Alexios Terezakis

Deformation Theory

Master's Thesis

University of Athens, Department of Mathematics

Athens March 14, 2019

Advisor: Aristides Kontogeorgis

Master Thesis Committee

Ioannis Emmanouil
Aristides Kontogeorgis
Ioannis Dokas

To my parents

Contents

Eıб $\alpha \boldsymbol{\gamma} \omega \gamma \dot{\eta}$ ix
Introduction xiii
1 Basic Definitions 1
1.1 Coefficient- Λ-algebras 1
1.2 Zariski Tangent Space 3
1.3 Kähler Differentials 5
2 Schlessinger's Representability Theorem 9
2.1 Small Extensions 9
2.2 Functors of Artin rings 11
2.3 Universal Elements 12
2.4 Schlessinger's Theorem 14
3 Examples 23
3.1 The Picard functor 23
3.2 Deformations of curves 26
A Flat Modules 29
Literature 31

Eı $\sigma \alpha \gamma \omega \gamma \dot{n}$

 $\mu \iota \alpha$ к $\tau \eta \gamma$ орí (schemes, sheaves, μ ор $\varphi \sigma \mu \dot{\omega} \nu \mu \varepsilon \tau \alpha \xi \dot{\prime}$ тоиs, $\alpha \nu \alpha \pi \alpha \rho \alpha \sigma \tau \alpha ́ \sigma \varepsilon \omega \nu) \sigma \tau \eta \nu$

$$
h_{x}\left(T_{2}\right) \ni h_{2} \mapsto h_{1}=h_{2} \circ f \in h_{X}\left(T_{1}\right)
$$

μ ह́ $\sigma \omega$ тоט $\delta \iota \alpha \gamma \rho \alpha ́ \alpha \mu \alpha т о \varsigma ~$

 Өєढ́p $\eta \mu \alpha$ Riemann-Roch $\sigma \varepsilon \sigma \cup v \delta \cup \alpha \sigma \mu o ́ ~ \mu \varepsilon ~ \tau \eta \nu ~ \vartheta \varepsilon \omega \rho i ́ \alpha ~ \delta ı \alpha \mu o ́ \rho \varphi \omega \sigma \eta s ~ \tau \omega \nu ~ \tau \varepsilon \sigma \sigma \alpha ́-~$

 ouorevoús roגucuv́́uou

$$
Y^{2} Z-X(X-Z)(X-\lambda Z)
$$

$$
\mathcal{E} \rightarrow \mathbb{A}^{1}-\{0,1\}
$$

$$
j=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}} .
$$

 ठivetal $\alpha \pi o ́ ~ \tau \eta \nu \varepsilon \xi i \sigma \omega \sigma \eta$

$$
Y^{2} Z=X^{3}-t Z^{3} .
$$

 $\pi \alpha ́ v \omega \alpha \pi \dot{\prime} \tau \eta \nu$ є $\pi \varepsilon ́ \chi \tau \alpha \sigma \eta \mathbb{C}\left(t^{1 / 6}\right)$.
 $\pi \rho o ́ \beta \lambda \eta \mu \alpha$ representable, ó $\pi \omega \varsigma ~ \gamma \iota \alpha \pi \alpha \rho \alpha ́ \delta \varepsilon เ \gamma \mu \alpha ~ \eta ~ \varepsilon เ \sigma \alpha \gamma \omega \gamma \eta ́ n ~ \tau \eta s ~ \varepsilon ́ v \nu o l \alpha s ~ \tau \omega \nu \alpha \lambda \gamma \varepsilon-$

 бuvextıxés жaц

H $\vartheta \varepsilon \omega \rho i \alpha ~ \pi \alpha \rho \alpha \mu о р \varphi \omega ́ \sigma \varepsilon \omega \nu$ (Deformation theory) $\alpha \pi o ́ ~ \tau \eta \nu \alpha \dot{\alpha} \lambda \eta \pi \rho \circ \varepsilon ́ \rho \chi \varepsilon \tau \alpha l \alpha-$ $\pi o ́ ~ \tau \eta \nu ~ \delta о \cup \lambda \varepsilon i ́ \alpha ~ \tau \omega \nu$ Kodaira $\chi \alpha l$ Spencer $\pi \alpha ́ \nu \omega$ $\sigma \varepsilon \mu \iota \gamma \alpha \delta \iota \varepsilon \varepsilon ́ \varsigma ~ \pi о \lambda \lambda \alpha \pi \lambda o ́ \tau \eta \tau \varepsilon \varsigma . ~ O ~$ Grothendieck $\mu \varepsilon \tau \varepsilon ́ \varphi \varepsilon \rho \varepsilon \tau \eta \nu \vartheta \varepsilon \omega \rho i ́ \alpha \alpha \cup \tau \eta ́ \sigma \tau \eta \nu \gamma \lambda \omega \dot{\omega} \sigma \alpha \tau \tau \omega$ Schemes. Mлорои́ $\mu \varepsilon$

 $\pi \alpha \rho \alpha \mu o ́ \rho \varphi \omega \sigma \eta \varsigma$ عivaı pro-representable.

Introduction

A moduli functor F from a category $\mathcal{C} \rightarrow$ Sets is a functor from a category (schemes, sheaves,morphisms between them, representations) to the category of sets, so that F it sends families of objects of \mathcal{C} over a base B to the element of equivalence class of objects over B. A moduli problem is called fine when the moduli functor is representable, that is there is a scheme X and an isomorphism of functors $h_{X} \cong F$. The functor h_{X} is the functor sending T to the set $\operatorname{Hom}(T, X)$, of morphisms of schemes $T \rightarrow X$, and the map $f: T_{1} \rightarrow T_{2}$ to the map

$$
h_{X}\left(T_{2}\right) \ni h_{2} \mapsto h_{1}=h_{2} \circ f \in h_{x}\left(T_{1}\right)
$$

by the diagram

The existence of an isomorphism $h_{X} \cong F$, means that for every objects T_{i}, T_{j} and functions $f_{i, j}: T_{i} \rightarrow T_{j}$, there is a compatible set of isomorphisms ϕ_{i} so that the following diagram is commutative

One of the classical moduli problems is the moduli problem of curves of genus g. This moduli functor to any family of relative curves $\mathcal{X} \rightarrow T$ over a scheme T assigns the isomorphy class of it, where two families $\mathcal{X}_{1}, \mathcal{X}_{2}$ are isomorphic when there is an isomorphism ϕ making the following diagram commutative:

Geometrically curves over Speck, where k is an algebraically closed field k, correspond to points of X, since the structure map $X \rightarrow$ Speck corresponds to an element in the set $h_{X}(\operatorname{Spec} k)=\operatorname{Hom}(\operatorname{Speck}, X)$ i.e. a geometric point of X.

Unfortunately, the existence of automorphisms of curves, prevents the moduli functor to be representable. For example if C is an algebraic curve which admits a non-trivial automorphism ϕ, then we have the diagram

The importance of the above example is that the map id : Speck \rightarrow Speck does not describe the map of the families.

As an other example we will show that the moduli space of elliptic curves is not representable. An elliptic curve over \mathbb{C} is a smooth projective curve E, together with a selected closed point $e \in E$. As an application of Riemann-Roch theorem we can show that any elliptic curve can be described as the zero locus of the homogeneous polynomial

$$
Y^{2} Z-X(X-Z)(X-\lambda Z)
$$

using also the theory of configuration of the four ramification points of the two cover $E \rightarrow \mathbb{P}^{1}$. In this model the closed point e has projective coordinates $e=[0: 1: 0]$, and $\lambda \in \mathbb{A}^{1}-\{0,1\}$. This polynomial defines a family

$$
\mathcal{E} \rightarrow \mathbb{A}^{1}-\{0,1\}
$$

over the punctured affine line, so that $\mathbb{A}^{1}-\{0,1\}$ can be thought as a parameter space for the family. The representation of an isomorphy class as a fiber is not unique, there is an action of the symmetric group S_{3} on $\mathbb{A}^{1}-\{0,1\}$ generated by the automorphisms $\lambda \mapsto 1 / \lambda, \lambda \mapsto 1 /(1-\lambda)$. If we want to parametrize abstract elliptic curves without a projective embedding we have to consider the quotient of $\mathbb{A}^{1}-\{0,1\}$ modulo this S_{3} action. The resulting space is the ring of invariants of $\mathbb{C}[\lambda]_{\lambda(\lambda-1)}$ which is the j-line, where

$$
j=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}} .
$$

There is a bijection between isomorphism classes of elliptic curves over \mathbb{C} and complex numbers $j \in \mathbb{C}$. However the affine line \mathbb{A}^{1} is not a fine moduli space for elliptic curves.

Indeed, consider the family of elliptic curves \mathcal{E}_{t} defined over the affine line $\mathbb{A}^{1}-\{0\}$ given by equation

$$
Y^{2} Z=X^{3}-t Z^{3} .
$$

For all t all fibers have constant j-invariant equal to 0 . If \mathbb{A}^{1} was a scheme representing elliptic curves, then the above given family should correspond to the constant morphism $\left(\mathbb{A}^{1}-\{0\}\right) \rightarrow \mathbb{A}_{j}^{1}$. The elliptic curve $E_{0}: Y^{2} Z=X^{3}-Z^{3}$ also has j-invariant 0 . So the family \mathcal{E}_{t} should be trivial and equal to the fiber product $E_{0} \times\left(\mathbb{A}^{1}-\{0\}\right)$. However this is not true, over the function field $\mathbb{C}(t)$ the families \mathcal{E}_{t} and $\left(\mathbb{A}^{1}-\{0\}\right)$ become isomorphic over the field extension $\mathbb{C}\left(t^{1 / 6}\right)$.

There are various techniques which allows us to represent moduli problems, for instance introducing algebraic spaces or stacks, or by altering the notion of
equivalence in order to get rid of automorphisms of objects (introducing level structure) etc. If we are allowed an oversimplification we can say that one of the ways to define the stack of the moduli spaces of curves is to define a category whose objects are proper smooth families $\mathcal{X} \rightarrow S$, whose fibers are connected curves of given genus.

Deformation theory on the other hand originates from the work of Kodaira and Spencer on complex analytic manifolds. This work was formalized and translated into the language of schemes by Grothendieck. We can say that deformation theory is a local treatment of the moduli functor problem where families are considered only over spectra of local Artin rings. An Artin ring is by definition a ring where decreasing sequences of ideals are terminating after a finite number of steps. One of the easiest examples (which is not a field) is the ring of dual numbers $k[\epsilon] /\left\langle\epsilon^{2}\right\rangle$. The quantity ϵ in the above example is an infinitesimal of order 2 in the sense that $\epsilon^{2}=0$. The seminal article of Schlessinger provides us with the language and tools to treat infinitesimals as elements in the "tangent vector space" and also solve the corresponding ordinary differential equations in terms of formal powerseries rings.

More precisely in Chapter 1 we introduce the categories that we will work, the Zariksi tangent space and how to define it for a functor and the Kähler differentials. In Chapter 2 we define the small extension, the notion of smoothness, and finally the main result, Schlessinger's Theorem. In the last Chapter we use Schlessinger's Theorem to prove that Picard functor and deformation functor are pro-representable.

Athens March 2019.

Chapter 1

Basic Definitions

1.1 Coefficient- Λ-algebras

Definition 1.1.1. A Coefficient-ring is a complete, local, Noetherian ring A, with residue field $k \cong A / \mathfrak{m}_{A}$
Definition 1.1.2. A Coefficient-ring homomorphism is a continuous homomorphism $\phi: A^{\prime} \rightarrow A$, such that $\phi^{-1}\left(\mathfrak{m}_{A}\right)=\mathfrak{m}_{A^{\prime}}$ and $A / \mathfrak{m}_{A} \cong A^{\prime} / \mathfrak{m}_{A^{\prime}}(\cong k)$, where A, A^{\prime} are Coefficient-rings.
Definition 1.1.3. Fix Λ a coefficient-ring with residue field k of characteristic p.
(i) Denote by $\hat{\mathcal{C}}_{\Lambda}(A)$ the category whose objects are coefficient- Λ-algebras which are endowed with a coefficient- Λ-algebra homomorphism to A.
(ii) Denote by $\mathcal{C}_{\Lambda}(A)$ the full subcategory of $\hat{\mathcal{C}}_{\Lambda}(A)$ whose objects are artinian coefficient- Λ-algebras.
(iii) An A-augmentation is a coefficient- Λ-algebra homomorphism to A.

