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Synopsis

What follows is a dissertation in the subject of algebraic geometry and
more specifically in the theory of algebraic curves in positive character-
istic. It aims to present the three peer-reviewed published i.e. [34] and
[33] or accepted [32] works of the author. These papers revolve around
two subjects and in particular the first two are concerned with the theory
of Harbater-Katz-Gabber curves, while the last one deals with automor-
phisms of curves. This discrimination forces the thesis to be divided into
two parts, each one dealing with the appropriate area.

In the preliminaries several results which were known before our work are
presented. The first section constitutes a quick introduction to the general
theory of Harbater-Katz-Gabber curves. The second section is dedicated
on the formulation of Petri’s theorem and on a recent result regarding its
computation.

After the introduction our work becomes the focus. The first part consists
of chapters 2 and 3. They include the following results:

* The determination of the irreducible polynomials of the generating
elements of such a curve, see section 2.1,

* a cohomological condition on a particular class of elements of the
function field of the curve, also in section 2.1

* an application of the above for the determination of specific elements
in the Nottingham group, 2.2,

¢ the determination of the canonical ideal of an HKG curve, see chapter
3.

The second part deals with automorphisms of algebraic curves. Namely
we put together the theory of syzygies of the canonical embedding and the
theory of automorphisms of curves.

For a non-singular complete algebraic curve X over an algebraically closed
field of characteristic p > 0, if the genus ¢ of the curve X is g > 2 then the
automorphism group G = Aut(X) of the curve X is finite. For the theory
of automorphisms of curves we refer to the survey articles [1], [8].

On the other hand the theory of syzygies which originates in the work of
Hilbert and Sylvester has attracted a lot of researchers and it seems that

Keywords: Harbater-Katz-Gabber curves, Canonical ideal, Deformation theory.
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a lot of geometric information can be found in the minimal free resolution
of the ring of functions of an algebraic curve. For an introduction we refer

to [15].

Throughout chapters 4 and 5, X will be a non-hyperelliptic, non-trigonal
and also not a non-singular quintic of genus # 6. These conditions are
needed for Petri’s theorem to hold.

In section 4.1 we employ the machinery of Petri’s theorem along with
proposition 1.12 in order to give a necessary and suflicient condition for an
element in GL(H°(X,yx)) to act as an automorphism of our curve. In this
way we prove that the automorphism group of a curve X as a finite set
can be seen as a subset of the ¢?(¢g + 1)* — 1-dimensional projective space
and can be described by explicit quadratic equations.

In section 5 we show that the automorphism group G of the curve acts
linearly on a minimal free resolution F of the ring of regular functions Sy of
the curve X canonically embedded in P/~!. Notice that an action of a group
G on a graded module M gives rise to a series of linear representations
pq : G — My to all linear spaces M, of degree d for d € Z. For the case of
the free modules F; of the minimal free resolution F we relate the actions
of the group G in both F; and in the dual F,_,_; in terms of an inner
automorphism of G.

This information is used in order to show that the action of the group
G on generators of the modules F; sends generators of degree d to linear
combinations of generators of degree d. Let S = Sym(H°(X,Qx)) be the
symmetric algebra of H°(X, Qy).

The degree d-part of Tor? (k, Sx) will be denoted by Tor? (k, Sx )4, which is
a vector space of dimension f; ;. We can use our computation in order to
show that all Tor? (k, Sx), are acted on by the group G. Notice that this
also follows by Koszul cohomology, see [2].

To elaborate briefly on this, one starts with the vector space V = H°(X, Qx),
dimV =g, S = Sym(V) and considers the exact Koszul complex

0= ANVRS(—g) > NV S(—g+1)— -

s AV RS(-2) s v S(—1) = S =k —0.

The symmetry property of the Tor functor implies that one can calculate
Tor? (k, Sx) by using the Koszul resolution of k instead of the Koszul resolu-
tion of Sx. Since the Koszul resolution of k is a complex of G-modules and
all differentials are G-module morphisms the Tor? (k, Sy ), are naturally G-
modules. On the other hand the passage to the action on generators is
not explicit since the isomorphism between the graded components of the
terms in the minimal resolution and Koszul cohomology spaces is not ex-
plicit, as it comes from the spectral sequence that ensures the symmetry
of Tor functor.

Finally, the representations to the d graded space of each F;, p,s : G —
GL(F;,) can be expressed as a direct sum of the G-modules Tor? (k, Sx ).



We conclude by showing that the G-module structure of all F; is deter-
mined by knowledge of the G-module structure of H°(X,Qy) and the G-
module structure of each Tor? (k, Sx) forall 0 <i < g — 2.



