\mathcal{O}_K^{(1)}$ be the rings of integers of K and $K^{(1)}$ respectively. Let P be a prime ideal of $\mathcal{O}_K^{(1)}$. We consider the prime ideal

$$\mathcal{O}_K \triangleright p = P \cap \mathcal{O}_K$$

and let

$$p\mathcal{O}_K^{(1)} = (PP_2 \ldots P_r)^e = \prod_{g \in \text{CL}(K)} g(P)$$

be the decomposition of $p\mathcal{O}_K^{(1)}$ in $\mathcal{O}_K^{(1)}$ into prime ideals. The ideal $p\mathcal{O}_K^{(1)}$ is principal in $K^{(1)}$.

This theorem was conjectured by Hilbert and the proof was reduced to a purely group theoretic problem by E. Artin.
The 3-Manifold Case

Definition

We define the Hilbert Manifold $M^{(1)}$ of M as the universal covering space \tilde{M} of M modulo the commutator group,

$$M^{(1)} = M / [\pi_1(M), \pi_1(M)].$$

Theorem (The Principal Ideal Theorem for Knots)

1. Let K_1 be a knot in $M^{(1)}$. Denote by $G(K_1)$ the subgroup of $G = \pi(M) / [\pi_1(M), \pi_1(M)]$ fixing K_1. Consider the link $L = \bigcup_{g \in G / G(K_1)} gK_1$. Then L is zero in $H_1(M^{(1)}, \mathbb{Z})$.

2. Let L be a link in M that is a homologically trivial. Then there is a family of tame knots K_ϵ in M with $\epsilon > 0$, that are boundaries of embedded surfaces E_ϵ so that $\lim_{\epsilon \to 0} K_\epsilon = L$ and $E = \lim_{\epsilon \to 0} E_\epsilon$ is an embedded surface with $\partial E = L$.
The 3-Manifold Case

Definition

We define the Hilbert Manifold $M^{(1)}$ of M as the universal covering space \tilde{M} of M modulo the commutator group,

$$M^{(1)} = M / [\pi_1(M), \pi_1(M)]$$

Theorem (The Principal Ideal Theorem for Knots)

1. Let K_1 be a knot in $M^{(1)}$. Denote by $G(K_1)$ the subgroup of $G = \pi(M)/[\pi_1(M), \pi_1(M)]$ fixing K_1. Consider the link $L = \bigcup_{g \in G / G(K_1)} gK_1$. Then L is zero in $H_1(M^{(1)}, \mathbb{Z})$.

2. Let L be a link in M that is homologically trivial. Then there is a family of tame knots K_ϵ in M with $\epsilon > 0$, that are boundaries of embedded surfaces E_ϵ so that $\lim_{\epsilon \to 0} K_\epsilon = L$ and $E = \lim_{\epsilon \to 0} E_\epsilon$ is an embedded surface with $\partial E = L$.
Theorem (Path Lifting Property)

Let (Y, y_0), (X, x_0) be topological spaces (arcwise connected, semilocally simply connected), let $p : (X', x'_0) \to (X, x_0)$ be a topological covering with $p(x'_0) = x_0$ and let $f : (Y, y_0) \to (X, x_0)$ be a continuous map. Then, there is a lift $\tilde{f} : Y \to X'$ of f,

$$\begin{array}{ccc}
X' & \xrightarrow{\tilde{f}} & X \\
\downarrow{p} & & \downarrow{p} \\
Y & \xrightarrow{f} & X
\end{array}$$

making the above diagram commutative if and only if

$$f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(X', x'_0)),$$

where f_*, p_* are the induced maps of fundamental groups.
Theorem (Dehn Lemma)

Let M be a 3-manifold and $f : D^2 \to M$ be a map such that for some neighborhood A of ∂D^2 in D^2 $f|_A$ is an embedding and $f^{-1}f(A) = A$. Then $f|_{\partial D^2}$ extends to an embedding $g : D^2 \to M$.

