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1. Introduction

Let Fq denote the finite field of q elements, where q = pr is a power of the prime integer p. Let d be a 
nonnegative integer. Consider the rational function field Fqd(T ). The Carlitz action for Fqd is defined as

Cqd(T )(u) = Tu + uqd , u ∈ Fq(T ).

This defines an action by T , which may be extended Fqd-linearly to an action by elements of Fqd [T ], 
according to

M =
∑

aiT
i ∈ Fqd [T ], Cqd(M)(u) = M∗du =

∑
aiC

i
qd(T )(u). (1)

The Carlitz M -torsion points Cqd [M ] are then the torsion Fqd-modules within the algebraic closure Fqd(T )
via this action. We note that this does depend upon the choice of d. Henceforth, for a polynomial M ∈ Fqd [T ], 
we let Kqd,M denote the cyclotomic function field for Fqd and M , which is obtained by adjoining to Fqd(T )
the Carlitz M -torsion points Cqd [M ]. These function fields are called cyclotomic as they are derived from 
an exponential function in positive characteristic and enjoy many of the same properties of the classical 
cyclotomic extensions of Q [14, Chapter 12]. Carlitz modules are rank-1 Drinfeld modules, see [4], [5], [12].
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We suppose henceforth that M ∈ Fq[T ] and that M splits over Fqd [T ]. As in [16], one may determine 
explicitly the holomorphic differentials for Kqd,M . Here, we relate this situation to the original cyclotomic 
function field Kq,M . We first prove the essential result:

Theorem 1.1. Kq,M ⊂ Kqd,M .

This allows us to understand the differentials of Kq,M in terms of those of Kqd,M by examining Galois 
covers. Henceforth, we denote

Hqd,M := Gal(Kqd,M/FqdKq,M ).

One then obtains naturally the following tower of fields:

Kqd,M

H
qd,M

FqdKq,M

Kq,M Fqd(T )

Fq(T )

(2)

The group Hqd,M was studied by Chapman [3] when M ∈ Fq[T ] is square-free, in order to give a normal 
integral basis of the ring of integers of Kq,M over Fq[T ]. This cannot be done in the same fashion if M
contains a square P 2 of an irreducible polynomial P ∈ Fq[T ], as under the wild ramification at P in Kq,M

the integer ring is no longer a free Fq[T ] module. Here, we study Hqd,M more generally, as the genus is 
invariant under constant extensions, so that identification of the space of differentials of Kq,M reduces to 
identifying those differentials of Kqd,M which are fixed by the action of Hqd,M .

The Frobenius map on Fqd/Fq permutes the roots of M , and the group Hqd,M is nontrivial: Even in 
the case where M = P is irreducible over Fq[T ] and deg(M) = d, |Hqd,M | = (qd − 1)d−1. The group 
Hqd,M may be described in a simple, explicit way in terms of the Carlitz action. The abelian Galois group 
Gal(Kqd,M/Fqd(T )) is naturally a Gal(Fqd/Fq)-module, and denoting Gal(Fqd/Fq) = 〈σ〉, the group Hqd,M

may be described as

Hqd,M = (σ − 1)Gal(Kqd,M/Fqd(T )).

This is proven in Lemma 2.3. In general, the absolute Galois group Ẑ = Gal(F̄q/Fq) acts on the cyclotomic 
function fields, and this action may be precisely described using the group structure of Hqd,M . This point 
of view, where the arithmetic part of a Galois group is acting on the geometric part, is a unifying notion. 
One may see, for example, the seminal article of Y. Ihara [9].

We devote Section 2 to the description of Hqd,M . In Section 3, we examine the tame structures arising 
within this group and give an explicit Kummer generator of the tame part of Hqd,M . Section 4 describes the 
wild component of Hqd,M , including the higher ramification groups and different. Cyclotomic function fields 
may also be viewed as towers of Kummer and Artin-Schreier extensions, whose form we give in Section 5. 
Section 6 describes the Galois module structure of the differentials of Kq,M . We concern ourselves with the 
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group Hqd,M as its invariants yield differentials on the constant extension FqdKq,M of Kq,M , and constant 
extensions do not alter the genus, so that it suffices to give a description of the differentials of FqdKq,M in 
order to understand the Galois module structures for Kq,M . The holomorphic differentials are comprised of 
products of generators of the Carlitz torsion modules. In order to compute the Hqd,M -invariant differentials, 
we will employ modular invariant theory. For fixed qd and M , our constructions provide an algorithm for the 
computation of invariants and holomorphic differentials for the function field Kq,M . As we show in Section 6, 
the invariant ring for the algebra of Carlitz generators is not polynomial. This shows that a closed formula 
for a basis for holomorphic differentials will be quite complicated in general, despite that it can be done 
when M splits over Fq [16].

2. Preliminary results

2.1. Inclusions of cyclotomic function fields

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. For a global field K, let S(L/K) denote the collection of places of K which split 
completely in L. By Bauer’s theorem [14, Theorem 11.5.1], we have for a global function field K and two 
Galois extensions L1 and L2 of K that

L2 ⊂ L1 ⇔ S(L1/K) ⊂ S(L2/K).

Thus, the extension Kq,M is contained in Kqd,M if, and only if, the places of Fq(T ) which split in Kqd,M

also split in Kq,M . For a place p of Fq(T ), we let P denote a place of Kq,M above p, pqd a place of Fqd(T )
above p, and Pqd a place of Kqd,M above p. If p denotes a place of K = Fq(T ) which splits completely in 
Kqd,M , then we have

[OP
qd
/Pqd : op/p] = 1,

where OP
qd

denotes the valuation ring for Pqd in Kqd,M and Pqd its maximal ideal, op the valuation ring 
for p in K and p its maximal ideal. In the analogous notation, we thus have

[OP
qd
/Pqd : op

qd
/pqd ][opqd

/pqd : op/p] = 1.

In particular, it follows that

[OP
qd
/Pqd : op

qd
/pqd ] = 1,

and that the place pqd of Fqd(T ) is completely split in Kqd,M . Notice that p cannot be infinity, as infinity 
is not split in cyclotomic extensions (the ramification index is the size of the constant field minus one [14, 
Theorem 12.4.6]). It follows that the place pqd is associated with an irreducible polynomial Pqd ∈ Fqd [T ]. By 
cyclotomic function field theory, for example, Proposition 12.5.2 of Villa-Salvador [14], the inertia degree of 
pqd is equal to the order of Pqd modulo M . In fact, we may write

P =
k∏

Pi
i=1
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in Fqd [T ], where P is associated with p in Fq[T ] and the polynomials Pi are the (distinct) factors of P in 
Fqd(T ). We also know that the finite places of Fqd which divide M ramify in Kqd,M , and hence are not 
completely split. Also, we know that Pqd = Pi for some i, but also that Pqd was an arbitrary choice of place, 
which could be done as the extensions we consider are all Galois. Thus (Pi, M) = 1 for all i = 1, . . . , k, 
from which it follows that (P, M) = 1. By cyclotomic function field theory, we also know that the order of 
P modulo M in Fq[T ] is equal to the inertia degree of p in Kq,M . For each i = 1, . . . , k, let oh,i denote the 
order of Pi modulo M in Fqd [T ]. Thus

P
oh,i

i ≡ 1 mod M, i = 1, . . . , k.