Remark 1.1.4. If A is the residue field k we write $\hat{\mathcal{C}}_{\Lambda}$ and \mathcal{C}_{Λ} instead of $\hat{\mathcal{C}}_{\Lambda}(A)$ and $\mathcal{C}_{\Lambda}(A)$ respectively.

The reason for the "^" notation is that any coefficient-ring A may be written as the projective limit of Artinian rings.

$$
A=\operatorname{proj} \cdot \lim \cdot A /\left(\mathfrak{m}_{A}\right)^{n}
$$

We call a functor F from and arbitrary category to sets, representable if there is an object X such that F is isomorphic to the functor $Y \rightarrow \operatorname{Hom}(X, Y)$. If we knew that a given functor F on the larger category $\hat{\mathcal{C}}_{\Lambda}$ is representable, the representing coefficient- Λ-algebra, call it R is completely determined by the restriction of the functor to the smaller category \mathcal{C}_{Λ}. This is true because,

$$
\operatorname{Hom}(R, A)=\text { proj.lim. } \operatorname{Hom}\left(R, A /\left(\mathfrak{m}_{A}\right)^{n}\right)
$$

Definition 1.1.5. We call a functor F continuous if:

$$
F(A)=\text { proj.lim. } F\left(A /\left(\mathfrak{m}_{A}\right)^{n}\right)
$$

for all coefficient- Λ-algebras A.

We can see now that a continuous functor is determined by its restriction to \mathcal{C}_{Λ}.

Definition 1.1.6. Schlessinger call a functor on the category \mathcal{C}_{Λ} pro-representable, when is represented by objects of the larger category $\hat{\mathcal{C}}_{\Lambda}$.

But we will discuss about representability later.
Definition 1.1.7. Let A, B, C be rings and let $\alpha: A \rightarrow C$ and $\beta: B \rightarrow C$ be ring maps. The fiber product is a ring denoted by $A \times_{C} B$ along with two morphisms $\pi_{A}: A \times_{C} B \rightarrow A$ and $\pi_{B}: A \times_{C} B \rightarrow B$, where $\alpha \pi_{A}=\beta \pi_{B}$, such that given any ring W with morphisms to $f_{A}: W \rightarrow A$ and $f_{B}: W \rightarrow B$, with $\alpha f_{A}=\beta f_{B}$, these morphisms factor through some unique $W \rightarrow A \times_{C} B$.

This is the categorical definition, in the case of rings, the fiber product is the subset of $A \times B$

$$
A \times_{C} b=\{(a, b) \in A \times B \mid \alpha(a)=\beta(b)\}
$$

One of the reasons that we will use the "smaller" category \mathcal{C}_{Λ}, is that unlike the category $\hat{\mathcal{C}}_{\Lambda}$, fiber products always exists in \mathcal{C}_{Λ}, i.e. for A, A_{1} and A_{2} in \mathcal{C}_{Λ} and morphisms $A_{1} \rightarrow A$ and $A_{2} \rightarrow A$ in \mathcal{C}_{Λ}, the fiber product $A_{1} \times{ }_{A} A_{2}$ lies in \mathcal{C}_{Λ}. Indeed, the ring $A_{1} \times{ }_{A} A_{2}$ is Λ-algebra via the map $\Lambda \rightarrow A_{1} \times{ }_{A} A_{2}$ induced by the maps $\Lambda \rightarrow A_{1}$ and $\Lambda \rightarrow A_{1}$. It is a local ring with maximal ideal

$$
\begin{equation*}
\mathfrak{m}_{A_{1}} \times_{\mathfrak{m}_{A}} \mathfrak{m}_{A_{2}}=\operatorname{ker}\left(A_{1} \times_{A} A_{2} \rightarrow k\right) \tag{1.1}
\end{equation*}
$$

Note that, since the residue field of Λ is k, the map (1.1) is surjective. Finally, both A_{1} and A_{2} are Artin rings and so have finite length as Λ-modules. Hence the ring $A_{1} \times A_{2}$ has finite length as Λ-module and this hold for the Λ-submodule $A_{1} \times{ }_{A} A_{2}$, i.e. $A_{1} \times{ }_{A} A_{2}$ is Artin ring.

Example 1.1.8. If $A=k[[x, y]]$ and $B=k$ with morphisms to $C=k[[x]]$, then the fiber product $A \times_{C} B$ doesn't exist in $\hat{\mathcal{C}}_{\Lambda}$.

Indeed we can check that the fiber product is given by the subring $k \oplus y k[[x, y]]$ in $k[[x, y]]$, the maximal ideal is $y k[[x, y]]$ and the Zariski tangent space (Definition
1.2.2) identified with the k-vector space $k[[x]]$ which is infinite dimensional, i.e. the $A \times{ }_{C} B$ is not Noetherian.

Remark 1.1.9. Furthermore, if we require that the morphisms of the fiber product are surjective, we can conclude that the fiber product exists in our category (i.e. the fiber product is Noetherian).

Proposition 1.1.10. If A, B are Noetherian rings, with surjective morphisms to ring C,

then the fiber product $A \times{ }_{C} B$ is a Noetherian ring.
Proof. First we will prove that both π_{A} and π_{B} are surjectives. Indeed if $a_{0} \in A$ then $\phi\left(a_{0}\right) \in C$ and because ψ is surjective there is $b_{0} \in B$ such that $\phi\left(a_{0}\right)=$ $\psi\left(b_{0}\right)$. Hence $\left(a_{0}, b_{0}\right) \in A \times_{C} B$ and $\pi_{A}\left(a_{0}, b_{0}\right)=a_{0}$. Now we can easily check that

$$
\operatorname{ker} \pi_{A} \cap \operatorname{ker} \pi_{b}=\{0\}
$$

Finally we claim that if R is ring and $I_{1}, \ldots, I_{n} \subseteq R$ are ideals such that

$$
\begin{equation*}
I_{1} \cap \cdots \cap I_{n}=\{0\} \tag{1.2}
\end{equation*}
$$

and R / I_{i} is Noetherian for all $i=1, \ldots, n$, then R is Noetherian too. Indeed, each R / I_{i} is Noetherian R-module and so $R / I_{1} \times \cdots \times R / I_{n}$ is Notherian R module. But the morphism

$$
R \rightarrow R / I_{1} \times \cdots \times R / I_{n}
$$

is injective because of the (1.2) and so the R is Noetherian R-module, i.e. R is Noetherian ring.

1.2 Zariski Tangent Space

Definition 1.2.1. Fix Λ a coefficient-ring and R a coefficient- Λ-algebra. We define $t_{R}^{*}=t_{R / \Lambda}^{*}$ the Zariski cotangent space,

$$
t_{R}^{*}:=\mathfrak{m}_{R} /\left(\left(\mathfrak{m}_{R}\right)^{2}+\mathfrak{m}_{\Lambda} \cdot R\right)
$$

Definition 1.2.2. So now we define the Zariski tangent space as,

$$
t_{R}:=\operatorname{Hom}_{k-v . s}\left(\mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right), k\right) .
$$

Remark 1.2.3. Since R is Noetherian, t_{R}^{*} is a finite dimensional k-vector space.

Remark 1.2.4. By $k[\epsilon]$ we mean the ring in which $\epsilon^{2}=0$. So it is obvious that,

$$
k[\epsilon] \cong k \oplus \epsilon k .
$$

Proposition 1.2.5. There is a natural isomorphism of k-vector spaces,

$$
\operatorname{Hom}_{k-v . s .}\left(\mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right), k\right) \cong \operatorname{Hom}_{\Lambda-a l g .}(R, k[\epsilon]) .
$$

Proof. Since the maximal ideal of $k[\epsilon]$ has square zero, there is a bijection

$$
\begin{equation*}
\operatorname{Hom}_{\Lambda-a l g .}\left(R /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right), k[\epsilon]\right) \simeq \operatorname{Hom}_{\Lambda-a l g .}(R, k[\epsilon]) \tag{1.3}
\end{equation*}
$$

The short exact sequence

$$
0 \rightarrow \mathfrak{m}_{R} \rightarrow R \rightarrow R / \mathfrak{m}_{R} \rightarrow 0
$$

induces the short exact sequence

$$
0 \rightarrow \mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right) \rightarrow R /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right) \rightarrow R / \mathfrak{m}_{R} \rightarrow 0
$$

Since these are k-vector spaces, the sequence splits, and we have a decomposition of Λ-algebras,

$$
R /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right)=k \oplus \mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right) .
$$

Hence

$$
\begin{align*}
& \operatorname{Hom}_{\Lambda-a l g .}\left(k \oplus \mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right), k \oplus \epsilon k\right) \cong \\
& \operatorname{Hom}_{k-v . s .}\left(\mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right), k\right) . \tag{1.4}
\end{align*}
$$

(1.3) and (1.4), gives the result.

Definition 1.2.6. Let $F: \mathcal{C}_{\Lambda} \rightarrow$ Sets be any covariant functor such that, $F(k)$ consists of a single element. Then the Zariski tangent space of F, (denoted $\left.t_{F}\right)$, is the set $F(k[\epsilon])$.

In this generality, we can not have a natural k-vector space structure.
Remark 1.2.7. The idea is that we have an "addition" on,

$$
\begin{aligned}
k[\epsilon] \times_{k} k[\epsilon] & \xrightarrow{+} k[\epsilon] \\
\left(x \oplus y_{1} \cdot \epsilon, x \oplus y_{2} \cdot \epsilon\right) & \longrightarrow x \oplus\left(y_{1}+y_{2}\right) \cdot \epsilon .
\end{aligned}
$$

Definition 1.2.8. We say that F satisfies the "Tangent space Hypothesis" (or just $\left(T_{k}\right)$) when the mapping,

$$
h: F\left(k[\epsilon] \times_{k} k[\epsilon]\right) \rightarrow F(k[\epsilon]) \times F(k[\epsilon])
$$

is a bijection (1-1).
Remark 1.2.9. If F satisfies the $\left(T_{k}\right)$ we define "vector-addition" in Zariski tangent space t_{F},

Now we will define more generally the Zariski tangent A-module. We can make the analogous definitions but this time we will have A-module instead of k-vector space.

Definition 1.2.10. Let $F: \mathcal{C}_{\Lambda}(A) \rightarrow$ Sets be any contravariant functor such that, $F(A)$ consists of a single element. Then we define the Zariski tangent space as,

$$
t_{F, A}:=F(A[\epsilon]) .
$$

$\left(A[\epsilon]=A \oplus \epsilon A\right.$ is as previously a free A-module of rank 2, where $\epsilon^{2}=0$.)
In this generality the previous "Tangent space Hypothesis" is now,
Definition 1.2.11. (Tangent space Hypothesis)
We say that D satisfies the "Tangent space Hypothesis" (or just $\left(T_{A}\right)$) when the mapping,

$$
h: F\left(A[\epsilon] \times_{A} A[\epsilon]\right) \rightarrow F(A[\epsilon]) \times F(A[\epsilon])
$$

is a bijection $(1-1)$.

1.3 Kähler Differentials

Definition 1.3.1. (Kähler differentials)
Consider the homomorphism

$$
\begin{aligned}
\phi: R \otimes_{\Lambda} R & \rightarrow R \\
\sum_{i}\left(r_{i} \otimes s_{i}\right) & \rightarrow \sum_{i} r_{i} s_{i},
\end{aligned}
$$

and $I=\operatorname{ker} \phi$. The Kähler differentials is the pair $\left(\Omega_{R / \Lambda}, d\right)$, where $\Omega_{R / \Lambda}=I / I^{2}$ and a map

$$
\begin{aligned}
d: R & \rightarrow \Omega_{R / \Lambda} \\
r & \rightarrow(1 \otimes r)-(r \otimes 1) .
\end{aligned}
$$

There is a second definition for the Kähler differentials, that will be very useful.

