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We study the automorphism groups of cyclic extensions of the rational function
fields. We give conditions for the cyclic Galois group to be normal in the whole
automorphism group, and then we study how the ramification type determines the
structure of the whole automorphism group.  © 1999 Academic Press

1. INTRODUCTION

A hyperelliptic function field, contains in the center of its group of
automorphisms an involution j whose fixed field F) is rational. Moti-
vated by this observation Brandt and Stichtenoth [B-S] studied the group
G of automorphisms of hyperelliptic function fields, by projecting the
automorphism group into the known finite subgroups of PGL(2, q), that
constitutes the automorphism group of the rational function field:

G
-
G 0 < PGL(2,k).

As a natural generalization of this we consider cyclic extensions of the
rational function field. Let F be such an extension of the rational function
field F,. When n > 2 the cyclic group Gal(F/F,) is not always a normal
subgroup of the automorphism group G. For instance, consider the family
of function fields of the curves x” + y”™ + 1 = 0, where n > 4, m|n, and
(p,m)=(p,m)=1,(m,2) =2, p+n—1 Thegroup C, = Gal(F /k(y))
is not a normal subgroup of G [Ko].
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R. Brandt [Br] studied the group of automorphisms of function fields
which are cyclic central extensions of the rational function field k(x) with
Gal(F /k(x)) = C,, where C, is a cyclic group of prime order g, prime to
the characteristic p of the algebraic closed field %.

Here we generalize further his results to include automorpism groups G
of function fields which are cyclic extensions of order n of the rational
function field F,. The constant field k of both function fields F, and F is
assumed to be algebraically closed of characteristic p, prime to n. We also
assume that all ramified places in the Galois extension F/F, are ramified
completely and that Gal(F /F,) is normal in G.

Moreover, following Accola’s ideas [Ac] on strongly branched covers, we
are able to obtain conditions on the number of ramified places in exten-
sion F/F,, sufficient for the Galois group Gal(F /F,) to be normal in the
whole automorphism group G. Furthermore, we determine the structure
of all such groups of automorphisms in terms of generators and relations
when G/C, is isomorphic to C,, D,, A,, A5, S, or a semidirect product
of an elementary Abelian Group by a cyclic one, and in terms of the
cohomology class of the group extension in all other cases. The structure
of G depends on the ramified places in extensions F/F, and F,/F¢ in
the following way: Let 4 = {P,,..., P} be the set of places of F, that are
ramified in the extension F,/F{° and A, C A be the set of places of A
which are ramified in F/F,. The pair (G,, A C A) is called the ramifica-
tion type of the extension F/F,. It turns out that in most cases the
ramification type determines the group structure of the extension G; there
are however function fields which are cyclic extensions of the rational
function field with the same ramification type, but different automorphism
groups.

Finally we are able to prove that for every finite subgroup G, of
PGL(2, k) we can find a subgroup G}, of PGL(2, k), isomorphic to G, and
a cyclic Kummer extension F which realizes every possible ramification
type (G}, Ar € A). We also provide a method to write down an equation
y" = f(x) realizing every possible automorphism group.

2. CONDITIONS FOR NORMALITY

Every cyclic cover of the projective line, after a birational transforma-
tion, can be written in the form,

N
y'= l_ll(x_Pi)di: d; €7,
ie
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where 0 <d, <n and d:=Yj_;d; =0 modn. If the radicand
[T:_(x — p)% is not a 8|n power; i.e., (n,d,,...,d,) =1, then F is a
Kummer extension of F, of order n. We study extensions for which the
stronger condition (n,d;) = 1 forall i = 1,...,s, holds.

The function field F is a cyclic Kummer extension of F,. Denote by v,
the valuation of F, corresponding to place P. We have

. —d ifP=P_.,
() = oo LG =) = . itp=r,
. 1 otherwise

and the ramification index e, is given by the tables: ([St], 111.7.3 p. 110]

n

—— ifP=P_,
(nd) P=P_. (n.d) :

rp = (n’di) ifP:Px=pi’ ep = if P=P,._
n otherwise (n,d;) o

1 otherwise

The conditions (n, d;) = 1 imply that all ramified places in extension F/F,
are ramified completely. Notice also that we have chosen a curve model
such that there is no ramification at infinity, because n|d. The genus of the
function field F can be computed with the aid of the Riemann—Hurwitz
formula:

(n-1(s - 2)
o=

If n is a prime number, then under the assumption s > 2n we have that
the extension F/F, is strongly branched and, because the group C, =
Gal(F /F,) is simple, we can use Corollary 3 of [Ac, p. 321], to deduce that
C, < G. We will modify the ideas of Accola to prove:

ProposiTION 1. Suppose that a cyclic extension F/F, of the rational
function field F, is ramified completely at s places and n = |Gal(F /Fy)|. If
2n < s then Gal(F/F,) < G, where G is the whole automorphism group.

Proof. Let T be a generator of C, and Q,,...,Q, be the places of F
which are fixed under the action of C,. Denote by T=oTo" ! an
arbitrary conjugate of T. The fixed places of <T> are o(Q,), o(Q,),

L o(0)). Let Fy == = FD pe the fixed field of (T ). F, is rational because
|t is a conjugate fleld of F,. Denote by g; (i = 1,. s) the restrictions of
the places o(Q)) in F,. Because F, is rational, there are elements f; in
F,, with only one pole at the place g;, of pole order 1, and moreover
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k(f) = fv’; Fo is a subfield of F and we can consider f; as an element of
F. The divisor of f; in F is

(f) = (fi)o —na(Q)).
Set h; == f, — T o f,. If h; is not a constant function then
deg h; < 2deg f, —r,=2n —r;,

where 0 < r; < deg f; (r; = 0 or n) is the number of poles of f;, counting
multiplicity, fixed by 7. Indeed, for a place P of F, we have

vp(h;) = vp(fi = T e fi) = min{vp(f;),vp(T e f))},

so if P is a pole of A; then P is a pole of f; or T o f,. Moreover if P is a
common pole of f;, T o f; then it is not a pole of 4,.
On the other hand, every fixed place of T" which is not a pole of f; is a

root of #4;. So the function %, has s — r; roots. Because 2n < s, we have
degh, <2n —r; <s —r; < degh;,,

a contradiction. Therefore h; € k and because T fixes places which are
not poles of f; we have that #, = 0. This implies that

L

fi=T(f), Vie{l,...,s}.

Hence, f, € Fy, Fy = F,,and C, <G. 1

Using the Riemann—Hurwitz formula we find that the above condition is
equivalent to

(n—1)° <gg.

where g is the genus of the function field F.

In the case k = C and n = p is prime, then Victor Gonzalez and Rubi
Rodriguez [G-R] have given a better condition. A curve C is a p-cyclic
cover of the projective line if and only if it has a g; base point free linear
system. The automorphism group permutes all linear systems of the above
form and if the linear system gll, is unique, then the Galois cyclic group
Gal(C/P*) is normal in G. A sufficient condition for a linear system g, to
be unique is the inequality:

N | 09

+ 1. (1)
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[A-C], so if (1) holds then C,<G.

3. CALCULATION OF THE GROUPS

Let F/F, be a cyclic extension with cyclic Galois group C, of order n
prime to the characteristic p and C, = Gal(F/F,)<G. We form the
following short exact sequence,

1-C,»G5G,—1

where G = G /C, is a finite subgroup of PGL(2, k). The group G, acts
on C, in the following way: We choose a section of G, in G; i.e., for every
o € G, we choose an element S € G, such that 7(S) = o and define

T =STS™ %,

where T is a generator of the cyclic group C,. Because C, < G this action
is well defined. Setting T2(°) = T for an integer B(o) we can define a
homomorphism

| Go = AU(C,) = Z; )
o= B(o) modn (2)
We can interpret the action homomorphism g in terms of the generating
elements x, y. Notice first that y is a generator of F over F,, i.e,
F = F,(y). Any other generator of F over F, is of the form y'B where
(I,n) =1and B € F, [Ha, p. 38]. Because C, < F we have that for every
S € G, S(F,) = F, so S(y) is a generator of F, over F, hence of the form
S(y) = y"®Bg. By calculation B(o) = I(S), where o = S|,.

Let us consider now the inverse situation: G, is an arbitrary finite
subgroup of automorphisms of the rational function field F,. Is it possible
to extend every element in G,, to an automorphism of F? The following
proposition gives us a necessary and sufficient condition.

ProrosITION 2 [Na]. Let D = div(f(x)), be the root divisor of the
polynomial f(x) = y" in the field F,. Suppose that deg(D) = d = 0 mod n
and that (vp(D),n) = 1 for all P € supp(D). Let o € G, be an automor-
phism of F,,.

(@) The following are equivalent:

e For every element o in G, we have that

o(D) = B(o)D modn.
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o There is an automorphism o' of the function field F such that
o'lp, = 0.

(b) The following are equivalent:

e There is an automorphism o' of the function field F such that
0'lp,=0 and o'T = To' where T is the generator of the cyclic group
Gal(F /F,).

e o(D) =D,

where by writing D = D' mod n, for two divisors with the same support, we
mean that vp(D) = v,(D') for every P|D, D'.

Proof. Let o € G, and S be an extension of o to F. Setting S(y) =
yPB_ in the defining equation y” = f(x) of F we get

o(f
flg(rr3 =B(’;. (3)

Equation (3) is equivalent to

o (dive( 1)) = B()(divo(f)) = O mod n,

because we have assumed that n | deg(f), i.e., div(f) = n - P,. Conversely,
if o(divy(f)) — B(o)divy(f) = 0 mod n then there is a function B, € F,,
satisfying (3) because the divisor 1/n(o(div(f)) — B(o)div(f)) is of de-
gree zero, hence principal.

