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• Elliptic curves defined over finite fields have applications in
cryptography.

• Produce cryptosystems that are difficult to decode.
• Construct elliptic curves of large prime order.
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The CM-method

• An elliptic curve is an algebraic curve that has an extra
group structure.

• Elliptic curves are described in terms of their j-invariant.
• If we know the j-invariant we can construct the elliptic
curve.
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Elliptic curves

An elliptic curve over a finite field Fp, p a prime larger than 3,
is denoted by E (Fp) and it is comprised of all the points
(x , y) ∈ Fp (in affine coordinates) such that

y2 = x3 + ax + b, (1)

with a, b ∈ Fp satisfying 4a3 +27b2 6= 0. These points, together
with a special point denoted by O (the point at infinity) and a
properly defined addition operation form an Abelian group. This
is the Elliptic Curve group and the point O is its zero element
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Elliptic curves II

Important quantities defined for an elliptic curve E (Fp) are
• curve discriminant ∆ = −16(4a3 + 27b2)

• j -invariant j = j = −1728(4a)3/∆.

Given a j-invariant j0 ∈ Fp (with j0 6= 0, 1728) two ECs can be
constructed. If k = j0/(1728− j0) mod p, one of these curves is
given by Eq. (1 ) by setting a = 3k mod p and b = 2k mod p.
The second curve (the twist of the first) is given by the
equation y2 = x3 + ac2x + bc3

One of the curves has order p + 1− t, then its twist has order
p + 1 + t, or vice versa
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CM-curves

Set m = #E .
• Hasse’s theorem, Z = 4p − (p + 1−m)2 > 0

• there is a unique factorization Z = Dv2, with D a square
free positive integer.

• 4p = u2 + Dv2 where m = p + 1± u.
Given a prime p, choose the smallest D is chosen for which
there exists some integer u for which 4p = u2 + Dv2 holds.
Are p + 1± u suitable? If not start with a new D.
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Complex analytic viewpoint

• Consider elliptic curves over C.

• These are abelian groups of the form C/L, where L is a
discrete subgroup.

• The j invariant becomes a complex meromorphic function
j : H→ C.

j(τ) =
1
q

+744+196884q+21493760q2+864299970q3+· · ·

where q = exp(2πiτ).
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CM-curves II

Now having the D at hand we consider the number field
Q(
√
−D).

CM-theory: The Hilbert class field is generated by j .
Thus, j satisfies a polynomial equation. The action of the class
group can be effectively generated by Gauss theory of quadratic
forms.
Compute the Hilbert polynomial Z[t] =

∏
(x − j [a,b,c])(θ) using

floating point approximations of j [a,b,c](θ), where OK = Z[θ].

Theorem
The elliptic curve defined over Fp with j invariant a root of the
Hilbert polynomial modulo p has order p + 1± u.
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Hilbert class polynomial for
D = −299

x8 + 391086320728105978429440x7 − 28635280874816126174326167699456x6+

2094055410006322146651491130721133658112x5−

186547260770756829961971675685151791296544768x4+

6417141278133218665289808655954275181523718111232x3−

19207839443594488822936988943836177115227877227364352x2+

45797528808215150136248975363201860724351225694802411520x−

18273883965326272223717626628647422907813731016193733558272
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Hilbert class field of imaginary
quadratic fields

Problem: The Hilbert polynomials constructed by this method
has very big coefficients. Is there a better method to construct
CM-elliptic curves?
Answer: Yes, we can use other class functions. These generate
the Hilbert class field.
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Examples of Class functions for
D = −299

M299,13(x) = x8 + 78x7 + 793x6 + 5070x5 + 20956x4 + 65910x3 + 134017x2 + 171366x + 28561

M299,5,7(x) = x8 − 8x7 + 31x6 − 22x5 + 28x4 − 2x3 − 19x2 + 8x − 1

M299,3,13(x) = x8 − 6x7 + 16x6 + 12x5 − 23x4 + 12x3 + 16x2 − 6x + 1

T299(x) = x8 + x7 − x6 − 12x5 + 16x4 − 12x3 + 15x2 − 13x + 1
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Modular functions of level N

• Complex functions H→ C

• Invariant under the action of

Γ(N) =

{
A =

(
a b
c d

)
: a ≡ d ≡ 1 modN, c ≡ b ≡ 0 modN, detA = 1

}
.

• Some analytic conditions at the cusps.

Remarks:
1 Modular functions are periodic and have Fourier expansions

with coefficients in Q(ζN).
2 All above examples are modular functions.
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Shimura reciprocity law

• Gee-Stevenhagen provided us with a method in order to
check if a modular function is a class invariant that can be
used for the elliptic curve generation.

• They gave an explicit matrix action of the group
GN := (O/NO)∗ on modular forms (Shimura Reciprocity)
and they were able to prove that a modular function is a
class invariant if and only if this function is invariant under
the action of GN .
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Find new invariants

Assume that we can find a finite dimensional vector space V
consisted of modular functions of level N so that GL(2,Z/NZ)
acts on V .

We can always find such a vector space. We simple have to
consider the orbit of f under the action of the finite group
GL(2,Z/NZ).

