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Abstract

The fundamental group of Fermat and generalized Fermat curves is computed. These curves are
Galois ramified covers of the projective line with abelian Galois groups H. We provide a unified
study of the action of both cover Galois group H and the absolute Galois group Gal(Q/Q) on
the pro-¢ homology of the curves in study. Also the relation to the pro-¢ Burau representation is
investigated.

1. Introduction

In [15] we have studied the actions of the braid group and of the absolute Galois group on a cyclic
cover of the projective line. In this article, we have exploited the fact that in a ramified cover X — P!
of the projective line we can remove the ramified points and in this way we obtain an open cover
X0 — X, :=P"\{Py,..., P} of the prOJeCth€ line minus the ramified points. Fix a point xy € X
and an arbitrary but ﬁxed preimage xO € X°. By covering space theory the open curve X° can be
described as a quotient of the universal covering space X, by the fundamental group of the open
curve (X°, x(;) <71 (X; x0) = Fy—1, where F_ is the free group in s — 1 generators. Also the
group 7 (X°, x(;) can be described as a subgroup of F; _ | by using the Screier lemma technique, see
[15, sec. 3].

Y. Ihara in [12], [11] observed that for a fixed prime ¢, if we pass to the pro-¢ completions of the
fundamental groups of the above curves, then the absolute Galois group Gal(Q/Q) can be realized
as a group of automorphisms of §,_; and it can also act on certain subgroups §_;, corresponding
to topological covers of X;, here by §,—; we denote the free pro-¢ group in s — 1 generators. The
fundamental group of X admits the presentation

1 (Xg, x0) = {x1, - -0, X|X1x0 . g = 1),
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1378 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

In this way we can unify the study of both Braid group and the absolute Galois group on
(co)homology spaces of cyclic curves. In [15, thm. 1] the fundamental group R« of the open cyclic
cover Yy« of the projective line minus s-points is computed to be equal to

Rp= (a1 0<i<t—22<j<s—1Lx' x5 1<j<s—1). (1)
DEFINITION 1.1 Given a group F we will denote by F”’ the derived subgroup of F, that is F' = [F, F].

In this article, we continue this study by focusing on the case of certain abelian coverings of the
projective line. We begin by studying the classical Fermat curves Fer, given as projective algebraic
curves by the equation

Fer, ::{[x:y:z]eIP3:x”+y”+z":()}_

The Fermat curve Fer, forms a ramified Galois cover of the projective line ramified over three
points, {0, 1, co} with Galois group Hy = Z/nZ x Z/nZ. More precisely the fundamental group of
X3 =P'\{0,1,00} is isomorphic to the free group F, in two generators a,b. Here we may fix a
point xp in X3 and take as a, b the homotopy classes of loops circling once clockwise around the
points 0, 1 of P'. There is also a third loop c circling around oo, but the homotopy class of this loop
can be expressed in terms of a, b in terms of the relation abc = 1. When we remove the preimages
of the three ramified points {0, 1,00} from Fer, we obtain the open Fermat curve Fer!, which is a
topological covering of X3. Let R, = 7 (Fer,?, x(;) be the fundamental group of the open Fermat
curve Fer,? and x(; S Fer,? is a fixed preimage of the point xy € X3. The group Rp, is known to be
isomorphic to (a”",b", [a, b]) < F,, while

Ho = F2/Rger, = F2/(a", b", [a, b]).

Using this quotient we can define the following generators for the group Hy, namely o = aRg;,

and 3 = bRper,. Let R{:er" denote the commutator group of the fundamental group R, of Fer,. The
1

group F, acts on F, by conjugation, that is for every two elements x,y € F, we define x¥ = yxy~".
Notice also that the homology group Rrer, /R, becomes an Hy-module by defining

x* =axa ', x? = bxb~" for x € Rge, /Reer,

This action is well defined and independent of the selection of the representative of the class
«, B € H).

THEOREM 1.2 The fundamental group Rge:, of the open Fermat curve Fer,? is the subgroup of the
free group F, = (a, b) on the generators

Alz{(b")“izogign—l}, #A =n

Azz{[bf,a]“":lgjgn—l,ogign—z}, HAy = (n—1)

As={a"la,b]:0<j<n—1}, A3 =n
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GALOIS ACTION ON HOMOLOGY OF GENERALIZED FERMAT CURVES 1379

The module Rger, /Ry, is generated as a Z[Ho)-module by the elements a”",b" and [a, b]. An
isomorphic image of the module Ryer, /Ry, fits in the small exact sequence

0 — Z[()] D Z[(B)] — Rees, /Rier, = L[Ho] /10,

where I is the ideal of Z[Hy) generated by 272—01 o, Z::Ol Bi, or equivalently

ZHol/I = J(a) ®J 5y,

where J o (resp. J o)) denotes the coaugmentation module for the cyclic group () (resp. (f3)), see
Section 2.2. Finally if F is a field which contains the n-different nth roots of 1, then

n—1

Hy(Fer,, Z) @2 F = €D Fxiy, )
ij=1
ihjn
where x; is the character of Hy such that x;;(a”, ") = C,i”ﬂﬂ and (,, is a fixed primitive nth root
of unity.

The proof of the above theorem can be found in Section 2.2 and in particular in Proposition 2.12.

The generalized Fermat curves play the role of Fermat curves in the more general setting of
abelian coverings of X; = P'\{Py, ..., P}, s>3. Their automorphism group was recently studied
by R. Hidalgo, M. Leyton-Alvarez and the authors in [10].

A generalized Fermat curve of type (k,s — 1), where k, s — 1 > 2 are integers, is a non-singular
irreducible projective algebraic curve Cy_ defined over a field k admitting a group of automor-
phisms Hy =2 (Z/kZ)*~" so that Cy,_1/Hy is the projective line with exactly s branch points, each
one with ramification index k. Such a group H), is called a generalized Fermat group of type (k, s — 1).
Let us consider a branched regular covering 7 : Cy 43— — P!, whose deck group is Hy. Let Ry

be the fundamental group of the open generalized Fermat curve C{, | = Cys—1\m ' (X;) of type
(k,s —1).

By composing by a suitable Mobius transformation (that is, an element of PSL,(C)) at the left
of 7, we may assume that the branch values of 7 are given by the points 00,0, 1, Ay, ..., A\;_3, where

\; € C\{0, 1} are pairwise different, that is we can take X; = P!\ {00, 0, I, Af, ..., A\s_3}, s> 3.
A generalized Fermat curve of type (k, s — 1) can be seen as a complete intersection in a projective
space P!, defined by the following set of equations

raftd = 0
Mxk4xk4xk = _
Crs—1 = Ce(A1, ..o Ay_3) = 0T cP 3)
)\S_gx(’)‘ +x{‘ +xf_1 = 0

Observe that topologically the construction of generalized Fermat curves does not depend on the
configuration of the ramification points. On the other hand, the Riemann surface/algebraic curve
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1380 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

structure depends heavily on this configuration. For instance, the automorphism group depends on
the configuration of these points, see [10].
The genus of Cy;_; can be computed using the Riemann—-Hurwitz formula:

s—2

gks—1) = 1 + ((s=2)(k—1)=2). 4)

It is known [6] that generalized Fermat curves, have the orbifold uniformization H/T" in terms of
the Fuchsian group

Te= (x1, %0, ..., X5 \x{‘ =... :xsk =x1xp- x5, = 1), (5)
The surface group is given, see [6], [18] as F_; - (x{‘ .. .,xf_l, (x1 -+ x,_1)%). We will compute
the genus of the generalized Fermat curves by two more different methods in equation 19 and in

Section 5.1.2.
Recall that Ry s _ 1 denotes the fundamental group of the open generalized Fermat curve C ,2371 and

set Fs— 1.k = Fs—1/Rk, where Ry is the smallest closed subgroup containing all elements xf k, 0<i<
s.

THEOREM 1.3 The group Ry s_ ; is a free group generated by the union of the sets

i is—2
A1 = {(xskfl)x']mxx’z }

B, = {[xzi/+1,x—1:xu]x'i'”} 1<i, <k-2

B, = {(xz/j[x;l’xzi/—i-l,s—lDXiUl}’ (6)

e, ie\+1

wherex}l‘l2 =X X1 ~xl;22, i=(i1,....i-1), 0<i<k—1,1<j<s— 1. The group Ris_ /R ,_,
is also generated (not necessary freely) by the union of the sets

-1 =)™

b

Ay — {(xk)xl.ufl'xuﬁ»l,afl}’ for1<v<s—2

v

Al = {2, [ 1Y for 1 <y <s—2, )

Proof. This theorem is proved using the Schreier lemma in Section 2.3. The transition from the first
set of generators of equation (6) to the second set of non-free generators of equation (7) is done in
Proposition 2.17. O
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GALOIS ACTION ON HOMOLOGY OF GENERALIZED FERMAT CURVES 1381
In our pro-/ setting we are interested in generalized Fermat curves of type (¢%, s — 1), so we will

restrict ourselves to the study of curves Cp ;. Set .# := (ZN [0, £*))*~ 1. Fix a primitive ¢*-root of
unity (g and for eachi= (iy,...,is_1) € . define the characters x;(-) on the abelian group

={x=(&"...%x") 1 X € L)L} = (Z/0°T)"""
by
Zx_:] Iz
XI(X) = Cgk e .
THEOREM 1.4 The pro-£ homology of the closed curve is given by

/
gr 1,k

s— l,k

H(Cpy_1, L) @7 Ly = (8

Let T be a field containing Z, and the (*-roots of unity. We have the following decomposition:

Cgks 1, @]F C Xlr
ies

where

o fs—z) -2 ifi#£(0...,0)
C(l)_{s—z(i) ,f]:(O,...,O)

and z(i) is defined in equation (36). Moreover
rankz, Hi(Cpes 1, Z¢) = (s— 1) (Zk)sil +2—s (Zk)k

Letk C C and let k be the algebraic closure of k. The generalized Fermat curves behave in general
in the same way if k is a field of characteristic p # ¢, but in this article we need to use fundamental
groups and the theory of covering spaces so it is easier to assume that k C C, instead of working
with algebraic fundamental groups in the sense of Grothendieck [7], [8]. In general there will be no
difference if we work over a field of characteristic zero.