The second assertion of the proposition is a consequence the first one,
because o, and T are commuting if and only if (o) =1. 1

The supp(D) is the set of places of F, which are ramified in the
extension F/F,. Because C, < G, every automorphism o permutes the
places in supp(D). The fixed places of supp(D) under the action of G, are
ramified in the extension F,/Fg.

DerFiniTioN 1. Let G, be a finite group of automorphisms of the
rational function field F, and A4 = {P,,..., P;} be the set of places of F,
which are ramified in F,/F¢°. Let also A, C A be a G, invariant subset
of A and B: G, — Z* a homomorphism. We will denote by

2,(G,, Ar €A, B) c Div(F,),

the set of effective divisors D of F, such that

G, leaves supp(D) invariant,

A N supp(D) = A,

(vp(D), n) = 1 for all places P  supp(D),
o(D) = B(ag)D mod n for all o € G,,.
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Remark 1. Let Deg, (Gy,, A, cA,B). If o€ G, fixes a place
P € supp(D) then B(o) =1 mod n. Indeed, (D) = B(o)D mod n and
vp(D) = B(o)vp(D) mod n, so B(o) = 1 mod n because vp(D) € 7%,

LEMMA 3. If for all o € G, and for all P such that o(P) = P we have
B(o) =1 mod n, then the set 2,(G,, A C A, B) is not empty. Moreover
if 9,(Gy, Axr CA, B) # O then we can find an effective divisor D in
D(G,, Ar C A, B) with arbitrary high degree.

Proof.  We will first construct the supp(D). Pick a place Q, of F, and
consider the orbit O(Q,, G,) of Q, under the action of G,. Choose Q, not
in 0(Q,,G,) and consider the orbit O(Q,, G,). Continuing this way we
can construct a set of orbits O(Q;, G,) such that

0(Q:.Gy) N 0(Q;,G,) =D fori+j,

and A, c U{_, O(Q;,G,). Define the support of D
supp(D) = U 0(Q;. Go).
i=1

For all P O(Q, G,) define v,(D):= XQ,) - B(c), where o is the
element of G, such that ¢(Q,) =P, and 1 < XQ,) <n is an integer
prime to n. We will later select a suitable A(Q;) so that deg(D) = 0 mod n.
The divisor D is well defined because if o, 0’ € G, such that ¢(Q,) =

a'(Q) =P then ¢’ -0 %Q,) =0, 50 B(oc") = p(c)modn. |

DerINnITION 2. Let G, be a finite group of automorphisms of the
rational function field F, and let A ={P,..., P}, Ax €A be as in
Definition 1. We say that the ramification type (G,, A, € A4, B) is realiz-
able if there exists a cyclic extension F of F, defined as at the beginning
of Section 2, such that C, = Gal(F /F,) is a normal subgroup of the whole
automorphism group G, G/C, O G, and the set A, consists of the places
of A which are ramified in the extension F/F;.

PROPOSITION 4. If the divisor D €9, (Gy, Ay €A, B) can be con-
structed so that

deg D = 0 mod n,

and the infinite place P, & supp D, then the ramification type (G, Ax C
A, B) is realizable.

Proof. We set F = Fy(y), where

=TT (x—x(P)"”,

Pesupp(D)
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and x(P) € k denotes the finite point of P(k) corresponding to the
place P. The assertion follows by Proposition 2. Notice that, in order to
ensure G, <G we can take #supp(D) > [n/2] + 1. |

In case deg D =0 modn but P, € supp D, we can find a MGdbius
transformation 4 € PGL(2, k) such that P, & Q(supp D), so the ramifica-
tion type (QG,07 !, Q(Ay) € Q(A), B) is realizable.

We will now compute the degree of D €9, (G,, Ax €A, B). Let o,
be an arbitrary element in G, of order m. The set supp(D) splits into
orbits under the action of oy:

ka‘o
supp(D) = U O(P;, {ay)).

i=1

Let P be an element of supp(D), which is not fixed by o,. The orbit of P
under the action of (o) is O(P,{ay)) ={P, a,(P),..., ay" *(P)}. (Ob-
serve that if P is not fixed by the Mdbius transformation o, it is not fixed
by any power of o,.) This orbit corresponds to a divisor,

m—1

Y AB(ag)as(P)

i=0

of degree modulo p“:

m=1 /\M=Omodp“ if B(0,) # 1 mod p°
X AB(ag) = (" B(oy) — 1 ’ ’
=0 Am mod p* if B(0o,) = 1mod p*,

(4)
for every p® | n, p**! 4 n.

Remark 2. Consider a realizable divisor D € 2, (G,, Ax C A, B),
hence of degree = 0 modn. If P € supp D is a fixed place of o € G,
then B(o) = 1 mod n. If o has two fixed places P, P, and P, € supp(D),
P, & supp(D), then necessarily we have (n, m) = 1, where m is the order
of . Indeed, the degree of D is

deg(D) = vp(D) + ) A;m = 0mod n.

So (n, m)lvp(D), a contradiction unless (n, m) = 1.

LEMMA 5. If there is a o € G, such that (o) # 1 mod p*, for every
prime p“|n, p**' t n, then every divisor D €, (Gy, Ay C A, B) has
degree 0 mod n.
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Proof. o acts on supp(D) without fixed points, because B(o) #
1 mod n. The desired result follows by Eqg. (4). 1

LEMMA 6. In case Ay = J; i.e., none of the ramified places in F,/F{° is
ramified in F /F,, then we can construct a divisor D € 2, (G, Ar C A, B) of
degree 0 mod n.

Proof. Notice that G, acts without fixed points on supp(D), because
Ap = I, so we take even number of orbits O(Q;,G,) i = 1,...,r and put
MQ,) = —XQ,_;) mod n. This construction implies that deg D = 0 mod n.

4. FINITE SUBGROUPS OF PGL(2,k) AS
QUOTIENT GROUPS

All finite subgroups of the group of automorphisms of a rational
function field are given by:

THEOREM 7 [V-M]. Let F, be a rational function field with an alge-
braically closed field of constants k of characteristic p > 0. Suppose that G is
a nontrivial finite group of automorphisms of F, and F| = F{° is the fixed
field of G,. Let r be the number of ramified places of F, in the extension
F,/F, and ey, ..., e, the corresponding ramification indices. Then G, is one
of the following groups, with F,,/F, having one of the associated ramification

types:

1. Cyclic group of order relatively prime to p withr = 2, e; = e, = |G|

2. Elementary Abelian p-group with r = 1, e = |G|

3. Dihedral group D,, of order 2m with p =2, (p,m) =1, r =2,
e,=2,e,=m,orp#+2,(pm)=1r=3,¢, =¢,=2,e3=m.

4.  Alternating group A, withp #+ 2,3, r =3, e, =2, ¢, = e; = 3.

5. Symmetric group S, withp + 2,3, r=3,e, =2, e, =3, e; = 4.

6. Alternating group A with p =3, r=2, ¢, =6, ¢, =5, or p #
2,35 r=3,e,=2,e,=3,¢e;=05.

7. Semidirect product of an elementary Abelian p-group of order q with
a cyclic group of order m with m | (q — 1), r = 2, e, = |Gy, e, = m.

8. PSLQ, @) withp #2,q=p", r=2e ="1"1 ¢ =11

2
9. PGLR2,g) withq=p", r=2,¢,=q(q— 1), e,=q+ 1 wherer
is the number of places of the field F, ramified in F/F,.

Remark 3. Because k is algebraically closed, for every place Q of F,,
the inertia group is equal to the decomposition group.
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4.1. Some Cohomology Calculations

It is well known that the set of all equivalent extensions of the form
1-C,—>G 5 G,~1

are classified in terms of the second cohomology group H?*(G,, C,) where
G, acts on C, by conjugation of an arbitrary section of G,. If C, is a
trivial G, module; i.e., the function B defined in (2) is trivial, then it is
easy to compute this conomology group employing the universal coefficient
theorem. Namely, the following formula holds [Br]:

H?*(G,,C,) = Hom(H,(G,,Z),C,) ® Ext(H,(G,,Z),C,), (5)

where the G, acts trivially on Z. The homology group H,(G,Z) is the
Schur multiplier which is known for all the finite subgroups of PGL(2, k)
appearing in Theorem 7. The homology group H,(G,, Z) is the Abelianiza-
tion G,/[G,, G,] of G,. Using these results we are able to compute the
cohomology table, Table I. Notice that two nonequivalent extension se-
guences might have isomorphic middle groups. For example, all extensions
of C, by C,, where p is prime are of order p?, hence Abelian. So there
are only two possible middle groups for the extension sequence, namely,
C,, and C, X C,. On the other hand H*(C,,C,) = Z,,.

Denote by i(G,, C,) the number of nonisomorphic middle groups ob-
tained by extending the group G, by C,. We have

i(Gy,C,) <|H*(G,,C,)|.

We state also the proposition which we use later.

TABLE |
Group G, H*G,,C,)
Cm Z("rm)
0 if(n,2) =1
D, zZ, if(1,2) =2, (m,2) = 1
Z, X7, X7, if (n,2) = (m,2) =2
A, Lin oy X Ly 3
A5 Z(2,}1)
S, Zam X Zany
1 ifp=2p/#4
PSL(2,q) 2 if p>2, pl#9, pf =4 where g =p/
Vs if pf=9

PGL(2, q) Ly X L, ny
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ProposITION 8 [Wei, p. 93]. Let s be the order of G,. There is an
injection

H*(G,y, A)= @ H?*(G,, A), 2@ H?(G,,, A)

pls pls
o= Zal’ - ZreS(Go”GOp)aP’
pls pls

where G, ranges over the p-Sylow subgroups of G,. Here H 2(G,, A), is the
p-part of the finite Abelian group H*(G,, A).