We may then write P oh,i

i −1 = FM for some F ∈ Fqd [T ]. As the Galois action of Fqd(T )/Fq(T ) is transitive, 
it follows that for any j = 1, . . . , k, there exists σ ∈ Gal(Fqd(T )/Fq(T )) such that σ(Pi) = Pj . It follows 
that

P
oh,i

j − 1 = σ(Pi)oh,i − 1 = σ(P oh,i

i ) − 1 = σ(P oh,i

i − 1) = σ(FM) = σ(F )M,

where σ(F ) ∈ Fqd [T ] by definition of the Galois action of Fqd(T )/Fq(T ). It follows by symmetry that the 
order of each Pi modulo M is the same. We therefore set oh := oh,i for i = 1, . . . , k. It follows from this that

P oh =
(

k∏
i=1

Pi

)oh

=
k∏

i=1
P oh
i ≡

k∏
i=1

1 = 1 mod M,

and hence the order oP of P modulo M is at most oh. As the polynomials Pi, i = 1, . . . , k are completely 
split in Kqd,M , it follows from the cyclotomic theory that oh = 1, and thus oP � oh = 1. Thus, the place 
p associated with P is completely split in Kq,M . We have thus shown that if a place p of K = Fq(T ) splits 
completely in Kqd,M , then it must also split completely in Kq,M . Hence, by Bauer’s theorem, it follows that 
Kq,M ⊂ Kqd,M . �

Henceforth, as we frequently distinguish between Fq[T ] and Fqd [T ], we denote A1 := Fq[T ] and Ad :=
Fqd [T ]. The following properties of Galois extensions may be easily deduced from the previous theorem (see 
also [14, Chapter 12]).

• Gal(Fqd(T )/Fq(T )) ∼= Gal(Fqd/Fq).
• Gal(Kq,M/Fq(T )) ∼= (A1/MA1)∗.
• Gal(Kqd,M/Fqd(T )) ∼= (Ad/MAd)∗.
• Gal(Kqd,M/Fq(T )) ∼= (Ad/MAd)∗ × Gal(Fqd/Fq).

We now fix a basis 1 = v1, . . . , vd of Fqd as a vector space over Fq, and we write

Ad
∼= A1 ⊕ v2A1 ⊕ · · · ⊕ vdA1.

As M ∈ A1 by definition, we then have

Ad/MAd
∼= A1/MA1 ⊕ v2A1/MA1 ⊕ · · · ⊕ vdA1/MA1.

Also, the group Gal(Kqd,M/Kq,M ) fits in the short exact sequence
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1 → Gal(Kqd,M/Kq,M ) → (Ad/MAd)∗ × Gal(Fqd/Fq) → (A1/MA1)∗ → 1.

For ease of notation, we define Gqd,M := Gal(Kqd,M/Fqd(T )). It is well-known that

Gqd,M
∼= (Ad/MAd)∗ , (3)

where the Galois action is induced by the Carlitz action by elements of (Fqd [T ]/M)∗. The Galois inclusion 
Fq(T ) ⊂ Fqd(T ) ⊂ Kqd,M gives rise to another short exact sequence:

1 → Gal(Kqd,M/Fqd(T )) Gal(Kqd,M/Fq(T )) π Gal(Fqd(T )/Fq(T )) → 1

Gqd,M Gal(Fqd/Fq)

By standard arguments of group theory, the Galois group Gal(Fqd/Fq) acts by conjugation on Gqd,M in 
terms of an inverse section of the map π. We note that as the group Gqd,M is abelian, this action is well 
defined, i.e., independent of the choice of the section of π.

2.2. The group Gqd,P as a Gal(Fqd/Fq)-module

We identify each divisor D ∈ (Ad/MAd)∗ with the element ρD ∈ Gqd,M under the isomorphism (3). The 
natural action of σ ∈ Gal(Fqd/Fq) on ρD is given by conjugation. As such, we have

σρDσ−1 = ρσ(D),

where σ(D) simply denotes the image of D ∈ Ad under the natural action of σ in Fqd . We have

ρD(u) := D ∗d u = uqs + bs−1u
qs−1

+ · · · + Du,

so that

σρDσ−1(u) = uqs + σ(bs−1)uqs−1
+ · · · + σ(D)u,

where ∗d denotes the Carlitz action over Fqd(T ). In what follows, we emphasise that Gq,M = Gal(Kq,M/

Fq(T )) is isomorphic to Gal(FqdKq,M/Fqd(T )), as one may deduce from the tower of fields given in (2).

Lemma 2.3. The group Hqd,M = Gal(Kqd,M/FqdKq,M ) in the short exact sequence

1 → Hqd,M → Gqd,M → Gq,M → 1 (4)

satisfies for σ ∈ Gal(Fqd/Fq)

(1) σ(Hqd,M ) = Hqd,M

(2) Hqd,M = (σ − 1)Gqd,M .

Proof. (1) The natural action on subgroups of a Galois groups is the conjugation action. The field

FqdKq,M = K
H

qd,M
d
q ,M



6 A. Kontogeorgis, J.K. Ward / Journal of Pure and Applied Algebra 225 (2021) 106478
is a subfield of Kqd,M which is invariant, albeit not pointwise, under the action of Gal(Fqd/Fq). Let σ
be a generator of the cyclic group Gal(Fqd/Fq). As both

σ(FqdKq,M ) = K
σH

qd,M
σ−1

qd,M
and σ(FqdKq,M ) = FqdKq,M ,

we have that σHqd,Mσ−1 = Hqd,M .
(2) We will prove first that (σ − 1)D ∈ Hqd,M for each element D ∈ Gqd,M . The group Gqd,M consists 

of classes of invertible elements D ∈ Fqd [T ] modulo M . Let σ ∈ Gal(Fqd/Fq) be a generator of the 
cyclic Galois group. As Gq,M is the Galois group of a geometric extension, it follows that the group 
Gq,M = Gqd,M/Hqd,M is pointwise σ-invariant. Thus σ(D)/D ∈ Hqd,M .
Since the group Gqd,M is abelian, the map

Gqd,M
Φ

Gqd,M

α σ(α)α−1

is a group homomorphism. The kernel of Φ consists of elements D ∈ Gqd,M
∼=

(
Fqd [T ]/M

)∗ which are 
left invariant under the action of σ, hence it is isomorphic to Gq,M . On the other hand, we have proven 
that Im(Φ) ⊂ Hqd,M . Thus |Im(Φ)| = |Gqd,M |/|Gq,M |. Since by definition |Gq,M | = |Gqd,M |/|Hqd,M |, 
we obtain |Im(Φ)| = |Hqd,M |, and we arrive at

Hqd,M = (σ − 1)Gqd,M ,

concluding the proof. �
Remark 2.4. The group Gqd,M is naturally a Gal(Fqd/Fq)-module. The group Gq,M is the space of coinvari-
ants

Gq,M = (Gqd,M )Gal(F
qd

/Fq) =
Gqd,M

(σ − 1)Gqd,M

.

2.5. Reduction to irreducible factors of M

We now reduce the computation of the structure of the group Hqd,M to the study of the corresponding 
groups for the irreducible components of M . Let M ∈ Fq[T ] be of degree k, with factorization in Fq[T ]

M =
r∏

j=1
M

αj

j ,

where the polynomials Mj are irreducible, monic and of degree sj|d. In the finite field Fqd , the polynomials 
Mj ∈ Fq[T ] factor into linear factors in Fqd [T ]. We write

M =
r∏

j=1

sj∏
i=1

(T − ρi,j)αj , ρi,j ∈ Fqd .

The field Kq,M is the compositum of the fields K
q,M

αj
j

, each of which is, in turn, a subfield of K
qd,M

αj
j

. 
This yields the following diagram:
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Kqd,M

Kqd,M
α1
1

H
qd,M

α1
1

Kqd,M
α2
2

H
qd,M

α2
2

K
qd,M

αr−1
r−1

H
qd,M

αr−1
r−1

Kqd,Mαr
r

H
qd,M

αr
rFqdKq,M

FqdKq,M
α1
1

FqdKq,M
α2
2

· · · FqdKq,M
αr−1
r−1

FqdKq,Mαr
r

Fqd(T )

We have

Gal(Kqd,M/Fqd(T )) ∼=×r

j=1Gal(K
qd,M

aj
j
/Fqd(T ))

and

Hqd,M =×r

j=1Hqd,M
aj
j
.