Fix the number of ramified points s. If [T((Cgk’ s—1) is the function field of the generalized Fermat
curve then

LA — Gal(K(Cproy )™ /K(Crs 1)),

1"
s—1,k

where k(Cp ;)" is the maximal abelian unramified extension of the function field k(Cp ;_;).

Proof. The group theoretic interpretation of homology given in equation (8) is proved in Section 5.1.
The analysis into characters is proved in Section 4 and in particular in Proposition 4.8. ]
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1382 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

We would like to construct a ‘curve’ C; which is a Galois cover of the projective line ramified
over the set of s-points with Galois group Gal(C,/P') = Z;~'. This ‘curve’ can only be defined as
the limit case of the generalized Fermat curves Cyi ;.

We can avoid the definition of such a ‘curve’ by working in the language of (infinite) Galois
extensions of function fields as shown on the diagram on the right.

In this way instead of considering a simple generalized Fermat cover we consider all of them,
together.

Cy M,

st Cor 51 z;~! &(Cek,s—l)
N ﬁk2)51 %M)S_l
P! k(t)

The pro-¢ limit

/

T :=limT(Jac(Cp, ) = lim %

1"
ok ok Vs—1k

corresponds to the Z, homology of this ‘curve’ C; and all the knowledge of the Galois module
structure of all Tate modules of the curves Cy ;1 is equivalent to the knowledge of the Galois module
structure of T.

The situation is similar to the pro-¢ Burau representation, defined in [15]. We also in Section 5.1.5
how we can pass from the Z;fl—covers corresponding to generalized Fermat curves, to the Z,-case
corresponding to the pro-£ Burau representation, using the ideas of [16].

Section 2 is devoted to the application of Schreier lemma to Fermat curves 2.1 and generalized
Fermat curves 2.3 and the computation of homology by passing to the abelianization of the funda-
mental group. Section 3 is an introduction to Ihara’s ideas on the study of the absolute Galois groups
as a profinite braid [11], [12] following [14]. In Section 4.1, we compute the Alexander module for
the generalized Fermat curves, while Section 5 is devoted to the ZZ*I cover of the projective line,
seen as a limit of Cye ;| curves and the relation to the Tate modules of them. Finally we consider the
passage to the Burau representation by comparing the corresponding Crowell sequences, in terms of
the viewpoint developed in [16].

1.1. Geometric interpretation

We consider a Galois covering 7 : ¥ — P! of the projective line ramified above the points in S C IP’@,
and the corresponding covering of compact Riemann surfaces. We also assume that the genus g of ¥
is > 2. The curve Yy = Y\7!(S) is a topological covering of X; = P{.\S, which can be described in
terms of covering theory and corresponds to a subgroup Ro of 7 (P¢\S) = 1 (Pg)\S) — o PL).

Denote by Ry the closure of Ry in 77~ “(PL).
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GALOIS ACTION ON HOMOLOGY OF GENERALIZED FERMAT CURVES 1383

We have seen in [15] and we will see in Section 2.1 how this group R, can be computed by using
the Schreier lemma. For an application of this method to cyclic covers of the projective line we
refer to [15]. In order to pass from the open curve to the corresponding closed Riemann surface we
consider the quotient by the group I', which is the closure in the subgroup of §,_; generated by the
stabilizers of ramification points, that is

I'=(x)", ..., x7), )

where ey, ..., e, are the ramification indices of the ramification points of 7 : ¥ — P!. In this article
for some elements g, ..., g, in a certain group we will denote by (g, ..., g} the closed subgroup
generated by the elements {g, ..., g}

Notice that if e; =ep = --- = ¢, then T is the closure of the group I'; defined in equation (5).
Later, for e; = - -- = e, = £* we will denote this group by 9;. The group R = Ry/Ry NI corresponds
to the closed curve Y as a quotient of the hyperbolic plane. This geometric situation can be expressed
in terms of the short exact sequence of groups where the map v is the natural onto map defined by
sending al’ — aRy - T.

R Ry-T _ _
o . Ro %Sslﬁgsl

1—-R= — = =
I'NRy r r Ry-T

— 1. (10)

In this article, we focus on the study of Fermat and generalized Fermat curves. Namely, in Sec-
tions 2.1 and 2.3 we compute the fundamental group of the corresponding curves. We also treat the
classical Fermat curves s =3 since this computation is elementary, while for the generalized Fer-
mat curves s > 3 more advanced tools are needed, namely the usage of Alexander modules and the
Crowell exact sequence.

2. Generalized Fermat curves
2.1. Fermat curves

These curves are ramified curves over P!\ {0, 1,00} with deck group Z/nZ x Z/nZ. We have
71 (P\{0, 1, 00}, x0) = F2 = (a, b). This curve is a generalized Fermat curve C, s for s =3.

DErFINITION 2.1 The commutator [a,b] of two elements a,b in a group is defined as [a,b] =
aba= b1,

LEMMA 2.2 For any two elements x, y of a group and any positive integer j we have

j—1

(D) ] = oy Doyl o foyl - [
(ii) oy =[xyl oy poyP - oy

j—2

Proof. See [5, 0.1 p.1]. O

We will employ the Schreier lemma for describing the fundamental group of the Fermat curve of
level n, as explained in [15, sec. 3]. More precisely a (right) Schreier Transversal of a subgroup H of a
free group Fy—1 = (x1,...,x,—1) with basis X = {x1,...,x,_1 }isaset T={#; = 1,..., 1, } of reduced
words such that each right coset of H in F; _; contains a unique word of T called the representative
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1384 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

of this class and all initial segments of these words also lie in 7. For every g € F;_ | we will denote
by g the element of T with the property Hg = Hg. Schreier’s lemma, see [15, lemma 6] asserts that
H is freely generated by the elements (5, x) := ixix ', t€T,x€X and tix & T, v(t,x) # 1.

A Schreier transversal T for the subgroup Rpe;, C F» such that F /Ry, = Z/nZ x Z/nZ is given
by a’'b/, 0 <i,j<n— 1. The fundamental group of the Fermat curve is isomorphic to Ry, .

LEMMA 2.3 The group Rrer, is characteristic, that is every automorphism o € AutF, keeps Rrer,
invariant.

Proof. The group Rpe;, C F» = {(a, b), can be generated by the elements a”, b", [a, b]. The automor-
phism group of the free group F,;, and in particular of F», is generated by Nielsen transformations »;
and n;; [4, th. 1.5 p. 125] which are defined as follows: The automorphism #; sends a free generator
X+ xfl and leaves all other generators unchanged while the automorphism n;; sends x; — x;x; and
leaves all other generators unchanged. It is evident from the relations of Rpey,, see also lemma 2.4,
that n; (RFern> = RFer,l and njj (RFern) = RFern . O

We also compute:

il i
a"bjb{ab ifj<n—1

a ifj=n—1
and
__ at'pl ifi<n—1
abla= ) )
b’ ifi=n—1
Thus
o —1 ihipp—i—lg—i — if i _
4bib (a"bfb) _ aAb bb T 1 %f] <n-—1
a'b"a™’ ifj=n—1
. a'blaba=" ifi<n—1,j#£0
dbla (aibfa) = {1 ifi<n—1,j=0
a" 'bab=  ifi=n—1

Consider the generators & = dRpe;,, 5 = bRpe;, of the group Z/nZ x Z/nZ. Observe that there is
a well-defined action of « (resp. ) on Ry, /Ry, given by conjugation, that is

x* =x"=axa™! X% =xb = bxb~!
for all x € Rrer, /R, - Notice that this is indeed an action which implies that
(xa)ﬂ :xa[o’ :xﬁa _ (xﬁ)a

that is the actions of « and /3 commute.
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GALOIS ACTION ON HOMOLOGY OF GENERALIZED FERMAT CURVES 1385

LEMMA 2.4 The generators of the free group Ry, as union of the tree following sets:

Alz{(b")“":ogign—l}, #A; =n
m={pa1<j<n-10<i<n-2} #Ar = (n—1)?
As={a"la ", V]:0<j<n—1} #A3=n

Proof. This is a direct consequence of the Schreier lemma. Notice also that the above given sets
together give rise to n”+1 generators as predicted by Schreier index formula. Indeed, we compute
HA + H#A - H#A =n+(n—1)>+n=n>+1. O

LeEMmmA 2.5 Fix 0 <i<n— 2. We will prove that the Z-module generated by the elements
()= {[ba®, 1<j<n—1}
is the same as the Z-module generated by the elements
(i) = {[b,a]*?, 1<j<n—2}

Proof. We will use additive notation here. By lemma 2.2(i) for 1 <j<n—1and 0<i<n—2 we
have

[bj, a]ai =[b, a](5j71+[3/72+--~+6+1)ai. (11)
Similar to equation (11)
(@, b)? = [a,b](@ '+ et DB (12)

This proves that the elements of the set (i) are transformed to the elements of the set 3, (i) in
terms of an invertible block matrix where each block is the invertible (n — 1)x(n — 1) matrix with
entries in Z:

1 0 0
1 1

0
1 1 1

Therefore > (i) and Y, (i) generate the same Z-module. ([l
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1386 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

Notice also that

(an),ﬁ’j —plg" Vgt g g = [bj,a"_l] +an_lbjab_j
€A3
= [b-], a]an72+an73+.”+a+l + an_lbjab_j' (13)

Set &, = U;%;(i). The above computation shows that (a")? can be written as a Z-linear
combination of elements of 3; (which generate A,) and A3. Moreover

@"la™, b)) = (") — b, a)(Timo#)(Z535 7).
‘We have shown that

LEMMA 2.6 The free Z-module Rger, /R, can be generated by the n?+1 elements

@)?, (), 0<i<n—1land|ab* " 0<ij<n—2.