4.2. Cyclic Groups

We begin our examination of the possible finite groups of the rational
function field given in Theorem 7, with the cyclic group. In this section we
will prove:

THEOREM 9. Let Gy, = G/C, be isomorphic to a cyclic group C,, of
order m, prime to the characteristic of the field k. The set A of fixed places of
F, under the action of G, is A = {P,, P,}. The group of automorplhisms G is
then isomorphic to

@ C,,, is one, at least, of the places P,, P,, say P,, is ramified
completely in the extension F /F,, i.e., when Ap # &

(b) C, X C,, if no place in A is ramified in F/F, i.e., Ay = &.

Proof. (@) In this case, one of the places P, P,, say P,, is ramified
completely in the extension F/F,. If Q is the unique place of F lying over
P,, then the decomposition subgroup G(Q) is cyclic [Se, p. 68] and equal
to G. The group G is Abelian and the map B: C,, — Z is trivial.

(b) In this case none of the two places P, P, is ramified in F/F,.
Denote by 7 the natural map 7: G — G,. Let T be a generator of C,,
and S an element of G such that #(S) is a generator of the quotient
subgroup C,,. The group G is a metacyclic group generated by T,S.
Because 7(S)" = 1 we have that

Sm — Tt’

for an element T* € C,. The function B is determined by its value at the
generator w(S) of C,,. Let [ = B(7(S)). Then

T7T(S) — STS*:L — TB(’”'(S)) = Tl_
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Consider the subextension diagram, where G, := 7~ ‘(ker 8)

1-C, >G, »kerB —1

ol l
1—>C,,—>GE> c, —1

Let 7(S), rlm be a generator of the cyclic group ker 8. Then
I"=B(m(S")) = 1modn,

and S’TS™" = T" = T so the group G, < G, which is generated by 7 and
S, is Abelian.

We claim that all p-Sylow subgroups of G, are isomorphic to C,.; X C.,,
where v,, v, are the exponents of p in the decomposition of n and m /r
into prime factors. Indeed, let p be a prime divisor of (n, m /r). Denote by
G/ a p-Sylow subgroup of G,. Consider the tower of fields

F

L = FCu/pt1 Al,...,AP,v1
| \ / decomposes completely
Pl

| ramifies completely

where p, is the restriction of the place P, in F{'2, and A4, ..., A, are
the extensions of the place P, of F, in F¢ /"1 = L. The Galois group
Gal(L /F,) = C,... If C is a cyclic subgroup of G{ containing Gal(L /Fy),

Gal(L/F,) < C < G?,
then C = Gal(L /F,). Otherwise, there is an intermediate field
L <Ly (A4, <L

corresponding to the decomposition group C(A,) such that A4, decom-
poses in the extension L, (A,)/L¢ and ramifies in the extension
L/L(A,). This is impossible, because the subgroups of a cyclic p-group C
are completely ordered with respect to inclusion. This remark together
with the classification theorem of Abelian groups gives us that G{ =
C,ii X Crp. Using the classification theorem of Abelian groups once more,
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we get G, = C, X ker B. This implies
(T)Nn(S") ={1}. (6)

If " = T' then (§")"/"=T' € {(T) N {S") so $™ = 1 by (6). Hence the
group G is given by generators and relations as

G={S,TIS"=1T"=1,8TS* =T,

where (/,n) = 1, I” = 1 mod n. We have proven that G is the semidirect
product of the groups C, X C,, with action given by 8. |

Remark 4. Notice that if P decomposes in F/F, and the other fixed
place of G, ramifies in F/F, then G is cyclic of order n - |G,(P)|. This is
possible because in this case (n,m) =1and C, X C,, = C,,,.

CoROLLARY 10. Let G be the group of automorphisms of the function
field F and let Gy, = G/C, be the quotient finite subgroup of F,. Let also
Go(P) be the decomposition group of a place P of F,. If G(P) is cyclic of
order prime to the characteristic p, then the group G,_(P) defined as

G, (P)={SeG:n(S)P =P},

is cyclic of order n -|Gy(P)| in case P is ramified in F /F,. Otherwise, i.e., in
case P is decomposedin F /F,, G_(P) is the semidirect product of C,, X G(P)
with action given by T” = TP where o is a generator for the cyclic group
Go(P). In first case B(o) = 1 mod n.

We now prove that the following ramification types are realizable by
finding a divisor in 2,(C,,, Ax € A,1) such that deg(D) = 0 mod n. We
have to consider

(@ Ag={P}, B is trivial. The arbitrary divisor in 2 (C,, Ax C
A, 1) has the form

D = A P)P, + i/\(Qi) Z P.

i=0 Pe0(Q;.C,)

We have seen that this situation happens only in case (n, m) = 1, so there
are integers «, A such that kn + Am = 1. We take r even, and we set
MP) =1, MQy) = A, and MQ,) = —MQ,_;,,) modn, i=1,...,r. This
gives us that deg D = 0 mod n.

(b) A, ={P, P,}, B is trivial. The two orbits O(P,C,,) = {P},
i = 1,2 of the fixed places P,, P,, are in Az and A, = A = {P,, P,}. The
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arbitrary divisor D €9, (C,,, A € A,1) is of the form

m?

,
D:/\(Pl)Pl+)‘(P2)PZ+ Z)‘(Qi) Z P,
i=1 Pe0(Q,;,C,)

where Q; € A forall i = 1,...,r. In order to assure that the above divisor
has degree 0 mod n, we set A(P,) = —A(P,) modn, r to be even and
NQ) = —XOQ,_;.,) mod n.

(¢) Ay = . This case is realizable by Lemma 6.

4.3. Elementary Abelian Groups

THEOREM 11. Let Gy = G/C, be isomorphic to an elementary Abelian
group &,(t) of order p', where p is the characteristic of k. The group G is
isomorphic to C, X G,. Moreover if the unique fixed place P, of G, is
ramified in the extension F /F, then G is isomorphic to C, X G,.

Proof. Because (n,|G,)) =1 the group G is a semidirect product,
G = C, X G,. The action is given by the function S.

Suppose now that the unique fixed place P, of G, is ramified in F/F,.
Let Q be the unique place of F lying over P,. The decomposition group
G(Q) = G is equal to the inertia group, because k is algebraically closed.
So G(Q) is the semidirect product of a cyclic group of order prime to p
with a normal p-group G,(Q) = G,. Therefore the product is direct. |

The arbitrary divisor in 2,(G,, A < {P}, B) is given by

D= ¥ APP+YAQ) T P

PeAy Pe0(Q;,Gy)

where Q, € A, i =1,...,s. To prove that both ramification types are
realizable we must select the above divisor to have degree 0 mod 7. In the
first case Ax = {P,} and B is trivial, so we take s orbits O(Q;, G,) with
A(Pl) = /\(Ql) = 1, such that

deg(D) =1 + sp* = 0 mod n,

where p“ is the order of G,. This is always possible, because (n, p) = 1. In
the second case, Az = & and the desired result follows from Lemma 6.

4.4. Semidirect Products of Cyclic Groups with Elementary Abelian Groups

In this case G, = G/C, is isomorphic to the semidirect product of an
elementary Abelian group %’P(t) of order p’, where p is the characteristic
of k, with a cyclic group C,, of order m, and m | (p* — 1). In the extension
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Fo/FE°, two places p,, p, of FZ° are ramified with ramification indices
e, = |Gyl and e, = m, respectively.

THEOREM 12. Let G, = G /C,, be isomorphic to the semidirect product of
an elementary Abelian group & (t) of order p', where p is the characteristic of
k, with a cyclic group C,, of order m, and m |(p' — 1). The group of
automorphisms G is isomorphic to C, X G, if Ax = Dand &,(t) X C,,, if
A # &.

Proof.  Although in this case we are interested in elementary Abelian
groups of order a power of the characteristic, we prove a more general
lemma allowing p to be other than the characteristic.

LEMMA 13.  Denote by &,(t) an elementary Abelian p group of order p',
where p is not necessarily the characteristic. Consider the group G, = &,(t) X
C,,, with (m, p) = 1, acting on the rational function field F,. Suppose that the
subextension

1-C, - w‘l(é”p(t)) - &,(1) -1, (7)
of the extension
1-C,>G5&(1)XC, > 1 (8)

splits, i.e., 7 (&(0)) = C, X &,(t). Then G is isomorphic to C, X (&,(1) X
C,,) if both fixed places of F,, under the action of C,,, are decomposed in
F/Fyorto G = &,(t) X C,,, if one of the fived places of F, under the action
of C,,, is ramified in F /F,,.

Proof. According to the study of cyclic extensions, we have two possibil-
ities for the group = *(C,,). Thus

If #~*(C,) =C, X C, then using the injection ® defined in Proposi-
tion 8:

H*(£,(1) X C,,,C,) > @ H(H,,C,),
q 111Gyl

where H, ranges over the g-Sylow subgroups of G,, we have that the
whole extension (8) splits, because H, is either a subgroup of &,(¢) or C,,.

If 7~(C,) = C,,, then we will show that G = &,(t) X C,,,. Indeed, in
this case there is an element R € G of order nm, which generates a
subgroup of G isomorphic to C,,,. Because the extension (7) splits we
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have an embedding
Ji&(t) = 7 (&,(1)) = G.