Corollary

If a tame knot is the boundary of a topological and possibly singular surface then the knot is the boundary of an embedded surface.
Useful Theorems

Theorem (Dehn Lemma)

Let M be a 3-manifold and $f : D^2 \to M$ be a map such that for some neighborhood A of ∂D^2 in D^2 $f|_A$ is an embedding and $f^{-1}(A) = A$. Then $f|_{\partial D^2}$ extends to an embedding $g : D^2 \to M$.

Corollary

If a tame knot is the boundary of a topological and possibly singular surface then the knot is the boundary of an embedded surface.
Proof of The Main Result

Theorem (Part I)

Let K_1 be a knot in $M^{(1)}$. Denote by $G(K_1)$ the subgroup of G fixing K_1. Consider the link $L = \bigcup_{g \in G/G(K_1)} gK_1$. Then L is zero in $H_1(M^{(1)}, \mathbb{Z})$.

Proof.

Since the diagram

\[
\begin{array}{ccc}
K_1 & \rightarrow & M^{(1)} \\
\downarrow \tilde{f} & & \downarrow p \\
S^1 & \rightarrow & p(K_1) \\
\downarrow f & & \downarrow \\
& & M
\end{array}
\]

commutes we have that

\[f_*(\pi_1(S^1)) \subset p_*(\pi_1(K_1)) \subset p_*(\pi_1(M^{(1)})) = p_*(\langle \pi_1(M), \pi_1(M) \rangle)\]
Proof of The Main Result

Theorem (Part I)

Let K_1 be a knot in $M^{(1)}$. Denote by $G(K_1)$ the subgroup of G fixing K_1. Consider the link $L = \bigcup_{g \in G/G(K_1)} gK_1$. Then L is zero in $H_1(M^{(1)}, \mathbb{Z})$.

Proof.

Since the diagram

\[
\begin{array}{ccc}
K_1 & \rightarrow & M^{(1)} \\
\downarrow \tilde{f} & & \downarrow p \\
S^1 & \rightarrow & p(K_1) \\
\downarrow f & & \downarrow p \\
 & & \rightarrow M
\end{array}
\]

commutes we have that

\[f_* (\pi_1(S^1)) \subset p_* (\pi_1(K_1)) \subset p_* (\pi_1(M^{(1)})) = p_* ([\pi_1(M), \pi_1(M)]) \]
Proof (Continued).

Therefore \(f_*(\pi_1(S^1)) = 0 \) as an element in \(H_1(M, \mathbb{Z}) \), hence there is a topological (possibly singular) surface \(\phi : E \to M \) so that

\[
f(S^1) = p(K^1) = \partial \phi(E).
\]

The surface \(E \) is homotopically trivial therefore the Dehn Lemma implies that there is a map \(\tilde{\phi} \) making the following diagram commutative:

\[
\begin{array}{ccc}
M(1) & \xrightarrow{\tilde{\phi}} & E \\
\downarrow p & & \downarrow \phi \\
M & & M
\end{array}
\]

with the additional property \(\partial \tilde{\phi}(E) = p^{-1}(\partial \phi(E)) = L \).
Proof of The Main Result

Proof (Continued).

Therefore $f_*(\pi_1(S^1)) = 0$ as an element in $H_1(M, \mathbb{Z})$, hence there is a topological (possibly singular) surface $\phi : E \to M$ so that

$$f(S^1) = p(K^1) = \partial \phi(E).$$

The surface E is homotopically trivial therefore the Dehn Lemma implies that there is a map $\tilde{\phi}$ making the following diagram commutative:

$$
\begin{array}{ccc}
\tilde{\phi} & : & M^{(1)} \\
\downarrow & & \downarrow p \\
E & \xrightarrow{\phi} & M \\
\end{array}
$$

with the additional property $\partial \tilde{\phi}(E) = p^{-1}(\partial \phi(E)) = L$.

\square
Proof of The Main Result

We have seen that when a knot (resp. link) \(K \) lifts to a knot (resp. link) in the Hilbert Manifold, then it is homologically trivial.

What remains is to show that there exists an embedding of a surface \(E \) in \(M^{(1)} \) such that \(\partial E = K \).