The problem of determining the structure of the group Hqd,M may therefore be reduced to determination 
of each of the groups Hqd,M

αi
i

. This means that we may assume M to be a power Pα of an irreducible 
polynomial P ∈ Fq[T ]. Thus, as a consequence of Lemma 2.3, we now study the group Gqd,P , where P is 
an irreducible polynomial in Fq[T ] of degree s|d. The splitting field of P is equal to Fqs . By definition, we 
have the following short exact sequence:

1 → Pqd,Pα → Gqd,Pα → Gqd,P → 1, (5)

where

Pqd,Pα = {D ∈ Fqd [T ] mod Pα, D ≡ 1 mod P}.

The field Kqd,Pα is the compositum of a generalised Artin-Schreier extension with the Kummer extension 
Kqd,P /Fqd(T ). The subfield FqdKq,Pα has a similar decomposition, into a generalised Artin-Schreier exten-
sion with Galois group Z/qα−1Z with the Kummer extension FqdKq,P /Fqd(T ). We have the following tower 
of fields:

Kqd,Pα

Kqd,P FqdKq,Pα K
G

qd,P

qd,Pα

FqdKq,P FqdK
Gq,P

q,Pα

Fqd(T )
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Lemma 2.6. Let σ ∈ Gal(Fqd/Fq), and for each i = 1, . . . , α, let

Fi := K
Gq,P

q,P i .

Then for each i = 1, . . . , α, the generator σ of the Galois group Gal(Fqd/Fq) satisfies

(1) σ(Kqd,P i) = Kqd,P i .
(2) σ(Fi) = Fi.

Proof. By construction, we have σ(Fqd(T )) = Fqd(T ) and σ(Kqd,P i) = Kqd,P i , for each i = 1, . . . , α. The 
Galois group Gal(Kqd,Pα/Fqd(T )) is congruent to the direct product of the cyclic group F∗

qd with the p-group 
Gal(Fα/Fqd(T )). By definition, we have that Fqd(T ) ⊂ σ(Fα) ⊂ Kqd,Pα , whence σ(Fα) corresponds to a 
Galois group H which is isomorphic to a cyclic group of order qd − 1. As there is a unique such subgroup 
in Gal(Kqd,Pα/Fqd(T )), it follows that σ(Fα) = Fα.

The result for Fi for each i = 1, . . . , α− 1 follows by induction. �
We note that property (2) in Lemma 2.6 implies that (σ − 1)Gqd,P corresponds to a subgroup of Hqd,P , 

and by order comparisons, we obtain that the unique such submodule of Gqd,P is given by the image of the 
map σ − 1. For a realisation of a Kummer model of Kq,P , we refer to Section 3.

3. Tame structure

In order to understand Hqd,P , we will describe the character group of Gqd,P using the torsion of the 
Carlitz module. For an introduction to Kummer theory of extensions the reader is referred to [8]. Let 
P =

∏s
i=1(T − ρi) be the decomposition of the irreducible polynomial P ∈ Fq[T ] in Fqd [T ]. We know by 

prime decomposition [14, Chapter 12] that

Cqd [P ] =
s⊕

i=1
Cqd [T − ρi]. (6)

The torsion modules Cqd [T − ρi] are defined as

Cqd [T − ρi] := {z ∈ Fq(T ) : zq
d

+ (T − ρi)z = 0}.

Let λi be a generator of Cqd [T − ρi] as an Ad-module. Then λi satisfies the equation

λqd−1
i = −(T − ρi). (7)

Lemma 3.1. Let σ be a generator of the cyclic group Gal(Fqd/Fq). Then

σ(λi) =
{
ζσ,iλi+1 if 1 � i < s

ζσ,dλ1 if i = s,

where ζσ,i is a (qd − 1)st root of unity, which depends on both σ and i.

Proof. Consider the action of σ on (7). If i < s, then

(σλi)q
d−1 = −σ(T − ρi) = −(T − σ(ρi)) = −(T − σi+1) = λqd−1

i+1 .

The result follows in this case. The proof for i = s is the same, except that σ(ρs) = ρ1. �
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On the other hand, the action of Gqd,P on λi is given by multiplication by elements in F∗
qd . Indeed, if 

f ∈ Fqd [T ] and (f, P ) = 1, then f(ρi) �= 0 for all i = 1, . . . , s. By definition of the Carlitz action ∗d, and the 
fact that λi is a (T − ρi)-torsion point it follows that

σfλi = f ∗d λi = f(ρi) · λi. (8)

We note that f(ρi) ∈ Fqd , whence f(ρi)q
d−1 = 1.

Definition. Let ζ be a fixed choice of primitive (qd − 1)st root of unity. We define the dual elements {σ∗
k} ∈

G∗
qd,P such that

σ∗
k(σ�) =

{
1 if k �= �

ζ if k = �.

Remark 3.2. As s | d we have that (qs − 1) | (qd − 1). The element

ζ1 := ζ
qd−1
qs−1

generates a cyclic subgroup of Gqd,P of order qs − 1.

Lemma 3.3. For each i0 = 1, . . . , s, consider the polynomials

fi0(x) :=

⎛
⎜⎝1 −

s∏
i=1
i�=i0

(x− ρi)

⎞
⎟⎠ = 1 − P (x)

x− ρi0
∈ Fqd [x].

Then

σfi0
∗d λj =

⎛
⎜⎝1 −

s∏
i=1
i�=i0

(ρj − ρi)

⎞
⎟⎠ · λj .

Proof. The proof follows immediately from (8). �
Lemma 3.4. For each i0 = 1, . . . , s, consider the elements

Zi0 :=

⎛
⎜⎝1 −

s∏
i=1
i�=i0

(ρi0 − ρi)

⎞
⎟⎠ .

Then

Zi0 = Zqi0−1

1 .

Furthermore, the elements Zi0 are primitive (qs − 1)st roots of unity.

Proof. The number of generators of a cyclic group of order qs − 1 is equal to φ(qs − 1), where φ denotes 
the Euler totient function. Furthermore, it is well-known that s | φ(qs − 1). We find, recall that ρ1 = ζ1 and 

ρi = ζq
i−1

1 for 1 � i � s − 1,
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Zi0 =

⎛
⎜⎝1 −

s∏
i=1
i�=i0

(ζq
i0−1

1 − ζq
i−1

1 )

⎞
⎟⎠

=
(

1 −
s∏

i=2
(ζq

i0−1

1 − ζq
i+i0−2

1 )
)

=
(

1 −
s∏

i=2
(ζ1 − ζq

i−1

1 )
)qi0−1

= Zqi0−1

1 ,

which concludes the proof. �
Recall that each generator λi of Cqd [T − ρi] satisfies (7). The elements λi define characters σ∗

λi
= χλi

by 
Kummer theory, which are given by

σ∗
λi

(σ) = λσ
i λ

−1
i ,

for each σ ∈ Gqd,P . In particular, we find that

σ∗
λi

(σfj ) = λ
σfj

i λ−1
i =

{
Zqj−1

1 if i = j

1 if i �= j.

We now write Z1 = ζα1 for some α ∈ N, (α, qs − 1) = 1. The character group of Gqd,P is non-canonically 
isomorphic to Gqd,P . Moreover, letting n = qs − 1, the quotient map in (4) gives

Gqd,P → Z/nZ → 1,

which by duality yields the injection of the cyclic group Z/nZ

1 → Z/nZ → G∗
qd,P .