Moreover & (1) = j(&,(1) and 7~ *(&,(1))< G. Because C, N &,(1) = 1 we
have that j(&,(t))<G. On the other hand j(&,(¢)) N C,,, = 1. Indeed if
x€j& N ncC,, then x" €j(&()NC,=1s0 x" =1 and x=1
because (p, m) = 1. This implies the desired assertion.

We return now to our case, where p is the characteristic of k. Because
(p,n) =1, the extension (7) splits. If moreover one of the places fixed
by C, ramifies in F/F,, then G =&,(t) X C,,. Otherwise G = C, X
(é”p(t) xXC,) 1

To prove the realization of the ramification type we have to select the
arbitrary divisor

D= T NP)P+XAR) ¥ P

PeAg Qe0(P;,Gy)

of 9,(G,, Ax C A4, B) to have degree 0 mod n. Denote by Q the unique
place of F;, above p, and by Q,, ..., O, the places of F; above p,. Notice
also that O(Q, Gy) = {0}, 0(0,,Gy) ={0;,...,0,}.

We have the following cases for A,

(@) Ay = . This ramification type is realizable by Lemma 6.

(b) Ap =0(0,Gy) ={0}. In this case the function B must be
trivial. Observe that the fixed places of C,, are Q,Q' where Q' e
0(Q,, G,). Therefore, by Remark 2 we have that (n,m) = 1. We set
AMP,) = 1, and we choose the number s so that

deg(D) =1+ s-|Gyl = 0mod n.

This is possible because (|IG,|, n) = (n,m) = 1.

() Ag =0(0,,Gy) ={0;,...,0,}. Notice that C,, < ker B. As be-
fore we have (n, m) = 1 as a necessary condition for this ramification type
to be realizable. The degree of the divisor corresponding to the orbit
O(P,,G,) is

0 mod p* if B(o) # 1mod p,

L (D)= MG, mod p* if B(o) = 1mod p*

Pe0(Q;,Gy)

where p® | n, p**t + n. Let n, = I, geoy=1mod pe P“- We have to choose
an s such that deg(D) = 0 mod n,. We take A(P) = 1 for all P € supp(D),



AUTOMORPHISM GROUPS 681

and because (n,, |G, divides (n, mp) = (n, m) = 1 the equation
deg(D) = p' + 5-1Gyl = 0 mod nyy,

has a solution mod n,,.

(d) Az =0(0,Gy) U O(Q,,Gy). In this case B must be trivial. We
set Q) = —1 modn, M(P) = ANQ,) =1 modn, and we take s, so that

deg(D) = -1+ p' +s-|Gyl=0mod n.
This is possible because (n, |Gy | m and m | (p' — 1).

4.5. Dihedral Groups

In this section we consider the case G, = G/C, = D,,. The dihedral
group D,, admits the presentation in terms of generators and relations:

D, ={a,bla™ =1,b>=1,ab=ba"").

The action homomorphism B: D,, — Z* is determined by its values on the
generators a and b. Thus

_Ja = B(a)
b= B(b)

Because B is a group homomorphism we have that

B(a)" =1modn, B(b)’=1modn,
B(a)B(b) = B(b)B(a) " modn.

We claim that ord( 8(a)) < 2. Indeed, if ord( 8(a)) > 2 then ord( (b)) =
1, because the multiplicative group Z* is Abelian and cannot contain the
dihedral group Dyq( (.- But then B(ab) = B(a)B(b) = B(a) a contradic-
tion, because the order of B(ab) is at most 2. Furthermore if ord( 8(a)) = 2
then 2|m because 1 = B(a™) = B(a)™.

There are three cases for Im( 8).

Im(B) ={1) or Im(B)=2, or Im(B) =V,

The third case appears only when m = 0 mod 2. We will need:

LEMMA 14. Let n € N and | an integer such that

[2—1=0modn.
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There are integers n™ (1), n=(1) such that

)
(Do (1)

where

2 | =0 d2
CHORNUVEE S Ao

with the additional property:
I=1modn*(l) and = —1modn(I).

Proof.  We simply notice that if p is a prime divisor of n then p | (I —
1)=(U -1+ 1) and p divides both / —1 and [/ + 1 if and only if

r=21
Remark 5. Because the extensions F/F, and F,/FP are both Galois,

the places P, of F, above a common p € F° are either all ramified
completely or all decomposed completely in the extension F/F,.

According to Theorem 7 there are two cases for the ramification type in
the extension F,/FZ°. We will handle them separately.

Case A. The characteristic of the field k is p # 2 (p, m) = 1. There
are three distinct places of F, := F{c, namely, p,, p,, p;, Which are
ramified in F,/F{° with ramification indices 2, 2, m, respectively. Denote
by P, P, Py ;, where i =0,...,m — 1, j = 0,1 the places of F, which
extend p,, p,, ps.

THEOREM 15. Let G, = G /C, be isomorphic to the dihedral group D,,,
p +t mand p # 2. There are the cases for the structure of the automorphism
group G.

(D). Suppose that {P, }o_,,, YLPs }_o1 CAg. Then (n,m) |2 and
the group of automorphisms G admits the presentation in terms of generators
and relations,

G={(R,S|IR*=8",8" =1, RSR™'=8"),
where r is a solution of the system of equations

r=1modn, r= —1modm. (9)
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If (n, m) = 1 there is only one solution r. If (n, m) = 2 there are two cases:

e n =2 mod4. In this case, one solution of (9) appears when
{P, Yo<icm NAgr = Dand the other when {P, },_;.,, N A # O.

e n=0mod4. In this case, {P, },_;.,, N A = D and we have
two possible nonisomorphic groups corresponding to the same ramification
type.

(2 Ag ={P; }_1,. The group G is isomorphic to the semidirect
product C,,, X C,.

Q@) Ar={Py }Yocicm Y{P, }io1 - Inthis case, B is trivial and G
is isomorphic to C,, X D,, if (n,2) = 1 and G is given by

G={(R,S|IR"=1,8"=1,RSR '=8"1),

if (n,m) = 2.

4) Ap =D. In this case G is isomorphic to C, X D,,, where the
action of D,, into C,, is given by B.
(5) Ap =APy }o.i< - In this case G admits the presentation:.

G=(R,SIR" =1,8"=1,(RS)" =1).

Proof. We begin with:

Remark 6. Suppose that b € D,, fixes the place P, ,. The other places
P, ; can be enumerated so that P, ; = a'P, ;. The decomposition groups
D, (P, ;) of each place P, ; are of the form

D, (P ;) = D,(a'P,,) = a'D, (P, g)a"" = {a*b).

Every automorphism ba* € D,, has two fixed places. A place of the form
P, ; is fixed by ba* # 1, if and only if ba* € {(a*'b) and because ord(a*'b)
= 2 this is equivalent to

a®b=ba*=a*b < 2i= —k modm. (10)

If (m, 2) = 2 then (10) has two solutions if k is even, and no solution if k
is odd. This implies that the two fixed places of the automorphism ba*
restrict to the same place p, (if kK =0 mod2) or p, (if k =1 mod?2). If
(m, 2) = 1 then (10) has a unique solution, so one of the two fixed places
of ba* restrict to p, and the other to p,.

Suppose that one of the places P; ;, say P, is ramified in extension
F/F,. Let Q; , be the unique place of F over P, ;. Because (m, p) = 1 we
have that the decomposition group G(Q; ;) is cyclic of order nm. Hence
B(a) = 1 mod n. Notice that the index |G : G(Q)| = 2 s0o G(Q)< G and G
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is a metacyclic group. Let S, R be in G, such that w(R) = b, w(S) = a.
We may choose S € 7 1(a) such that (S) = G(Q). Because G(Q)<G,
there is an integer r such that

RSR™' =§". (11)

Observe that the group C, is generated by {(S™). So from (11) and the
action of b on C,, we have

SAOM = REMR™L = g,
which gives us the relation
r= B(b) modn. (12)
Because G/C, = D,, (11) implies
RSR™'S = 8"t e (§™),
and this, in turn, gives us the relation
r= —1modm. (13)

The system of equations (12), (13) has solutions if and only if (n, m)]|
(B(b) + 1). We distinguish the cases:

L APy ocicm Y{Ps i1 €Ay so one of the places P, ;, i =0,
..,m — 1, say P, is ramified completely in extension F/F,. Denote by
0, , the place above P, ;. As in Remark 6, we may suppose that P, , is
fixed by b € D,, (select as generator b of D, another element of order
two if necessary). The decomposition group G(Q, ,) is cyclic of order 2n.
Select a generator R € 7 '(b) of G(Q, ).

The group C, is the unique subgroup of order n of the cyclic group
(R), so it is generated by R®. Hence R? = §™ for some (i,n) = 1. We
simplify the notation by rechoosing a suitable generator S for the group
G(Q; 1) such that R* = S™. Notice also that (b) = 1 mod n.

The group G as a metacyclic group is given by the generators and
relations

G={(R,S|R*=8",8"=1,RSR" ' =8"), (14)

where r is defined as a solution of the system

1 mod n,
—1 mod m.

r

(15)

r
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This system admits (n, m) solutions if and only if (n,m)|2. In case
(n, m) = 1 the solution r is uniquely determined mod nm. In case (n, m)
= 2 we have two solutions mod nm, namely,

nm

, =ry+ —.
o, Th =Ty 2

We have already assumed that the places in the orbit of P, , are ramified
completely in F/F,. It is interesting to see how the ramification type of
the places P, ; determines the selection of the root r,.