2.2. Structure as a Z/nZ x Z/nZ-module

We can now consider the homology group as the rank n?+1 free Z-module R, / R, - ByLemma2.3
Rrer, is a characteristic subgroup, so the group Hy = Z/nZ x Z/nZ = (o) x (3) acts on Rrer, /R,
by conjugation making Rrer, /R, a Ho-module.

For a finite group G the coaugmenation ideal Jg is defined as the quotient J = Z[G]/(}_,c 8)-

LEMMA 2.7 Set Hy = Z/nZ x 7./ n’Z. The module Ryer, /Ry, is generated as a Z[Hy|-module by the
elements a", b", [a, b]. An isomorphic image of the module Rg;, / R{:er” fits in the short exact sequence

0 — Z[{a)] D ZI(B)] = Reer, /Rier, = Z[Ho) /T — 0,
where I is the ideal of Z[H,) generated by Zf:ol o, Z;:Ol Bi, or equivalently

ZHol /1= J(0) ®J 5y

Proof. By the Z-basis given in Lemma 2.6 it is evident that a”, b", [a, b] indeed generate Rrer, /R, -
The elements a”,b" are acted by the groups («), (3) and form a Z[H,|-submodule of R, /Ry,
isomorphic to Z[{«)]| @ Z[{F)]. Indeed, since the action of « on a is trivial we can identify the
elements in Z[Hp|a" to the set of elements of Z[{3)] and Z[H,|b" can be similarly identified to
Z[{c)]. Notice also that Z[Hp|a" N Z[H,|b" = {0}.

Observe now that the elements [a, b]*#" are subject to the condition given in equation (11) which
implies that for all i

[, b] 4O+ 40" — (g5 = g pa ™ — diba € Z[(a)| @D ZIB).  (14)

In the above formula, we have used the additive structure of Rrer, /Ry, . Equation (14) shows that
the operator 1 + 3+ --- + 3"~ ! in the quotient of Rrer, /Rf,, by Z[(ca)] D Z[(B)] is zero. Similarly,

Fer,
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GALOIS ACTION ON HOMOLOGY OF GENERALIZED FERMAT CURVES 1387

by equation (12) we obtain that Z 0 o' =0 in the quotient. Therefore, in the Z[H,|-module gen-
erated by [a, b] we have that 1 +3+---+ "' and 1 +a + ---+ a” ! both annihilate [a, b]. We
compute that

Z[Hol/(1+ B+ B>+ + " ") = @'V 5.

The result follows. O

REMARK 2.8 The theorem of Maschke implies that after a scalar extension to Q we have

Rrer, /Ry, ©2.Q = Q[()] D QI(B)| €D QUHo) /1

We will now prove that in Ry, /Ry, there are exactly 3n elements which are fixed by an element
of Z/nZ x 7./nZ.

First note, the 27 elements (a")?" (respectively (b”)ai) are fixed by () (respectively (3)).
The other n-elements are the elements ((ab)")® which are fixed by (ab).

LEMMA 2.9 We can write the elements ((ab)")® as follows:
(b = [pa)e" (T8 ot b gy,

Proof. We begin by computing the n =2 case:

[b.a]

——
(ab)? = abab = abab~'a~' abb = a[b, ala™'aabb = (b, a]®a*b*.
Similarly, for the n =3 case we have

[b.a]
(ab)® = (ab)?(ab) = [b, a|*a*b*ab = [b, a]*a*bbab™"'a~" abb
[b.d]
—
= [b,a]® - [b,a]* Pa*bab® = [b,a]* T Pa* bab~'a" abb?

= b, F[b,a]” @b = [b,a]* BTV,
Now assume that for k we have

(ab)* = [b, a]ak"(Zﬁ;zoﬁ”)+~~~+a2(ﬁ+1)+aakbk
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1388 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

Set E(k) = o~ <Z]:,_:20 B”) + -+ a?(B+1) + a. We will now consider

(ab)* = b, a]* O d b ab
=[b, a]E(k)a" [b", a]abkb = b, a]E(k) [bk’ a]ak G pkt!
— [b’ a]E(k) [b, a]ak(ﬁk—l+Bk—2+...+ﬁ+l)ak+lbk+l

= [b,a]* (Z20 8" )+ (S 87+l (B DFa gl L et

as desired. O

The above lemma gives us
((ab)n)ai _ [b, a]a/xfl+i(z7/;20ﬁu)+'..+a2+i(5+l)+al+zan (b”)a[‘

We can see that the transformation matrix from elements [5/, ] to elements of the form [b, a]#*'
is invertible. This allows us to prove that the elements in the sets A, and A3 can be written as linear
combinations of elements of the form [b, a]alﬂj and (a”)'Bj for 1 <j<n—1,0<i<n—2. Itis clear
that the elements (a")?, (b")*, ((ab)")®" as given in the table below are fixed by the cyclic group
mentioned in the third column. The elements ; are the n-elements (b”)ai fixed by 3, the n-elements
(a™)?' fixed by « and the n invariant elements ((ab)")® in the module generated by commutators.
In the following table we enumerate the fixed elements ~;:

Invariant element ~; Index Fixed by
(a™)” 1<i<n (a)
Ok n+1<i<2n (B)

((ab)™)* 2n+1<i<3n (af)

So far we have computed the open Fermat curve admitting a presentation

Reer, = (a1, b1, ..., ag, by, Y1, oo, V3u| 1172 Y30 - @1, bi][aa, bo] - - [ag, bg] = 1),

where g is the genus of the closed Fermat curve which equals to (n — 1)(n — 2) /2. Every ramification
point of the Fermat curve is surrounded by a path y; and there are 3n such paths, see Figure 1. We can
verify that our computation is correct so far, by computing the genus of the closed Fermat curve. We
add the 3n missing points and we observe that the rank of Rr, equals 2g 4+ 3n — 1 so the Schreier
index formula implies:

n+2-3n  (n—1)(n—2)
2 B 2 '

20+3n—1=n"+1=g=
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) 1

P}C—{o,Loo}

Figure 1. Open Fermat curve as cover of the projective line

We have that

/
RFern / RFer,,

e )= AT

DEFINITION 2.10 We will denote by ¢, a fixed primitive nth root of unity and by x;; the character
such that y; (¥ B*) = ¢/ .

DEFINITION 2.11 Let I" be free Z-module generated by (v, ..., Y3.)-

PROPOSITION 2.12 A basis for the Z-module Hy(Xr, Z) consists of the set:
{[b.a]*" modT:0<i<n—20<j<n—3

Let T be a field that contains n different nth roots of 1. Then

n—1

Hi(Xr, Z) @2 F = @D Fxi.
ij=1
in

Proof. The first assertion follows by considering the action modulo the elements which are invariant

by an element of Hy. Indeed, in order to compute the quotient we change the basis of Rrer, /Ry, by

replacing each one of the elements [b,a]®#" by ((ab)")* for all 0 <i<n— 1, which belongs
to the group (71, ..., 3,) and is considered to be zero.
For the second assertion let us write

n—1 n—I1 n—1
(Vo) ©F) @) (Vi) @ F) = (EBMo) QR | PFxos | = PFis
i1 =1

ij=1
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1390 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

We are looking for the elements which are stabilized by a3, that is x;;(a) = ("™ = 1. This is
the module EB:’:_II]F Xin—i> Which has n-elements. The desired result follows. O

Observe that the above computation agrees with dimp H (Xp, Z) 2 F = (n — 1)(n —2).
Braid group action
We will now consider the action of the Braid group Bs on H; (X, Z) of the closed Fermat surface.

By the faithful Artin representation we observe that the braid group in three strings is generated by
the elements o, 05, where

oi(a) = aba™" ox(a)=a oi(b)=a or(b)y=a""b7".