For each i = 1, . . . , s, let σi be chosen generators of the ith direct summand in the decomposition given in 
(6) of the group Gqd,P , and consider a dual basis σ∗

i of G∗
qd,P such that

σ∗
i σj = δijρ1= δijζ1,

where δij is Kronecker’s δ. An injection

ι : 〈g〉 = Z/nZ → G∗
qd,P

is described by giving the coordinates of the generator g, i.e.,

ι(g) =
s∏

i=1
(σ∗

i )
qd−1
qs−1 bi . (9)

Furthermore, the element ι(g) has order n if, and only if, at least one of the integers bi is prime to n. Also, 
the character ι(g) given in (9) is associated (via the Kummer correspondence) to the element

L =
s∏

λ
qd−1
qs−1 bi
i , which satisfies Lqs−1 = (−1)s

s∏
(T − ρi)bi . (10)
i=1 i=1
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Lemma 3.5. For each i = 1, . . . , s, the exponent bi in (10) may be explicitly and recursively determined.

Proof. For the Frobenius generator σ of the cyclic group Gal(Fqs/Fq) and L as defined in (10), the element 
σ(L) generates the Kummer extension and by the theory of Kummer extensions it has the form

σ(L) = Lμaq
s−1,

for some μ ∈ N such that (μ, qs − 1) = 1 and some a ∈ Fqd(T ). This implies that

λbs
1

s∏
i=2

λ
bi−1
i =

s∏
i=1

λbiμ
i aq

s−1,

which in turn implies for each i = 2, . . . , s that

bi−1 = μbi mod qs − 1

and also that

bs = μb1 mod qs − 1.

We let μ′ be the inverse of μ modulo qd − 1. This yields

b1μ
′ ≡ b2 mod qs − 1

b2μ
′ ≡ b3 mod qs − 1

· · · · · · (11)

bs−1μ
′ ≡ bs mod qs − 1

bsμ
′ ≡ b1 mod qs − 1.

Therefore, bi = (μ′)i−1b1 for each i = 2, . . . , s. As bs = (μ′)s−1b1 (11) implies that

(μ′)s ≡ 1 mod qs − 1.

We can thus select μ′ = q to obtain the appropriate value of μ′ mod (qs − 1). It may also be assumed 
without loss that b1 = 1. �
We have thus proven the following result.

Proposition 3.6. The model of the function field FqdKq,P is given by the Kummer extension:

Lqs−1 = (−1)s
s∏

i=1

(
T − ζq

i−1

1

)qi

. (12)

The Galois module structure for differentials of such extensions is known by the work of Boseck [1]. In 
Kummer extensions of Fqd(T ) of the form yn =

∏d
ν=1(T − ai)bi , ai ∈ Fqd the places T − ai are ramified 

with ramification index

ei = qs − 1
s

,
(q − 1, bi)
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see [11]. Furthermore, by the theory of Carlitz torsion modules, we may also easily see that there is ramifi-
cation over all places corresponding to the linear factors T − ρi of P in Ad. It follows that (bi, qs − 1) = 1, 
for each i = 1, . . . , s. As there is ramification of degree q − 1 at infinity in Kq,P /Fq(T ), we obtain

s∑
ν=1

bi = 1 + q + · · · + qs−1.

We have the following tower of fields and ramified places over Fqd(T ):

Kqd,M B1,1 · · ·B1,qs−1

qd−1
qs−1

· · · Bs,1 · · ·Bs,qs−1

qd−1
qs−1

Q1, . . . Qt

qd−1
q−1

FqdKq,M

F∗
qs

B1 · · · Bs B∞,1, . . . B∞, q
s−1
q−1

Fqd(T ) P1

qs−1

· · · Ps

qs−1

P∞

q−1

Remark 3.7. In the special case s = d, there is no ramification over B1, . . . , Bs in the extension 
Kqd,P /FqdKq,P .

4. Wild structure

We now proceed to the case M = Pα, where P ∈ Fq[T ] is again an irreducible polynomial of degree s | d. 
By previous arguments, it is easily seen that the abelian Galois group Gal(Kqd,Pα/Fq(T )) may be written 
as the direct product

Gal(Kqd,Pα/Fq(T )) ∼= Gqd,P × Pqd,Pα ,

where

Pqd,Pα = {D ∈ Fqd [T ] mod Pα, D ≡ 1 mod P}.

There is a very precise way to describe the group Pqd,Pα , which is also used in the elementary proof of the 
Kronecker-Weber theorem for rational function fields [13].

Proposition 4.1 (Proposition 5.1 [13]). Let r be a positive integer. The group Pqr,Pα is an abelian p-group. 
Let vqr,n(α) denote the number of cyclic groups of order pn in the decomposition of Pqr,Pα , where s = degP . 
Then

vqr,n(α) = q
rs

(
α−

⌈
α
pn

⌉)
− q

rs
(
α−

⌈
α

pn−1

⌉)
pn−1(p− 1

) =
q
rs

(
α−

⌈
α

pn−1

⌉)(
q
rs

(⌈ α
pn−1

⌉
−
⌈
α
pn

⌉)
− 1

)
pn−1(p− 1) ,

where x� denotes the ceiling function on Q, i.e., the minimum integer greater than or equal to x.

In particular, Proposition 4.1 holds for both Pq,Pα and Pqd,Pα by setting r = 1 and r = d, respectively. 
For the Kummer extensions Pq,P and Pqd,P , we must realise the Galois group

H ′
qd,Pα := Gal

(
K

G
qd,P

d α /FqdK
Gq,P

q,Pα

)
.

q ,P
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For this, we obtain the exact sequence

0 → H ′
qd,Pα → Gal(K

G
qd,P

qd,Pα /Fqd(T )) → Gal(FqdK
Gq,P

q,Pα /Fqd(T )) → 0,

where the structure of the abelian p-group

Pq,Pα = Gal(FqdK
Gq,P

q,Pα /Fqd(T ))

is given by Proposition 4.1.

Corollary 4.2. H ′
qd,Pα = (σ − 1)Pqd,Pα .

Proof. This follows in the same manner as Lemma 2.3, as σ(H ′
qd,Pα) = H ′

qd,Pα and (σ − 1)D ∈ H ′
qd,Pα for 

every D ∈ Pqd,Pα . �
In the extension Kqd,Pα/FqdKq,Pα , there is generally wild ramification: According to [14, Proposition 

12.4.5], the place at infinity is ramified in the extension FqdKq,Pα with index q−1 and in the extension Kqd,Pα

with ramification index qd − 1. Moreover, the ramification degree of P in the extension FqdKq,Pα/Fqd(T ) is 
equal to qsα−qs(α−1), while the ramification degree of P in extension Kqd,Pα/Fqd(T ) is given by qdα−qd(α−1)

[14, Proposition 12.3.14], whence the ramification in extension Kqd,Pα/FqdKq,Pα is given by

e = qdα − qd(α−1)

qsα − qs(α−1) = q(d−s)(α−1) q
d − 1
qs − 1 .

We thus obtain the following diagram, where s = (qdα − qd(α−1))/(q − 1):

Kqd,Pα

H

P ′

e

∞1,1, . . . ,∞1,q−1

qd−1
q−1

∞s,1, . . . ,∞s,q−1

qd−1
q−1

FqdKq,Pα P1 ∞1
q−1

. . . ∞s

q−1

Fqd(T ) P ∞

The irreducible polynomial P factors in Fqd as

P (T ) =
s∏

i=1
(T − ζq

i−1

1 ), (13)

where ζ1 is a primitive (qs − 1)st root of 1. We denote Pi = T − ζq
i−1

1 (i = 1, . . . , s).

Lemma 4.3. The quotient Ad/P
α is Gal(Fqd/Fq)-equivariantly isomorphic to the direct sum of vector spaces:

Ad/P
α = (A1/P )α .