Let P =P, , be a place of F, in the orbit of P, ,, hence, according to
Remark 6, fixed by ba' € D,,, for some i =1 mod2 (recall that 2|m).
According to Corollary 10, P is decomposed (resp., ramified) if G_(P) =
C, X C, (resp., C,,). The function

] G(P) = Go(P)

08 5
x - X

is a group homomorphism. Because 2|n, ker ®, = C, X C, if P is decom-
posed otherwise (i.e., if P is ramified) ker ®, = C,. By computation,
G.(P) = {RS"**™, 8§ |s=0,...,n — 1} forsome i = 1mod?2.
The elements {1, S""/?} are in ker ®,. Moreover, using (14) we have
(RSi+sm)2 — §MAFr+1/ m)i+sm)
Hence P is decomposed in the extension F/F, if and only if the equation

r+1
mod n

—(r+1)s=1+i

has a solution s. This equation has (r + 1, n) = 2 different mod n solu-

tions if and only if (+ + 1,n) = 21 (1 +i""). Because i = 1 mod2 we
have the equivalence

r+1
1+

r+1
=0mod2 e —— #0mod?2.
m m

If n =2 mod4 then n/2 is odd, so 2 divides either (r, + 1)/m or
(ry +1/m = (ry + 1)/m + n/2. Hence, if n = 2 mod 4 the two solutions
of system (15) correspond to the two different ramification types of the
places P, ; in extension F/F,.

If n = 0 mod4 then (r + 1)/m # 0 mod 2 for both solutions of (15). For
if 21((r+ 1)/m) then 4| (r + 1) (recall that 2|m) and 4|n | (r — 1) so
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41 ((r+1) —(r—1) =2, a contradiction. Therefore, if n =0 mod4
then for both solutions of (15) all places P, ; are decomposed in F/F.

2. Ag ={P; ;};_1,. In this case the places P, ;, i =12, j=0,...,
m — 1 of F, are all decomposed in the extension F/F,. According to
Corollary 10,

G,(P.;)=C,%C,.
We may select a R € 7 1(b) such that R? = 1. The group G is given by
(R,S|18"™ =1,R*=1,RSR™ ' =58"),
where r is the solution of the system of Egs. (11), (12), namely,
r= B(b) modn, r= —1modm, (16)
therefore (n, m) | (B(b) + 1). The group G is a semidirect product
Con NCy,

with action defined by r. If (n, m) > 1 then the system (16) may have more
than one solution mod nm which lead to more than one nonisomorphic
automorphism group G.

Suppose now that the places P;;, j = 1,2 are not ramified in the
extension F/F,. Then Corollary 10 implies that,

G‘rr(P3,1) = Cn X Cm’
because D, (P; ;) = {a) is a cyclic group. G, (P, ,) has index 2 in G so
C, X C,<G. Let T be a generator of the cyclic group C,, and S a
generator of C,, such that 7(S) = a. If R € = *(b) because |G :C, X C,,|

= 2 the element R> € C, X C,, so R?> = T*S* But w(R?) =a® s0 z =
0 mod m and R? = T*. This gives us

R2SR™% = THST# = T~ g, (17)

We may compute the left-hand side of (17) in another way. Because
C, X C, <G we have

RSR™ ' =T's",
and this gives us

R2SR™2 = RT’S"'R™* = TXA®)-Blo)g, (18)
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Combining (17) and (18) we get
(1 — B(a)) = A(B(b) — B(a)) mod n. (19)
Moreover because G /{T) = D,, we have
RSR™'S =T’s"*' €(T) sor= —1modm. (20)
Among T, R, S € G there are the relations,

§m=1, T"=1, R*=T*  RIR'=TF®,

21
STS™t = Th®, RSR™'=T's7 1, (1)

for some A, u satisfying (19). Observe that there are no other relations in
the definition of the group G, because the relations (21) define a group of
order 2nm.

We want to simplify the relation RSR™* = TS~ by choosing another
generator S, = T*S. We calculate

RSlRfl — RTKSR71 — TxB(b)Jr/\Sfl — Tx<B(a)+B(b))+AS{1. (22)

LEMMA 16. Let P be a place of F,, which is fixed by ba. Suppose also that
R? = T*. If 2|n then

(n, B(b)B(a) + 1) I (A + pB(a)), (23)

if and only if P is decomposed in F /F,. If (2,n) = 1 then (23) holds in all
cases.

Proof. Suppose first that 2|n. By Corollary (10) we have

C,, if P ramifiesin (F/F,)

P) = Gal(F/F{’*) = '
G, (P) = Gal(F/Fg") C, X C, if P decomposesin (F/F,)

In the first case there is only one element of order 2 in Gal(F/F{**) and
in the second there are more elements of order 2 in G_(P). Recall that
G (P)={oceG|m(o)P=P} ={RST*T*k=0,...,n — 1}.

Because # is even, one element of order 2 is T7"/2. If RST* is of order 2
then

1= (RSTk)2 = THBOB@+D+A+upa) (24)
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so for some k € {0,...,n — 1},
k(B(b)B(a) +1) + A + puB(a) = 0mod n. (25)

But Eqg. (25) has solutions in k if and only if (n, B(b)B(a) + 1) | (A +
wB(a)).

If (n,2) = 1, then the unique element of order 2 in Gal(F/F{*®) is of
the form RST* so (24) has a solution, which gives us the desired result as
in the case that n is even. ||

We consider now the three last cases of Theorem 15:

3. A ={P}o<icm Y{Py o1 . All places P, ; are ramified in
the extension F/F,. Suppose as in Remark 6 that D, (P, ;) = {b). In view
of Corollary 10 we may select a R €  *(b) such that R? =T, i.e., u = 1.
Moreover the extension is central in this case, i.e.,

B(a) = B(b) = 1modn.
We consider two more subcases

e (n,2) = 1. Because the extension is central we have H*(D,,,C,) =
1, so there is only one extension of D,, by C,, namely,

G=C,XD,,.
e (n,2) = 2. In this case Eq. (22) becomes
RS,R™' = T¥*As; L, (26)

By Lemma 16 we have that (n, B(a)B(b) + 1) = 2 + A + 1, therefore 2|A
and the equation

2x+A=0modn

has a solution x. Relation (26) for this solution x can be written as
RS,R™* =81

Let ¢ be the order of S,. The group G in this case is a metacyclic group
given by the relations,

(R,S;IR™=1,8 =1,RS,R" = S,

but then |G| = 2nt, so t = m.

4. Ag = D. All places P, ; are decomposed in the extension F/F.
Suppose that D,,(P, ,) = (b). By Corollary 10 we may select R € 7 *(b)
such that R*> =1, and u = 0. Because all places of F, which are above
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p..p, are decomposed in F/F,, Lemma 16 gives us (n, B(b)B(a) + DA
But (B(b),n) =1, so (n, B(ba) + 1) = (n, B(L)B(L)B(a) + B(b)) =
(n, B(a) + B(b))|A. Therefore there is an x such that

x( B(a) + B(b)) + A=0modn,
and for this x, (22) becomes

RSlR71 — Tx(B(a)+B(b))+)\Sfl — S{l

Denote by ¢ the order of §; = T*S. The group is given by the generators
and relations

(R, T,S;|R2=1, RTR ' =Th® § TS '=TE® RS R =81
Si=1,T"=1).

The group defined by the above generators and relations is a group of
order 2nt, therefore t = m and the group G is isomorphic to the semidi-
rect product

C,%D,,

where the action of D,, on C, is determined by the function g.
5. Ap ={Py Jo.i. - Inthis case the set of places P, ;, above p, are

ramified in F/F, and the set of places P, ; above p, are decomposed. We
may select an R € 7 }(b) such that R> = T so u = 1. Moreover B(b) =
1 mod n.

From Lemma 16 we have that (B(b)B(a) + 1,n) =(B(a) + 1,n)|
(A + B(a)). So there is an x such that

x(B(a) +1) + A= —p(a) modn,
and for this x Eq. (22) becomes
RS1R71 — Tx(B(a)JrB(b))Jr)\Sfl — T*B(a)Slfl — Slflel.
Because T = R?, this relation is equivalent to
2
(RS, =1.

Denote by ¢ the order of §,. The group G admits the presentation:

G=(R,S;IR"=1,5=1(RS)" =1).
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Observe that the group generated by R? is the Galois group Gal(F/F,)
which is a normal subgroup of G. The quotient

_ G _ - -
G:=m=<R,Sl|R2=1,S{=1,(Rsl)2=1>

is clearly isomorphic to a dihedral group of order 2¢. Hence the group G
has order 2nt and t = m. |

We now show that those cases are realizable; i.e., we can select the
divisor D € 2,(G,, Az € A, B) to have degree 0 mod n. We will consider
the cases:

1. We distinguish the subcases

e n=2mod4, m =0 mod2. In this case, we must have the set
Ay of fixed places of D,, in the support of D

AR = {P3,1’P3,2'Pl,O'Pl,l'""Pl,ifl’(PZ,O'PZ,l"'"PZ,ifl)}‘

and of course s orbits O(P;, D,,) where P, are not fixed by D,,. Recall that
the action function g is trivial, so by taking A(Q) = 1 for all Q € supp(D),
we have

deg(D) =2 + m + 2ms(+m).
Because (2m, n) = 2 which divides 2 + m(+m), we can choose s so that
deg(D) = 0 mod ~.

e n=0mod4, m = 0 mod2. In this case, we have the set A4, of
fixed places of D,, in the support of D

Ag = {P3,l'P3,2!P1,0’P1,1!""Pl,i—l}’

and s orbits O(P, D,,) where P, are not fixed by D,. We take again
AMQ) = 1for all Q in supp(D), so

deg(D) =2 + m + 2ms.

In this case (2m,n) =4 which divides 2 + m (recall that because
(n,m) = 2, m = 2 mod4), so we can choose s so that deg(D) = 0 mod n.