Notice that the above two automorphism in the abelianized free group with two generators acts

_ (0 1 _ (1 -1

1= o 2=\ -1)’
in GL(2,Z), reflecting the fact that B3 /Z(B3) = PSL(2,Z). Therefore, working in Rpe;, /Rg,,, We
have

like the matrices

oila,b] = [aba™",a] = [b,a]* = —[a,b]*

ola, bl =la,a b =[b" a7l

and more generally

a1 ([b, a]a'ﬂ/) =—[b, a]@/‘rlﬁi o (b, a]aiﬁj) _ _[b_lya_l}a,ﬂﬂ,/
Indeed, we compute
a1([b, a]alﬂ/) =0y (a'b/[b,alba™") = ab'a'd[a,b]*a b
=—|b, a]o/*‘ﬁ"

and

a2 ([b, a}o‘iﬁj) =0y (dbl[balba™) = —d'(a'b"Yba (a b ) Fa

B
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In the above equations we have used that Hy is abelian and its action on R, /Ry, is well defined.
We also compute

o1 ((@?y = )"

o2((@?) = (a") P,

o (")) = (a")?
a2 (")) = ((ba)")

i

2.3. The generalized Fermat curve

Application of the Schreier lemma

Consider the open curve X; = P'\{0, 1,00, A1, ..., A\;_3} and let x; be a fixed base point in Xj.
For the fundamental group we have

Wl(xsx-xo) Z2F = <X1, ~--’-xs71>-

Let X, denote the universal covering space and Y = X /F._, be the cover of X corresponding to
the group F’_ |, that is

Gal(Y/X,) = F,_|/F,_ |~ H|(X,,Z)= 7"
Let Hy ;1 = (Z/kZ)*~" be the abelian group fitting in the short exact sequence

0—=1—H(Xs,Z) = Hrs—1 — 0. (15)

If we denote, in additive notation, H, (X, Z) = @._} x,Z, then I = @’ _{ kx, Z.

REMARK 2.13 The short exact sequence is in some sense a generalization of the winding number
exact sequence given in definition 9 of [15].

We will now employ the Schreier lemma [4, chap. 2 sec. 8], [19, sec. 2.3 th. 2.7] in order to
compute the free subgroup Ry,—1 C Fs_;, where Ri;_ is the subgroup of F;_ corresponding to
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1392 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

the curve Cy 5| and is isomorphic to the fundamental group of Cy; — ;. We will introduce some new
notation first:

DEFINITION 2.14 For any i:= (i, ...,is_1) € Z*~', define

i._ 0 izu. is—1
X =X X Xo_ 1+

We also set
e =(1,0,...,0),e,=(0,1,...,0),...,e,_; = (0,...,0,1).
LEMMA 2.15 A Schreier Transversal for Ry sy < Fs_ is given by
T={x"1i=(i1,....ij....is_1) €Z°  and 0 < i; < k—1},

Proof. Notice, that the set T’ contains #H;_ | elements which are different modulo Ry _ ;. To see
this we can use the fact that
Fxfl Hl (XS’ Z)

Hy, 1 = = ,
Ris—1 I

and the special form of /. The condition concerning the initial segments is trivially satisfied by the
special form of the elements in 7. g

For given 1 <v <s— 1 we have:

xiter o< k—1

X, =1

x'-x, =

CaselFor1<v<s—1:

; ( : )*1 xi.x, -xi—ev ifi, <k—1
x'-x, - (x'-x . .

v v xiox, x iHGk=Des g — k1
Notice that in the second case

—it(k—1)e, _ —ii —ir The—1 —hpr s
X ' _xl ‘x2 xv—l xl/—‘rl 'xs—l .

CaselIl Forv=s5—1:

)71_ 1 i1 <k—1

xtoxk (xDT i =k 1

X' cXs—1° (Xi-xsfl
s—1

fey fep41 by .
XXXy, if 6, <4,

s
fah if 0 >0,
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The generators of the free group Ry ; are falling in the following categories:
i is—2
A1 = {(xsk—l )Xl X2 }
—iy—1_ (i

B, = xil,uq 'xi/"xil/+1,s71 "Xy (xi/+1,s71)_1 Xy : (xl,uq)_l}

. _ . . —1 . —1
xi,uq -x’f, ! 'x;/+1,s71 "Xy (x:/+1,s71) : (xi,uq) }
. i
{(x’;[x;l,xmx_l})""“‘}- (16)

Notice that A; | corresponds to Case II, while the sets B,,, B!, for 1 <v <s—2 correspond to
Case I, for i, <k—1 and i, = k— 1 subcases, respectively. We now count the sizes of the above
sets.

#HA1 =K
#B, = (k—1)- k"' (K177 —1), for I <v<s—2
#B, =k T =k for 1 <w<s—2

which gives in total

s—2 s—2
#A 1+ #B,+ > #B,=(s—2) K +1. (17)
v=1 v=1

Elements stabilized
Let us not consider the action of Hys—1 = (Fy_1/Rys—1) on (Ris—1/R; ;). Let us now denote

Fs—l B N 7 s—1
Rk,s_l - <§1) ~"’§3‘71> — (](Z) )

where & = xR ;1. Let us write { }], o= x}]y ¢, Ris—1. Observe first that the group generated by & —
stabilizes (x*_| )12, since

s—1
ke ) ST Lk (el
((xsfl) 1'372> = (xsfl) ST B2

= (xs,leflxﬂl)éllyx—z = (xk )8,

In this way we see that all £* —2 elements of A, _; have non-trivial stabilizer. Now we observe
that

. P . —1 ; -1
x},u—l 'xlzi ! 'xlu+l,s—1 "Xyt (xlu+l,s—l) ’ (x:,u—]) =

e N e
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1394 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

Observe that for each v, 1 <v<s—1, (£,) stabilizes the k*~2 elements of B!, of the form

(x’;)slivwl'giwlvkl and the element (&; ---&,_1) stabilizes all elements ((x; - ~xs_1)k)5li~ff2, of which
there are k* ~ 2.

Invariant element ~; Cardinal Fixed by
()8 k=2 (&-1)
(xllcl)gll,u—l'gll/-f—l‘s-—l (s—2)k* 2 (€,), where 1 <p <s5—2
((x1 -+ g1 )¥)Sho2 k=2 (& &)

In total we have sk® ~2 fixed elements ;.

LEMMA 2.16 The following equality holds.

. - , . . . - ¢
[le/+1,s—1)xu]5‘l'” = ([xll/jll’xu}+[x1l/¢22:xv]£"+l - +~~+[x§‘:i,x,,]55+1»\*2) "

3

s—1

> o

j=vtl

Proof. The lemma will be proved by induction. Notice that it is enough to prove

by n] = ] 4 B xS e T S
s—1

= & it

j=r+1

For v+ 1 =5 — 1 the desired equality is trivial. We will use the following commutator identity,
which can be easily verified:

bz ] = 23] by
Assume that the equality holds for the next product xli,,x_l we compute
[xi,x_],xl,] = [xzy,, 'xzi/+1,s—1rxu] = [xzi/-o-l,s—l’xu]&"y : [x;”,x,,].

Hence writing the above equality additively we obtain

is—1

i — [yiv fv fvt2 Eiwrll SR &
1 X0 = Do x4 (B xu] + By, xSt 4 Ty xS

. : i . i i i i
= b+ S D ] S g e

Similar to the computation of the classical Fermat curves we change to a more suitable basis.
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PROPOSITION 2.17 Recall that i=(iy,...,is—1), 0<ij,...,is-1 <k—1. A generating set for
Rys—1/Ry,_, is given by
~ X i 7
A ={(x))52)
AV {(xllﬁ)fll,u—l'f;/+1,.s—l }, for 1 <v<s— 2
A ={lx )81}, for0<j<v<s—1,1<iyi, <k—2.

Proof. Notice that equation (13) for i # v implies that

()% =[], 1] o] i (18)

= [, ST )

The result follows using the generating set given in equation (16), Lemma 2.16 and
equation (18). O
REMARK 2.18 For the homology of the closed curve we have:

H\(Cys-1,2) = Rt /R,
’ (Y1 Yors=1)

Using equation (4) and the fact that rank H,(Cys—1, Z) = 2gc,,_, it is easy to verify that
(s=2)K '+ 1—(s- kK 2=1)=2gc, ,- (19)

In the above formula we have subtracted one from the number of invariant elements ~; since
Yoo Va2 = 1

Describing the action in this case is not as straightforward as it was for the case of classical
Fermat curve. We will use the theory of Alexander modules instead and postpone this computation to
Section 4.1.

3. On the representation of Thara
3.1. Pro-{ braid groups

Let ¢ be a prime number and let §; denote the pro-¢ free group with s free generators. Let S C IP’(}32 be

a set consisted of s points, s > 3, on the projective line and suppose that P € Q for all P € S — {0}
In this way the absolute Galois group corresponds to ‘pure braids’. Thara in [11] introduced the
monodromy representation

Thy : Gal(Q/Q) — Aut(F,s_1).
pro—¢

Here the group §,—1 = m; (]P’é — S) is the pro-{ étale fundamental group and is known to admit
a presentation

Ts—1 = (T1,...,%s|T122 - - 25 = 1), (20)

020z Jequieoaq €| Uo 1senb Aq 2588009/LLE L/¥/L L/oIoIe/yewlb/wod dno-olwepeoe//:sd)y woly papeojumoq



1396 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

where - denotes the pro-¢ completion of a finitely generated group. Given a set {x;,i € I} in a topo-
logical group we will denote by (x;, i € I) the topological closure of the group generated by the
group elements x;, i € . In [11] Thara studied the case S = {0, 1,00}. This is an interesting case
since by Belyi’s theorem [2] the branched covers of P!\ {0, 1, 0o} are exactly the curves defined over
Q. The case s >3 is also interesting and was also considered by Thara, see [13]. Using a Mobious
transformation we can assume that the set S consists of the elements 0, 1, Ay, - -+, A\;_3, 00.