Theorem (Part II)

Let \(L \) be a link in \(M \) that is a homologically trivial. Then there is a family of tame knots \(K_\epsilon \) in \(M \) with \(\epsilon > 0 \), that are boundaries of embedded surfaces \(E_\epsilon \) so that \(\lim_{\epsilon \to 0} K_\epsilon = L \) and \(E = \lim_{\epsilon \to 0} E_\epsilon \) is an embedded surface with \(\partial E = L \).
Proof of The Main Result

We have seen that when a knot (resp. link) \(K \) lifts to a knot (resp. link) in the Hilbert Manifold, then it is homologically trivial.

What remains is to show that there exists an embedding of a surface \(E \) in \(M^{(1)} \) such that \(\partial E = K \).

Theorem (Part II)

Let \(L \) be a link in \(M \) that is a homologically trivial. Then there is a family of tame knots \(K_\epsilon \) in \(M \) with \(\epsilon > 0 \), that are boundaries of embedded surfaces \(E_\epsilon \) so that \(\lim_{\epsilon \to 0} K_\epsilon = L \) and \(E = \lim_{\epsilon \to 0} E_\epsilon \) is an embedded surface with \(\partial E = L \).
We have seen that when a knot (resp. link) K lifts to a knot (resp. link) in the Hilbert Manifold, then it is homologically trivial.

What remains is to show that there exists an embedding of a surface E in $M^{(1)}$ such that $\partial E = K$.

Theorem (Part II)

Let L be a link in M that is a homologically trivial. Then there is a family of tame knots K_ϵ in M with $\epsilon > 0$, that are boundaries of embedded surfaces E_ϵ so that $\lim_{\epsilon \to 0} K_\epsilon = L$ and $E = \lim_{\epsilon \to 0} E_\epsilon$ is an embedded surface with $\partial E = L$.
Proof of The Main Result

Proof.

- Consider a link with two components. Let $L = K_1 \cup K_2$.
 - K_i is given by the embedding $f_i : S^1 \to M$.
 - The passage from two components to $n > 2$ follows by induction.
 - Select two points P_i, Q_i on $f_i(S^1)$, such that $d(P_i, Q_i) = \epsilon, i = 1, 2$.
 - The embedding of the two curves can be seen as the union of two curves $\gamma_i : [0, 1] \to M, \delta_i : [0, 1] \to M$, so that $\gamma_i(0) = \delta_i(1) = P_i$, $\gamma_i(1) = \delta_i(1) = Q_i$. This means that the ”small” curve is δ_i.
 - Since M is tamely path connected we can find two paths $\alpha, \beta : [0, 1] \to M$ such that $\alpha(0) = P_1, \alpha(1) = Q_2, \beta(0) = P_2, \beta(1) = Q_1$, that are close enough so that the rectangle $\alpha(-\delta_2)\beta(-\delta_1)$ is homotopically trivial.
Proof of The Main Result

Proof.

- Consider a link with two components. Let \(L = K_1 \cup K_2 \).
- \(K_i \) is given by the embedding \(f_i : S^1 \to M \).
- The passage from two components to \(n > 2 \) follows by induction.
- Select two points \(P_i, Q_i \) on \(f_i(S^1) \), such that \(d(P_i, Q_i) = \epsilon, \ i = 1, 2 \).
- The embedding of the two curves can be seen as the union of two curves \(\gamma_i : [0, 1] \to M, \delta_i : [0, 1] \to M \), so that \(\gamma_i(0) = \delta_i(1) = P_i, \gamma_i(1) = \delta_i(1) = Q_i \). This means that the "small" curve is \(\delta_i \).
- Since \(M \) is tamely path connected we can find two paths \(\alpha, \beta : [0, 1] \to M \) such that \(\alpha(0) = P_1, \alpha(1) = Q_2, \beta(0) = P_2, \beta(1) = Q_1 \), that are close enough so that the rectangle \(\alpha(-\delta_2)\beta(-\delta_1) \) is homotopically trivial.
Proof of The Main Result

Proof.

- Consider a link with two components. Let \(L = K_1 \cup K_2 \).
- \(K_i \) is given by the embedding \(f_i : S^1 \rightarrow M \).
- The passage from two components to \(n > 2 \) follows by induction.