We can show similarly that we can choose deg(D) = 0 mod n in the case
(n,m) = 1.

2. In this case we have A, = {P; ,, P;,}. Decompose n into prime
factors n = p§t --- pf. According to Lemma 14 we write n = n*( 8(b)) -
n~(B(b)), and (n*(B(b)),n (B(H)) =1 or 2. Equation (4), gives us
deg(D) = 0 mod p/ for every prime divisor p; of n=( B(b)), p; # 2. If 2|n,
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and p, =2, then deg(D) =0 mod pi%, where a; = v,(n"B(b)) <a,.
The arbitrary divisor D € 7,(G,, A € A, B) can be written in the form

N
D= MNP,y +Pyy) + 2 AP) Y. P
i=1 PeO(P, D,)

We have to choose a D such that deg(D) =0 modn™( 8). We set A =
MP,) =1 modn. We can choose the number s and the divisor D €
.Gy, Agr € A, B), so that

deg(D) =2+ ms=0modn™(B),

because (n*( B8), m) | 2 (recall that (n, m) | B(b) + 1).

3. We have Ay ={P,;1i=12 j=0,...,m — 1}. In view of this
we choose D to have s orbits O(P;, D,,) where P; is not fixed by D,,, and,
by taking A(Q;) = 1 mod n, we compute

deg(D) = 2m + s2m.

We can choose an appropriate s so that the above degree is 0 mod .
4. In this case, A = & and the realization follows by Lemma 6.

5. In this case, A, ={P,,,..., P, _,}. Notice first that B(b) =
1 mod n. We decompose n into n*( 8(a)),n"( B(a)) as in Lemma 14.
By Eg. (4), we have deg(D) = 0 mod p;" for p,/n~( B(a)) and all divisors
D €9,(G,, Ay € A, B). So, we have to choose a D such that

deg D =0modn*( B(a)) aswell.
By computation,
deg D =m + 2ms mod n*( B(a)). (27)

From Eq. (27) we obtain the necessary condition (n*( B(a)),2m) | m, for
case 5 to be realizable. |

Case B. In this case, the characteristic of the field k is 2. We have that
G/C,=D,, (2,m) = 1. By the characterization of the finite automor-
phism groups of the rational function field in Theorem 7, we deduce that
two places p,, p, of F¢ = FP» are ramified in F,/FP», with ramification
indices 2 and m, respectively. Let P, ,, i=1,...,m (P, j = 1,2, resp.)
be the set of places of F, above p (p,, resp.).

THEOREM 17. Let G, = G /C, be isomorphic to the dihedral group D,,,
p + m, p = 2. There are the following cases for the structure of G:
1. Ag >{Py}o-i<p Then B is trivial and G = C,, X D,,.
2. Ag=AP, }_1, Then G =C,,, X C,.
3. Ar=0.ThenG=C,XD,,.
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Proof. 1. Ap >{Py }y;< S0 the places P, ;i =1,...,m above p,
are ramified in the extension F/F,. Observe also that the Galois group
Gal(F/F{"") of the extension F/F{**” is a group extension of the group
{ba') = C,. By the study of extensions of elementary Abelian groups, we
have that B(ba’) = 1 mod n, for all i =0,...,m — 1 because the unique
fixed point of ba’ is ramified in F/F,. This holds for all i so the group G
is a central extension of D, by C,. Because n =1 mod2, we have that
H*D,, C,) = 1, therefore

G=C,XD,,.

2. Ag ={P, }i_1, In this case the places P, above p, are all
decomposed in F/F,, and the two places P, ; of F;, above p, are ramified
completely in F/F,. D,(P,;) = <a), so by Corollary (10) we may find
S € 7 *(a), which has order nm. The action of a on Gal(F/F,) = (S"™)
is trivial, i.e., B(a) = 1 mod n. Let R € 7 (b). Observe that |G :{S)| = 2
50 {S) < G. Therefore there is an r such that,

RSR™ ' =",
Observe that S™ generates the group Gal(F/F,) = C,, so
SEOM = RESMR™T = §mr,

therefore

B(b) =r modn. (28)
On the other hand we have

RSR™'S =8t = 1=a(RSR'S) ==w(S"),

o)

r= —1modm. (29)

The system of (28), (29) has a solution r if and only if (rn, m) | (B(b) + 1)
and the group is given by the relations:

(R,S|R*=1,8""=1,RSR ' =8").
Notice that G is isomorphic to
G=C,, XNC,.

3. Inthis case, all places, P, ;, P, ; of F, above p, and p,, respectively,
are decomposed in F/F,. Observe that (n,2) = (m,2) = 1. We will use
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the injection map of Proposition 8, namely, the map

H*(D,,C,)= &© H*(D,.C,),~> D H?*(H,,C,)
pl2m pl2m

a= Zap — Zl’eSDnﬁHp(ap).

Because (n,2) = 1 we have H?(H,,C,) = 1 by Zassenhaus theorem. If
p # 2, plm then the p-Sylow subgroup is a subgroup of the cyclic subgroup
(a) = C,, of D,. Because {a) fixes P, ;, which decomposes in F/F;, the
subextension

1-C, - 7 t({a)) - (a) - 1,

splits. All subextensions corresponding to the p-Sylow subgroups of {a)
split as well, so H*(H,,C,) = 1 for p # 2. This implies that H*(D,,,C,)
= 1 and finally

G=C, XD,

where the semidirect action of D,, onto C, is determined by the func-
tion B8. 1

To prove that the above three ramification types are realizable we have
toselecta D €9,(G,, A C A, B) of degree 0 mod n. We will distinguish
the cases:

1. We take s orbits O(P,, D,,), such that P, are not fixed by D,, and
MP) = 1 modn. We have Ag ={P, ,,..., P ,,,(P,, P,,)} so the degree
of D is

deg D =m + (+2) + 2ms.

Obviously, because (2m, n) = (n, m) we can find an s such that deg D =
0 modn in the case A, ={P,,,....P }. If A,={P,....,P,,
P, 1, P, ,}, we arrive at (n,m) | 2 as a necessary condition for this type to
be realizable. Notice that the condition (r, m) | 2 is equivalent to (n, m) =

1 because (n,2) = (m,2) = 1.

2. By Lemma 5, it is enough to construct a D of degree 0
mod n*( B(b)). We take s orbits O(P;, D,,), where P, are not fixed by D,,
and we set A(P) = 1 mod n for all P in supp(D). We have then

deg(D) =2 + 2ms mod n* (b).

We can take s such that deg(D) =0 modn*(b), because (n,2) =
(n*(b),2) = 1.
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3. The ramification type of this case is realizable by Lemma 6,
because A, = &.

4.6. The Group A, as Quotient Group

In this section suppose that G/C, = A,. From the classification theo-
rem 7 we have that three places of F, == F¢ = Fj'+ are ramified in F,/F,,
namely, p,, p,, p; With ramification indices e, = 2, e, = e; = 3, respec-
tively. Moreover the characteristic is not 2 or 3. Denote by P, ;,i = 1,...,6,
P, P3; j=1,...,4 the set of places of F; lying over py, p,, ps,
respectively.

The group A, admits the presentation in terms of generators and
relations:

A, ={a,bla®>=b3=1,(ab)’ = 1).

Notice also that the group A4, has a normal 2-Sylow subgroup isomorphic
to the Klein group V,, which, as a subgroup of A4,, can be expressed in
terms of the generators of A4, as

V,={1,a,bab™*, b%ab~?}.

The group A, can be written as a semidirect product 4, = V, X {(b). The
action map
B: A, = 7
cannot be injective, because A, is not Abelian. We have two possibilities
for ker B:
ker B =1V,, or kerp = A, (central extension).

In any case, because 4,/V, = Z, and a has order 2 in A4,, we have that
B(a) = 1 mod n.

THEOREM 18. If G, = G/C, = A, then the group of automorphisms G
is isomorphic to:
@ G=C,XA,ifAr,=0.
b)) G=V,XCy, ifAr =P, 14
© G=G' XCyifAr ={P, }y_;.¢. Here G' is defined in terms of
generators and relations
G =(R,S|R*=5%8%"=1,RSR™ ' =S").

(d) G admits the following representation in terms of generators and
relations:

G =(R,S|R" =1, R = 8% (RS)® = R?"),

for some integer k € {1,...,n}, if {P, }i_, ¢ & Ag.
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(@ Ay = ie, all places of F, above p,, p,, p; are decomposed
in F/F,. We claim that in this case

G = Cn >4A4'

where the action of 4, on C, is determined by B. To prove this we
observe that A, is the semidirect product of ¥, X (b) and obviously V, is
an elementary Abelian group of the form &,(2). Now according to the
study of the dihedral case, because the fixed places of V, =D, are
decomposed, we have that the subextension

1>C, = (V) >V~ 1 (30)

splits, so by Lemma 13 G = C, X A,.

() Ar={P, }1. ;<4 Or A ={P; },_;_,, hence the set of six
places P, ;, i = 1,...,6 are decomposed and at least one of the set of the
places P, ;, Py ;, say P, ;, j =1,...,4 is ramified in F/F,. According to
Corollary 10, because the fixed places of b are ramified, we have that
B(b) = 1 mod n so the extension is central. A, is a semidirect product of
V, X {b) and as in case (a) we have that the short exact sequence (30)
splits. Using Lemma 13 we have that

G;I/ZINCSH'

Let R be the generator of the cyclic group C,,. The conjugation action of
R on V, induces a homomorphism p: C,;, — S;. Because R" = b, and
p(b) is cycle of order 3 in S;, we have that p(R) must be also a cycle of
order 3, therefore (n,3) = 1.

