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Some History

At the beginning of the 60’s D. Mumford and B. Mazur
observed some analogies between the properties of
3-Manifolds and of Number Fields.

Together with analogies developed by M. Morishita, N.
Ramachadran, A. Reznikov and J.-L. Waldspurger, the
foundations of ”Arithmetic Topology” were set.

The main tool for translating notions of one theory to the
other is the MKR-dictionary (named after Mazur,
Kapranov and Reznikov).

It is not known why such a translation is possible.
We will present a very basic version of this dictionary.
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The MKR Dictionary

Closed, oriented, connected, smooth 3-manifolds
correspond to the schemes SpecOK , where K is an
algebraic number field.

A link in M corresponds to an ideal in OK and a knot in
M corresponds to a prime ideal in OK .

Q corresponds to the 3-sphere S3.

The class group Cl(K ) corresponds to H1(M, Z).

Finite extensions of number fields L/K correspond to finite
branched coverings of 3-manifolds π : M → N. A
branched cover M of a 3-manifold N is given by a map π
such that there is a link L of N with the following
property: The restriction map π : M\π−1(L) → N\L is a
topological cover.



On the
Principal Ideal
Theorem in
Arithmetic
Topology

Introduction

Galois
Extensions
and Galois
Branched
Covers

The Principal
Ideal Theorem

The Main
Result

The Seifert
Theorem

Bibliography

The MKR Dictionary

Closed, oriented, connected, smooth 3-manifolds
correspond to the schemes SpecOK , where K is an
algebraic number field.

A link in M corresponds to an ideal in OK and a knot in
M corresponds to a prime ideal in OK .

Q corresponds to the 3-sphere S3.

The class group Cl(K ) corresponds to H1(M, Z).

Finite extensions of number fields L/K correspond to finite
branched coverings of 3-manifolds π : M → N. A
branched cover M of a 3-manifold N is given by a map π
such that there is a link L of N with the following
property: The restriction map π : M\π−1(L) → N\L is a
topological cover.



On the
Principal Ideal
Theorem in
Arithmetic
Topology

Introduction

Galois
Extensions
and Galois
Branched
Covers

The Principal
Ideal Theorem

The Main
Result

The Seifert
Theorem

Bibliography

The MKR Dictionary

Closed, oriented, connected, smooth 3-manifolds
correspond to the schemes SpecOK , where K is an
algebraic number field.

A link in M corresponds to an ideal in OK and a knot in
M corresponds to a prime ideal in OK .

Q corresponds to the 3-sphere S3.

The class group Cl(K ) corresponds to H1(M, Z).

Finite extensions of number fields L/K correspond to finite
branched coverings of 3-manifolds π : M → N. A
branched cover M of a 3-manifold N is given by a map π
such that there is a link L of N with the following
property: The restriction map π : M\π−1(L) → N\L is a
topological cover.



On the
Principal Ideal
Theorem in
Arithmetic
Topology

Introduction

Galois
Extensions
and Galois
Branched
Covers

The Principal
Ideal Theorem

The Main
Result

The Seifert
Theorem

Bibliography

The MKR Dictionary

Closed, oriented, connected, smooth 3-manifolds
correspond to the schemes SpecOK , where K is an
algebraic number field.

A link in M corresponds to an ideal in OK and a knot in
M corresponds to a prime ideal in OK .

Q corresponds to the 3-sphere S3.

The class group Cl(K ) corresponds to H1(M, Z).

Finite extensions of number fields L/K correspond to finite
branched coverings of 3-manifolds π : M → N. A
branched cover M of a 3-manifold N is given by a map π
such that there is a link L of N with the following
property: The restriction map π : M\π−1(L) → N\L is a
topological cover.



On the
Principal Ideal
Theorem in
Arithmetic
Topology

Introduction

Galois
Extensions
and Galois
Branched
Covers

The Principal
Ideal Theorem

The Main
Result

The Seifert
Theorem

Bibliography

The MKR Dictionary

Closed, oriented, connected, smooth 3-manifolds
correspond to the schemes SpecOK , where K is an
algebraic number field.

A link in M corresponds to an ideal in OK and a knot in
M corresponds to a prime ideal in OK .