Second Definition 1.3.2. We define the module $\Omega_{R / \Lambda}$ to be the free R-module F generated by the symbols $\{d r, r \in R\}$, quotient with the R-submodule generated by all expressions of the form:
(i) $d \lambda$, for $\lambda \in \Lambda$.
(ii) $d\left(r_{1}+r_{2}\right)-d r_{1}-d r_{2}$, for $r_{1}, r_{2} \in R$,
(iii) $d\left(r_{1} r_{2}\right)-r_{1} d r_{2}-r_{2} d r_{1}$, for $r_{1}, r_{2} \in R$,

The derivation

$$
d: R \rightarrow \Omega_{R / \Lambda},
$$

is defined by sending r to $d r$.
Definition 1.3.3. If M is an R-module, a Λ-derivation is an Λ-module homomorphism $d: R \rightarrow M$ which satisfies the following conditions,
(i) $d(\lambda)=0$, for $\lambda \in \Lambda$
(ii) $d\left(r_{1} r_{2}\right)=r_{1} d\left(r_{2}\right)-r_{2} d\left(r_{1}\right)$, for $r_{1}, r_{2} \in R$

The collection of Λ-derivations of R into an R-module M is denoted by $\operatorname{Der}_{\Lambda}(R, M)$.
It is easy to check that $\operatorname{Der}_{\Lambda}(R, M)$ is an R-submodule of $\operatorname{Hom}_{\Lambda-\bmod }(R, M)$
Proposition 1.3.4. The module of Kähler differentials of R over Λ has the following universal property. For any R-module M, and for any Λ-derivation, $d^{\prime}: R \rightarrow M$, there exists a unique R-module homomorphism $f: \Omega_{R / \Lambda} \rightarrow M$, that makes the above diagram commutative,

The proof of the Proposition 1.3.4 by using the Second Definition 1.3.2 is left to the reader. For a proof with the Definition 1.3.1 and hence the equivalence of two definitions, see [5].

Proposition 1.3.5. There is a canonical R-module isomorphism

$$
\operatorname{Hom}_{R-\bmod }\left(\Omega_{R / \Lambda}, M\right) \cong \operatorname{Der}_{\Lambda}(R, M)
$$

Proof. The isomorphism, is the map,

$$
\left(\phi: \Omega_{R / \Lambda} \rightarrow M\right) \mapsto(\phi \circ d: R \rightarrow M),
$$

with inverse, the map who sending a $\psi \in \operatorname{Der}_{\Lambda}(R, M)$ to the unique R-module homomorphism, that given from the universal property of the Kähler differentials (Proposition 1.3.4).

Corollary 1.3.6. The functor from the category of modules over R to the category of sets, which maps every R-module M to $\operatorname{Der}_{\Lambda}(R, M)$ is representable by the module of Kähler differentials

Example 1.3.7. For $P=\Lambda\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, the module of Kähler differentials is given by

$$
\Omega_{P / \Lambda} \cong \oplus_{i=1}^{n} P \cdot d x_{i} .
$$

Using the Second Definition 1.3.2, if $\delta: P \rightarrow M$ is a Λ-derivation, it is easy to see that the unique homomorphism is the $f: \Omega_{P / \Lambda} \rightarrow M$ with $f\left(d x_{i}\right)=\delta\left(x_{i}\right)$.

Example 1.3.8. Let $I \subseteq P$ be an ideal of $P=\Lambda\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. The ring P is Noetherian and hence there are $f_{1}, \ldots, f_{m} \in P$ such that $I=\left(f_{1}, \ldots, f_{m}\right)$. Now the Kähler differentials of $R=P / I$ is,

$$
\Omega_{R / \Lambda} \cong\left(\oplus_{i=1}^{n} R \cdot d x_{i}\right) /\left(d f_{1}, \ldots, d f_{m}\right)
$$

We can check this easily, by using the universal property of the Káhler differentials.

Proposition 1.3.9. If R is a coefficient- Λ-algebra, we will show that $\Omega_{R / \Lambda} \otimes_{R} k$ is isomorphic as k-vector space with the

$$
t_{R / \Lambda}^{*}:=\mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right)
$$

Proof. We define $\phi: \mathfrak{m}_{R} \rightarrow \Omega_{R / \Lambda} \otimes k$, the morphsim that sends $m \in \mathfrak{m}_{R}$ to $d(m) \otimes 1_{k}$, where $d: R \rightarrow \Omega_{R / \Lambda}$ is the universal Λ-derivation). It suffices to prove that the next sequence is a short exact sequence of k-vector spaces.

$$
0 \rightarrow \mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R \stackrel{\imath}{\hookrightarrow} \mathfrak{m}_{R} \xrightarrow{\phi} \Omega_{R / \Lambda} \otimes_{R} k \rightarrow 0 .
$$

ϕ is surjective. Indeed, for an arbitrary $(d(r) \otimes \kappa) \in \Omega_{R / \Lambda} \otimes_{R} k$, with $r \in R$ and $\kappa \in k$, there are $\lambda_{1}, \lambda_{2} \in \Lambda$ and $m \in \mathfrak{m}_{R}$ such that $r=\lambda_{1} 1_{R}+m, \kappa=\lambda_{2} 1_{k}$.

$$
d(r) \otimes \kappa=\left(\lambda_{1} d\left(1_{R}\right)+d(m)\right) \otimes \lambda_{2} 1_{k}=\lambda_{2} d(m) \otimes 1_{k}=d\left(\lambda_{2} m\right) \otimes 1_{k}
$$

and $\lambda_{2} m \in \mathfrak{m}_{R}$.
ϕ is 1-1. Indeed, for $m_{1}, m_{2} \in \mathfrak{m}_{R} \mu \in \mathfrak{m}_{\Lambda}$ and $r \in R, d\left(m_{1} m_{2}\right)=d\left(m_{1}\right) m_{2}+$ $d\left(m_{2}\right) m_{1}$ and $d(\mu r)=d(r) \mu$. Hence

$$
\begin{aligned}
\phi\left(m_{1} m_{2}\right) & =\left(d\left(m_{1}\right) m_{2}+d\left(m_{2}\right) m_{1}\right) \otimes 1_{k}= \\
& =d\left(m_{1}\right) \otimes m_{2} 1_{k}+d\left(m_{2}\right) \otimes m_{1} 1_{k}=0
\end{aligned}
$$

and

$$
\phi(\mu r)=d(r) \mu \otimes 1_{k}=d(r) \otimes \mu 1_{k}=0 .
$$

Finally for any $x \in \mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R$, there are $m_{i, 1}, m_{1,2} \in \mathfrak{m}_{R}, i=1, \ldots, n, \mu \in \mathfrak{m}_{\Lambda}$ and $r \in R$ such that

$$
x=\sum m_{i, 1} m_{i, 2}+\mu r,
$$

Thus $\phi(x)=\sum \phi\left(m_{i, 1} m_{i, 2}\right)+\phi(\mu r)=0$, i.e. $\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R \subseteq \operatorname{ker} \phi$. The next lemma completes the proof.

Lemma 1.3.10. For an arbitrary $m_{0} \in \mathfrak{m}_{R} \backslash \mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R$ there is a Λ-derivation $D: R \rightarrow k$, such that $D\left(m_{0}\right)$ is non zero.

Proof. First we will see that it suffices to define the derivation, for the elements of the maximal ideal \mathfrak{m}_{R} of R. Indeed, for an arbitrary $r \in R$ there is $\lambda \in \Lambda$ such that $\pi_{R}(r)=\pi_{\Lambda}(\lambda)$, and the next diagram commutes,

i.e. $\pi_{R}(r)=\pi_{R}\left(\lambda 1_{R}\right)$. It follows that there is $m \in \mathfrak{m}_{R}$, such that $r=\lambda 1_{R}+m$, and hence for any Λ-derivation δ,

$$
\delta(r)=\delta\left(\lambda 1_{R}\right)+\delta(m)=\delta(m)
$$

Since R is Artinian there are $x_{1}, \ldots, x_{s} \in \mathfrak{m}_{R}$, such that

$$
\mathfrak{m}_{R} /\left(\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda} \cdot R\right)=\left(\bar{x}_{1}, \ldots, \bar{x}_{s}\right),
$$

and $\bar{x}_{1}, \ldots, \bar{x}_{s}$ are independent over k. There are also $y_{1}, \ldots, y_{\ell} \in \mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda}$, such that

$$
\mathfrak{m}_{R}=\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{\ell}\right)
$$

Hence there are $a_{i}, b_{i} \in R$ such that $m_{0}=\sum a_{i} x_{i}+\sum b_{i} y_{i}$, and since $m_{0} \notin$ $\mathfrak{m}_{R}^{2}+\mathfrak{m}_{\Lambda}$, there is i_{0}, such that $a_{i_{0}}$ is invertible.

$$
\begin{aligned}
D\left(m_{0}\right) & =\sum D\left(a_{i} x_{i}\right)+\sum D\left(b_{i} y_{i}\right)=\sum D\left(a_{i} x_{i}\right) \\
& =\sum D\left(a_{i}\right) \bar{x}_{i}+D\left(x_{i}\right) \bar{a}_{i}=\sum \bar{a}_{i} D\left(x_{i}\right) .
\end{aligned}
$$

It is obvious, that it suffices to define the derivation D only for the x_{i}, and from the independence of the x_{i} we can choose arbitrary image for them.
We define $D\left(x_{i_{0}}\right)=1$ and $D\left(x_{j}\right)=0$ for $j \neq i_{0}$, and $D\left(m_{0}\right)=\bar{a}_{i_{0}}$ which is non zero, since $a_{i_{0}}$ is invertible. The proof is complete.

Remark 1.3.11. Note that any R in $\hat{\mathcal{C}}_{\Lambda}$ is generated, as Λ-module, by the Λ and the maximal ideal \mathfrak{m}_{R}. We have already prove this in the last proof.

Remark 1.3.12. We can easily check that the tangent space $t_{F, A}$ is just the subset of $\operatorname{Hom}_{\Lambda-a l g .}(R, A[\epsilon])$ consisting of those Λ-algebra homomorphisms whose composition with the projection $A[\epsilon] \rightarrow A$ is equal to ρ.

Proposition 1.3.13. Let F be a pro-representable functor. Let $A \in \hat{\mathcal{C}}_{\Lambda}$ and $\rho: R \rightarrow A$ a coefficient- Λ-algebra homomorphism which induces to A a structure of R-algebra. Then we have a natural isomorphism of A-modules,

$$
\operatorname{Hom}_{A-\bmod .}\left(\Omega_{R / \Lambda} \hat{\otimes}_{R} A, A\right) \cong t_{F, A}
$$

Proof. We have the ismorphisms,

$$
\begin{align*}
\operatorname{Hom}_{A-\text { mod. }}\left(\Omega_{R / \Lambda} \hat{\otimes}_{R} A, A\right) & \cong \operatorname{Hom}_{R-\text { mod. }}\left(\Omega_{R / \Lambda}, A\right) \tag{1.5}\\
\operatorname{Hom}_{R-\text { mod. }}\left(\Omega_{R / \Lambda}, A\right) & \cong \operatorname{Der}_{\Lambda}(R, A) .
\end{align*}
$$

Moreover there is a natural injection

$$
\imath: \operatorname{Der}_{\Lambda}(R, A) \hookrightarrow \operatorname{Hom}_{\Lambda-a l g .}(R, A[\epsilon])
$$

which sends a derivation δ to the homomorphism

$$
\begin{aligned}
\rho_{\delta}: R & \rightarrow A[\epsilon] \\
r & \rightarrow \rho(r) \oplus \epsilon \cdot \delta(r)
\end{aligned}
$$

The injection \imath identifies $\operatorname{Der}_{\Lambda}(R, A)$ with the subset of $\operatorname{Hom}_{\Lambda-a l g}(R, A[\epsilon])$, consisting of the homomorphisms such that composition with the projection $A[\epsilon] \rightarrow A$ yields $\rho: R \rightarrow A$.