(©) Az ={P,};.,-6 hence the set of places P, ;, i =1,...,6 are
ramified and the set of places P, ;, i = 1,2, j = 1,...,4 are decomposed.
Then by the study of dihedral extensions we have that the group G’ =

a~1(V,) is given in terms of generators and relations by
G =(R,S|IR*=528"=1 RSR ' =5").

Here r is the unique solution of the system r =1 modn, r = —1 mod2
if (n,2) =1, and the unique solution of the system r=1 modn, r =
—1 mod2 such that (» + 1)/2 is even, otherwise. Notice also that in the
case (n,2) = 2 this ramification type appears only if » = 2 mod4. We
claim that G = G’ X {(b) = G' X C,. Observe that G'<G because
V, < A,. On the other hand, by Corollary 10 the subextension

15 C, - 7 1((b)) = (b) - 1 (31)
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splits, therefore there is a homomorphism
ji{b) = C, X (b) > G,

such that j({b)) N C, = {1}. To prove our claim we have to show that
jbY) N G" = 1. Let x € j{b)) N G'. If x # 1then x € j({b)) has order
3. On the other hand notice that the square of every element in G’ is in
(8. This implies that for x, which is written in the form RS/, we have
x® =xx?=RS'S* so x € (S) and x% € C,. Because j({b)) N C, = {1}
we have x®> = 1 and x = 1 because (2,3) = 1.

(d {P, -1 & & Ag henceall places P, ;,i =1,...,6 and at least
one set of places among the P, ; and P; ;, j = 1,...,4 are ramified in the
extension F/F,. (Recall that the set of places P, ; and P; ; have different
ramification type if and only if (3, n) = 1.) Moreover from the study of
dihedral extensions, if (n,2) = 2 then n = 2 mod4. Assume that P, , is
fixed by a and that P, , is fixed by b. Using Corollary 10, we deduce that
the function B is trivial, so the extension is central, and moreover there
are elements R € 7 '(a) and S € 7 1(b) such that

(R) =C,,, (§) =Cy,.

The group Gal(F/F,) = C, is a common subgroup of (R),{S) so by
choosing suitable generators R, S we have the relations between R, S

R =1, R*=§%

Denote by 7 the projection G — G /C,. Because 7 (RS) = ab has order 3
in A, we have the additional relation (RS)® = R?* between R, S. Let G,
be the group

G, ={(R,S|R* =1, R? = $3 (RS)® = R%). (32)

Obviously (R?) is a normal subgroup of G, and G,/{R*) = A, so
G, = G. We prove that there is only one solution to the extension problem
with the ramification type of case (d), so there is only one group defined by
the relations of (32). Unfortunately we could not find a neat formula for k.
However, using the computer algebra package MAGMA [Ma] we can then
compute k for several values of n. Thus,

n|2 3567 9 10 11 13 14 15 17 18 19
k‘11516758961011 7 12
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In order to prove that there is only one solution to the extension
problem in case (d), we count the number i(A,,C,) of nonisomorphic
groups G, obtained by extending the group A, by C,. Because the
extension in case (d) is central we have

H?*(A,.C,) = Lin,2y X Ly 3

In case (n,3) = (n,2) = 1, the above formula implies that the extension
splits and the group G is isomorphic to C, X 4,. In case (n,2) =1,
(n,3) = 3, the subextension

1 C, > m (V) >V, > 1

splits by Zassenhaus theorem, so according Lemma 13, we have two
possibilities for G, namely,

G=C, X4, or G=V,XC(C,,.

In case that (n,2) =2, (n,3) =1, we have H?(A4,,C,) = Z,. The two
groups appearing here are isomorphic to the two groups of case (c).

Suppose now that (n,2) = 2, (n,3) = 3. We prove that the number of
nonisomorphic central extensions of 4, by C, is i(4,,C,) = 4. Let us
write n = 2°3*m with (m, 2) = (m, 3) = 1. There are only two nonisomor-
phic extensions G}, i = 1,2 of the form

1-Cp, > G —>A,—1,

as we have seen in the case that (n,2) = 1, (n,3) = 3. The group G is
given by an extension of G;, namely,

1-5Cp—>G—->G)— 1.

We claim that G has two possibilities for each selection of G}, i = 1,2.
Indeed,

HY(Cy,,, Cpe) = Hom(Cyp,,, Cpa) = 0,

so the sequence (restriction-inflation) is exact

U
i

G
0—>H2(
C

3bm

,QJ*anfmﬁH%@wqosa
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which implies that H*(G}, C,.) = Z, because

Gi
HZ( = ,CZM) —H*(A,,Cp) =7
3°m

In order to prove that the ramification type of case (b) is realizable we
have to find a divisor D € 9,(A,, A, € A, B) of degree 0 mod n. We
consider the cases:

(@) A, = . The ramification type of this case is realizable by
Lemma 6.
() If Ag={P,,,..., Py 4, Py,,..., Py,} wetake s orbits O(P, 4,)
where P, is not fixed by 4, and we set M(P) =1 modn, AP, ;) =
— NPy ) mod n. So, deg(D) =125 and we can select an s such that
deg(D) =0 modn. If A, ={P,,,...,P,,} we take s orbits O(P,, A,)
where P; is not fixed by A, and we set M(P)=1 modn for all P e
supp(D). The degree of D is

deg(D) = 4 + 12s.

Therefore, because (n,3) = 1 we have that (n,12) | 4, so we can find an s
such that D = 0 mod n.

(©) In this case A ={P, y,..., P, ¢}. Let n,y be the part of n such
that

B(b) = 1 mod n,.
By Lemma 5 it is enough to prove that deg(D) = 0 mod n,. Take s orbits

O(P,, A,) where P. is not fixed by A, and put A(P) =1 modn for all
P € supp(D). By computation

deg(D) = 6 + 12s.

Because n = 2 mod4 or n = 1 mod2 we have that (ny,12) | 6, so we can
find an s such that deg(D) = 0 mod n,.

(d) We take s orbits O(P,, 4,) where P, are not fixed by D,,. If
Ar ={Py1, ..., Py g Pyq,..., Py} then we set A(P, ;) = 1 modn for i =
.,6,and A(P, ;)= —1modn forj=1,...,4 If

R=APr1- i Prg Poyvo s Pygy Py Pyl

then we set A(P, ;) = 1modn and M(P, ;) = —MP;;)modn,i=1,...,6,
j=1,...,4. The degrees of the above divisors are

deg(D) =2 + 125 and deg(D) =6 + 12s.
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We can select an s such that deg(D) = 0 mod n. Indeed, as in cases (b)
and (c) we notice that » =2 mod4 or n =1 mod2 and, if the places
P; 4, ..., P;, are not ramified in F/F; then (n,3) = 1 by Remark 2.

4.7. The Group Ag as a Quotient Group

The group A appears as a group of automorphisms of the rational
function field with the following ramification types, which we handle
together:

(@ In F,/F's three places p,, p,, p; of F;'s are ramified, with
ramification indices e, = 2, e, = 3, e; = 5, respectively. The characteristic
is p#23,5.

(o) In F,/Fj's two places p,, p, are ramified with ramification
indices e; = 6, e, = 5, respectively. In this case the characteristic p = 3.
In this section we will prove:

THEOREM 19. Let G, = G /C, be isomorphic to As. The cohomological
class a € H*(Ag, C,) describing G can be determined by the cohomology
class corresponding to the subextension of a 2-Sylow subgroup H,.

If (n,2) =1 or all places of F, above p, are decomposed in F/F, then
G = C, X Ag. Otherwise G admits a presentation in terms of generators and
relations as:

(X,Y,Z,TIT"=X3=1,Y?=T, Z?=T,(XY)’=T',(YZ)’=T°,
(XZ)'=T™ XTX ‘=T, ZTZ *=T,YTY *=T),
for some integers m,l,0 € {1,..., n}.
Proof. Ag is a simple non-Abelian group so the action homomorphism
B: As = Z;,
is trivial and the extension
1-C,»>G>d; -1 (33)
central. We have computed that H?*(A4;,C,) = Z,, ,,. If n is odd then
G=C,XAs.
Suppose now that » is even. By Proposition 8 the restriction map
Z,=H?*(A45,C,) :HZ(ASvCn)(z)l;le(Han) =2,97,®7Z,,

a—res, Hz( a) (34)
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is injective, where H, =V, is the 2-Sylow subgroup of A.. This proves
that we can determine the structure of the extension of A, by computing
the structure of the subextension of a 2-Sylow subgroup. The 2-Sylow
subgroup of A is isomorphic to V,. We consider the two cases:

1. All places above p; are decomposed in the extension F/F,. By
the study of extensions of dihedral groups we have that, 7~ = C, X V,
hence G = C, X As.