The Thara representation can be explained in terms of Galois theory as follows: Consider the
maximal pro-¢ extension M of Q() unramified outside the set S. The Galois group Gal(M /Q(t))
is known to be isomorphic to the pro-¢ free group §,_; of rank s — 1. A selection of generators
X1,...,Xs_1 corresponds to an isomorphism i: §;_; — Gal(M/Q(f)), such that i(x,) (1 <v <s)
generates the inertia group of some place &, of M extending the place P; of Q(¢), corresponding to
the ith element of the set S.

We have the following exact sequence:

1 —— Gal(#/Q(t)) — Gal(.# /Q(t)) — Gal(Q(t)/Q(t)) — 1
il% lg
Fso1 Gal(Q/Q) 1)

Every element p € Gal(Q/Q) gives rise to an element p* € Gal(M /Q(r)), which is unique up to
an element of Gal(M /Q(7)), and so we obtain an isomorphism x — p*xp~! € P(F,—1)/Int(Fs—1),
where

P(F, 1) = {(b € Aut(F,_1)|o(x;) ~ 2" (1 < i < s)for some N(¢) € Zz},
and ~ denotes the conjugation equivalence. -
Y. Ihara [11, p.52], proved that the action of o € Gal(Q/Q) on the topological generators of §—
is in P(§,—1) thatis

olx) = wi(a)xgv(a)wi(a)fl,

where N(o) € Z}, and w;(0) € §,—_ is the element defining the conjugation. In this way the outer
Galois representation

dg: Gal(Q/Q) — P(Fs—1)/Int(Fs—1)

is defined.
By selecting the representatives of elements P(F,_;) we can define the Thara representation

Thy : Gal(@/@) — P(&s,l) - Aut(%s,l),

where

P(3s-1) = {¢ € Aut(F,—1)

)~ @, (1<i <5 —2) glxr) =) )
b(x;) =0, for some N(¢) € Z) '
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where ~ denotes conjugacy by an element of the subgroup of §; generated by the commutator 5.
and x, ..., x,_3. The composition N o Ihg equals the cyclotomic character x, : Gal(Q/Q) — Z;. For
more details on these constructions see [11, prop.3 p.55], [14, prop. 2.2].

3.2. Magnus embedding
We will explain now the Magnus embedding following [14]. This embedding is given by the map

Ss—1 = Zg[[ur, ua, ..., us—1]]nc (23)

of §,—1 into the ‘non-commutative’ formal power series algebra (x;+— 1+ u; for 1 <i<s—1). Let
$) denote the abelianization of §,_, and H the abelianization of F; _

H:=gr (Fs_1) =H\(Fs_1,Z) 5 =:g1,(Fs—1) =Hi(Fs—1,Z¢) = HRz Zy.

The term gr, above has its origin on the graded Lie algebra corresponding to a (pro-¢) free group,
see [11, p. 58] and [17]. Following [14], [20] we consider the tensor algebras

T(H)=@PH",  1(5)=PH™"

n>0 n>0

where $° = Z; and H%" 1= H Ry, --- @z, H (n-times) (resp. H* =Z, H" = HRy --- @z H) ). If
Uo, - .., Us_1 is a Zy basis of the free Z,-module §), then

T($9) =Ze(uy, ..., us_1),

is the non-commutative polynomial algebra Zg[[uy, ua, . . ., us—1]|nc OVer Zy, appearing in the right-
hand side of equation (23).
We will denote by 7($)) the completion of T($)) with respect to the m-adic topology, where m is

the two sided ideal generated by uy, ..., u;_; and ¢. This algebra is the algebra of non-commutative
formal power series over Z, with variables uy, ..., u;_1:
7(9) = [[9%" = Ze((ur, ... us1)).
n>0

Let Z¢[[§s—1]] be the complete group algebra of F;_; over Zy, and let

€24((3o1]] * Zel[Ss—1l] = Ze

be the augmentation homomorphism. Denote by I7,[i3,_,j) := kerez,[(3,_,]) the augmentation ideal.
The correspondence x; — 1 4 u; for 1 <i <s — 1 induces an isomorphism of topological Z,-algebras,
the pro-f Magnus isomorphism.

O : Zu[[§s-1]] = T(5).
ExAMPLE 3.1 The map © sends Z[Z] = Zg[t, "] to Zg[[u]] by mapping ©(1) =1 +uand ©(r~") =
(14u)~' =3"7(—1)u'. The image O(Z,[t,t~']) is not onto T($), but Z[[Ze]] = Z[[F1]] is
mapped isomorphically to 7(£)) by ©.
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For an multi-index I = (iy, ..., i;—1) we setuy = u;, - - - u;,_,. The coefficient of u; in O(«v) is called
the Magnus coefficient of « and it is denoted by u(Z, ), that is

O(e) = ez, 5 (@) + Y pll )uy.
=1

For certain properties of the Magnus embedding and a fascinating application to ¢-adic Milnor
invariants we refer to [20, chap. 8], [14, sec. 3.2].

3.3. Milnor invariants

Consider the group 9 :=§® | = F,_1/[Ss—1, Fs—1]. For f€ F,_1 denote by [f] its image in . We
will write $) as an additive Z,-module, which is generated by [u], . . ., [u;—]. Notice that the following
relation holds:

]+ + [tg—1] + [s] = 0.

Every automorphism ¢ € Aut(F,_) gives rise to a linear automorphism of the free Z,-module £
and we will denote it by [¢] € GL(9).

LEMMA 3.2 The elements w;(c) € Fs—1 can be selected uniquely so that

(i) Ths(o)(x;) = w,-(a)xxl(a)w,-(a)_l, where Xy is the {-cyclotomic character.

(ii) In the expression (w;(o)| = c(i) up|+ - —|—C(i) Us_ 1 ,c@ € Zy, we have c@ =0.
1 K j i

s—1
Proof. See [14, lemma 3.2]. O

For a multi-index /= (i1, .. dn)s 1<iy,...,ip <s—1 the f-adic Milnor number for o €
Gal(Q/Q) is defined as the ¢-adic Magnus coefficient of w;(o), for I' = (iy, ..., i,_1), that is

(o, 1) = p(l', wi, (o)),

see [14, equation 3.2]. It is clear that the selection of w;(c) describes completely the action of

Gal(@/(@) on Fe_i.

The commutative Magnus ring
In this article, we will consider actions of Aut(F,_;) or Aut(F;—;) on certain Z-modules (Z,-
modules) M defined as quotients of subgroups of the (pro-¢) free group. For example on F*° | or
on S’;"il. We would like for M to be an abelian group (we also choose to write M additively) and we
will entirely focus on the case M = R/R’, where R < §,—1 (or R<F;_1).

The group F;_ (resp. §s—1) acts on itself by conjugation. This action can be translated as an
T(H) (resp. 7"(35)) module structure on M, by setting

awa™!' =0(a)-w,

forwe Fy_ (resp. w € §s—1).
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LemMa 33 If M=R/R' and [R,§,_|| CR' (resp. [R, F._|] CR’') then the induced conjugation
action on M satisfies

ab-m=ba-m,forall a,b e f(b)(resp. T(H)) and m € M. (24)

Notice that the inclusion §',_; C R (resp. F,_, C R) implies the desired condition for the action
to commute.

Proof. Fora,b € §,_ and r € R we compute
abrb™'a= ' = bala, b7 |rla”, b7 a7 L

So a sufficient condition for equation (24) to hold is [R, §,_,] C R’ (resp. [R, F,_,] C R’). This
condition is satisfied if §;_, C R (resp. F;_ | CR) then equation (24) holds. O

Therefore, if the assumption of Lemma 3.3 holds, instead of considering the action of the non-
commutative ring T()) (resp. T(H)) it makes sense to consider the action of the corresponding
abelianized ring.

DEFINITION 3.4 Consider the commutative Z,-algebra of formal power series

o= Lyflui1<i< ]]/<(1+M1)(1+M2)“'(1+“s)—1>
Ze[[ui o — 1]} (25)

1%

I/\
I/\

The algebra o7 is the symmetric algebra of §) over Z,, and there is a natural quotient map T(S’j) —
Sym($) = .

REMARK 3.5 As we noticed already the action of o € Gal(Q/Q) can be described in terms of the
cocycles wy (o), ..., ws_1(c). But then we can find elements

wi(0) =0(wi(0)),...,ws—1(0) = O(ws—(0)) € &
such that

o(x;) = w(o) ), (26)

1

Therefore, in order to understand the action of Gal(Q/Q) on M = F,_; /&’ _, it makes sense to
consider the 7-module structure of M.
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1400 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

4. Alexander modules
4.1. Definition and Crowell exact sequence

We will use the notation of Section 1.1 for the groups Ry, R = Ry/T "Ry = R, - T'/T', T". Consider the
short exact sequence in equation (10). The group G = F,_/T" admits the presentation:

G:<IB1,...,$5|ZL‘$1:"':$§S:$1"'$s:1>. 27)

On the other hand since we assumed that §._, C Ry, (see Lemma 3.3) the group §,_; /]_20 -I'is

isomorphic to a quotient of the abelian group Z/e;Z x -+ x Z/es— 1 Z.
Recall that ¢ : Z;_ /T — Z,_1/Ro-T. Set

™ = 7,[[F,_1 /Ry - T,
and define the map ¢ &, r : Z¢[[.#,—1/Ro-T]] — Z; to be the augmentation map corresponding

functorially to the map .#,_1/Ro-T — {15 _, /&,.r} see [20, 8.3 p.99].