Q corresponds to the 3-sphere S3.

The class group Cl(K ) corresponds to H1(M, Z).

Finite extensions of number fields L/K correspond to finite
branched coverings of 3-manifolds π : M → N. A
branched cover M of a 3-manifold N is given by a map π
such that there is a link L of N with the following
property: The restriction map π : M\π−1(L) → N\L is a
topological cover.



On the
Principal Ideal
Theorem in
Arithmetic
Topology

Introduction

Galois
Extensions
and Galois
Branched
Covers

The Principal
Ideal Theorem

The Main
Result

The Seifert
Theorem

Bibliography

Main Differences between the two Theories

The group Cl(K ) is always finite, while
H1(M, Z) = Zr ⊕ H1(M, Z)tor is not.

The Algebraic translation of the Poincare Conjecture is
false!
One should expect that Q would be the only number field
with no unramified extensions. That is not true. Indeed,

Theorem

If d < 0 and the class group of L = Q(
√

d) is trivial then L has
no unramified extensions. There are precisely 9 such values of
d : −1,−2,−3,−7,−11,−19,−43,−67,−163.

Let M1 → M a covering of 3-manifolds. A knot K in M
does not necessarily lift to a knot in M1, while every prime
ideal p COK gives rise to an ideal pOL. L/K is a Galois
number fields extension.
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Galois Extensions and Galois Branched Covers

Let G = Gal(L/K) and q be a prime ideal in OL.

Definition

The decomposition group of q, Dq ⊂ G is the subgroup of G
preserving q,

Dq = {q ∈ G : g(q) = q}

The quotient OL/q is a finite field.
The image of the homomorphism Dq → Gal(OL/q)
consists of exactly those automorphisms of OL/q which fix
the subfield, OK/p, p = OK ∩ q.
The kernel of this homomorphism, Iq is called the inertia
group of q.
We have the following exact sequence,

0 → Iq → Dq → Gal(OL/q/OK/p) → 0

.
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Galois Extensions and Galois Branched Covers

The order of Iq, denoted by eq is called the ramification
index.

The order of Gal(OL/q/OK/p) will be denoted by fq.

The ideal pOL decomposes uniquely as a product of prime
ideals, pe1

1 . . . p
eg
g , where ei is the ramification index of pi .

Theorem

Under the above assumptions,

G acts transitively on p1 . . . pg ,

e1 = . . . = eg := e and fp1 . . . fpg := f ,

|G | = efg.
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Galois Extensions and Galois Branched Covers

Let G be a group that acts on a 3-manifold M and the
map p : M → M/G is a branched covering.

The subgroup DK ⊂ G contains all the elements which
map a knot K ⊂ M to itself and is called the
decomposition group of K .

We assume that the action of DK on K is orientation
preserving.

The image of the natural homomorphism
DK → Homeo(K ) is exactly the group of deck
transformations, Gal(K/K ′), of the covering
K → K ′ = K/DK .

The kernel of this homomorphism, IK , is called the inertia
group of K.

0 → IK → DK → Gal(K/K ′) → 0.

|IK | = eK and |Gal(K/K ′)| = fK .
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Galois Extensions and Galois Branched Covers

Consider again the case of a group G acting on a manifold M,
such that p : M → M/G is a branched covering. Let K be a
knot in M, such that K/G is a knot in M/G .
p−1(K ) is a link in M whose components we denote by
K1, . . . Kg ,

p−1(K ) = K1 ∪ . . . ∪ Kg .

Theorem (Sikora)

Under the above assumptions

G acts transitively on K1, . . . Kg ,

eK1 . . . eKg := e and fK1 = . . . fKg := f

|G | = efg .
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Split, Ramified and Inert Primes and Knots

Let Cp be a cyclic group and G = Cp. Then each prime qCOL
and each knot K ⊂ M is either split, inert or ramified. if
p = q ∩ OK the q is

split if pOL = q1 . . . qp, where p1, . . . , pp, are different
prime, one of which is p. In this situation Cp permutes
these primes.
ramified if pOL = qp. Here Cp fixes the elements of q.
inert if pOL = q. In this situation Cp acts non-trivially on q.

