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The CM-method

Constructing
Elliptic
Curves

e An elliptic curve is an algebraic curve that has an extra
group structure.

e Elliptic curves are described in terms of their j-invariant.

e If we know the j-invariant we can construct the elliptic
curve.
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Elliptic curves

An elliptic curve over a finite field Fp,, p a prime larger than 3,
is denoted by E(FF,) and it is comprised of all the points
(x,y) € Fp (in affine coordinates) such that

y? =3+ ax + b, (1)

with a, b € F,, satisfying 4a® +27b% # 0. These points, together
with a special point denoted by O (the point at infinity) and a
properly defined addition operation form an Abelian group. This
is the Elliptic Curve group and the point O is its zero element
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e curve discriminant A = —16(4a° + 27b%)

o j-invariant j = j = —1728(4a)3/A.
Given a j-invariant jo € F,, (with jo # 0,1728) two ECs can be
constructed. If k = jo/(1728 — jo) mod p, one of these curves is
given by Eq. (1) by setting a = 3k mod p and b = 2k mod p.
The second curve (the twist of the first) is given by the
equation y? = x3 + ac®x + bc3
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Elliptic curves Il

Important quantities defined for an elliptic curve E(F,) are

e curve discriminant A = —16(4a° + 27b%)

o j-invariant j = j = —1728(4a)3/A.
Given a j-invariant jo € F,, (with jo # 0,1728) two ECs can be
constructed. If k = jo/(1728 — jo) mod p, one of these curves is
given by Eq. (1) by setting a = 3k mod p and b = 2k mod p.
The second curve (the twist of the first) is given by the
equation y? = x3 + ac®x + bc3
One of the curves has order p + 1 — t, then its twist has order
p+ 1+ t, or vice versa
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Constructing
Elliptic
Curves

Set m = #E.

e Hasse's theorem, Z =4p— (p+1-m)?2 >0

e there is a unique factorization Z = Dv?, with D a square

free positive integer.

e 4p = u? + Dv® where m=p+ 1+ u.
Given a prime p, choose the smallest D is chosen for which
there exists some integer u for which 4p = u? + Dv? holds.
Are p + 1 + u suitable? If not start with a new D.
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e Consider elliptic curves over C.

e These are abelian groups of the form C/L, where L is a
discrete subgroup.

e The j invariant becomes a complex meromorphic function

j:H—C.
1

J(T) = =+744+196884q+21493760q° +864299970g°% +- - -
q

where g = exp(27iT).
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Now having the D at hand we consider the number field
Q(v/—D). CM-theory: The Hilbert class field is generated by j.
Thus, j satisfies a polynomial equation. The action of the class
group can be effectively generated by Gauss theory of quadratic
forms.

Compute the Hilbert polynomial Z[t] = [](x — jl#2<1)(8) using
floating point approximations of jl2:6:<1(), where Ok = Z[f)].

Theorem
The elliptic curve defined over F,, with j invariant a root of the
Hilbert polynomial modulo p has order p +1 + u.



Hilbert class polynomial for
Constructing D — _299

Elliptic
Curves

x® + 301086320728105978420440x” — 28635280874816126174326167699456x° +
2094055410006322146651491130721133658112x> —
186547260770756829961971675685151791206544768x% +
6417141278133218665289808655954275181523718111232x> —
10207839443504488822936988943836177115227877227364352x° +
45797528808215150136248975363201860724351225694802411520x —

18273883965326272223717626628647422907813731016193733558272



Hilbert class field of imaginary
Constructing quadratic fields

Elliptic
Curves

Problem: The Hilbert polynomials constructed by this method
has very big coefficients. Is there a better method to construct
CMe-elliptic curves?

Answer: Yes, we can use other class functions. These generate
the Hilbert class field.



Examples of Class functions for
Constructing D — _299

Elliptic
Curves

M2gg,13(x) = x® + 78x” + 793x® + 5070x® + 20056x* + 65910x> + 134017x> + 171366x + 28561
Mago 5,7(x) = x® — 8x” +31x® — 22x® 4+ 28x* — 2x® —19x® + 8x — 1
M290,3,13(x) = x® — 6x7 + 16x% + 12x® — 23x* + 12x3 + 16x® — 6x + 1

Tago(x) = x® + x7 — x® —12x® + 16x* — 12x® + 15x® — 13x + 1
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Modular functions of level N

Modular
functions

e Complex functions H — C
e Invariant under the action of

I'(N):{A: (i Z) :azdz1modN,czszmodN,detA:l}.

e Some analytic conditions at the cusps.

Remarks:

@ Modular functions are periodic and have Fourier expansions
with coefficients in Q((y).

® All above examples are modular functions.



Shimura reciprocity law

Modular
functions

e Gee-Stevenhagen provided us with a method in order to
check if a modular function is a class invariant that can be
used for the elliptic curve generation.

e They gave an explicit matrix action of the group
Gn = (0/NQO)* on modular forms (Shimura Reciprocity)
and they were able to prove that a modular function is a
class invariant if and only if this function is invariant under
the action of Gy.
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unctions
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Find new invariants

Assume that we can find a finite dimensional vector space V
Modular consisted of modular functions of level N so that GL(2,Z/NZ)

acts on V.