Remark 1.3.14. The proposition 1.3 .9 is clearly a special case of the last proposition.

Chapter 2

Schlessinger's
 Representability Theorem

2.1 Small Extensions

We start with a useful lemma, and then we will introduce the very useful notion and some properties of the small extension.

Lemma 2.1.1. A morphism $B \rightarrow A$ in $\hat{\mathcal{C}}_{\Lambda}$ is surjective if and only if the induced map $t_{B}^{*} \rightarrow t_{A}^{*}$ is surjective.

Proof. (\Leftarrow) If the morphism $B \rightarrow A$ is surjection, then obviously the induced map on cotangent spaces is surjective.
(\Rightarrow) Conversely, we have the commutative diagram with exact rows,

Since α and γ are surjections, β is also surjection. We need to prove that $\operatorname{Im}(B \rightarrow A)=A$, by the Nakayama's Lemma (since B is Artinian \mathfrak{m}_{B} is nilpotent) it suffices to show that

$$
A=\operatorname{Im}(B \rightarrow A)+\mathfrak{m}_{B} \cdot A
$$

From the Remark 1.3.11, it suffices to prove that the map $\mathfrak{m}_{B} \cdot A \rightarrow \mathfrak{m}_{A}$ is surjection. Using once more Nakayama's Lemma we have to show that the map

$$
\mathfrak{m}_{B} A / \mathfrak{m}_{B} \mathfrak{m}_{A} \rightarrow \mathfrak{m}_{A} / \mathfrak{m}_{A}^{2}
$$

is surjection. We know that the next diagram is commutative,

Since β is surjection, the proof is complete.

Definition 2.1.2. Let $p: B \rightarrow A$ be a surjection in \mathcal{C}_{Λ},

- p is a small extension if kerp is a nonzero principal ideal (t) such that $\mathfrak{m}_{B} \cdot t=(0)$.
- p is essential if for any morphism $q: C \rightarrow B$ in \mathcal{C}_{Λ} such that $p q$ is surjective, it follows that q is surjective.

Lemma 2.1.3. Let $f: B \rightarrow A$ be a surjective morphism in \mathcal{C}_{Λ}. Then f can be factored as a composition of small extensions.

Proof. The maximal ideal \mathfrak{m}_{B} of B is nilpotent since B is Artin ring, say $\mathfrak{m}_{B}^{n}=0$. First we get a factorization

$$
B \rightarrow B / \operatorname{ker}(f) \mathfrak{m}_{B}^{n-1} \rightarrow \cdots \rightarrow B / \operatorname{ker}(f) \cong A
$$

of f into a composition of surjections whose kernels are annihilated by the maximal ideal. Thus it suffices to prove the lemma when f itself is such a map. In this case $\operatorname{ker}(f)$ is a k-vektor space, which has finite dimension. Take a basis t_{1}, \ldots, t_{r} of $\operatorname{ker}(f)$ as a k-vector space to get a factorization

$$
B \rightarrow B /\left(t_{1}\right) \rightarrow \cdots \rightarrow B /\left(t_{1}, \ldots, t_{r}\right) \cong A
$$

of f into a composition of small extensions.

Lemma 2.1.4. Let $p: B \rightarrow A$ be a surjection in \mathcal{C}_{Λ}. Then
(i) p is essential if and only if the induced map $p_{*}: t_{B}^{*} \rightarrow t_{A}^{*}$ is an isomorphism.
(ii) If p is a small extension, the p is not essential if and only if p has a section, i.e. a homomorphism

$$
s: A \rightarrow B, \text { with } p s=1_{A}
$$

Proof. (i) If p_{*} is an isomorphism, then by Lemma 2.1.1, p is essential. Conversely let $\bar{t}_{1}, \ldots, \bar{t}_{r}$ be a basis of t_{A}^{*}, and lift the \bar{t}_{i}, back to elements t_{i} in B. Set

$$
C=\Lambda\left[t_{1}, \ldots, t_{r}\right] \subseteq B
$$

Then p induces a surjection from C to A, since p is essential, $C=B$. Thus $\operatorname{dim}_{k} t_{B}^{*} \leq r=\operatorname{dim}_{k} t_{A}^{*}$, and hence $t_{B}^{*} \cong t_{A}^{*}$.
(ii) If p has a section s, then s is not surjective, an so p is not essential. If p is not essential, then the subring C constructed above, is proper subring of B. Since length $(B)=$ length $(A)+1, C$ is isomorphic to A. The isomorphism $C \simeq A$ yields the section.

2.2 Functors of Artin rings

A functor of Artin rings is a covariant functor

$$
F: \mathcal{C}_{\Lambda} \rightarrow \text { Sets }
$$

Definition 2.2.1. Assuming that F is a covariant functor, a couple for F is a pair (A, ξ), where $A \in \mathcal{C}_{\Lambda}$ and $\xi \in F(A)$. A morphism of couples $u:(A, \xi) \rightarrow$ $\left(A^{\prime}, \xi^{\prime}\right)$ is a morphism $u: A \rightarrow A^{\prime}$ in \mathcal{C}_{Λ} such that $F(u)(\xi)=\xi^{\prime}$.

We are trying to find lifts, so suppose that we have a surjection $B \rightarrow A$ and a functor $F: \mathcal{C}_{\Lambda} \rightarrow$ Sets. Let α be an element of $F(A)$ and suppose that we want a lift of α in $F(B)$. If there is a morphism of functors $u: F \rightarrow G$, we have the next commutative diagram.

If in addition, ϕ is surjection, it suffices to have lifts from $G(A)$ to $G(B)$. Indeed, we first map α to $u(A)(\alpha) \in G(A)$, then lift the $u(A)(\alpha)$ to an element $\beta \in G(B)$. Now, the pair (α, β) is in $F(A) \times{ }_{G(A)} G(B)$, and by using that the ϕ is surjection, we get an element $\zeta \in F(B)$ such that, $\phi(\zeta)=(\alpha, \beta)$. Clearly ζ is a lift of α.

Definition 2.2.2. A morphism of functors $F \rightarrow G$ is smooth if for any surjection $B \rightarrow A$ in \mathcal{C}_{Λ}, the morphism

$$
F(B) \rightarrow F(A) \times_{G(A)} G(B)
$$

is surjective.
Remark 2.2.3. If $F \rightarrow G$ is a smooth morphism of functors, and a surjection $B \rightarrow A$, for a lift from $F(A)$ to $F(B)$ it suffices to have lifts from $G(A)$ to $G(B)$.

We remind that a pro-representable functor, is a functor $F: \mathcal{C}_{\Lambda} \rightarrow k$ such that, there exists a ring R in $\hat{\mathcal{C}}_{\Lambda}$ with

$$
F(A) \cong \operatorname{Hom}_{\Lambda-a l g .}(R, A)
$$

Clearly any representable functor is a trivial example of pro-representable.
Example 2.2.4. For any ring R in $\operatorname{ob}\left(\hat{\mathcal{C}}_{\Lambda}\right)$, we define the (pro-representable) functor of Arting rings,

$$
h_{R}(A)=\operatorname{Hom}(R, A) .
$$

When Λ is fixed, we will write h_{R} instead of $h_{R / \Lambda}$.

Proposition 2.2.5. Let $R \rightarrow S$ be a morphism in $\hat{\mathcal{C}_{\Lambda}}$. Then $h_{S} \rightarrow h_{R}$ is smooth if and only if S is a power series ring over R.
Proof. (\Rightarrow) Suppose $h_{S} \rightarrow h_{R}$ is smooth, pick $x_{1}, \ldots, x_{n} \in S$, which induce a basis of $t_{S / R}^{*}$. If we set $T=R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$, we get a morphism $u_{1}: S \rightarrow$ $T /\left(\mathfrak{m}_{T}^{2}+\mathfrak{m}_{R} \cdot T\right)$ of local R-algebras, obtained by mapping x_{i} on the residue class of X_{i}. By smoothness u_{1} lifts to $u_{2}: S \rightarrow T / \mathfrak{m}_{T}^{2}$. Indeed, we can map the u_{1} in to an element $\tilde{u}_{1} \in h_{R}\left(\mathfrak{m}_{T}^{2}+\mathfrak{m}_{R} \cdot T\right)$, obviously there is a lift $v_{1} \in h_{R}\left(T / \mathfrak{m}_{T}^{2}\right)$ and finally by the smoothness, a lift of u_{1} in $h_{S}\left(T / \mathfrak{m}_{T}^{2}\right)$. Thence u_{2} lifts to $u_{3}: S \rightarrow T / \mathfrak{m}_{T}^{3}$ (Figure 2.2.6), ... etc. Thus we get a $u: S \rightarrow T$ which, by choice of u_{1}, induce an isomorphism of $t_{S / R}^{*}$ with $t_{T / R}^{*}$, so that u is surjection by the Lemma 2.1.1. Furthermore, if we choose $y_{i} \in S$ such that $u\left(y_{i}\right)=X_{i}$ and produce a local morphism $v: T \rightarrow S$ of R-algebras such that $u v=1_{T}$; in particular v is an injection. Clearly v induces a bijection on the cotangent spaces, so again by the Lemma 2.1.1 v is surjection. It follows that v is an isomorphism of $T=R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ with S.
(\Leftarrow) If S is a power series ring over R, then it is clear that $h_{R} \rightarrow h_{S}$ is smooth.

Figure 2.2.6.

Proposition 2.2.7. (i) If $F \rightarrow G$ and $G \rightarrow H$ are smooth, then the composition $F \rightarrow H$ is smooth.
(ii) If $u: F \rightarrow G$ and $v: G \rightarrow H$ are morphisms such that u is surjective and $v u$ is smooth, then v is smooth.
(iii) If $F \rightarrow G$ and $H \rightarrow G$ are morphism such that $F \rightarrow G$ is smooth, then $F \times{ }_{G} H \rightarrow H$ is smooth.
The proof of this proposition is completely formal and left to the reader.

2.3 Universal Elements

Assume we have an R in $\operatorname{ob}\left(\hat{\mathcal{C}}_{\Lambda}\right)$. An element $\hat{u} \in \hat{F}(R)$, is called a formal element of F. By definition \hat{u} can be represented as a system of elements $u_{n+1} \in F\left(R / \mathfrak{m}^{n+1}\right)$, such that for every $n \geq 1$, the map

$$
F\left(R / \mathfrak{m}^{n+1}\right) \rightarrow F\left(R / \mathfrak{m}^{n}\right)
$$

induced by the projection $R / \mathfrak{m}^{n+1} \rightarrow R / \mathfrak{m}$, sends $u_{n+1} \mapsto u_{n}$.
Lemma 2.3.1. Let $R \in \operatorname{ob}\left(\hat{\mathcal{C}}_{\Lambda}\right)$. There is a $1-1$ correspondence between $\hat{F}(R)$ and the set of morphism of functors $\left\{h_{R} \rightarrow F\right\}$.
Proof. Each formal element $\hat{u} \in \hat{F}(R)$ defined as, $\hat{u}=$ proj.lim. u_{n}, where $u_{n} \in$ $F\left(R / \mathfrak{m}^{n}\right)$. Yoneda's Lemma gives a morphism of functors

$$
h_{R / \mathfrak{m}^{n}} \rightarrow F
$$

for each u_{n}. The next commutative diagram

induce a new commutative diagram

Since for each $A \in \operatorname{ob}\left(\mathcal{C}_{\Lambda}\right)$

$$
h_{R / \mathfrak{m}^{n}}(A) \rightarrow h_{R / \mathfrak{m}^{n+1}}(A),
$$

is a bijection for all but finitely many n, we may define $h_{R}(A) \rightarrow F(A)$ as,

$$
\lim _{n \rightarrow+\infty}\left[h_{R / \mathfrak{m}^{n}}(A) \rightarrow F(A)\right] .
$$

Conversely, each morphism $h_{R} \rightarrow F$ defines a formal element $\hat{u} \in \hat{F}(R)$, where $u_{n} \in F\left(R / \mathfrak{m}^{n}\right)$ is the image of the projection $R \rightarrow R / \mathfrak{m}^{n}$ via the map

$$
h_{R}\left(R / \mathfrak{m}^{n}\right) \rightarrow F\left(R / \mathfrak{m}^{n-1}\right)
$$

Definition 2.3.2. If R is in $\mathrm{ob}\left(\mathcal{C}_{\Lambda}\right)$ and $\hat{u} \in \hat{F}(R)$, we call (R, \hat{u}) a formal couple for F.
Definition 2.3.3. The differential

$$
t_{R / \Lambda} \rightarrow t_{F}
$$

of the morphism $h_{R} \rightarrow F$ defined by \hat{u} is called the characteristic map of \hat{u} (or of the formal couple (R, \hat{u})) and denoted by d \hat{u}.