The group of units (Ad/P
α)∗ satisfies

(Ad/P
α)∗ = (Ad/P )∗ ⊕ (Ad/P )α−1

.
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Proof. It is clear that the following sequence is exact:

0 → Pα−1/Pα → A1/P
α → A1/P

α−1 → 1. (14)

Therefore, we can prove by induction that

(Ad/P
α) = Ad/P ⊕ P/P 2 ⊕ P 2/P 3 ⊕ · · · ⊕ Pα−1/Pα.

On the other hand, the map

Ad/P → P i/P i+1

f mod P �→ f · P i mod P i+1

is a Gal(Fqd/Fq)-equivariant isomorphism, since P i is a Gal(Fqd/Fq)-invariant element. �
Let f ∈ Ad/P

α. Consider the class f0 of f modulo Pα−1, i.e.,

f mod Pα ≡ f0 + Pα−1f1 mod Pα, f mod Pα−1 ≡ f0 mod Pα−1.

We consider now the multiplication

f · g ≡ (f0 + Pα−1f1)(g0 + Pα−1g1)

≡ f0g0 + (f̄0g1 + f1ḡ0)Pα−1 mod Pα,

where f̄0, ̄g0 denote the classes of f0, g0 mod P . It is clear by induction that f is invertible if, and only if, 
f̄0 ≡ f mod P is invertible. We define the following filtration:

Nt := {D mod Pα : D ≡ 1 mod P t}. (15)

The group N1 is the wild part of (Ad/P
α)∗. We have the following short exact sequence

1 → Nt+1 → Nt → P t/P t+1 → 1,

where the group structure on Nt is multiplicative while the structure on P t/P t+1 is additive. The wild part 
of Hqd,Pα consists of elements of the form σ(D)D−1 in N1, where D ∈ N1. The filtration of N1

N1 ⊃ N2 ⊃ · · ·Ni ⊃ · · ·

induces a filtration on Hqd,Pα :

H1 = Hqd,Pα ∩N1 ⊃ H2 = Hqd,Pα ∩N2 ⊃ · · · ⊃ Hi = Hqd,Pα ∩Ni ⊃ · · ·

We observe that

Hi

Hi+1 = {σ(D)D−1 mod Hi+1 : D ∈ Hi},

and the latter group can be identified with the image of the operator (σ − 1)(f) in the additive group 
P i/P i+1 ∼= Ad/P .
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Lemma 4.4. The space Ad/P ∼= ⊕s
i=1Fqd . An element f ∈ Ad/P is mapped to the coordinates 

(f(ζ), f(ζq), . . . , f(ζqs−1)) ∈ ⊕s
i=1Fqd . The action of the operator σ − 1 on the coordinates (x1, . . . , xs) ∈

⊕s
i=1Fqd is given by:

(x1, . . . , xs)
σ−1

(xq
s − x1, x

q
1 − x2, . . . , x

q
s−1 − xs).

The kernel of σ − 1 consists of elements (x1, . . . , xs) such that

x1 ∈ Fqd : xi = xqi−1

1 , i = 2, . . . , s.

Clearly this set has qd elements since all elements are determined by the value of x1. Therefore, the image 
of σ − 1 has exactly qd(s−1) elements.

Remark 4.5. Given an Hqd,Pα-module M, the space of invariants MH is given by

MH
qd,Pα =

((
MHα

qd,Pα

)Hα−1
qd,Pα/Hα

qd,Pα

· · ·
)H1

qd,Pα/H2
qd,Pα

.

Since Hα = Hα/Hα+1, we can apply recursively the computation of Lemma 4.4 in order to compute 
Hqd,Pα-invariants.

We now turn to ramification groups and the computation of the different. For each i ∈ Z with i � −1, 
the ith ramification group of P|p is defined as

Gi(P|p) = {σ ∈ Gqd,Pα | vP(σ(x) − x) � i + 1 for all x ∈ OP},

where OP denotes the valuation ring at P. We denote Gi = Gi(P|p).

Proposition 4.6.

(1) The groups Nk defined in (15) have order qds(α−k) for 1 � k � n and correspond to the upper ramifica-
tion filtration at P|p.

(2) We have
• G0 = Gqd,Pα ,
• Gi = Nk for all qd(k−1) � i � qdk − 1 and 1 � k � α− 1, and
• Gi = Nα = Id for all i � qd(α−1).

Proof. (1) [10, Prop. 2.2].
(2) This follows by the relation between upper and lower ramification filtrations [15, IV. sec. 3]. �

By Proposition 4.6, the lower ramification filtration is given by

G0 > G1 = · · · = Gqd−1 = N1

> Gqd = · · · = Gq2d−1 = N2

> Gq2ds = · · · = Gq3d−1 = N3

> · · ·
> Gqd(α−2) = · · · = Gqd(α−1) = Nα−1

> {1}.
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The ramification filtration for the group Hqd,Pα may be found by intersecting Hqd,Pα with Gi, so that

Hi := Gi ∩Hqd,Pα , |Hi| =
{

(qd − 1)s−1qd(s−1)(α−1) if i = 0
qd(s−1)(α−i) if i � 1.

We now determine the different DK
qd,Pα/F

qd
Kq,Pα of Kqd,Pα/FqdKq,Pα .

Proposition 4.7.

DK
qd,Pα/F

qd
Kq,Pα =

s∏
i=1

∏
P|℘i

PA
∏

B|p∞

BB ,

where s = degP , s | d,

A = (αqdα − (α + 1)qd(α−1)) − (αqsα − (α + 1)qs(α−1))q
dα − qd(α−1)

qαs − q(α−1)s (16)

=
qd(α−1) (qd − qs

)
qs − 1 ,

and

B = (qd − 2) − (q − 2)q
d − 1
q − 1 = q

(
qd−1 − 1
q − 1

)
. (17)

Proof. As the extension Kqd,P /Fq(T ) is separable, we may employ [14, Theorem 5.7.15]: Among separable 
extensions K ⊂ L ⊂ M of global fields, we have the functorial identity

DM/K = DM/LconL/M (DL/K), (18)

where conL/M denotes the conorm map of the corresponding fields L, M , see [14, 5.3]. We consider the two 
towers

Fq(T ) ⊂ Kq,Pα ⊂ FqdKq,Pα ⊂ Kqd,Pα and Fq(T ) ⊂ Fqd(T ) ⊂ Kqd,Pα .

We may now proceed with computations within each of these towers.

(1) Fq(T ) ⊂ Kq,Pα . The different DKq,Pα/Fq(T ) is given by [14, prop. 12.7.1]

DKq,Pα/Fq(T ) = Pαqsα−(α+1)qs(α−1) ∏
B|p∞

Bq−2,

where P is the unique place of Kq,Pα above the place p of Fq(T ) associated with P .
(2) FqdKq,Pα/Kq,Pα is unramified at all places of Kq,Pα , whence

DF
qd

Kq,Pα/Kq,Pα = (1).

(3) Fqd(T )/Fq(T ) is also unramified at all places of Fq(T ), whence

DF d (T )/Fq(T ) = (1).

q
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(4) For the extension Kqd,Pα/Fqd(T ): As s|d and the polynomial P thus splits completely in Fqd [T ], we 
denote each linear factor of P in Fqd [T ] by ℘i, so that P =

∏s
i=1 ℘i. We obtain [14, Thm. 12.7.2]

DK
qd,Pα/F

qd
(T ) =

⎡
⎣ s∏
i=1

∏
P|℘i

P

⎤
⎦
αqdα−(α+1)qd(α−1) ∏

B|p∞

Bqd−2.