We can always find such a vector space. We simple have to

consider the orbit of £ under the action of the finite group

GL(2,7/NZ).

Every element a € GL(2,Z/NZ) can be written as b - (1 O),

0 d
d € Z/NZ* and b € SL(2,Z/NZ).
The group SL(2,Z/NZ) is generated by the elements

0 1 11
S= (_1 0> and T = <0 1).
The action of S on functions g € V is defined to be

goS =g(—1/z) € V and the action of T is defined
goT=g(z+1)e V.
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elements o4 € Gal(Q(¢n)/Q) on the Fourier coefficients of the
expansion at the cusp at infinity.



Modular
functions

Actions

The action of the matrix <é 0 is given by the action of the

d
elements o4 € Gal(Q(¢n)/Q) on the Fourier coefficients of the
expansion at the cusp at infinity.
Since every element in SL(2,Z/NZ) can be written as a word
in S, T we obtain a function p

p

/\
(%) Eelezmn o, @)

where ¢ is the natural homomorphism
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Cocylces

The map p defined in eq. (2) in previous section is not a
homomorphism.

Proposition
The map p defined in eq. (2) satisfies the cocycle condition

ploT) = p(T)p(o) (3)

and gives rise to a class in HY(G, GL(V)), where
G = (O/NQO)*. The restriction of the map p in the subgroup H
of G defined by

H:={x € G : det(¢(x)) = 1}

is a homomorphism.
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Invariant Theory

Select a basis e1,...,eyn of V

Classical invariant theory provides us with effective methods
(Reynolds operator method,linear algebra method ) in order to
compute the ring of invariants Q(¢y)[et, - - -, em]".

Select the vector space V,, of invariant polynomials of given
degree n.
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Invariant Theory

Select a basis e1,...,eyn of V

Classical invariant theory provides us with effective methods
(Reynolds operator method,linear algebra method ) in order to
compute the ring of invariants Q(¢y)[et, - - -, em]".

Select the vector space V,, of invariant polynomials of given
degree n.

The action of G/H on V), gives rise to a cocycle

p' € HY(Gal(Q(¢n))/Q), Va).

The multidimensional Hilbert 90 theorem asserts that there is
an element P € GL(V,) such that

() = PP, (@
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Bo= ) plo)Q. (5)
oceG/H

If we manage to find a 2 x 2 matrix in GL(2,Q(¢{y)) such that
Bg is invertible then P := 861.
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Computation of P

Use a version of Glasby-Howlett probabilistic algorithm

Bo= 3 n0)Q”. (5)
oceG/H
If we manage to find a 2 x 2 matrix in GL(2,Q(¢{y)) such that
Bg is invertible then P := 861.
Non invertible matrices are rare (they form a Zariski closed
subset in the space of matrices) our first random choice of Q
always worked!
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Examples

Example

Generalised Weber functions go, g1, 92, 93

) = 77(%) ) = _177(T31)
go( ) - 77(7_)7 gl( ) — 524 77(7_) }
~ n(T$3) _ =n(37)
=Ty B =V

where 7) denotes the Dedekind eta function:

77(7_) — e27ri7'/24 H(l o qn) reH, g= e27ri'r_
n>1

These are modular functions of level 72.
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3456. We find that the polynomials

Examples
h = gog2 + (729103, b = gogs + (—(75 + (%) o102

are invariants of the action of H.



Example

For n = —571 the group H has order 144 and G has order
3456. We find that the polynomials

Examples
h = gog2 + (729103, b = gogs + (—(75 + (%) o102

are invariants of the action of H.
e = (—12@; + 12(32)90}33 + 12(?29093 +12g, 92 + 12g1 93,

6 18 6 2 12
e2 1= 12550102 + (—12¢75 +12¢3,)g003 + (—12¢35 + 12)g103 + 12¢35 0105
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Invariant polynomial

Hilbert 5 + 400497845154831586723701480652800t> 1
818520809154613065770038265334200448384t3 +
4308250752422004811238689419574422303726895104t>
—16319730975176203906274913715913862844512542392320¢
+15283054453672803818066421650036653646232315192410112
t® — 5433338830617345268674t> + 90705913510542658324778088t>

a3201% + 032032 | —3049357177530030535811751619728t>
—300071826012221442431043741686448t
- 12509992052647780072147837007511456

e1 t5 — 936t% — 60912t> — 2426112t% — 40310784t — 3386105856

e t5 — 1512t% — 29808t> + 979776t + 3359232t — 423263232
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Questions:

@ Select the most efficient class invariants. This is equivalent
to minimizing a height function on a lattice. Out of reach
for now.

Examples

® By computations we see that the best invariants occur
when the class invariants are monomials of the Weber
functions.

© There are classes n mod24 where no monomial invariants
of the Weber functions exists. Then our method provides
the best invariants.
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