Definition 2.3.4. If (R, \hat{u}) is such that the induced morphism

$$
h_{R} \rightarrow F
$$

is an isomorphism, then F is pro-representable, and we also say that F is prorepresented by the formal couple (R, \hat{u}). In this case \hat{u} is called a universal formal element for F, and (R, \hat{u}) is a universal formal couple.

A universal formal couple seldom exists, we will therefore need to introduce some weaker properties of a formal couple. We will now introduce the notions of "verslity" and "semiversality", which are slightly weaker that universality, based on the notion of smooth functor.

Definition 2.3.5. Let F be a functor of Artin rings and R in $\mathrm{ob}\left(\hat{\mathcal{C}}_{\Lambda}\right)$. A formal element $\hat{u} \in \hat{F}(R)$ is called versal, if the morphism $h_{R} \rightarrow F$ defined by \hat{u}, is smooth.

Definition 2.3.6. The formal element \hat{u} is called semiuniversal if it is versal and moreover, the differential $t_{R / \Lambda} \rightarrow t_{F}$ is bijective. Schlessinger calls the formal couple (R, \hat{u}) a (pro-representable) hull of F.

It is clear by the definitions that

$$
\hat{u} \text { universal } \Rightarrow \hat{u} \text { semiuniversal } \Rightarrow \hat{u} \text { versal }
$$

2.4 Schlessinger's Theorem

Suppose now that we have F a functor of Artin rings, $A, A^{\prime}, A^{\prime \prime} \in \mathrm{ob}\left(\mathcal{C}_{\Lambda}\right)$ and a diagram

This diagram induces a new diagram

Finally we get a map

$$
\begin{equation*}
\alpha: F\left(A^{\prime} \times_{A} A^{\prime \prime}\right) \rightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime \prime}\right) \tag{2.3}
\end{equation*}
$$

So we have some properties that we seek for the map α. Namely,
$\left(H_{0}\right)$ For $k=R / \mathfrak{m}_{R}, F(k)$ consists of one element.
$\left(H_{1}\right)$ For every diagram (2.1), where $A^{\prime \prime} \rightarrow A$ is a small extension, the morphism α in (2.3) is a surjection.
$\left(H_{2}\right)$ For every diagram (2.1), where $A=k, A^{\prime \prime}=k[\epsilon]$, the morphism α in (2.3) is bijection.
$\left(H_{3}\right)$ The set $F(k[\epsilon])$ has a structure of finite dimensional k-vector space.
$\left(H_{4}\right)$ For every diagram (2.1), where $A^{\prime}=A^{\prime \prime}$ and $A^{\prime} \rightarrow A$ and $A^{\prime \prime} \rightarrow A$ are equal and small extensions, the morphism α in (2.3) is a bijection.
$\left(H_{\ell}\right)$ For every diagram (2.1), the morphism α in (2.3) is bijection.
Proposition 2.4.1. A pro-representable functor F satisfies the conditions $\left(H_{0}\right)$, $\left(H_{3}\right)$ and $\left(H_{\ell}\right)$.

Proof. (H_{0}) The set $\operatorname{Hom}\left(R, R / \mathfrak{m}_{R}\right)$ contains only the caconical quotient map $R \rightarrow R / \mathfrak{m}_{R}$.
$\left(H_{3}\right)$ In the first chapter we have seen that

$$
F(k[\epsilon])=\operatorname{Hom}_{\Lambda-a l g} .(R, k[\epsilon])=\operatorname{Der}_{\Lambda}(R, k)=t_{R / \Lambda} .
$$

So is the relative tangent space of R over Λ. Since R is Noetherian ring, the tangent space is finite dimensional.
$\left(H_{\ell}\right)$ The proof is simple and left to the reader.

Remark 2.4.2. Note that $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{4}\right)$ are special cases of the condition $\left(H_{\ell}\right)$.

Corollary 2.4.3. A pro-representable functor $F=h_{R}$ satisfies the conditions $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{4}\right)$.

The next Lemma is just the Remark 1.2.9.
Lemma 2.4.4. If F is a functor of Artin rings satisfying $\left(H_{0}\right)$ and $\left(H_{2}\right)$ then the set $F(k[\epsilon])$ has a structure of k-vector space in a factorial way.

Grothendieck's Theorem 2.4.5. Let $F: \mathcal{C}_{\Lambda} \rightarrow$ Sets be a covariant functor. Then F is pro-representable if and only if F satisfies the conditions $\left(H_{0}\right),\left(H_{3}\right)$ and $\left(H_{\ell}\right)$.

A proof can be found in [6].
In contrast to this theorem, which requires the property $\left(H_{\ell}\right)$ i.e. check all diagrams of the form (2.1), the theorem of Schlessinger artfully cuts down the number of diagrams for which one must check.

Lemma 2.4.6. Let F is a functor of Artin rings satisfying $\left(H_{0}\right),\left(H_{1}\right)$ and $\left(H_{2}\right)$ and $\pi: A^{\prime} \rightarrow A$ a small extension with $\operatorname{ker} \pi=(t)$. Then the map

$$
\beta: t_{F} \times F\left(A^{\prime}\right) \xrightarrow{\alpha^{-1}} F\left(k[\epsilon] \times_{k} A^{\prime}\right) \xrightarrow{F(\gamma)} F\left(A^{\prime} \times_{A} A^{\prime}\right) \longrightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime}\right)
$$

induced by the map

$$
\begin{aligned}
\gamma: k[\epsilon] \times{ }_{k} A^{\prime} & \rightarrow A^{\prime} \times{ }_{A} A^{\prime} \\
\left(x+y \epsilon, a^{\prime}\right) & \mapsto\left(a^{\prime}+y t, a^{\prime}\right)
\end{aligned}
$$

is surjective. If in addition F satisfying $\left(H_{4}\right), \beta$ is bijection.

Proof. $\left(H_{2}\right)$ gives that $\alpha: F\left(k[\epsilon] \times{ }_{k} A^{\prime}\right) \rightarrow t_{F} \times F\left(A^{\prime}\right)$ is bijection and hence we have the inverse map α^{-1}. Since π is small extension, γ is bijection and so is the $F(\gamma)$. Finally, $F\left(A^{\prime} \times_{A} A^{\prime}\right) \rightarrow F\left(A^{\prime} \times_{A} A^{\prime}\right)$ is surjection by the $\left(H_{1}\right)$. For the case that $\left(H_{4}\right)$ is satisfied just notice that $F\left(A^{\prime} \times_{A} A^{\prime}\right) \rightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime}\right)$ is bijection.

Remark 2.4.7. Furthermore, β induces a transitive group action of the vector space t_{F} on the set $F(\pi)^{-1}(\eta)$, where $\eta \in F(A)$. First notice the commutative diagram

where the vertical arrow is the "right" projection. Hence the above diagram is commutative too.

i.e. if $v \in t_{F}$ and $\eta^{\prime} \in F\left(A^{\prime}\right)$ then

$$
\beta\left(v, \eta^{\prime}\right)=\left(\tau\left(v, \eta^{\prime}\right), \eta^{\prime}\right)
$$

The action is given by the map τ and it is transitive by the surjectivity of β. If in addition F satisfyies $\left(H_{4}\right)$ the action is free.

Schlessinger's Theorem 2.4.8. Let $F: \mathcal{C}_{\Lambda} \rightarrow$ Sets be a functor of Artin rings satisfying condition $\left(H_{0}\right)$ (i.e. $F(k)$ is singleton). Let $A^{\prime} \rightarrow A$ and $A^{\prime \prime} \rightarrow A$ be homomorphisms in \mathcal{C}_{Λ} and let

$$
\begin{equation*}
\alpha: F\left(A^{\prime} \times{ }_{A} A^{\prime \prime}\right) \rightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime \prime}\right) \tag{2.4}
\end{equation*}
$$

be the natural map. Then
(i) F has a semiuniversal formal element if and only if it satisfies the conditions: $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$
(ii) F has a universal element if and only if it also satisfies the additional condition $\left(H_{4}\right)$.

Proof. (i) Let's assume that F has a semiuniversal formal element (R, \hat{u}). Consider a homomorphism $f: A^{\prime} \rightarrow A$ and a small extension $\pi: A^{\prime \prime} \rightarrow A$, both in \mathcal{C}_{Λ}, and let

$$
\left(\xi^{\prime}, \xi^{\prime \prime}\right) \in F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime \prime}\right)
$$

such that

$$
\xi:=F(f)\left(\xi^{\prime}\right)=F(\pi)\left(\xi^{\prime \prime}\right), \xi \in F(A)
$$

By the versality of (R, \hat{u}) the maps

$$
\begin{gather*}
h_{R}\left(A^{\prime}\right) \rightarrow F\left(A^{\prime}\right) \\
h_{R}\left(A^{\prime \prime}\right) \rightarrow h_{R}(A) \times_{F(A)} F\left(A^{\prime \prime}\right) \tag{2.5}
\end{gather*}
$$

are surjections. Therefore there are

$$
g^{\prime} \in h_{R}\left(A^{\prime}\right) \text { and } g^{\prime \prime} \in h_{R}\left(A^{\prime \prime}\right)
$$

such that $\hat{F}\left(g^{\prime}\right)(\hat{u})=\xi^{\prime}$ and $g^{\prime \prime} \mapsto\left(f g^{\prime}, \xi^{\prime \prime}\right)$ under the map (2.5), i.e.

$$
\pi g^{\prime \prime}=f g^{\prime} \text { and } \hat{F}\left(g^{\prime \prime}\right)(\hat{u})=\xi^{\prime \prime}
$$

Consequently

$\hat{F}\left(\pi g^{\prime \prime}\right)(\hat{u})=\xi$. Using now the morphism

$$
g^{\prime} \times g^{\prime \prime}: R \rightarrow A^{\prime} \times_{A} A^{\prime \prime}
$$

we obtain an element $\zeta:=\hat{F}\left(g^{\prime} \times g^{\prime \prime}\right) \in F\left(A^{\prime} \times{ }_{A} A^{\prime \prime}\right)$, which by construction is $\alpha(\zeta)=\left(\xi^{\prime}, \xi^{\prime \prime}\right)$, where α is the map (2.4). This proves that the map α in (2.4) is surjection, i.e. (R, \hat{u}) satisfying $\left(H_{1}\right)$.
If $A^{\prime \prime}=k[\epsilon]$ and $A=k$, obviously $A^{\prime \prime} \rightarrow A$ is a small extension and α in (2.4) surjective. Let $\zeta_{1}, \zeta_{2} \in F\left(A^{\prime} \times_{k} k[\epsilon]\right)$ such that

$$
\begin{equation*}
\alpha\left(\zeta_{1}\right)=\alpha\left(\zeta_{2}\right)=\left(\xi^{\prime}, \xi^{\prime \prime}\right) \tag{2.6}
\end{equation*}
$$

Since (R, \hat{u}) is semiuniversal

$$
\begin{equation*}
t_{R / \Lambda}=h_{R}(k[\epsilon]) \rightarrow F(k[\epsilon])=t_{F} \tag{2.7}
\end{equation*}
$$

is bijective. By smoothness applied to the projection $A^{\prime} \times_{k} k[\epsilon] \rightarrow A^{\prime}$,

$$
h_{R}\left(A^{\prime} \times_{k} k[\epsilon]\right) \rightarrow h_{R}\left(A^{\prime}\right) \times_{F\left(A^{\prime}\right)} F\left(A^{\prime} \times_{k} k[\epsilon]\right)
$$

is surjective. Choose now g^{\prime} as before, $\hat{F}\left(g^{\prime}\right)(\hat{u})=\xi^{\prime}$, since (2.6) both $\left(g^{\prime}, \zeta_{1}\right),\left(g^{\prime}, \zeta_{2}\right)$ belong to $h_{R}\left(A^{\prime}\right) \times_{F\left(A^{\prime}\right)} F\left(A^{\prime} \times_{k} k[\epsilon]\right)$. Hence we obtain two morphisms

$$
g^{\prime} \times g_{i}: R \rightarrow A^{\prime} \times_{k} k[\epsilon], i=1,2
$$

such that $\hat{F}\left(g^{\prime} \times g_{i}\right)(\hat{u})=\zeta_{i}, i=1,2$. It follows that $\hat{F}\left(g_{i}\right)(\hat{u})=\xi^{\prime \prime}$, $i=1,2$. By the bijectivity of (2.7), $g_{1}=g_{2}$ and hence $\zeta_{1}=\zeta_{2}$, i.e. the map α in 2.4 is bijective, and so (R, \hat{u}) satisfying $\left(H_{2}\right)$.
Condition $\left(H_{3}\right)$ satisfied because the differential $t_{R / \Lambda} \rightarrow t_{F}$ is linear and is a bijection by semiuniversality.