By (18), we may therefore write DK
qd,Pα/F

qd
Kq,Pα as

D−1
K

qd,Pα/F
qd

Kq,Pα = D
−1
K

qd,Pα/Fq(T )conF
qd

Kq,P /K
qd,Pα

(DF
qd

Kq,Pα/Fq(T ))

=
(
DK

qd,Pα/F
qd

(T )conF
qd

(T )/K
qd,Pα

(DF
qd

(T )/Fq(T ))
)−1

× conF
qd

Kq,Pα/K
qd,Pα

(DF
qd

Kq,Pα/Fq(T ))

= D
−1
K

qd,Pα/F
qd

(T )conF
qd

Kq,Pα/K
qd,Pα

(DF
qd

Kq,Pα/Fq(T ))

= D
−1
K

qd,Pα/F
qd

(T )conF
qd

Kq,Pα/K
qd,Pα

(DF
qd

Kq,Pα/Kq,Pα

× conKq,Pα/F
qd

Kq,Pα (DKq,Pα/Fq(T )))

= D
−1
K

qd,Pα/F
qd

(T )conF
qd

Kq,Pα/K
qd,Pα

(conKq,Pα/F
qd

Kq,Pα (DKq,Pα/Fq(T )))

= D
−1
K

qd,Pα/F
qd

(T )conKq,Pα/K
qd,Pα

(DKq,Pα/Fq(T ))

=

⎡
⎣ s∏
i=1

∏
P|℘i

P

⎤
⎦
−(αqdα−(α+1)qd(α−1)) ∏

B|p∞

B−(qd−2)

× conKq,Pα/K
qd,Pα

⎛
⎝Pαqsα−(α+1)qs(α−1) ∏

B|p∞

Bq−2

⎞
⎠

=

⎡
⎣ s∏
i=1

∏
P|℘i

P

⎤
⎦
−(αqdα−(α+1)qd(α−1)) ∏

B|p∞

B−(qd−2)

×

⎡
⎣ s∏
i=1

∏
P|℘i

Pαqsα−(α+1)qs(α−1)

⎤
⎦

qdα−qd(α−1)

qαs−q(α−1)s
⎡
⎣ ∏
B|p∞

Bq−2

⎤
⎦

qd−1
q−1

.

The result follows. �
5. Tower structures

We now examine cyclotomic function fields as composites of towers of Kummer and Artin-Schreier ex-
tensions. Let P ∈ Fq[T ] be irreducible, whence P possesses only simple roots. We assume once more that 
degP = s | d. We now give the recursive definition for the cyclotomic function field Kqd,(T−ρ)α .

Lemma 5.1. Let (T − ρ) ∈ Ad be a factor of P , where ρ ∈ Fqs
∼= A1/P . Then the field Kqd,(T−ρ)α may be 

described recursively by a tower of composita of explicitly determined Kummer and Artin-Schreier extensions 
over Fqd(T ).
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Proof. We first consider the case α = 2, i.e., the cyclotomic function field Kqd,(T−ρ)2 generated over Fqd(T )
by the torsion points of (T − ρ)2. By definition of the Carlitz action ∗d, we have

(T − ρ) ∗d u = uqd + (T − ρ)u

(T − ρ)2 ∗d u = uq2d
+
(
(T − ρ)q

d

+ (T − ρ)
)
uqd + (T − ρ)2u.

We denote X = (T − ρ) ∗d u. The equation

(T − ρ) ∗d X = Xqd + (T − ρ)X = 0

implies that either X = 0 or Xqd−1 = −(T − ρ). Let λ be a solution of the second equation, so that 
λqd−1 = −(T − ρ). The general torsion point for (T − ρ)2 over Fqd may then be described by the equation

uqd + (T − ρ)u = λ.

We set u = Uλ, which yields

Uqdλqd − λqd−1λU = λ,

whence we obtain

Uqd − U = − 1
T − ρ

. (19)

We have thus constructed the following tower of fields:

Kqd,(T−ρ)2

F
qd

(T )[U ]
〈Uqd−U=− 1

T−ρ 〉
F
qd

(T )[λ]
〈λqd−1=−(T−ρ)〉

Fqd(T )

The field Kqd,(T−ρ)2 is therefore the compositum of a Kummer extension and an Artin-Schreier extension, 
where a root u of the torsion point equation (T − ρ)2 ∗d u is given by u = Uλ. One may now easily proceed 
inductively: Let U2 := U be the element given in (19), and let u2 = U2λ. A solution of (T − ρ)3 ∗d u3 = 0 is 
then given by

uqd

3 + (T − ρ)u3 = u2.

We set U3 = u3/λ. This yields Uqd

3 λqd − λqd−1λU3 = u2, which in turn implies that

Uqd

3 − U3 = − U2

T − ρ
.

(We note that u2/λ
qd−1 = U2.) In this way, we may build a tower of successive Artin-Schreier extensions. 

We have thus obtained the extended diagram
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Kqd,(T−ρ)α

F
qd

(T )[Uα]

〈Uqd
α −Uα=−Uα−1

T−ρ 〉

Kqd,(T−ρ)3

Kqd,(T−ρ)2
F
qd

(T )[U3]

〈Uqd

3 −U3=− U2
T−ρ 〉

Fqd(T )(λ)

Kummer

Kqd,(T−ρ)
F
qd

(T )[U2]

〈Uqd

2 −U2=− 1
T−ρ 〉

Fqd(T )

(20)

This completes the proof. �
Within the diagram (20), we have described the Kummer model of the extension FqdKq,Pα/Fqd(T ). By 

the arguments of §2 on Kummer covers, it thus remains to describe the Artin-Schreier-Witt model of the 
extension

K
F∗
qd

qd,Pα/Fqd(T ).

We may therefore prove the following corollary.

Corollary 5.2. Let P ∈ Fq[T ] be irreducible of degree s | d. Then the field K
F∗
qd

qd,Pα may be described recursively 
by a tower of composita of explicitly determined Artin-Schreier extensions over Fqd(T ).

Proof. For each linear factor T − ρi of P , we consider the generating elements U (i)
j , j = 1, . . . , α, of the 

fields Kqd,(T−ρi)α , each of which satisfies the equation

(
U

(i)
j

)p

− U
(i)
j = U

(i)
j−1.

By the Chinese remainder theorem once more, we obtain an equality with the compositum

K
F∗
qd

qd,Pα =
s∏

i=1
K

F∗
qd

qd,(T−ρi)α .

As before, let σ be a generator of the cyclic group Gal(Fqd/Fq) such that σ(ρi) = ρi+1, for each i =
1, . . . , s − 1, and σ(ρs) = ρ1. For each i = 1, . . . , s − 1, we have

σ(U (i)
2 ) = U

(i+1)
2 − ai, ai ∈ Fqd .
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We may normalise without loss the selection of elements U (i)
2 so that

σ(U (i)
2 ) = U

(i+1)
2 .

Proceeding inductively, we thus obtain

σ(U (i)
j ) = U

(i+1)
j j = 2, . . . , α.

By the correspondence of Artin-Schreier extensions to additive characters, we know that the field FqdK
F∗
q

q,P 2

is given by an Artin-Schreier equation

yq
d − y =

s∑
i=1

bi

U
(i)
1

, U
(i)
1 = T − ρi.

On the other hand, the field Kq,P 2 is invariant under the action of the generator σ. It follows that there 
exists an element ci ∈ Fqd(T ) such that

σ

(
s∑

i=1

bi

U
(i)
1

)
=

s∑
i=1

bi

U
(i+1)
1

+ cpi − ci.