Consider also ﬁ%f o to be the Alexander module, a free Zy-module
A = d®Cdg | /(d(g182) —dg1 —b(g1)dgs : g1, 82 € Fs—1/T Ro's
» o
g€F—1/T
where the denominator in the above quotient denotes the .o/ RoT_module generated by the relations

inside (...) &,r. )
Define also the map 6, : R®® — %fo’r given by

R®>Sn—dn (28)
and the map 6, : df‘)’r — o/®oT {0 be the homomorphism induced by
dg—(g)— lforg € G.
We will use the Crowell Exact sequence [20, sec. 9.2, sec. 9.4],
0= R® = R/R s ol L2y 7Rl "2 7, g, 29)

For a description of the Alexander module in terms of differentials in non-commutative algebras
we refer to [16]. Notice that when the group §,— /Ro - T is finite then we will write Z;[F;—1/Ro - T]
instead of Z,[[§Fs—1/Ro-T]]. In this case € sz, r is the augmentation map sending finite sums

deg\_il/ko.pagg to defr,]/RO-Fag € Zy.
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PrOPOSITION 4.1 The module ;a/fo’r admits the following free resolution as an </ R module:
_ s+1 _ K -
(a%r) " L (aPT) — Pt —0, (30)

where s is the number of generators of G, given in equation (27) and s+ 1 is the number of rela-
tions. Let By, ..., Bsr1 € R0V, The map Q is expressed in form of Fox derivatives [3, sec. 3.1],
[20, chap. 8], as follows

oxs Oxp Xy
cvm(55) o (25)

B el ( t’lo) . e 6
P e (EE) e (GE) en(BE) e () |
Bs : . » : Bx.
+1 W(%’l) 1/”?( ) ..1/,7r(%:> 7/)7T<8"57;:'“) +1

where T is the natural epimorphism §; — G defined by the presentation given in equation (27).

Proof. See [20, cor. 9.6]. O

If in equation (29) Ry = §._, and I'= {1}, then &S 11} = Z[[uy, ..., us_,]] = o, as defined
in equation (25).
To summarize, for Hy = §s—1/ Ry - T, the Alexander module ﬂf’r can be computed as a cokernel
of the function Q:
_ — s+1 = K
ST =coker 0, (PT) T =z T Sz ) = (45T) . 6D

The exponents in the above formula reflect the fact that the group G is generated by (s+ 1)

relations over s free variables.

ProposITION 4.2 If I'={1} in equation (10) the Crowell exact sequence gives the Blanchfield-
Lyndon exact sequence:

_ s—1 d _
0 —= R® — > (%RU’{I}) O gkl S Zy — 0. (32)
Proof. See [20, p.118] for the discrete case and the pro-¢ case follows similarly. O

Alexander modules for generalized Fermat curves
It is clear that the group §._,/§._, is generated as an .</-module by the elements [x;x;] for
1<i<j<s—1.
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1402 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

In what follows §._, = Ry in the context of equation (10). The structure of §i_1/TY_ | asan o7-
module is expressed in terms of the Crowell exact sequence, see Section 4.1, related to the short
exact sequence:

P
1—>S§_1 _>Ss—l —>S?ll1 — 1,

0— (T )™ =F._ /3" — dy — Lyllur, .., us_1]] = Ze — 0,

d&;"’{]} .

where @, = <7, is the Alexander module and

o = JZ%S;—"{I} = Zg[[ul, .. .,ux_]]].

EXAMPLE 4.3 Assume that in equation (10) the group Ho = (Z/¢*Z)*~! and consider the open
generalized Fermat curve with fundamental group Ry = §_,. Let R, =" be the smallest closed

normal subgroup of §,_; generated by xfk, .. .,xfk_l. The group G = Fs—14 = Fs—1/%« admits the
presentation:

k

_ ok ok -1
Ssmtk=(x1, .., x5fx] = =x; =x1---x,=1).

. . . 3R
Denote the images of the elements x; in Hy by ;. It is clear that ,52%1; !

rank

* is a free Zy-module of

rankz, (coker Q) = S(Ek)(ﬁl) —rankz, (Q).

Observe that .7 %1% = 7, [Hy] is a free Zs-module of rank (¢%)*~!. By induction we can prove

8xfk 2 1 ;
I = Oi(l T T for 1< j<s
G
Ox1xp -+ Xy
1(9% = x| X (33)
i

Set¥;=14+x+---+ )’cfk_l. The map Q in equation (31) is given by the matrix on the left of the
following equation [20, cor. 9.6]

2 0 0 1 3, E181 + Bsr

0 % .o X C - 28 + X1 Bt 34
: e it 0 Bs'l - : —

0 - 0 ¥, XE X * YBs + X1+ Xs—1Bs41

where 3; € a/Si—1%% for 1 <i<s. Observe that

Yl =% forall 0 < v < F—1.
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LemmA 4.4 For 1 <i<s— I the following equation holds

s—1

i ZelHo] = - Zy | P Z/0Z| .
v=1
v#i

On the other hand the module Y,7¢[Hy| contains all elements invariant under the action of the
product X, - --Xs—1 and is a free Zg-submodule of Z¢[Hy).

Proof. Write

Z¢[Ho) =Zs

s—1
Pz/iz
v=I

Therefore the multiplication by X; gives rise to the tensor product

<(§Ze [Z/e"Z]> Q) (zize [z/¢°2]) K) ( é Z [Z/gkz]> _

v=i+1

= @Zz (z/¢7)].

<§Ze [Z/f"Z]> Q) (=iz0) Q) ( é 7 [Z/ﬂ"Z])

v=i+1

and the desired result follows.

For the case of X;Z[Hp| invariance under the action of x; = )‘cfl X _11 is clear. The rank com-
putation follows by changing the basis of Hy from Xy, ..., x;_| to the basis X, ..., X, and arguing as
before. O

The image of the map Q equals to the space generated by elements

X158 1
X2/ X1
: + . Byt 1.
ES/BS Xp-+ ‘xs—l
For different choices of fy,..., s € & S0 the first summand forms a free Zy-module of

rank s(¢¥)*=2 and the second summand is a free Z,-module of rank (£¢)*~!. Also their intersection
is just Zy.
Indeed, if for some Sy, ..., Bs11 € Z¢[Hy] we have

Bsp1 (L X1, .., X1+ X—1) = (Z1B1, ..., Xy Bs)

then by comparison of the first coordinates we see that 5 4 is invariant under the action of x;. So
comparison of second coordinate gives us that x| 3,11 = S5+ is invariant under the action of X,. By
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1404 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

continuing this way we see that /35 | is invariant under the whole group Hy, that is 5,4 ; belongs to
the rank one Z,-module generated by 3,32, - - - 3. In this way we see that

LEmMA 4.5

Im(Q) = (@ EiZz[Ho]> P ZlH /25 - 5. (35)

Also
rankz, Q = s(£*)* =2 4 (£F)*~1 — 1.

We would like to compute the cokernel of Q as a Z[Hy]-module. This computation lies within
the theory of integral representation theory. This seems a very difficult problem since a complete set
of representatives of the classes of indecomposable modules for groups of the form (Z/¢*Z)" seems
to be known only for =1 and k=1, 2, see [22]. In this article, we will not consider the problem in
the integral representation setting and instead we will consider the simpler problem of determination
of the Hy-action on the space H;(Cy 1, F), where F is a field which contains Z, and the fF-roots of
unity. Let us fix a primitive /¥ root of unity (. Set

I = (ZN[0,05))~",

Ifie 7, setig:=i;+ - +i5_1. Now define

Z(i):=#{j: 1 <j<sandij=0 mod ¢*}. (36)
Now set
| . .
e A (37
z(i) (i) =s
For an element i = (i1,...,i;_;) € N°"!  we define a character x; on Hy by

X (&) ) = (B i,
We have the following

LEMMA 4.6 We have the following decomposition

Im(Q) RF = ®Fcixi,

ies

where c; € N is the multiplicity of the corresponding character.
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GALOIS ACTION ON HOMOLOGY OF GENERALIZED FERMAT CURVES 1405

Proof. Consider the decomposition given in Lemma 4.5. The module F[Hy| contains once every
possible character, therefore

FlHo| = @) Fxi

icy

On the other hand the modules ¥;F[Hy] for 0 <i < s — 1 are trivially acted on by elements X;. This
means that

SiF[Ho] = P Fxi.
i€y
i=(vi,..,vic1,0viq1, . Vs—1)
Also the module Y;F[Hy] contains elements which are invariant by elements of the group gen-
erated by X;---X;_1, since X :)’cfl -~-)_c;11. This means that all characters which appear in the

decomposition of XF[Ho] on X7 ---X¥_, should give 1, which is equivalent to

LSl s—1
N R ) = G =1 3 i, =0 mod £
pn=l1

Therefore, the decomposition into characters is given by

>, F[Ho] = @ Fy;.
ic?
[1 ..... i.\._I:O
it ig_1 =0

Given a character y; we now count the number of times it appears. It appears on the summands
Y;F[Ho] for 0 <j <s— 1 when i; = 0 and in the summand ¥,[F[Hy] when i; +--- +i,—; =0 mod oF,
Also it appears on F[Hy| /X - -- X only if (iy,...,i—1) #(0,...,0). O

LEmMA 4.7 We have

rankzzdf;“'mk = (s— 1)) =52 41 (38)
and
5171»9‘%
A, RF =@ — ) (39)
icy

. . R T
Proof. The rank computation follows since Wf =% s the cokernel of 0, so

rankzgegz%f;"mk — s(fk)s_l —S(£k>s_2 _ (gk)s—l 1= (S _ 1)<£k)s—l _ S(fk)s_z 1.