Conversely, let's assume that F satisfies $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$. We will construct a couple (R, \hat{u}) by a projective system

$$
\left\{R_{n} \mid p r_{n+1}: R_{n+1} \rightarrow R_{n}\right\}_{n \geq 0}
$$

of Λ-algebras in \mathcal{C}_{Λ}, a sequence $\left\{u_{n} \in F\left(R_{n}\right)\right\}_{n \geq 0}$ such that

$$
F\left(p r_{n+1}\right)\left(u_{n+1}\right)=u_{n}, \quad n \geq 0
$$

and we will show that is a semiuniversal formal couple.
We take $R_{0}=k$ and $u_{0} \in F(k)$ the unique element. Let $r=\operatorname{dim}_{k}\left(t_{F}\right)$, $\left\{t_{1}, \ldots, t_{r}\right\}$ a basis of t_{F} and $S=\Lambda\left[\left[T_{1}, \ldots, T_{r}\right]\right]$ with maximal ideal \mathfrak{m}_{S}, we set

$$
R_{1}=S /\left(\mathfrak{m}_{S}^{2}+\mathfrak{m}_{\Lambda} S\right)
$$

Since we have $R_{1} \cong k[\epsilon] \times_{k} \cdots \times_{k} k[\epsilon]$, r times, by $\left(H_{2}\right)$ we deduce that $F\left(R_{1}\right)=t_{F} \times \cdots \times t_{F}$, (r times), hence there exists $u_{1} \in F\left(R_{1}\right)$, which induces a bijection between $t_{R_{2} / \Lambda}$ and t_{F}. Suppose we have found (R_{q-1}, u_{q-1}), where $R_{q-1}=S / J_{q-1}$. In order to construct $\left(R_{q}, u_{q}\right)$, we consider the family \mathcal{I} of all ideal $J \subseteq S$ such that,
(a) $\left(\mathfrak{m}_{S}\right) J_{q-1} \subseteq J \subseteq J_{q-1}$
(b) there is $u \in F(S / J)$ with $u \mapsto u_{q-1}$ via the map $F(S / J) \rightarrow F\left(R_{q-1}\right)$.
\mathcal{I} is nonempty because $J_{q-1} \in \mathcal{I}$. We will choose J_{q} to be the minimal element of \mathcal{I}, therefore we need to prove that \mathcal{I} has a minimal element. Since the set \mathcal{I} corresponds to a collection of finite vector subspaces of $J_{q-1} /\left(\left(\mathfrak{m}_{S}\right) J_{q-1}\right)$, it suffices to show that \mathcal{I} is closed with respect to finite intersections. Let $J, K \in \mathcal{I}$ and $K=I \cap J$. Clearly $J \cap K$ satisfies the condition (a). We may enlarge J, if necessary, so that $J+K=J_{q-1}$, without changing the intersection $J \cap K$. Then

$$
S /(J \cap K) \rightarrow S / J \times_{R_{q}} S / K
$$

is an isomorphism. By $\left(H_{1}\right)$ the map

$$
\alpha: F(S / K) \rightarrow F(S / I) \times_{F\left(R_{q-1}\right)} F(S / J)
$$

is surjective (see Remark 2.1.3), therefore there exists $u \in F(S / K)$ such that $u \mapsto u_{q-1}$, i.e. $J \cap K$ satisfies condition (b) as well, hence $J \cap K \in \mathcal{I}$. We take $R_{q}=S / J_{q}$ and $u_{q} \in F\left(R_{q}\right)$ an element which is mapped to u_{q-1}. By induction we have constructed a formal couple (R, \hat{u}). We now show that is a semiuniversal formal couple for F. First notice that $t_{F} \cong t_{R}$ by choice of R_{1}. Therefore we only have to prove versality. If $\pi: A^{\prime} \rightarrow A$ is a small extension, we will show that the map

$$
\hat{u}_{\pi}: h_{R}\left(A^{\prime}\right) \rightarrow h_{R}(A) \times_{F(A)} F\left(A^{\prime}\right),
$$

is surjective. Let $\left(f, \xi^{\prime}\right) \in h_{R}(A) \times_{F(A)} F\left(A^{\prime}\right)$, i.e. $\hat{F}(f)(\hat{u})=F(\pi)\left(\xi^{\prime}\right)$. We must find $f^{\prime} \in h_{R}\left(A^{\prime}\right)$ such that $\hat{u}_{\pi}\left(f^{\prime}\right)=\left(f, \xi^{\prime}\right)$. Let's consider the commutative diagram

where β_{1} is bijection and β_{2} surjection by the lemma (2.4.6). Assume that we have f^{\prime} satisfying condition $\pi f^{\prime}=f$, then f^{\prime} and ξ^{\prime} have the same image in $F(A)$ and so, if $\eta^{\prime}:=\hat{F}\left(f^{\prime}\right)(\hat{u})$,

$$
\left(\xi^{\prime}, \eta^{\prime}\right) \in F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime}\right)
$$

Hence there is $v \in t_{F}$ such that $\beta_{2}\left(v, \eta^{\prime}\right)=\left(\xi^{\prime}, \eta^{\prime}\right)$. It follows that for some $f^{\prime \prime} \in h_{R}\left(A^{\prime}\right)$.

Clearly $\pi f^{\prime \prime}=f$, since f^{\prime} and $f^{\prime \prime}$ have the same image in $h_{R}(A)$, hence

$$
\hat{u}_{\pi}\left(f^{\prime \prime}\right)=\left(f, \xi^{\prime}\right)
$$

It follows that it suffices to find $f^{\prime} \in h_{R}\left(A^{\prime}\right)$ with $\pi f^{\prime}=f$. Since A is Artin ring there is q such that f factor as

Then f^{\prime} exists if and only if there exists ϕ which makes the following diagram commutative,

$$
\begin{equation*}
 \tag{2.9}
\end{equation*}
$$

In order to create a morphism $\Lambda[[x]] \rightarrow A^{\prime}$, choose arbitrary $y_{i} \in \pi^{-1}\left(\rho\left(T_{i}\right)\right)$ for each $i=1, \ldots, r$, where ρ is the composition of maps

$$
\Lambda\left[\left[T_{1}, \ldots, T_{R}\right]\right] \rightarrow R_{q+1} \text { and } R_{q+1} \rightarrow A
$$

We get a morphism given by $T_{i} \mapsto y_{i}$. This morphism induce the commu-
tative diagram

First notice that, since π is small extension, π^{\prime} is small extension too. If π^{\prime} is essential, then g must be surjective and hence

$$
R_{q+1} \times_{A} A^{\prime} \cong \Lambda\left[\left[T_{1}, \ldots, T_{r}\right]\right] / I
$$

for some $I \subseteq \Lambda\left[\left[T_{1}, \ldots, T_{r}\right]\right]$. Obviously $I \subseteq J_{q+1}$ and since π^{\prime} is small extension $\mathfrak{m}_{S} J_{q+1} \subseteq I$. Moreover the map

$$
F\left(R_{q+1} \times_{A} A^{\prime}\right) \rightarrow F\left(R_{q+1}\right) \times_{F(A)} F\left(A^{\prime}\right),
$$

is surjective by $\left(H_{1}\right)$ and hence there is $u \in F\left(R_{q+1} \times_{A} A^{\prime}\right)$ inducing $u_{q+1} \in F\left(R_{q+1}\right)$, which inducing $u_{q} \in F\left(R_{q}\right)$. it follows that $I \in \mathcal{I}$, and by the minimality of J_{q+1} in $\mathcal{I}, J_{q+1} \subseteq I$. But π^{\prime} is a small extension and has non zero kernel, hence $I \subset J_{q+1}$ which is a contradiction.
So π^{\prime} is not essential and by the lemma 2.1.4 (ii), π^{\prime} has a section

$$
s: R_{q+1} \rightarrow R_{q+1} \times_{A} A^{\prime}
$$

It follows that the map $R_{q+1} \xrightarrow{s} R_{q+1} \times{ }_{A} A^{\prime} \rightarrow A^{\prime}$ makes the diagram (2.9) commutative and proves that the (R, \hat{u}) is semiuniversal.
(ii) If F is pro-representable then, as already proved, satisfies conditions $\left(H_{1}\right)$, $\left(H_{2}\right),\left(H_{3}\right)$ and $\left(H_{4}\right)$.
Conversely, suppose F satisfies $\left(H_{1}\right)$ through $\left(H_{4}\right)$. By the first part of the theorem we have that (R, \hat{u}) is a semiuniversal formal couple of F. We will prove that is universal by showing that for every A in \mathcal{C}_{Λ} the map

$$
h_{R} \rightarrow F(A)
$$

induced by \hat{u} is bijective. We will proceed by induction on $\operatorname{dim}_{k}(A)$. Let $\pi: A^{\prime} \rightarrow A$ be a small extension. The inductive hypothesis gives, $h_{R}(A) \cong F(A)$. By the veraslity, the map

$$
\hat{u}_{\pi}: h_{R}\left(A^{\prime}\right) \rightarrow h_{R}(A) \times_{F(A)} F\left(A^{\prime}\right) \cong F\left(A^{\prime}\right)
$$

is surjective. Assume $u_{1}^{\prime}, u_{2}^{\prime} \in h_{R}$ such that

$$
\begin{equation*}
\hat{u}_{\pi}\left(u_{i}^{\prime}\right)=\eta^{\prime} \in F\left(A^{\prime}\right), i=1,2 . \tag{2.10}
\end{equation*}
$$

and we will prove that $u_{1}^{\prime}=u_{2}^{\prime}$. By (2.10) and the commutative diagram

it follows that both $u_{1}^{\prime}, u_{2}^{\prime}$ have the same image via the map $h_{R}\left(A^{\prime}\right) \rightarrow$ $h_{R}(A)$. Hence there is $x \in t_{R}$ such that $\tau\left(x, u_{1}^{\prime}\right)=u_{2}^{\prime}$ (see 2.4.7) and clearly there is $y \in t_{R}$ such that $\tau\left(y, u_{1}^{\prime}\right)=u_{1}^{\prime}$. The pairs $\left(x, u_{1}^{\prime}\right)$ and $\left(y, u_{2}^{\prime}\right)$ fit in diagram (2.8) as follows,

Note that $t_{R} \cong t_{F}$ by semiuniversality. The maps β_{1}, β_{2} are both bijective by the lemma 2.4.6, consequently $x=y$ and finally $u_{1}^{\prime}=u_{2}^{\prime}$.