- Select two points \(P_i, Q_i \) on \(f_i(S^1) \), such that \(d(P_i, Q_i) = \epsilon, i = 1, 2 \).
- The embedding of the two curves can be seen as the union of two curves \(\gamma_i : [0, 1] \rightarrow M, \delta_i : [0, 1] \rightarrow M \), so that \(\gamma_i(0) = \delta_i(1) = P_i, \gamma_i(1) = \delta_i(1) = Q_i \). This means that the ”small” curve is \(\delta_i \).
- Since \(M \) is tamely path connected we can find two paths \(\alpha, \beta : [0, 1] \rightarrow M \) such that \(\alpha(0) = P_1, \alpha(1) = Q_2, \beta(0) = P_2, \beta(1) = Q_1 \), that are close enough so that the rectangle \(\alpha(-\delta_2)\beta(-\delta_1) \) is homotopically trivial.
Proof.

- Consider a link with two components. Let $L = K_1 \cup K_2$.
- K_i is given by the embedding $f_i : S^1 \to M$.
- The passage from two components to $n > 2$ follows by induction.
- Select two points P_i, Q_i on $f_i(S^1)$, such that $d(P_i, Q_i) = \epsilon, i = 1, 2$.
- The embedding of the two curves can be seen as the union of two curves $\gamma_i : [0, 1] \to M, \delta_i : [0, 1] \to M$, so that $\gamma_i(0) = \delta_i(1) = P_i, \gamma_i(1) = \delta_i(1) = Q_i$. This means that the "small" curve is δ_i.
- Since M is tamely path connected we can find two paths $\alpha, \beta : [0, 1] \to M$ such that $\alpha(0) = P_1, \alpha(1) = Q_2, \beta(0) = P_2, \beta(1) = Q_1$, that are close enough so that the rectangle $\alpha(-\delta_2)\beta(-\delta_1)$ is homotopically trivial.
Proof of The Main Result

Proof.

- Consider a link with two components. Let \(L = K_1 \cup K_2 \).
- \(K_i \) is given by the embedding \(f_i : S^1 \to M \).
- The passage from two components to \(n > 2 \) follows by induction.
- Select two points \(P_i, Q_i \) on \(f_i(S^1) \), such that \(d(P_i, Q_i) = \epsilon, \ i = 1, 2 \).
- The embedding of the two curves can be seen as the union of two curves \(\gamma_i : [0, 1] \to M, \delta_i : [0, 1] \to M \), so that \(\gamma_i(0) = \delta_i(1) = P_i, \gamma_i(1) = \delta_i(1) = Q_i \). This means that the "small" curve is \(\delta_i \).
- Since \(M \) is tamely path connected we can find two paths \(\alpha, \beta : [0, 1] \to M \) such that \(\alpha(0) = P_1, \alpha(1) = Q_2, \beta(0) = P_2, \beta(1) = Q_1 \), that are close enough so that the rectangle \(\alpha(-\delta_2)\beta(-\delta_1) \) is homotopically trivial.
Proof of The Main Result

Proof.

Consider a link with two components. Let \(L = K_1 \cup K_2 \).

\(K_i \) is given by the embedding \(f_i : S^1 \to M \).

The passage from two components to \(n > 2 \) follows by induction.

Select two points \(P_i, Q_i \) on \(f_i(S^1) \), such that \(d(P_i, Q_i) = \epsilon, \ i = 1, 2 \).

The embedding of the two curves can be seen as the union of two curves \(\gamma_i : [0, 1] \to M, \delta_i : [0, 1] \to M \), so that \(\gamma_i(0) = \delta_i(1) = P_i, \gamma_i(1) = \delta_i(1) = Q_i \). This means that the "small" curve is \(\delta_i \).

Since \(M \) is tamely path connected we can find two paths \(\alpha, \beta : [0, 1] \to M \) such that \(\alpha(0) = P_1, \alpha(1) = Q_2, \beta(0) = P_2, \beta(1) = Q_1 \), that are close enough so that the rectangle \(\alpha(-\delta_2)\beta(-\delta_1) \) is homotopically trivial.
Proof (Continued).