Similarly the decomposition in equation (39) follows by the decomposition of F[Hp] into
characters. O
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1406 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

PROPOSITION 4.8

H(Cpiy—1, F) = @FC(i)x

ies

where

C(i):{s—ci—l:s—z(i)—Z ifi#(0,...,0) w0

s—ci=s—2z(i) ifi=(0,...,0)
Moreover
ranky, Hy(Cp s 1, Z¢) = (s— 1) (Ek)s_] +2—s (Ek)s_2

Proof. From the exact sequence given in equation (29) and the rank computation given in equation
(38) in example 4.3 we have:

rank (Rt / (R ﬂRzk))ab = rankzﬂdf“"mk — rankg, &/ S 41 41)

= (5= 2)(y 2 s(H 2

The above abelianization corresponds to the Z,-homology of the generalized Fermat curves of
type (k, s — 1). The above rank coincides with the genus computation given in equation (19).
Let us write

H(Cp,_1, F) = @PFC(i)x
ies

for some integers C(i). By Lemma 4.7 and the short exact sequence given in (29) we obtain
equation (40). O

REMARK 4.9 For the case of classical Fermat curves we have s=3. The character o0 has
2(0,0,0)=3 and Cp o =0. Similarly the characters xq,;, xio, for 1 <i < % — 1 and the charac-
ter Xiji+; with i+j=0 mod ¢ have z(0,i,i) =z(i,0,i) = z(i,j,i +j) = 1 so their contribution is
C(0,i,i) = C(i,0,i) = C(i,j,i +j) = 0. All other characters x(;+; have z(i,j,i+j) =0 and their
contribution is C(i,j, i 4 j) = 1. In this way we arrive to the same result as in equation (2).

ExaMPLE 4.10 Let us now compute Mf *™% and Ry« is the the pro-¢ completion of the group
generated by

{xijxl_i_1 :2§j§s—1,0§igéku}U{xfk_lxj:1§j§s—1}.

This group corresponds to the open cyclic cover of order /¢ of P! ramified fully
above s-points of the projective line, see [15, lemma 11]. Let Ry =1 be the smallest
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closed normal subgroup of §,_; generated by xfk,...,xfil. We have the short exact
sequence

1 *)ng/ng NRy —)&g_l/%k — Z/EkZ — 0.

We compute o/ Rev- R = 7,,[7/¢*7Z), which is an Z,-module of rank #*. On the other hand observe

that the Zy-module %j T g given by exactly the same cokernel as the module </ 80 The only

difference is that o7} " is a Z,[(Z/ 2~ ]-module while /%% is a Z,[Z./*Z]-module.

So following exactly the same method as in example 4.3 we conclude that
rankzlﬂj’fk’mk =5 s 1= (s—1)F—s+1.
Also we compute the rank

rank (Rt / (Rgx N E)%k))ab =rankg, %j”mk — rankg, @R 41 = (s —2) (65— 1).

The module (ng /Ry N %k)ab corresponds to the Z,-homology of the above curves, correspond-
ing to Ry and its rank is twice the genus of the curve, in accordance with the genus formula given
in [15, equation 21].

5. Galois modules in terms of the Magnus embedding
5.1. The group §,_,/T"_, as an o/ -module

In this section we will study the .27-module structure of §._, /&~ _,. This is the arithmetic analogon
of the Gassner representation, as Thara points out in [12]. This consideration leads to the Galois rep-
resentation of the Tate module, see Section 5.1.4. Finally in Section 5.1.5 we will study the passage
from the Gassner representation to the Burau by seeing the generalized Fermat curve as a cover of
the projective line.

Application to generalized Fermat curves
Consider the the smallest closed normal subgroup 93y of §,—; containing all xfk for 1 <i<s—1.
Define also

Ts—1k = Ts—1/R

Set A = {0, 1,00, Ay, . -+, As—3} and let M be the maximum pro-£ extension of K = k() unramified
outside the set of points A. Consider the function field of the generalized Fermat curves

K; :=K<tﬁ, (=) =)V (t—Aﬁg)Wk).

Let K" and K, ,‘(‘“rab be the maximal unramified and maximal abelian unramified extensions of Ky,
respectively. Also let K’ be the maximum abelian unramified extension of K and K" be the maximum
abelian unramified extension of K’. By covering space theory, the fields K’, K" correspond to the
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1408 A. KONTOGEORGIS AND P. PARAMANTZOGLOU
groups §,_, and §7_,, respectively. The function field K corresponds to the group F,_, 9 and is
equal to the function field of the generalized Fermat curve.

The aim of this section is the following characterization of the maximal unramified abelian exten-
sion K™ of the function field Ky of the generalized Fermat curve. This is a generalization of a
similar construction by Ihara for the classical Fermat curves, see [11, sec. II, p. 63]

THEOREM 5.1 We have that Gal(K{™® /Ky) = §._, /11 4

Indeed, we have

K = UKk, K NK" =K,

K' — U K}(mrab K" N Kur Kunrab

The Galois correspondence is given as follows:

{1}

/\ PN

-K‘—//\ gl\ I
unrab /s_1 /S/_ 1mk
\ A“‘“ab/m \ /
‘ Sls_lmk
K
3371

Using standard isomorphism theorems in group theory (see also [16, sec. 1.2]) and the definitions
we see

S a/T =T/ (T N ) = Foo 1 Re/TL R = Gal (K™ /Ky (42)

is an abelian group, a free Z,-module of rank 2g 4 ;_ 1), Where g« 1) is the genus of the generalized
Fermat curve, Fy ;_ so that

2801y =24+ LTI (s —2)(¢F — 1) —2). (43)
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Observe that according to equation (5) we have
&/V—l,k/:gél—l,k =H, (CZk,s—lr ZLy).

The last genus computation also follows from the following proposition which identifies unram-
ified Z/(*Z-extensions of a curve X with the group of ¢*-torsion points of the Jacobian J(X).

PROPOSITION 5.2 Let Y be a complete nonsingular algebraic curve defined over a field of char-
acteristic prime to (. The étale Galois covers of Y with Galois group Z./(*7 are classified by
the étale cohomology group H.(Y,Z/¢*Z7) which is equal to the group of (*-torsion points of
Pic(Y).

Proof. See [9, Ex. 2.7], [23, sec. 19]. O

Crowell sequence for generalized Fermat curves

We will use the notation of Section 4 where Ry =§._; and ' =R, R=F,_, /(R NTs—1) =F._; -
QRi/Nx. Notice also that the commutator identity for quotients imply that §;_, , = &_, - B/ = R.
Here we use the presentation F,_1 = &,/ (x---x,). Let Hy = (Z/¢*Z)*~'. We have the short exact
sequence

153 = G 1/R) = Foorh = Fo1/Rh —5 Hy — 1

The Crowell Exact sequence see equation (29) and [20, chap. 9] gives us

00— (§e1,0)™ = T p/Te_1n o dszhmk 2y e ST Zy — 0, (44)
where
SN = LyH] = L(2/62)7),
ST = coker 0 ZolH S ZolHy (45)

and €, is the augmentation map. The Alexander module for F;_; /R was computed on example
4.3. Notice that ,Q/f“—l’mk
see equation (41).

and the Crowell sequence know the genus of the generalized Fermat curve,

Representation theory on generalized Fermat curves
Let G be one of the groups Gq, B;—; or B,. These are representations on the free Z,-modules

pr:G— GL<H1<C5A-,S,1, Zz)).
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1410 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

Let us now combine the two Crowell sequences together.

0— (T )™ =81/, —— ! @ o > Zy — 0

A M

0 TR ik ’
0—( ,s—l,k)ab = gg—l,k/gg—uc - (ﬂfqp' ' k) St 57, 0

(46)

The top equation is the Blanchfield-Lyndon exact sequence in equation (32). For the vertical
arrows: w is the map induced functorialy by the natural group homomorphism Z*~! — (Z/¢*7Z)5~1:

o =K7Y 2 S = k(7))

The map ¢; is defined as follows: we begin from the short exact sequence:

1 > §h 4 s o1 y Sam1 s 1
s—1
1 N Fo 1R  Bs—1 . Bs-1 .1
? Rn ? R 7 S;,l'mk 7

In the first row, we consider the group §,_; as the quotient of the free pro-¢ group is s generators
modulo the relation x;x; - - - x; = 1. In the second row, the group §,_1 /9 is considered as the quotient
of the free group in s-generators modulo the relation x;x; - - - x; = 1 and the r-relations generating ;.

o @ v s sl

l% J(bs
T Qs

(arFimemie) 2 (i mte)” 2 e
)

where Q1, O are the maps appearing in Proposition 4.1. In particular the map Q, sends

> ﬁ — B (1,)61,)61X2,...,xle“'xs_l).
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The vertical map ¢, is the reduction modulo I' and it is onto. The image ¢3(a) for a € & =1 s
defined by selecting b € o/* such that 1)1(b) = a, and then ¢3(a) = 1, o ¢, (b) as seen in the diagram
below:

b i > a

P2 ®3
¢2(b) BN ¢3(a) = g o P2(b)

This definition is independent from the selection of b.
Finally, the map ¢ is naturally defined

! !
s—1 Ss—l ) %k
1 1
s—1 s—1° S‘Rk

1 /!
as—1 03571 Ry

For an explanation of these two combined sequences in terms of the ‘cotangent sequence’ and a
functorial point of view we refer to [16].