Let G = Cp, then p : M → M/G is a branched covering. If
K ⊂ M satisfies the previous assumptions, then K is

split if p−1(K ) = K1 ∪ . . . ∪ Kp, where K1, . . . ,Kp are
different knots. Here Cp cyclicly permutes these knots
ramified id K/G is a component of the branching set.
Here Cp fixes p−1(K/G ) = K .
inert if p−1(K/G ) = K and the Cp−action on K is
non-trivial.
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The Number Fields Case

Theorem (The Principal Ideal Theorem)

Let K be a number field and let K (1) be the Hilbert class field
of K. Let OK , OK (1) be the rings of integers of K and K (1)

respectively. Let P be a prime ideal of OK (1) . We consider the
prime ideal

OK B p = P ∩ OK

and let
pOK (1) = (PP2 . . .Pr )

e =
∏

g∈CL(K)

g(P)

be the decomposition of pOK (1) in OK (1) into prime ideals. The
ideal pOK (1) is principal in K (1).

This theorem was conjectured by Hilbert and the proof was
reduced to a purely group theoretic problem by E. Artin.
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The 3-Manifold Case

Definition

We define the Hilbert Manifold M(1) of M as the universal
covering space M̃ of M modulo the commutator group,

M(1) = M/ [π1(M), π1(M)]

Theorem (The Principal Ideal Theorem for Knots)

1 Let K1 be a knot in M(1). Denote by G (K1) the subgroup
of G = π(M)/[π1(M), π1(M)] fixing K1. Consider the link
L =

⋃
g∈G/G(K1)

gK1. Then L is zero in H1(M
(1), Z).

2 Let L be a link in M that is a homologically trivial. Then
there is a family of tame knots Kε in M with ε > 0, that
are boundaries of embedded surfaces Eε so that
limε→0 Kε = L and E = limε→0 Eε is an embedded surface
with ∂E = L.
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Useful Theorems

Theorem (Path Lifting Property)

Let (Y , y0), (X , x0) be topological spaces (arcwise connected,
semilocally simply connected), let p : (X ′, x ′0) → (X , x0) be a
topological covering with p(x ′0) = x0 and let
f : (Y , y0) → (X , x0) be a continuous map. Then, there is a
lift f̃ : Y → X ′ of f,

X ′

p

��
Y

f
//

f̃
>>}

}
}

}
X

making the above diagram commutative if and only if

f∗(π1(Y , y0)) ⊂ p∗(π1(X
′, x ′0)),

where f∗, p∗ are the induced maps of fundamental groups.
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Useful Theorems

Theorem (Dehn Lemma)

Let M be a 3-manifold and f : D2 → M be a map such that for
some neighborhood A of ∂D2 in D2 f |A is an embedding and
f −1f (A) = A. Then f |∂D2 extends to an embedding
g : D2 → M.

Corollary

If a tame knot is the boundary of a topological and possibly
singular surface then the knot is the boundary of an embedded
surface.
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Proof of The Main Result

Theorem (Part I)

Let K1 be a knot in M(1). Denote by G (K1) the subgroup of G
fixing K1. Consider the link L =

⋃
g∈G/G(K1)

gK1. Then L is

zero in H1(M
(1), Z).

Proof.

Since the diagram

K1

p

��

// M(1)

p

��
S1 f //

f̃
<<yyyyyyyyy

p(K1) // M

commutes we have that

f∗(π1(S
1)) ⊂ p∗(π1(K1)) ⊂ p∗(π1(M

(1))) = p∗([π1(M), π1(M)])



On the
Principal Ideal
Theorem in
Arithmetic
Topology

Introduction

Galois
Extensions
and Galois
Branched
Covers

The Principal
Ideal Theorem

The Main
Result

The Seifert
Theorem

Bibliography

Proof of The Main Result

Theorem (Part I)

Let K1 be a knot in M(1). Denote by G (K1) the subgroup of G
fixing K1. Consider the link L =

⋃
g∈G/G(K1)

gK1. Then L is

zero in H1(M
(1), Z).

Proof.