By uniqueness of partial fraction expansions, this yields that b1 = b2 = · · · = bs. In order to consider the 
higher powers j = 3, . . . , α, one may then proceed inductively, or alternatively, via a standard Witt vector 
construction [7]. �
6. Galois module structure

The space of holomorphic differentials H0(X, ΩX) for the curve X corresponding to the cyclotomic 
function field Kqd,M if Fqd is selected big enough so that M splits in Fqd are known, see [16]. Our strategy 
in computing holomorphic differentials H0(Y, ΩY ) for the curve Y corresponding to Kq,M , where M does 
not split in Fq is to consider the Galois cover X → Y with Galois group H = Hq,M and reduce holomorphic 
differentials of X to holomorphic differentials of Y . We will prove that we have the inclusions

H0(Y,ΩY ) ⊂ LY (Ω(D)) = H0(X,ΩX)H , (21)

where LY (Ω(D)) is a space of non-holomorphic differentials allowing poles on a certain explicitly given 
divisor D. Our proposed strategy is to approach the structure of LY (Ω(D)) using the inclusions of eq. (21). 
We have to compute the H-invariant differentials of H0(X, ΩX) and then select the holomorphic ones among 
them.

Let us start in a more general setting. Consider a Galois ramified cover π : X → Y of projective complete 
nonsingular curves defined over the field k = Fqd with Galois group H, and let df be a differential on Y . 
Let π∗ denote the pullback and k(X), k(Y ) be the functions fields of the curves X, Y . We will follow a 
multiplicative notation for the divisors. A divisor D =

∏t
i=1 P

ai
i , where Pi are prime divisors and ai ∈ N

will be called integral. The divisor divX(π∗(df)) of π∗(df) in X is given by

divX(π∗(df)) = π∗divY (df) ·RX/Y ,

where RX/Y is the ramification divisor, see [6, IV.2]. This allows us to compute holomorphic differentials on 
X via functions g ∈ k(X) such that divX(g) ·divX(π∗df) is holomorphic [1, sec. 3]. H-invariant differentials 
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on X correspond to meromorphic differentials ΩY (D) of Y with a well-prescribed set of poles and pole 
orders, where D is a divisor which can be explicitly prescribed.

We let IX (resp. IY ) denote the collection of integral divisors of X (resp. Y ). Let df be a differential of 
Y , and let

RX/Y =
s∏

i=1

∏
Qν,i �→Pi

Qδi
ν,i

be the ramification divisor of X/Y , where δi ∈ Z is the exponent of the different.

Lemma 6.1. The space of H-invariant differentials in X is isomorphic to the vector space

LY

(
ΩY

(
s∏

i=1
(Pi)

⌊
δi
ei

⌋
Y

))
=

{
g ∈ k(Y ) : divY (g) · divY (df)

s∏
i=1

(Pi)
⌊
δi
ei

⌋
Y ∈ IY

}
(22)

= LY (D) (23)

Proof. An H-invariant differential on X is given by hdf , where h, f ∈ k(Y ). We observe that ω = hdf is 
holomorphic if, and only if, the divisor

divX(ω) = divX(h)divX(π∗(df)) ∈ IX .

By taking the pushforward and using the fact that applying π∗π
∗ is equivalent to raising to the |H| power 

we compute that

π∗(divX(ω)) = divY (h)|H| · divY (df)|H| · divY (π∗(RX/Y )),

and ω is holomorphic if and only if π∗(ω) ∈ IY . An easy computation yields that

divY (π∗(RX/Y )) =
s∏

i=1
(Pi)

δi
|H|
ei

Y ,

where δi is the differential exponent at Pi, and therefore, the set of H-invariant differentials can be identified 
with the space of functions given in eq. (22). �

Assume now that X and Y are the curves corresponding to the function fields Kqd,Pα and FqdKq,Pα , 
respectively. We will take f = T and we will compute the ingredients of lemma (22).

We will compute the divisor in Y of dT . We know that

divY (dT ) =
s∏

i=1

∏
P|Pi

Pi
S

∏
Q|p∞

Qq−2 · conFq(T )/F
qd

Kq,Pα (p−2
∞ ), (24)

where S = αqα − (α + 1)qα−1 [14, prop. 12.7.2]. Recall also the value of the different divisor we have 
computed in Proposition 4.7 D = DK

qd,Pα/F
qd

Kq,Pα

DK
qd,Pα/F

qd
Kq,Pα =

⎛
⎝ s∏ ∏

P

⎞
⎠

qd(α−1)
(
qd−qs

)
qs−1

⎛
⎝ ∏

B

⎞
⎠

q
(

qd−1−1
q−1

)
.

i=1 P|℘i B|p∞
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Remark 6.2. In the special case that s = d, ramification is tame in the extension Kqd,Pα/FqdKq,Pα , so that 
D = 0 and the invariant elements thus satisfy LX(ΩX)H = LY (ΩX).

By the computation of the second author in [16, p. 46] A holomorphic differential on X is given by a 
differential of the form

ω =
s∏

i=1

α∏
k=2

λ
μi,k

i,k λ
−μi,1
i,1 dT, (25)

where λi,k are generators of the Carlitz torsion modules Cqd [P k
i ] of the factors of M =

∏r
i=1 P

ni
i , and μi,k

satisfy certain inequalities, see [16, eq. (22)]. By the Chinese remainder theorem, the class of an element 
D ∈ Fqd [T ] modulo

Pα =
s∏

i=1
Pα
i

determined by the classes D mod Pα
i . Moreover, a class D mod Pα

i can be expressed as a Pi-adic series

D mod Pα
i = ai,0 + ai,1Pi + ai,2P

2
i + · · · ai,α−1P

α−1
i mod Pα

i ,

where ai,j ∈ Fqd for all 1 � i � s and 0 � j � α − 1. The action of D on λi,k is determined by its Pi-adic 
decomposition. We also have for each k = 1, . . . , α that

(
α−1∑
�=0

ai,�P
�
i

)
∗d λi,k =

(
α−1∑
�=0

ai,�P
�
i P

α−k
i

)
∗d λi,α

=
(

α−1∑
�=0

ai,�P
α−k+�
i

)
∗d λi,α (26)

=
α−1∑
�=0

ai,�
(
Pα−k+�
i ∗d λi,α

)

=
α−1∑
�=0

ai,�λi,k−�,

where we define λi,m := 0 whenever m � 0.
The action described in (26) gives rise to a representation

ρ : (Fqd(T )/Pα)∗ −→ GL(α,Fqd)

α−1∑
�=0

a�P
� �→

⎛
⎜⎜⎜⎜⎜⎝

a0 a1 · · · aα−2 aα−1
0 a0 a1 · · · aα−2
... 0

. . . . . .
...

...
. . . a0 a1

0 · · · · · · 0 a0

⎞
⎟⎟⎟⎟⎟⎠ . (27)

Upper triangular matrices of the form (27) are known as Toeplitz matrices. In this way, we obtain a rep-
resentation of F∗

qd inside the algebraic subgroup of upper triangular matrices Tα(Fqd) given by the ideal of 
relations
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I := 〈Ti,i+μ − Tj,j+μ for all 1 � i � α and 0 � j � n− 1〉,

i.e., the algebraic group given by the affine coordinate ring

k[Ti,j ,det(Ti,j)−1]/〈Ti,j : i > j, I〉

and the corresponding finite group of Lie type defined by the fixed points of the d-th power of the Frobenius.

Definition. Let ΔTα denote the subgroup of Tα(Fqd) consisting of matrices given as in (27).

Remark 6.3. Let M ∈ Fq[T ] be arbitrary and nonzero. An element f is invariant under the action of Hqd,M

if, and only if,

σD ◦ σ(x) = σ ◦ σD(x), for all D ∈ Fqd [T ]/M. (28)

We now recall a classical result of descent theory. From a cohomological point of view, there is a natural 
action of Gal(Fqd/Fq) on the Fqd-vector space

V = H0(Kqd,M ,ΩK
qd,M

).