2. All places above p, are ramified in extension F/F,. By the study
of dihedral extensions, this is possible only if n = 2 mod 4. We would like
to write a presentation for G in terms of generators and relations. The
group A, admits the presentation [Hu, p. 138]:

As = (xy 21X =y? =22 = ()° = (32)° = (x2)®).  (35)

Let T be a generator of the cyclic group C,. The decomposition group of
all places of F which extend p; have a cyclic subgroup of order 2n. Let
X,Y be elements of order 2n, such that #(X) =x, 7w (Y) =y. We can
select X,Y such that Y2 = X2 = T. By applying = to products of X,Y
and using the relations of A, given in (35) we arrive at the presentation
of G:

(X,Y,2,T | T"=X*=1,Y?=T, Z*=T, (XY)'=T', (YZ)° = T°,
(XZ)'=T™ XTX ‘=T, ZTZ *=T,YTY *=T),

where m, [, 0 € {1, ..., n}. One can compute m, [, o using the presentation
of #~*(),) in terms of generations and relations. It is difficult to do this
sort of computation generically. However, using MAGMA [Ma] symbolic
algebra package we can calculate the values of m, [, o for certain n: For all
values of n we have tried it turns out that we can take m =1 =1 = 1 for
n=2and m=1,0=3,1=2+n—-2)/4forn>2 n=2mod4. |

Let D be an arbitrary divisor in &,(Ag, Ax C A4, B)

D-YaTr+Yar) ¥ P

i=1 Plp, PeO(P, Ag)

where a; = 0 if the places above p; are notin A and0 <a;, = M(P, ) <n
if the places of F, above p; are in Ay, P, ; is an arbitrary place over p;.
The degree of D in case (a) is

deg(D) = a,30 + a,20 + az12 + 60 ) A,(P,).
i-1
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This gives us
(60,7) | (a,30 + a,20 + a,12),

as a necessary and sufficient condition for the ramification type A to be
realizable. Similarly in case (b) we have the condition

(60, 1) | (a,10 + a,12),

as a necessary and sufficient condition for the ramification type A, to be
realizable.

4.8. The Group S, as a Quotient Group

In this section suppose that G/C, = S,. This case appears in character-
istics p # 2,3. In the extension F,/Fy* three places g, q,, q; of F, are
ramified, with ramification indices e; = 2, e, = 3, e; = 4. Let {P; ;};_, _ 15,
(P, }<j<e {P3il1<r<6 DE the sets of places of F, which are above
q1: 95, 43, respectively. S, admits the presentation in terms of generators
and relations,

S, =y ly?xt (x ) = 1), (36)

and as one checks A, is the subgroup of S, generated by x?, yx.
The ramification of §, compared to the ramification of A, is given in
the diagram:

Fo Py Py, Poyyoos Py Pagyn Py

| \/ 3\/ \/3 \/2
Fgls * Py D3 P1
I |2 \/ |2
Fg @ 4 0

THEOREM 20. Let G/C, = G, be isomorphic to the symmetric group S,.
Then there are the cases for the group of automorphisms of G.

@ {Py}1<ic1o U{Ps ok <6 CAg. The action of S, on C, is triv-
ial. If (n,2) =1 then G=C, X S, and if (n,2) =2, n =2 mod4 then G
admits the presentation in terms of generators and relations

G=(XYT|T"'=1Y2=X*=XIX"'=YIY '=T,
(X1Y)' =T,

for some k € {1,...,n}.
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(b) G =C, XS, in all other cases.
Proof. The map ® of Proposition 8:
b
HZ(S4’Cn): @ HZ(S4!Cn) - HZ(HZ!Cn) & HZ(HB'Cn)
p=2,3
a=a,+ay > resg (@) +resg ()
is injective, where H, (resp., H;) is any 2-Sylow subgroup (resp., 3-Sylow).
We will prove
Lemma 21. If G/C, = S,, then the map,

H?*(S,,C,) - H*(H,,C,)
a=a,+az — resg Hz( a,)
is injective.

Proof. 1t Ap 5P, }1o;cs U{Pshicice OF Ag D{Py }io;i21p then
the action of S, on C, is trivial, so H*(S,.C,) =2, , X Z, . If
Ap N {szj}lsj£8 = (J then by the study of extensions of cyclic groups, we
have resg, _, (@) = 0. Finally if A D{P, };_;.gand Az N {P3} 45

= (J, then by the study of case (b) of extension of A4, we have that
(n,3)=1,s0 H*(H;,C,) =0. 1

This proves that the structure of G is determined by the structure of the
subextension

1-C,-»n (D) > D,—~ 1
We have the tower of field extensions:

FO Pl,l""!Pl,IZ P2,1""'P2,8 P3,1""'P3,6

| 2\ l/ \/ 2\l 4/
FPs Py * P> P

3| 1\ /2 3| 2\ /1
Fye q: q, q3

The ramification of g, of the extension F,/Fy+ does not affect the
ramification type in the extension F,/FP+. We have to consider the cases:

Q) Ag N {P hicicio =D and {Pg )16 CAg OF Ax N
Py hckce=Dand{P, }; .1y CAg
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In both of the above cases, the action of S, on C, is trivial. Moreover
y € S, fixes a place of F, above ¢, and a place of F, above g,. Hence
by Remark 4 we have that (n,2) = 1. Therefore, H*(S,,C,) =0,s0 G =
C, xS,

@ Agn{P hoic=Ar N{P; )ik = . In this case by the
study of dihedral extensions we have resg _, ,(a) = 0, hence « =0 and
G=C, XS,

(B {Py}1cic1o U{Ps )16 CAg. In this case the action of S,
on C, is trivial. Hence if (n,2) = 1then G =C, X S,. If (n,2) = 2 then
by the study of dihedral extensions, this case appears only if » = 2 mod 4.
Let T be a generator of the cyclic group C,. Consider elements X,Y in G
of orders 4n and 2n, respectively, such that 7(X) =x and 7 (Y) = y. We
can choose X,Y such that X* =T and Y? = T. Moreover we have the
relations XTX ' =T and YTY ! = T. Applying 7 to the products of
X, Y and using the presentation (36) we arrive at the presentation of G,

G=(XYT|T"=1Y2=X*=XIX"'=YIY '=T,
(X 1Y) =T,

for some k € {1,..., n}. Although the structure of G can be determined by
the structure of 7~ 1(V,) it is very difficult to compute k generically. Using
MAGMA [Ma] we can compute k for several n, n = 2 mod 4. It turns out
that k =2+ (n—2)/4. 1

In order to prove that the above ramification types are realizable we
have to find a divisor D € 2,(S,, A € A, B) with deg D = 0 mod n. As in
the A. case we have that the condition

(ny,24) | (a,12 + a,8 + a;6)

is sufficient and necessary for deg(D) = 0 mod n,, where a, = 0 if the
places P, ; of F, which are above p; do not ramify in extension F/F;, and
a; = MP, ;) # 0, otherwise.

4.9. The Matrix Groups PSL(2, q) and PGL(2, q) as a Quotient Group

In this case G, = G /C,, is isomorphic to PSL(2,g) or to PGL(2, g). In
extension F,/F¢° only two places p,, p, are ramified. It is very compli-
cated to give a presentation of G in terms of generators and relations
because as far as the author knows, there is no general presentation of the
matrix groups PSL(2,q) and PGL(2, q) in terms of generators and rela-
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tions. However, we can prove:

THEOREM 22. Let G, = G /C, be isomorphic to PSL(2, q) or PGL(2, ¢),
where q is a power of the characteristic. The cohomology class « € H*(G,,,C,)
is determined by the restriction resg _, y(a) to a 2-Sylow subgroup H,. In
particular, when (n,2) = 1, or when the places of F, which extend p,, p, are
decomposed in extension F /F, then G = C, X G,,.

Proof. We need:
LEMMA 23. For G, = PSL(2, q), PGL(2, q), H¥G,,C,) is a 2-group.
Proof. We have the two cases:

Case 1. G, =PSL(2,q),(q,2) = 1or G, = PGL(2,2) = PSL(2,2/).
Because PSL(2,q), where g = p/ is a power of the characteristic, is
simple, the action of G, on C, is trivial. We have

Ly, if pl+9

HAPSL2.a). C) = 4,0
(6,n) -

Observe that if p/ = 9 then (n,6) = (n, 2) because we have assumed that
the characteristic p does not divide n, so H*(PSL(2,q),C,) = Z, ).

Case 2. G, = PGL(2,q), (¢,2) = 1. The kernel of the action homo-
morphism

B: PGL(2,q) — Z*

is either ker B = PGL(2,q) or ker 8 = PSL(2,q). In the first case the
extension is central and H*(PGL(2, q),C,) = Z,, ,) X Z,,, ,,. Observe that

HY(PSL(2,q),C,) = Hom(PSL(2,q),C,) = 0,

because PSL(2, g) is simple and non-Abelian. We write the inflation-re-
striction sequence

) PGL(2,q) 2
0 (mc) - H(PGL(2.9).C,)
- HZ(PSL(Z, q)’Cn) = Z(21'1)’

and because PGL(2, q)/PSL(2, q) = Z, we deduce that
H*(PGL(2,q),C,) is a 2-group. 1
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We return now to the proof of Theorem 22. The monomorphism @ of
Proposition 8:

H¥(G,,C,) = @ H(PGL(2,q),C) > @D H(H,C,),

tlg(g?-1) t-Sylow

where H, runs over the ¢-Sylow subgroups of G, is injective so the
restriction map

H*(G,,C,) » H*(H,,C,)
a— B= resGOHHZ(a)

is injective as well. The 2-Sylow subgroup H, is isomorphic to a dihedral
group D,«, of order 25+ where K = max{v,(e,), v,(e,)}.

Moreover, if (n,2) = 2 then the cohomology group vanishes, so G =
C, X G,, and by the study of dihedral extensions we have that if all places
of F, above p,, p, are decomposed in the extension F/F,, then B =
resg, o u{@) =150 G=C, X G, as well. 1

Let D be a divisor in 2(G,, A C 4, B), and n, the greatest divisor
of n, such that B(o) =1 mod n,. According to Lemma 6 we have that
deg(D) = 0 mod n « deg(D) = 0 mod n,. Therefore the condition

(no.q(q —1)(q + 1)) I (a19(q — 1) + ay(q + 1))

is necessary and sufficient for deg(D) to be congruent to 0 mod n,, where
a; = 0 if the places of F, above p;, are in A and a; = A(P), P|p;
otherwise.
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