Acknowledgements. At this point I would like to express my gratitude
to the advisor prof. Aristides Kontogeorgis for his contact presence and
support, guidance, encouragement and courtesy. Throughout the years
and difficulties, a strong bond of mutual respect and understanding has
been formed so that it exceeds the narrowness of a typical advisor-student
relation.

Heartfelt thanks are also owed to the other members of the three member
committee, namely prof. Jannis Antoniadis and Pavlos Tzermias. When
at times the distance threatened to hinder our communication they were
always ready to make amends in order to avoid setbacks.

For the honor of accepting being part of the seven members committee I
am indebted to each one them. Especially two of these members, namely
prof. Georgios Pappas and prof. Hara Charalambous provided essential
help and support during the recent months with the application process
and I would like to thank them sincerely.

My studies were fulfilled in the Department of Mathematics of the Univer-
sity of Athens, under the guidance of some of the best mathematicians in
Greece. To all of them I offer my gratitude and especially to the stand-
out prof. Apostolos Giannopoulos for his emblematic presence in Greek
Mathematics.

My family and friends provided a solid background of support in difficult
times, especially during the period of Covid-1g and I would like to thank
each one of them. During my master’s studies Maria Spyropoulou kindly
offered me her support. Last but not least I am indebted to my long-term
partner Alexia for all the beautiful moments.

During my studies I received financial support from the Papadakis legacy
scholarship (for the master’s studies), the department of Mathematics and
the State Scholarships Foundation:

This research is co-financed by Greece and the European Union (Euro-
pean Social Fund - ESF) through the Operational Programme “Human
Resources Development, Education and Lifelong Learning” in the context
of the project “Strengthening Human Resources Research Potential via
Doctorate Research” (MIS-5000432), implemented by the State Scholar-
ships Foundation (IKY, 12333).

Operational Programme E EZ"A

Human Resources Development, = 2014-2020
Education and Lifelong Learning ,,,,,,,m

Eupwmaikn Evwaon .
European Social Fund Co-financed by Greece and the European Union



Tovoyn

To mapdv arotedel pia datpiBny otov KAAS0 NG aAdyeBpikng yewperpiag
Kat edkotepa ot Oswpia 1wV adyeBplikev KAPmmudwv ot Ostikn
XAPAKINP1oTIK. Eméiokel tnv nmapouoiaon te@v 1pt@v urtoBeBAnpévav Kat
dnpooteupévev (BA. [34], [33]) 11 o dnuooievon (BA. [32]) epyaciodv tou
ouyypadéa. Ot gpyaoieg autég meplotpépovial yupwm arod dUo Bepatikeég
EVOTNTEG KAl OUYKEKPIPHEVA Ol U0 Tpwieg Ipaypatevovial 1 Bewpia
TV kaprudov Harbater-Katz-Gabber esved n tpitn toug autopopdiopoug
kaprudev. H d&uakplon auvt) odnyel own didomnaon tng diatpiBhg oe duo
HEpI], €K TOV OIMOI®V T0 KaBéva eEeTACEL TNV AVTIOTOIXT] TIEPLOXT.

Ziv eoaymyn napatifetatl pla oepd anod arotedéopata ta oroia Xenot-
portolouvial apyotepa Kal HTav yveotd PV Vv npaypatonoinon mg mna-
pouoag ¢peuvag. H mpotn napdypadog s1oayet my €vvold TV KAPITUAQV
Harbater-Katz-Gabber kat tov 8aoikov toug 161ot)tov. Katormv n dsutepn
napdypadog aPplep@vetal oto Kavoviko 19emdeg, 10 Bempnpa tou Petri kat
£va TIPOOPATO ATIOTEAECHIA OXETIKO HE TOV UTIOAOY1OHO TOU.

Zta endpeva Kepdadala n ouveloPpopd pag EpXETal oto rpooknvio. To rmpwto
H£pog artoteAeitatl aro ta Kepdadata 2 Kat 3, ta oroia reptdapBdavouy ta eEng
arnoteAéopata:

* Tov kaBop1opod 1OV €AAXI0TOV MTOAUGVUP®V TOV YEVVITOPOV HU1ag Ka-
pruAng Harbater-Katz-Gabber, 8Aénie mapaypago 2.1,

* pia ouvopoloylakr] oUvONKI eI N1ag OUYKEKPIPIEVIIS OUAAOYTG OTOt-
Xetlwv tou function field tng kapmnuAng, emniong oty napdypado 2.1,

* 1A epAPPOYI] TRV MAPATIAV® Yld TOV KaBoplopd CUYKEKPIHIEVOV OTO1-
Xelov g opddag Nottingham, BAerme 2.2,

* 10V KaBopP10110 TOU KAVOVIKOU 186ewd0oug TnG KaprmuAng, BAsrne kepdadalo
3.