Remark 2.4.9. In other words, in Schlessinger's language, a functor of Artin rings such that $F(k)$ consists of a single element, has a hull if and only if satisfying $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$. Furthermore F is pro-representable if and only if it also satisfying $\left(H_{4}\right)$.

Chapter 3

Examples

3.1 The Picard functor

We remind that, for a scheme $X, \operatorname{Pic}(X)=H^{1}\left(X, \mathcal{O}_{X}^{*}\right)$ the group of isomorphism classes of invertible sheaves on X. Now suppose X is a scheme over Spec Λ. For an A in \mathcal{C}_{Λ} we define,

$$
X_{A}:=X \times_{\text {Spec } \Lambda} \operatorname{Spec} A .
$$

We fix $\eta_{0} \in \operatorname{Pic}\left(X_{k}\right)$ and let $\mathcal{P}(A)$ be the set of of those $\eta \operatorname{in} \operatorname{Pic}(A)$ such that $\eta \otimes_{A} k=\eta_{0}$. We claim that \mathcal{P} is pro-representable under suitable conditions. We will first prove two lemmas on flatness, following Schlessinger.
Lemma 3.1.1. Let A be a ring, J a nilpotent ideal in A and

$$
u: M \rightarrow N
$$

a homomorphism of A-modules, with N flat over A. If $\bar{u}: M / J M \xrightarrow{\cong} N / J N$ is an isomorphism, then f is also an isomorphsim.
Proof. Let $K=$ coker u and tensor the exact sequence

$$
M \rightarrow N \rightarrow K \rightarrow 0
$$

with A / J. Then $K / J K=0$ and Nakayama's lemma for nilpotent ideals implies that $K=0$. Now let $K^{\prime}=$ ker u and tensor the exact sequence

$$
0 \rightarrow K^{\prime} \rightarrow M \rightarrow N \rightarrow 0
$$

with A / J. By the flatness of N we get $K^{\prime}=0$, so that u is an isomorphism.
Lemma 3.1.2. Consider a commutative diagram

of compatible ring and module homomorphsims, where

$$
B=A^{\prime} \times_{A} A^{\prime \prime} \text { and } N=M^{\prime} \times_{M} M^{\prime \prime} .
$$

Suppose
(i) M^{\prime} is free over A^{\prime} and $M^{\prime \prime}$ is free over $A^{\prime \prime}$,
(ii) $A^{\prime \prime} / J \xrightarrow{\cong} A$ is an isomorphism, where J is a nilpotent ideal of $A^{\prime \prime}$,
(iii) u^{\prime} induces an isomorphism $M^{\prime} \otimes_{A^{\prime}} A \xrightarrow{\cong} M$, and similarly for $u^{\prime \prime}$.

Then N is flat over B and p^{\prime} induces an isomorphsim $N \otimes_{B} A^{\prime} \xrightarrow{\cong} M^{\prime}$, respectively $p^{\prime \prime}$ an isomorphism $N \otimes_{B} A^{\prime \prime} \xrightarrow{\cong} M^{\prime \prime}$.

Remark 3.1.3. Over an Artin local ring, flat modules are free (Lemma A.0.5), so the lemma above it suffices for our purposes.

Proof. First choose a basis $\left\{x_{i}\right\}_{i \in I}$ for M^{\prime}. We can now see, using the (iii), that $\left\{u^{\prime}\left(x_{i}\right)\right\}_{i \in I}$ form a basis for M, and so is free. Choosing $x_{i}^{\prime \prime} \in\left(u^{\prime \prime}\right)^{-1}\left(u^{\prime}\left(x_{i}\right)\right)$, i.e. $u^{\prime \prime}\left(x_{i}^{\prime \prime}\right)=u^{\prime}\left(x_{i}^{\prime}\right)$, we get a homomorphism $\sum A^{\prime \prime} x_{i}^{\prime \prime} \rightarrow M^{\prime \prime}$ of $A^{\prime \prime}$-modules, whose reduction modulo the ideal J is an isomorphism. By the Lemma 3.1.1 it follows that $M^{\prime \prime}$ is free on generators $x_{i}^{\prime \prime}$. Finally it is easily to check that N is free on generators $x_{i}^{\prime} \times x_{i}^{\prime \prime}$, and that the projections on the factors induce isomorphsims.

Corollary 3.1.4. With the same notations as above, let L be a B-module with a commutative diagram

where q^{\prime} induces $L \otimes_{B} A^{\prime} \xrightarrow{\cong} M^{\prime}$. Then the canonical morphism $q^{\prime} \times q^{\prime \prime}$ is an isomorphism.

Let A and B be two rings, we call a homomorphism $\phi: A \rightarrow B$ flat, if ϕ makes the B a flat A-module. Let X and Y be two schemes and $f: X \rightarrow Y$ a morphism of schemes. We say that f is flat if the induced homomorphism on every stalk is a flat homomorphism. If X is a scheme over $\operatorname{Spec} \Lambda$ we say that X is flat over Λ if the morphism between them is flat.

Proposition 3.1.5. Let X be a scheme over $\operatorname{Spec} \Lambda$ and assume that
(i) X is flat over Λ,
(ii) $A \xrightarrow{\cong} H^{0}\left(X_{A}, \mathcal{O}_{X_{A}}\right)$ is isomorphism for each A in \mathcal{C}_{Λ},
(iii) $\operatorname{dim}_{k} H^{1}\left(X_{k}, \mathcal{O}_{X_{k}}\right)<\infty$.

Then \mathcal{P} is pro-representable by a pro-couple (R, ξ).
Proof. Let $u^{\prime}:\left(A^{\prime}, \eta^{\prime}\right) \rightarrow(A, \eta), u^{\prime \prime}:\left(A^{\prime \prime}, \eta^{\prime \prime}\right) \rightarrow(A, \eta)$ be morphisms of couples, where $u^{\prime \prime}$ is a surjection. Let $L, L^{\prime}, L^{\prime \prime}$ be corresponding invertible sheaves on $Y=X_{A}, X^{\prime}=X_{A}$ and $X^{\prime \prime}=X_{A}$. Then we have morphisms

$$
\begin{equation*}
p^{\prime}: L^{\prime} \rightarrow L \text { and } p^{\prime \prime}: L^{\prime \prime} \rightarrow L \tag{3.1}
\end{equation*}
$$

of sheaves on the $\operatorname{sp}\left(X_{0}\right)$, compatible with $\mathcal{O}_{X^{\prime}} \rightarrow \mathcal{O}_{Y}, \mathcal{O}_{X^{\prime \prime}} \rightarrow \mathcal{O}_{Y}$. The morphsims in (3.1) induce isomorphisms

$$
L^{\prime} \otimes_{A^{\prime}} A \xrightarrow{\cong} L \text { and } L^{\prime \prime} \otimes_{A^{\prime}} A \xrightarrow{\cong} L .
$$

Let $B=A^{\prime} \times{ }_{A} A^{\prime \prime}$ and let $Z=X_{B}$, then we have a commutative diagram

of sheaves on $\operatorname{sp}\left(X_{0}\right)$. Thus there is a canonical isomorphism

$$
\mathcal{O}_{Z} \xrightarrow{\cong} \mathcal{O}_{X^{\prime}} \times \mathcal{O}_{X} \mathcal{O}_{X}^{\prime \prime}
$$

Hence $N=L^{\prime} \times_{L} L^{\prime \prime}$ is a sheaf on Z which is invertible, and by the Lemma 3.1.2, the projections of N on L^{\prime} and $L^{\prime \prime}$ induce isomorphisms

$$
N \otimes_{B} A^{\prime} \xrightarrow{\cong} L^{\prime} \text { and } N \otimes_{B} A^{\prime \prime} \xrightarrow{\cong} L^{\prime \prime} .
$$

If now M is another invertible sheaf on Z for which there exist isomorphisms

$$
M \otimes_{B} A^{\prime} \xlongequal{\cong} L^{\prime} \text { and } M \otimes_{B} A^{\prime \prime} \xrightarrow{\cong} L^{\prime \prime}
$$

we have morphisms $q^{\prime}: M \rightarrow L^{\prime}$ and $q^{\prime \prime}: M \rightarrow L^{\prime \prime}$, which induce the isomorphisms and thus a commutative diagram

Where θ is the automorphism of L given by the composition

$$
L \stackrel{\cong}{\cong} L^{\prime} \otimes_{A^{\prime}} A \stackrel{\cong}{\cong} M \otimes_{B} A \xlongequal{\cong} L^{\prime \prime} \otimes_{A^{\prime}} A \stackrel{\cong}{\cong} L
$$

By hypothesis (ii), θ is multiplication by some unit $a \in A$. Lifting a back to $a^{\prime \prime}$ in $A^{\prime \prime}$, we can take $a^{\prime \prime} q^{\prime \prime}$ instead of $q^{\prime \prime}$, so the diagram changing to

It follows that $M \xrightarrow{\cong} N$ is an isomorphism. We have therefore proved that $\mathcal{P}\left(A^{\prime} \times{ }_{A} A^{\prime \prime}\right) \cong \mathcal{P}\left(A^{\prime}\right) \times_{\mathcal{P}(A)} \mathcal{P}\left(A^{\prime \prime}\right)$, for any surjection $A^{\prime \prime} \rightarrow A$ in \mathcal{C}.
Finally, if $Y=X_{k[\epsilon]}$, we have $\mathcal{O}_{Y}=\mathcal{O}_{X_{0}} \oplus \epsilon \mathcal{O}_{X_{0}}$, so there is an exact sequence

$$
0 \rightarrow \mathcal{O}_{X_{0}} \rightarrow \mathcal{O}_{Y}^{*} \rightarrow \mathcal{O}_{X_{0}}^{*} \rightarrow 1
$$

where the morphism $\mathcal{O}_{X_{0}} \rightarrow \mathcal{O}_{Y}^{*}$ maps $f \mapsto 1+\epsilon f$. Hence

$$
\mathcal{P}(k[\epsilon]) \cong \operatorname{ker}\left(H^{1}\left(X_{0}, \mathcal{O}_{Y}^{*}\right) \rightarrow H^{1}\left(X_{0}, \mathcal{O}_{X_{0}}^{*}\right)\right) \cong H^{1}\left(X_{0}, \mathcal{O}_{X_{0}}\right)
$$

which has finite dimension by (iii).

3.2 Deformations of curves

A deformation of a smooth curve X over the spectrum of a local ring $\operatorname{Spec}(R)$ is a proper flat morphism $\phi: \mathcal{X} \rightarrow \operatorname{Spec}(R)$ together with an isomorphism of X with the scheme theoretic fiber of \mathcal{X} over the maximal ideal \mathfrak{m} of R, that is

$$
X \cong \mathcal{X}_{0}=\mathcal{X} \otimes_{\operatorname{Spec} R} \operatorname{Spec}(R / \mathfrak{m})
$$

Definition 3.2.1. A morphism of finite type $\phi: X \rightarrow S$ between Noetherian schemes is proper when for every discrete valuation ring R with fraction field k and every square of morphisms

there is a unique morphism $\operatorname{Spec}(R) \rightarrow X$ fitting into the diagram.
We can consider the deformation functor Def_{X} of curves with automorphisms from the category of local Artin algebras to the category of sets:

$$
\operatorname{Def}_{X}(A)=\{\text { deformations of } X \text { over } A / \text { isomorphisms }\}
$$

where two deformations $\mathcal{X}_{i} \rightarrow \operatorname{Spec} A, i=1,2$ are considered to be isomorphic if they fit in a commutative diagramm

Given a deformation $Y \rightarrow \operatorname{Spec}(A)$ and a morphism $A \rightarrow B$, then we can define the induced deformation $Y \times_{\operatorname{Spec}(A)} \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(B)$ in terms of the commutative diagram

In this way a notion of morphisms of deformations can be defined.
Theorem 3.2.2. For any curve X the functor Def_{X} satisfy $H_{1}, H_{2}, H_{3}, H_{4}$ of Schlessinger theorem.