- Let \(I = [0, 1] \subset \mathbb{R} \).
- Every path in \(M \), i.e. every function \(f : I \to M \), defines a cycle in \(H_1(M, \mathbb{Z}) \).
- We will abuse the notation and we will denote by \(f(I) \) the homology class of the path \(f(I) \).
- We compute in \(H_1(M, \mathbb{Z}) \):

\[
0 = f_1(S^1) + f_2(S^1) = \gamma_1(I) + \gamma_2(I) + \delta_1(I) + \delta_2(I) + 0 = \gamma_1(I) + \gamma_2(I) + \delta_1(I) + \delta_2(I) + \alpha(I) - \delta_2(I) + \beta(I) - \delta_1(I) = \gamma_1(I) + \alpha(I) + \gamma_2(I) + \beta(I).
\]

- The tame knot \(\gamma_1 \alpha \gamma_2 \beta \) is the boundary of a topological surface.
Proof of The Main Result

Proof (Continued).

- Let $I = [0, 1] \subset \mathbb{R}$.
- Every path in M, i.e. every function $f : I \to M$, defines a cycle in $H_1(M, \mathbb{Z})$.
- We will abuse the notation and we will denote by $f(I)$ the homology class of the path $f(I)$.
- We compute in $H_1(M, \mathbb{Z})$:

\[
0 = f_1(S^1) + f_2(S^1) = \gamma_1(I) + \gamma_2(I) + \delta_1(I) + \delta_2(I) + 0 = \\
= \gamma_1(I) + \gamma_2(I) + \delta_1(I) + \delta_2(I) + \alpha(I) - \delta_2(I) + \beta(I) - \delta_1(I) = \\
= \gamma_1(I) + \alpha(I) + \gamma_2(I) + \beta(I).
\]
- The tame knot $\gamma_1 \alpha \gamma_2 \beta$ is the boundary of a topological surface.
Proof (Continued).

- Let $I = [0, 1] \subset \mathbb{R}$.
- Every path in M, i.e. every function $f : I \to M$, defines a cycle in $H_1(M, \mathbb{Z})$.
- We will abuse the notation and we will denote by $f(I)$ the homology class of the path $f(I)$.
- We compute in $H_1(M, \mathbb{Z})$:

$$0 = f_1(S^1) + f_2(S^1) = \gamma_1(I) + \gamma_2(I) + \delta_1(I) + \delta_2(I) + 0 =$$

$$= \gamma_1(I) + \gamma_2(I) + \delta_1(I) + \delta_2(I) + \alpha(I) - \delta_2(I) + \beta(I) - \delta_1(I) =$$

$$= \gamma_1(I) + \alpha(I) + \gamma_2(I) + \beta(I).$$

- The tame knot $\gamma_1 \alpha \gamma_2 \beta$ is the boundary of a topological surface.
Proof (Continued).

- Let $I = [0, 1] \subset \mathbb{R}$.
- Every path in M, i.e. every function $f : I \to M$, defines a cycle in $H_1(M, \mathbb{Z})$.
- We will abuse the notation and we will denote by $f(I)$ the homology class of the path $f(I)$.
- We compute in $H_1(M, \mathbb{Z})$:

\[0 = f_1(S^1) + f_2(S^1) = \gamma_1(I) + \gamma_2(I) + \delta_1(I) + \delta_2(I) + 0 = \]
\[= \gamma_1(I) + \gamma_2(I) + \delta_1(I) + \delta_2(I) + \alpha(I) - \delta_2(I) + \beta(I) - \delta_1(I) = \]
\[= \gamma_1(I) + \alpha(I) + \gamma_2(I) + \beta(I). \]
- The tame knot $\gamma_1 \alpha \gamma_2 \beta$ is the boundary of a topological surface.
Proof of The Main Result

Proof (Continued).