Since the diagram

K1

p

��

// M(1)

p

��
S1 f //

f̃
<<yyyyyyyyy

p(K1) // M

commutes we have that

f∗(π1(S
1)) ⊂ p∗(π1(K1)) ⊂ p∗(π1(M

(1))) = p∗([π1(M), π1(M)])



On the
Principal Ideal
Theorem in
Arithmetic
Topology

Introduction

Galois
Extensions
and Galois
Branched
Covers

The Principal
Ideal Theorem

The Main
Result

The Seifert
Theorem

Bibliography

Proof of The Main Result

Proof (Continued).

Therefore f∗(π1(S
1)) = 0 as an element in H1(M, Z), hence

there is a topological (possibly singular) surface φ : E → M so
that

f (S1) = p(K 1) = ∂φ(E ).

The surface E is homotopically trivial therefore the Dehn
Lemma implies that there is a map φ̃ making the following
diagram commutative:

M(1)

p

��
E

φ
//

φ̃
=={{{{{{{{
M

with the additional property ∂φ̃(E ) = p−1(∂φ(E )) = L.
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Proof of The Main Result

We have seen that when a knot (resp. link) K lifts to a knot
(resp. link) in the Hilbert Manifold, then it is homologically
trivial.
What remains is to show that there exists an embedding of a
surface E in M(1) such that ∂E = K .

Theorem (Part II)

Let L be a link in M that is a homologically trivial. Then there
is a family of tame knots Kε in M with ε > 0, that are
boundaries of embedded surfaces Eε so that limε→0 Kε = L and
E = limε→0 Eε is an embedded surface with ∂E = L.
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Proof of The Main Result

Proof.

Consider a link with two components. Let L = K1 ∪ K2.

Ki is given by the embedding fi : S1 → M.

The passage from two components to n > 2 follows by
induction.

Select two points Pi ,Qi on fi (S
1), such that

d(Pi ,Qi ) = ε, i = 1, 2.

The embedding of the two curves can be seen as the union
of two curves γi : [0, 1] → M, δi : [0, 1] → M, so that
γi (0) = δi (1) = Pi , γi (1) = δi (1) = Qi . This means that
the ”small” curve is δi .

Since M is tamely path connected we can find two paths
α, β : [0, 1] → M such that α(0) = P1, α(1) = Q2,
β(0) = P2, β(1) = Q1, that are close enough so that the
rectangle α(−δ2)β(−δ1) is homotopically trivial.
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Since M is tamely path connected we can find two paths
α, β : [0, 1] → M such that α(0) = P1, α(1) = Q2,
β(0) = P2, β(1) = Q1, that are close enough so that the
rectangle α(−δ2)β(−δ1) is homotopically trivial.
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Proof of The Main Result

Proof (Continued).

Let I = [0, 1] ⊂ R.

Every path in M, i.e. every function f : I → M, defines a
cycle in H1(M, Z).

We will abuse the notation and we will denote by f (I ) the
homology class of the path f (I ).

We compute in H1(M, Z):

0 = f1(S
1) + f2(S

1) = γ1(I ) + γ2(I ) + δ1(I ) + δ2(I ) + 0 =

= γ1(I )+γ2(I )+δ1(I )+δ2(I )+α(I )−δ2(I )+β(I )−δ1(I ) =

= γ1(I ) + α(I ) + γ2(I ) + β(I ).

The tame knot γ1αγ2β is the boundary of a topological
surface.
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Proof of The Main Result

Proof (Continued).

By the Corollary it is the boundary of an embedded
surface Eε.

Choose an orientation on Eε so that on P ∈ ∂Eε one vector
of the oriented basis of TPEε is the tangent vector of the
curves ∂Eε and the other one is pointing inwards of E .

Denote the second vector by NP .

We choose the same orientation on all surfaces Eε in the
same way, i.e. the induced orientation on the common
curves of the boundary is the same.

We take the limit surface for ε → 0.
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Two Cases

We have to distinguish the following two cases

1 The direction of decreasing ε is the opposite of NP .

2 The direction of decreasing the distance ε is the same with
NP .
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The Seifert Theorem

As a corollary of the principal ideal theorem for knots we state
the following:

Theorem (Seifert)

Every link in a simply connected 3 manifold is the boundary of
an embedded surface.

Proof.

Let M be simply connected. The Hilbert manifold of M
coincides with M and the result follows.
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