Proof. Consider the morphisms of couples $\left(A^{\prime}, \eta^{\prime}\right) \rightarrow(A, \eta)$ and $\left(A^{\prime \prime}, \eta^{\prime \prime}\right) \rightarrow$ (A, η), where $A^{\prime \prime} \rightarrow A$ is a surjection. Let $X^{\prime}, Y, X^{\prime \prime}$ be deformations in the equivalence class of $\eta^{\prime}, \eta, \eta^{\prime \prime}$ respectively and consider the diagram

Then there is a prescheme Z, flat over $A^{\prime} \times_{A} A^{\prime \prime}$, the sum of X^{\prime} and $X^{\prime \prime}$ under Y, in the category of preschemes. The closed immersions $X \rightarrow Y \rightarrow Z$ give Z a structure of deformation of X over $A^{\prime} \times{ }_{A} A^{\prime \prime}$ such that the following commutative diagram of deformations

This proves that

$$
\operatorname{Def}_{X}\left(A^{\prime} \times{ }_{A} A^{\prime \prime}\right) \rightarrow \operatorname{Def}_{X}\left(A^{\prime}\right) \times_{\operatorname{Def}_{X}(A)} \operatorname{Def}_{X}\left(A^{\prime \prime}\right)
$$

is surjective, for every surjection $A^{\prime \prime} \rightarrow A$. Therefore the condition H_{1} is satisfied.

Suppose that W is a deformation over B, inducing the deformations X^{\prime} and $X^{\prime \prime}$. There is a commutative diagram of deformations,

where θ is the composition

If θ can be lifted to an automorphism of θ^{\prime} of X^{\prime}, such that $\theta^{\prime} u^{\prime}=u^{\prime} \theta$ then q^{\prime} can be replaced with $q^{\prime} \theta^{\prime}$ and then $W \xrightarrow{\cong} Z$. For the special case $A=k, Y=X$, $\theta=\mathrm{Id}$ this lifting θ^{\prime} exists and condition $\left(H_{2}\right)$ is satisfied.

For the condition H_{4} : consider a morphism of couples $p:\left(A^{\prime}, \eta^{\prime}\right) \rightarrow(A, \eta)$, where p is a small extension. For a morphism $B \rightarrow A$, let $\operatorname{Def}_{X}^{\eta}(B)$ denote the set of $\zeta \in \operatorname{Def}_{X}(B)$ such that $\zeta \otimes_{B} A=\eta$. Select a deformation Y^{\prime} in the class of η^{\prime}. We will prove that the following are equivalent:
(i) $\operatorname{Def}_{X}^{\eta}\left(A^{\prime} \times{ }_{A} A^{\prime}\right) \xrightarrow{\cong} \operatorname{Def}_{X}^{\eta}\left(A^{\prime}\right) \times \operatorname{Def}_{X}^{\eta}\left(A^{\prime}\right)$
(ii) Every automorphism of the deformation $Y=Y^{\prime} \otimes_{A^{\prime}} A$ is induced by an automorphism of the deformation Y^{\prime}.

We first prove that $(i) \Rightarrow(i i)$. Consider the induced morphism of deformations $u: Y \rightarrow Y^{\prime}$. If θ is an automorphism of Y, then we can construct deformations Z, W over $A^{\prime} \times_{A} A^{\prime}$ to give "sum diagrams" of deformations.

The deformations Z, W have isomorphic projections on both factors, there is an isomorphism $\rho: Z \stackrel{\cong}{\cong} W$, which induces automorphisms θ_{1}, θ_{2} of Y^{\prime} and an automorphism ϕ of Y such that

$$
\theta_{1} u \theta=u \phi, \theta_{2} u=u \phi .
$$

Therefore, $u \theta=\theta_{1}^{-1} \theta_{2} u$ and $\theta_{1}^{-1} \theta_{2}$ induces θ.
Now we will prove $(i i) \Rightarrow(i)$. From (ii) for $I=\operatorname{ker} p$ follows that $t_{F} \otimes I$ acts freely on η^{\prime}, that is $\left(\eta^{\prime}\right)^{\sigma}=\eta^{\prime}$ implies $\sigma=0$. Since the action of $t_{F} \otimes I$ on $\operatorname{Def}_{X}^{\eta}\left(A^{\prime}\right)$ is transitive, the space $\operatorname{Def}_{X}^{\eta}\left(A^{\prime}\right)$ is a principal homogeneous space under $t_{F} \otimes I$, which is equivalent to (i).

We will now prove the finiteness condition H_{3}. Since X is smooth over k one can prove using Chech cohomology [4] that

$$
t_{\operatorname{Def}_{X}} \cong H^{1}(X, \Theta),
$$

where Θ is the tangent sheaf of the curve X and by Serre-Duality and RiemannRoch theorem has dimension equal to

$$
\operatorname{dim}_{k} H^{1}(X, \Theta)=\operatorname{dim}_{k} H^{0}\left(X, \Omega^{\otimes 2}\right)=3(g-1)
$$

Appendix A

Flat Modules

Definition A.0.1. An R-module M is called flat if for every short exact sequece

$$
0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow 0,
$$

the induced sequence

$$
0 \rightarrow M \otimes_{R} N_{1} \rightarrow M \otimes_{R} N_{2} \rightarrow M \otimes_{R} N_{3} \rightarrow 0
$$

is also exact.
We call a functor F between categories of modules left exact if for every exact sequence $0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3}$ the sequence $0 \rightarrow F\left(N_{1}\right) \rightarrow F\left(N_{2}\right) \rightarrow$ $F\left(N_{3}\right)$, similarly right exact and exact when is both right and left exact. So the above definition is that the functor F_{M} which sends an R-module N to the R-module $F_{M}(N)=M \otimes_{R} N$ is exact. Since the F_{M} is always right exact (for a proof see [1]), flatness is actually that F_{M} is left exact, i.e. a way to say that for every injection $N_{1} \rightarrow N_{2}$ the induced homomorphism $M \otimes_{R} N_{1} \rightarrow M \otimes_{R} N_{2}$ is an injection.

Remark A.0.2. (i) Note that if M, N are two R-modules and S an R-submodule of N, in general $M \otimes_{R} S$ is not a submodule of $M \otimes_{R} N$. You can check this for example by taking $M=\mathbb{Z} / 2 \mathbb{Z}, N=\mathbb{Q}$ and $S=\mathbb{Z}$.
(ii) Similarly, if $\phi: N \rightarrow N^{\prime}$ is an R-module homomorphism, we can guarantee a surjection

$$
\operatorname{Im} \operatorname{Id} \otimes_{R} \operatorname{Im} \phi \rightarrow \operatorname{Im}(\operatorname{Id} \otimes \psi) \subseteq M^{\prime} \otimes_{R} N^{\prime}
$$

but not always a bijection. So in general we cannot identify $\operatorname{Im} \operatorname{Id} \otimes_{R} \operatorname{Im} \phi$ with $\operatorname{Im}(\operatorname{Id} \otimes \phi)$.

Nevertheless if we require that F_{M} maps injections to injections, i.e. $M \otimes_{R}$ $S \rightarrow M \otimes_{R} N$ is an injection whenever $S \rightarrow N$ is an injection, it is immediate that we do not have "strange" situations as above.

Proposition A.0.3. An R-module M is flat if and only if for every injection $N \rightarrow N^{\prime}$ the map $M \otimes_{R} N \rightarrow M \otimes_{R} N^{\prime}$ is an injection.

Proof. The "only if" is obvious. For the "if" let

$$
0 \longrightarrow N_{1} \xrightarrow{u_{1}} N_{2} \xrightarrow{u_{2}} N_{3},
$$

be an exact sequence. First notice that u_{1} is monomorphism and hence the induced homomorphism $\operatorname{Id} \otimes u_{1}: M \otimes_{R} N_{1} \rightarrow M \otimes_{R} N_{2}$ is an injection. Thus it remains to show that $\operatorname{Im}\left(\operatorname{Id} \otimes u_{1}\right)=\operatorname{ker}\left(\operatorname{Id} \otimes u_{2}\right)$. Let $m \otimes u_{1}(a)$ be an arbitrary element of $\operatorname{Im}\left(\operatorname{Id} \otimes u_{1}\right)$, where $a \in N_{1}$, then

$$
\left(\operatorname{Id} \otimes u_{2}\right)\left(m \otimes u_{2}(a)\right)=m \otimes u_{2}\left(u_{1}(a)\right)=m \otimes 0,
$$

i.e. $m \otimes u_{1}(a)$ is in $\operatorname{ker}\left(\operatorname{Id} \otimes u_{2}\right)$. Using again the hypothesis we conclude that

$$
M \otimes_{R}\left(N_{2} / \operatorname{ker}\left(u_{2}\right)\right) \rightarrow M \otimes_{R} N_{3},
$$

is an injection. Since $M \otimes_{R}\left(N_{2} / \operatorname{ker}\left(u_{2}\right)\right) \cong\left(M \otimes_{R} N_{2}\right) /\left(M \otimes_{R} \operatorname{ker}\left(u_{2}\right)\right)$, it follows that $\operatorname{ker}\left(\operatorname{Id} \otimes u_{2}\right) \subseteq M \otimes_{R} \operatorname{ker}\left(u_{2}\right)=M \otimes_{R} \operatorname{Im}\left(u_{1}\right)=\operatorname{Im}\left(\operatorname{Id} \otimes u_{1}\right)$.

Example A.0.4. (i) Free modules are flat. Indeed suppose M is a free R module, i.e. $M \cong \bigoplus_{i \in I} R$. Let $N \rightarrow N^{\prime}$ be a monomorphism of R modules and we want to prove that $M \otimes_{R} N \rightarrow M \otimes_{R} N^{\prime}$ Note first that $M \otimes N=\bigoplus_{i \in I} R \otimes_{R} N=\bigoplus_{i \in I} N$, so we want to prove that

$$
\bigoplus_{i \in I} N \rightarrow \bigoplus_{i \in I} N^{\prime}
$$

is monomorphism, but this is clear when $N \rightarrow N^{\prime}$ is monomorphism.
(ii) Projective modules are flat. Indeed let P be a projective module and recall that tensor products commute with direct sums. It follows that a module is flat if and only if each summand is flat. Since any projective module is a direct summand of a free module (you can check this immediate using the universal property of projective modules) every projective module is flat.

Lemma A.0.5. Let R be an Artin local ring and let M be an R-module. Then M is flat over R if and only if R is a free R-module.

Proof. Assume that M is a flat module. Since $M / \mathfrak{m} M$ is an R / \mathfrak{m}-module, i.e. a vector space, we can choose $m_{i} \in M$ for all $i \in I$, such that the elements $\bar{m}_{i} \in M / \mathfrak{m} M$ forms a basis over the residue field. Let $F=\bigoplus_{i \in I} R$ a free R-module. It is clear that the induced homomorphism $M / \mathfrak{m} M \rightarrow F / \mathfrak{m} F$ is a bijection. Finally using that R is Artin ring we conclude that \mathfrak{m} is nilpotent and Lemma 3.1.1 completes the proof.

Bibliography

[1] M. Atiyah, I. Macdonald, Introduction to Commutative Algebra, Addison Wesley, 1969.
[2] G. Cornell, J. H. Silverman, G. Stevens, Modular Forms and Fermatb \bullet s Last Theorem, Springer-Verlag, New York, 1997.
[3] R. Hartshorne, Deformation Theory, Springer-Verlag, New York, 2010.
[4] J. Harris Ian Morisson, Moduli of curves, Springer Verlag 1998 GTM 187.
[5] H. Matsumura, Commutative Algebra, W. A. Benjamin Co., New York, 1970.
[6] N. Nitsure, Notes on Deformation Theory, Guanajuato, 2006.
[7] M. Schlessinger, Functors of Artin rings, Transactions AMS 130 (1968), 208-222.
[8] E. Sernesi, Deformations of Algebraic Schemes, Springer-Verlag, Berlin Heidelberg, 2006.