Every element a ∈ GL(2,Z/NZ) can be written as b ·
(
1 0
0 d

)
,

d ∈ Z/NZ∗ and b ∈ SL(2,Z/NZ).
The group SL(2,Z/NZ) is generated by the elements

S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
.

The action of S on functions g ∈ V is defined to be
g ◦ S = g(−1/z) ∈ V and the action of T is defined
g ◦ T = g(z + 1) ∈ V .
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Actions

The action of the matrix
(
1 0
0 d

)
is given by the action of the

elements σd ∈ Gal(Q(ζN)/Q) on the Fourier coefficients of the
expansion at the cusp at infinity.

Since every element in SL(2,Z/NZ) can be written as a word
in S ,T we obtain a function ρ

( O
NO
)∗ ρ

**φ // GL(2,Z/NZ) // GL(V ), (2)

where φ is the natural homomorphism
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Cocylces

The map ρ defined in eq. (2) in previous section is not a
homomorphism.

Proposition
The map ρ defined in eq. (2) satisfies the cocycle condition

ρ(στ) = ρ(τ)ρ(σ)τ (3)

and gives rise to a class in H1(G ,GL(V )), where
G = (O/NO)∗. The restriction of the map ρ in the subgroup H
of G defined by

H := {x ∈ G : det(φ(x)) = 1}

is a homomorphism.
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Invariant Theory

Select a basis e1, . . . , em of V

Classical invariant theory provides us with effective methods
(Reynolds operator method,linear algebra method ) in order to
compute the ring of invariants Q(ζN)[e1, . . . , em]H .
Select the vector space Vn of invariant polynomials of given
degree n.
The action of G/H on Vn gives rise to a cocycle

ρ′ ∈ H1(Gal(Q(ζN))/Q),Vn).

The multidimensional Hilbert 90 theorem asserts that there is
an element P ∈ GL(Vn) such that

ρ′(σ) = P−1Pσ. (4)
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Computation of P

Use a version of Glasby-Howlett probabilistic algorithm

BQ :=
∑

σ∈G/H

ρ(σ)Qσ. (5)

If we manage to find a 2× 2 matrix in GL(2,Q(ζN)) such that
BQ is invertible then P := B−1

Q .
Non invertible matrices are rare (they form a Zariski closed
subset in the space of matrices) our first random choice of Q
always worked!
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Example

Generalised Weber functions g0, g1, g2, g3

g0(τ) =
η( τ3 )

η(τ)
, g1(τ) = ζ−1

24
η( τ+1

3 )

η(τ)
,

g2(τ) =
η( τ+2

3 )

η(τ)
, g3(τ) =

√
3
η(3τ)

η(τ)
,

where η denotes the Dedekind eta function:

η(τ) = e2πiτ/24
∏
n≥1

(1− qn) τ ∈ H, q = e2πiτ .

These are modular functions of level 72.



Constructing
Elliptic
Curves

Modular
functions

Galois
Cohomology

Examples

Example

Generalised Weber functions g0, g1, g2, g3

g0(τ) =
η( τ3 )

η(τ)
, g1(τ) = ζ−1

24
η( τ+1

3 )

η(τ)
,

g2(τ) =
η( τ+2

3 )

η(τ)
, g3(τ) =

√
3
η(3τ)

η(τ)
,

where η denotes the Dedekind eta function:

η(τ) = e2πiτ/24
∏
n≥1

(1− qn) τ ∈ H, q = e2πiτ .

These are modular functions of level 72.



Constructing
Elliptic
Curves

Modular
functions

Galois
Cohomology

Examples

Example

For n = −571 the group H has order 144 and G has order
3456. We find that the polynomials

I1 := g0g2 + ζ6
72g1g3, I2 := g0g3 + (−ζ18

72 + ζ6
72)g1g2

are invariants of the action of H.

e1 := (−12ζ18
72 + 12ζ672)g0g3 + 12ζ672g0g3 + 12g1g2 + 12g1g3,

e2 := 12ζ672g1g2 + (−12ζ18
72 + 12ζ672)g0g3 + (−12ζ12

72 + 12)g1g3 + 12ζ12
72g1g3
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Invariant polynomial
Hilbert t5 + 400497845154831586723701480652800t4+

818520809154613065770038265334290448384t3+

4398250752422094811238689419574422303726895104t2
−16319730975176203906274913715913862844512542392320t
+15283054453672803818066421650036653646232315192410112
t5 − 5433338830617345268674t4 + 90705913519542658324778088t3

g12
0 g12

1 + g12
2 g12

3 −3049357177530030535811751619728t2
−390071826912221442431043741686448t
- 12509992052647780072147837007511456

e1 t5 − 936t4 − 60912t3 − 2426112t2 − 40310784t − 3386105856
e2 t5 − 1512t4 − 29808t3 + 979776t2 + 3359232t − 423263232
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Questions:

1 Select the most efficient class invariants.

This is equivalent
to minimizing a height function on a lattice. Out of reach
for now.

2 By computations we see that the best invariants occur
when the class invariants are monomials of the Weber
functions.

3 There are classes n mod24 where no monomial invariants
of the Weber functions exists. Then our method provides
the best invariants.
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Thank you!
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