LEMMA 5.3 The group Ry, is invariant under the action of Gal(Q/Q).

Proof. For every generator x/ and o € Gal(Q/Q) we have

The later element is in 93y since by definition Ry is normal in §,—1. The limit a, — N(o) is in Ry
since this group is by definition closed. The result follows. ]
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It is clear that &7 Si—1%% = 7, [Hp] can be considered through the vertical map w as an <7-module
and inherits an action of Gal(Q/Q) by w, by writing o € &7 5"% as the image of an element
o/ € o, thatis o = w(a') and defining

o(a) = o(w(a)) =w(od).

By Lemma 5.3 this action is well defined. On the other hand an element ¢ = [x;x;| €
o1/ Tk = Ser1/ (51 NTs—1~Ny) is sent to the element

0(¢) = d[)_Ci, }_C]] = —IjtjdX,' + ﬁ,‘de S JZZET_I'%]{.

The module szf %% i an o7 F-+® _module, described by the sequence given in equation (30)
and by the matrix Q given in equation (34) and is naturally acted on by the absolute Galois group.

Observe also that the map 6 sends the class of [x;, xj] to d[x; x;] = u;dx; — u;dx;, and this element is
k
annihilated by the elements X; = Zf;ol x;{ for 1 <i<s. We can see this by direct computations or

. . LR
by observing that in Mf "7 we have
Y Bi = Bs1X1 0 Xio1-

and the image 6[x;, x;] has the s+ 1 coordinate 5, =0. The above observation generalizes the
definition of ideal a,, in equation (8) in the article of Ihara, [11].
Therefore,

~ 3:7 ’m'
Hi(Cpps1,Z0) 2 0((F5-10)"°) C ™
is acted on by @S -+%% /(3,1 1 <i<s), and Gal(Q/Q) acts on it in terms of the action given in
equation (26). Indeed, ;sz“’l’m" is identified with the cokernel of the matrix Q, that is an element in

,fos"’m* is the class of an s-tuple which is sent to

o: (B, ..., Bs) +Im(Q) — (of4,...,08s) +Im(Q).

This action is well defined since the space Im(Q) is left invariant under the action of Gal(Q/Q).

Indeed, in the commutative ring &/ 5~1%%, the action o (X;) = )‘cfv(a)

follows by equation (35).

so 0(%;) =X;, and invariance

On Jacobian variety of generalized Fermat curves
Consider the ¢-adic Tate module T(Jac(Cp 1)) of the Jacobian of the generalized Fermat curves
Cé“,s—l:

!
T(Jac(Cps—1)) =H\(Cps_1, L) R Ly = j/;lk
s—1,k
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GALOIS ACTION ON HOMOLOGY OF GENERALIZED FERMAT CURVES 1413
Following Ihara we consider

/!

T :=1lim7T(Jac(Cp, ,)) = lim &*“‘, (48)
k

1"
k s—1k

where the inverse limit is considered with respect to the maps T(Jac(Cpr1 1)) — T(Jac(Cp 1)),
which is induced by the map
(X0 -2 Xs—1) = (x5, ., xE ).

Let Cpis_ 1 = Cpr | @specg SpecQ. Consider also the inverse limit
limGal(Cyi sy /By) = lim(Z/¢2) " = 2",
k k

Therefore

lim Z[Gal(Cy: s /)] = o
k
and T can be considered as an 7-module. Using equation (46) we obtain

!
el (49)

1"
s—1

See [1, sec. 13] for the explicit isomorphism in the case of Fermat curves.

The geometric interpretation of this construction is that for fixed s-number of points we can con-
sider all generalized Fermat curves seen as (Z/¢*Z)* ramified covers of the projective line, for k € N.
In this way we obtain a curve Cy, which is a Z;fl cover of the projective line. The Burau represen-
tation and the pro-¢ Burau representation can be defined in terms of such an infinite Galois cover,
see [15].

This construction leads to the definition of a subspace TP"™ C T which is a free .27-module of rank
s — 2. Observe that the submodule of a free module is not necessarily a free module and §._,/F7_,
is not necessarily free. For example in the following short exact sequence

d
0 — ( §_l)ab:S§_]/ V= of s~ 1 . o =Ty = 0

" _,/8"_, is contained in the free «/-module &7*~!, but is free itself. The &7 -module §,_, /F7_,
contains the free module of rank s — 2 (see [21], [14, Th. 5.39])

TP = & (Nt -ty ths_1 )i, o1 S N €, D N =0
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1414 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

Set w = u; - --us_1. Using equation (49) we see that a basis of (F_,/T_,)P"™ is given by

w w w w
V1:<—,,O,...,O),...,VX2:<0,...,0,— N )
Uy up Us—2 Us—]

In the case of Fermat curves, that is s=2 we have that (§_,/37_ )™ =5"_,/3", and

3., /&Y, isafree o/ -module, generated by [x1, x2]. Notice that the injective mapd : §._,/F/_ |, —
7/~ is given by sending a representative

[xi, ;] = d([xi, x5]) = (1 = x;)dx; — (1 = x;)dx;

= 7uj . dx,- —+ Ui - de.

PROPOSITION 5.4 Let G be either Gal(Q/Q) or the braid group B;. An element in g € G induces an
action on both T and TP"™, In particular the subspace TP™™ is a free < -module. Thus we have a
cocycle map

p: Gal(Q/Q) = GLy_ ()
o (ay(0))

This cocycle can be given in terms of the matrix

o (wid|x;, x;]) E Ay (0)Wypdlxy, x,).
v<p

REMARK 5.5 In [14, sec. 5.3] this cocycle is identified as the Gassner representation and the relation
with the classical definition in terms of Fox derivatives see [3, chap. 3] is studied. The Gassner cocy-
cles when restricted to a certain subgroup Gal(Q/Q)[1] C Gal(Q/Q) give rise to a representation
instead of cocycle, see [14].

From generalized Fermat curves to cyclic covers of P!
We will now relate the Crowell sequences for the generalized Fermat curves and cyclic covers Ypu of
the projective line as they were defined in [15] using the results of [16]. This will provide the relation
of the Gassner representation to the Burau representation. The analogon of the Burau representation
was defined in [14, p.675] by reduction of the Gassner representation. Here we also consider this
reduction with respect to the curve definition of the Burau representation.

We have the following diagram of ramified coverings of curves

Cé’“,s—l Y/K’“
7/eF7)s 1 YA/

- {0,1,OO,A1,...,AS_3}

The passage for the corresponding representations from Cp ;_; to Yy« corresponds to the passage
from the Gassner representation to the Burau representation, see [3, prop. 3.12] and [14, sec. 5].
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GALOIS ACTION ON HOMOLOGY OF GENERALIZED FERMAT CURVES 1415

Set Ry« be the fundamental group of the closed curve Y, which can be computed using Schreier
lemma, see [15]:

Ry =Ry /T = <(x2xf1)xly,..., (Xoorxy )T 0<w <k~ 1>.

Let also C; be the Z cover of the projective line ramified over s-points. Let R be its fundamental
group, which by [15] equals

R:<(xjxf1)x§/:I/EZ,2§j§s—l>.

The fixed field of R/ is the function field Ky of the curve Y and k(Cy) is the function field
of the curve Cs. The group R’ corresponds to the maximal unramified abelian extension k(Cy)™
of k(Cy) while 2Ry corresponds to the maximal unramified extension k(Cy)"™®. The group R’ - Ry
corresponds to the maximal abelian unramified Kj; unrab extension of Ky. The groups F/_ | - Ry and
F?_| - 9By correspond to the generalized Fermat curve C ¢ s—1 and the maximal unramified extension
C}‘kngabl The groups F;_,, F\'_, correspond to the maximal abelian unramified extension of K, and
the maximal abelian unramified extension of K, respectively.

/\ RN

K" ab ]k( )unrab Fsﬁ_l ka R
K’ C/k . 1 unrab — Kunrab Fs/—l F;Ll mkg R . mk R
Hl(cgk / \ ‘ Hl(c:'gk ,Z)/

]k(cék,s—l)—>Klk Fg/_l %kQR%k

S

Ko = k() Fs_q
As in the case of generalized Fermat curves we can form the limit

Tg :=lim(Jac(Yp)) = lim(Rp /Ry)™® = R® = H' (Yo, Zg).
k

k
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1416 A. KONTOGEORGIS AND P. PARAMANTZOGLOU

We now compare the Crowell sequences for the cyclic covers and the Fermat covers,
following [16]

0 0

| |

0— R =Tp —— o7 — 5 /B = 7,([2/1° 7)) ——— Zy — 0

T

0— F ) =T— o) 7 — S = 7,[[(Z/0FZ)* Y]] — Zy — 0

The map ¢, : T — Tg on Tate modules is given by the first vertical map. The action module
structure is given by the commutating diagram

A XT——T

| b

of B Tp ——Tgr

where the horizontal maps are the module actions and the first vertical map sends (a,t) —
(¢3(a), $1(¢)). The map ¢ is the reduction identifying the variables x,xs,...,x,_1. Let G be as
in Proposition 5.4. The map ¢, is defined in a similar way as in equation (47). In particular from the
reduction T — Ty we obtain the diagram

G —— GL, ()

|

GLS,Q (JZ{R’%’“ )

corresponding to the free parts of T and Tk, respectively.
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