Let us consider a basis {ω1, . . . , ωg} of V , where g denotes the genus of Kqd,M . Define the map

Gal(Fqd/Fq) → GL(V )

σ �→ ρ(σ) : v �→ vσ

For each basis element ωi, 1 � i � g we write

ωσ
i =

g∑
ν=1

ρ(σ)ν,iων .

Then, since (ωσ1
i )σ2 = ωσ1σ2 , we have

ωσ1σ2
i =

g∑
ν,μ=1

ρ(σ1)σ2
ν,iρ(σ2)μ,νωμ

so that the function ρ satisfies the cocycle condition ρ(σ1σ2) = ρ(σ1)σ2ρ(σ2). The multidimensional Hilbert’s 
90 theorem asserts that there is an element ℘ ∈ GL(V ) such that ρ(σ) = ℘−1℘σ. Moreover, the elements 
ω′
i = ωi℘

−1 are Gal(Fqd/Fq)-invariant since

(ωi℘
−1)σ = (ωσ

i )(℘−1)σ = ωiρ(σ)(℘−1)σ = ωi℘
−1℘σ(℘−1)σ = ωi℘

−1.

From now on {ωi}i=1,...,g denotes an Gal(Fqd/Fq)-invariant basis. An arbitrary element ω ∈ V is written as

ω =
g∑

i=1
aiωi

and the action of σD with respect to this basis is given by a representation

Gqd,M → GL(V )

σD �→ A(σD) =: AD
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The condition of (28) is now expressed as the matrix condition

AD

⎛
⎜⎝
aq1
...
aqg

⎞
⎟⎠ = Aq

D

⎛
⎜⎝
aq1
...
aqg

⎞
⎟⎠ ⇔ Aqd−1

D

⎛
⎝a1

...
ag

⎞
⎠ = AD

⎛
⎝a1

...
ag

⎞
⎠ .

Equivalently, the common eigenspace in V of the eigenvalue 1 of all matrices of the form Aqd−1−1
D gives the 

space of Hqd,M -invariant differentials. The space LY (ΩY (D)), see (23) consists of meromorphic differentials 
with allowed poles at D, and it is only necessary to select the holomorphic differentials among these.

We now return to the case M = Pα and examine invariant rings. The group ΔTα is clearly abelian. The 
action of (27) has an extension to the polynomial ring Fqd [λi,0, . . . , λi,α−1]. Consider the vector space of 
polynomials of multidegree, which we denote by mdeg, bounded by (μ0, . . . , μα−1):

Wμ̄ := {f ∈ Fqd [λ0, . . . , λα−1] : mdeg(f) � (μ0, . . . , μα−1)} (μ̄ = (μ0, . . . , μα−1)).

The space Wμ̄ inherits a unique representation of the group (Fqd(T )/Pα)∗. Therefore, we obtain

H0(Y,ΩY ) ⊂ LY (ΩY (D)) = W
H

qd,Pα

μ̄ . (29)

We thus consider the polynomial ring Fqd [λ0, . . . , λα−1] equipped with the natural extension of the linear 
action of (26) which is represented by the matrix in (27). The space of invariants Fqd [λ0, . . . , λα−1]Hqd,Pα is 
a finitely generated ring.

Consider the subgroup H < GL(α, Fqd) which consists of unitriangular elements of the form (27), corre-
sponding to the wild component of the cover X → Y . Let us view the particular case of GL(3, F3), in order 
to simplify the presentation. In this case, the subgroup H of Toeplitz matrices take the form

σ =
(1 a b

0 1 a
0 0 1

)
, a, b ∈ F3.

Viewing this matrix as acting on the ring F3[x, y, z], we find σ(x) = x, and

σ(y3 − yx2) = y3 + a3x2 − yx2 − ax3 = y3 + ax2 − yx2 − ax3 = y3 − yx2.

By modular representation theory [2, Corollary 3.1.6], a homogeneous system of parameters {f, g, h} for 
F3[x, y, z] satisfies

F3[f, g, h] = F3[x, y, z]H

if, and only if,

deg(f) deg(g) deg(h) = |H|.

By definition, |H| = 9. Also by definition, we have

σ(y) = y + ax,

so any invariant involving y must have degree at least q. The same is true for z as
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σ(z) = z + ay + bx.

As the invariant for x is already of minimal degree (one), it follows that the remaining two invariants must 
be of degree 3 | 9 if F3[x, y, z]H is polynomial. Let us then examine the action of σ on all homogeneous 
terms of degree 3 in the variables x, y, and z: 

Element Constant x x2 x3

x3 0 0 0 0
y3 0 0 0 a
z3 ay3 0 0 b
x2y 0 0 0 a
xy2 0 0 2ay a2

x2z 0 0 ay b
xz2 0 a2y2 + 2ayz + z2 2aby + 2bz b2

y2z ay3 + y2z 2a2y2 + by2 + 2ayz a3y + 2aby + a2z a2b
yz2 a2y3 + 2ay2z + yz2 a3y2 + 2aby2 + 2a2yz + 2byz + az2 2a2by + b2y + 2abz ab2

xyz 0 ay2 + yz a2y + by + az ab

The table of remainder coefficients via the H-action

Note that we are only considering the remainder coefficients, as the unitriangular action always returns an 
expansion containing the original element (the left-hand column). Clearly f = x is the first invariant. The 
invariant of minimal degree containing y is equal to the aforementioned y3 − yx2. It remains then to find 
the third invariant of degree 3, which must contain the variable z. Examination of the coefficients in x3, we 
find that there are only two other terms with equal coefficients: x2z and z3. But if an invariant contains 
these two terms, then as x2z has a coefficient of ay on x2, it follows that it must contain another term with 
a coefficient equal to a multiply of ay on x2. This occurs in only one element: xy2. But the coefficient of 
x3 on xy2 is equal to a2, which matches no other terms of degree 3. Thus there is no invariant of degree 
3 containing the element z. This argument may be easily generalised to our case of GL(α, Fqd). We thus 
obtain:

Theorem 6.4. Let H be the subgroup of upper unitriangular Toeplitz matrices in GL(α, Fqd). The ring of 
invariants Fqd [λ0, . . . , λα−1]H is not polynomial.

By Lemma 2.3, we have Hqd,Pα = (σ − 1)Gqd,Pα . When α = 3, for example, an element of Hqd,Pα takes 
the form (up to the tame part, i.e., a diagonal multiple)

(1 σ(a) σ(b)
0 1 σ(a)
0 0 1

)
·
(1 a b

0 1 a
0 0 1

)−1

=
(1 aq bq

0 1 aq

0 0 1

)
·
(1 a b

0 1 a
0 0 1

)−1

=

⎛
⎜⎝ 1 aq − a a

(
aq − a

)
+ bq − b

0 1 aq − a

0 0 1

⎞
⎟⎠ . (30)

This may be easily generalised to arbitrary α:

Proposition 6.5. The upper diagonal entries of matrices for elements of Hqd,Pα are Fqd-multiples of Frobenius 
differences xq − x (x ∈ Fqd).

An explicit description of the holomorphic differentials of Kq,Pα requires computation of classical binomial 
coefficients occurring in the Hqd,Pα-action on the canonical basis consisting of elements of the form (25). 
Although it would be desirable, no basis of cyclotomic holomorphic differentials is currently known which 
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allows a description of this action in terms of the function field binomial coefficients 
[
M
i

]
qd

appearing in the 
expansion of the additive Carlitz action (1)

Cqd(M)(u) =
∑

aiτ
i
qd(u) =

deg(M)∑
i=0

[
M

i

]
qd
uqdi .

This fact is owed to linear dependence between terms: The Carlitz M -torsion module Cqd [M ] is too small as 
an Fqd-vector space of dimension equal deg(M), far from sufficient to match genus growth [14, Proposition 
12.7.1]. We leave this as an open question for a future work.
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