- By the Corollary it is the boundary of an embedded surface E_ϵ.
- Choose an orientation on E_ϵ so that on $P \in \partial E_\epsilon$ one vector of the oriented basis of $T_P E_\epsilon$ is the tangent vector of the curves ∂E_ϵ and the other one is pointing inwards of E.
- Denote the second vector by N_P.
- We choose the same orientation on all surfaces E_ϵ in the same way, i.e. the induced orientation on the common curves of the boundary is the same.
- We take the limit surface for $\epsilon \to 0$.
Proof of The Main Result

Proof (Continued).

- By the Corollary it is the boundary of an embedded surface \(E_\epsilon \).
- Choose an orientation on \(E_\epsilon \) so that on \(P \in \partial E_\epsilon \) one vector of the oriented basis of \(T_P E_\epsilon \) is the tangent vector of the curves \(\partial E_\epsilon \) and the other one is pointing inwards of \(E \).
- Denote the second vector by \(N_P \).
- We choose the same orientation on all surfaces \(E_\epsilon \) in the same way, i.e. the induced orientation on the common curves of the boundary is the same.
- We take the limit surface for \(\epsilon \to 0 \).
Proof of The Main Result

Proof (Continued).

- By the Corollary it is the boundary of an embedded surface E_{ϵ}.
- Choose an orientation on E_{ϵ} so that on $P \in \partial E_{\epsilon}$ one vector of the oriented basis of $T_P E_{\epsilon}$ is the tangent vector of the curves ∂E_{ϵ} and the other one is pointing inwards of E.
- Denote the second vector by N_P.
 - We choose the same orientation on all surfaces E_{ϵ} in the same way, i.e. the induced orientation on the common curves of the boundary is the same.
 - We take the limit surface for $\epsilon \to 0$.
Proof of The Main Result

Proof (Continued).

- By the Corollary it is the boundary of an embedded surface E_ϵ.
- Choose an orientation on E_ϵ so that on $P \in \partial E_\epsilon$ one vector of the oriented basis of $T_P E_\epsilon$ is the tangent vector of the curves ∂E_ϵ and the other one is pointing inwards of E.
- Denote the second vector by N_P.
- We choose the same orientation on all surfaces E_ϵ in the same way, i.e. the induced orientation on the common curves of the boundary is the same.
- We take the limit surface for $\epsilon \to 0$.
Proof (Continued).

- By the Corollary it is the boundary of an embedded surface E_ε.
- Choose an orientation on E_ε so that on $P \in \partial E_\varepsilon$ one vector of the oriented basis of $T_P E_\varepsilon$ is the tangent vector of the curves ∂E_ε and the other one is pointing inwards of E.
- Denote the second vector by N_P.
- We choose the same orientation on all surfaces E_ε in the same way, i.e. the induced orientation on the common curves of the boundary is the same.
- We take the limit surface for $\varepsilon \to 0$.
Two Cases

We have to distinguish the following two cases

1. The direction of decreasing ϵ is the opposite of N_P.
2. The direction of decreasing the distance ϵ is the same with N_P.
We have to distinguish the following two cases

1. The direction of decreasing ϵ is the opposite of N_P.
2. The direction of decreasing the distance ϵ is the same with N_P.
Two Cases

We have to distinguish the following two cases

1. The direction of decreasing ϵ is the opposite of N_P.
2. The direction of decreasing the distance ϵ is the same with N_P.
The Seifert Theorem

As a corollary of the principal ideal theorem for knots we state the following:

\textbf{Theorem (Seifert)}

Every link in a simply connected 3 manifold is the boundary of an embedded surface.

\textbf{Proof.}

Let M be simply connected. The Hilbert manifold of M coincides with M and the result follows.
As a corollary of the principal ideal theorem for knots we state the following:

Theorem (Seifert)

Every link in a simply connected 3 manifold is the boundary of an embedded surface.

Proof.

Let M be simply connected. The Hilbert manifold of M coincides with M and the result follows.
As a corollary of the principal ideal theorem for knots we state the following:

Theorem (Seifert)

Every link in a simply connected 3-manifold is the boundary of an embedded surface.

Proof.

Let M be simply connected. The Hilbert manifold of M coincides with M and the result follows.
Bibliography

Bibliography II