To HeUTeEPO PEPOG KATATTAVETAL PE AUTOPOPPIO0US KAUTUAGDV a§l0IIo10Vv-
1ag ) Bswpia ouduyldv g KAVOVIKNG €UPUIEUONG Hlag KAPITUANG OTOV
POBOAIKO XWPO.

Agpevig ylia pia non-singular mArnpn aAyeBpikny kaprudn X et evog
aAyeBplkd KAE10TOU OOPATOS XAPAKINPOTKNG p > 0, av 1o yévog g sivat

A&Ce1g rAebia: Kapmudeg Harbater-Katz-Gabber, Kavoviko 18edbeg, Bewpia
[Mapapoppwong.
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peyadutepo 1) 100 tou 2 160t 1] opada avtopopdlopev G = Aut(X) g Ka-
HITUANG eivatl menepaocpévn. L Osmpia 1oV auTopopPplopav KAPIMUAQV ava-
dépovtat ot ermokonnoelg [1], [8].

Agetépou 1 Bewpia @V ouluylev, 1 oroia ekKivel amo g epyaocieg tov
Hilbert kat Sylvester, £xe1 mpoosAkUoel TTOAAOUG £peUVNTEG KAl dragaiverat
OTL PEYAAO PEPOG TNG VEDHUETPIKNAG IMANpodopiag reptdapbavetatl oty mini-
mal free resolution tou daktudiou ouvaptroewv piag aAyeBpikng KAPITUANG.
[Ma pia eloaywyr napanépnouvpe oto [15].

Zta kepadawa 4 rat 5, n X Oa eivatl pia pn UnepeAAETUK), P TPIY®OVIKL)
kaBwg ertiong dev eivat non-singular quintic yévoug 6. Ot ouvOr|keg autég
ermBdaiAoviat anod 1o Bewpnpa tou Petri.

Ziv napaypago 4.1 adornolovpe 10 Bswpnpa Petri kat tnv mpotaon 1.12
yla va ddooupe pla kavr) Kat avaykaia ouvOnkn oote €va otoixeio wng
GL(H°(X,Qx)) va 8pa oav autopopdiopdg g kaprmuing. ‘Etol amobet-
KVUOUPE OTl 11 opada autopopPplopaV g KApmuAng X oag IEMEPACHEVO
ouvolo propet va BswpnBel uTTOoOUVOAO TOU TIPOBOAIKOU XWPOoUu dlaotaong
¢*(g + 1)* — 1 ka1t va mepypadei arod OUYKekpipéveg HeutepoBadpieg
e€1000ETG.

Zinv napdypado 5 arodelkvuoupe ot 1] opdda auvtopopdpopev G g Ka-
pIuAng 86pa ot minimal free resolution F tou daxktuldiou twv regular
ouvaptosev Sy TNG epPuteupévevng oto PV~ kaprmuAng X. ErmmAgov ioxuset
ot ) 6pdon plag opadag G oe éva graded mpoturio M odnyetl oe pa oepd
and YPapHIKEG avanpaotaoelg py : G — M, otoug ypappikoug xwpoug My
B8aOpou d yia d € Z. Linv nepinmoorn) tov eAeubepnv ipotuniev F; g mini-
mal free resolution F cuoxeti¢oupe ) dpdon tng G oto F; kat oto 6U1KO tou
F,_5_; P€O® £VOG E0MTEPIKOU AUTOPOPPLopoU G G.

H ouvbnkn auty xpnowporoteitat yia va arodei§oupe ot n §pdon ng
opadag oTtoug YEVVITOPES TV MPOTUN®V F; anelkovidel yevvrtopeg 8abpou
d og ypappikoug ouvduaopoug yevvnuopev Babpou d.  ‘Eotw S =
Sym(H°(X,Qx)) n ouppetpikn adyeBpa tou HO(X, Qx).

Ta ototyeia 8abpou d tou Tor? (k, Sx ) oupBoAiovtat pe Tor? (k, Sx)q4, T ortoio
eivatl évag ypappikog xwpog diactaong f; 4. MmopouUpe va Xprnotponoin-
OOUHE TOV Urodoylopd pag yia va dei€oupe ot np opdda G 6pa erti kabe
Tor?(k, Sx)4. Ogeidel Kaveig va ermonpdvel 0Tt Autd eMAYETAl KAl Ao 1)
ouvopoAoyia Koszul, BAéne [2].

[T0 OUYKERPIHEVA, EKKIVOVIAS ATO TOV YPARHIKO Xwpo V = HO(X, Qy),
dimV = g, S = Sym(V) edetaloupe 10 akpiBeg ouprdoko Koszul

0= ANVRS(—g) > NV S(—g+1)— -

S ANV RS(-2) 2o S(—1) = S = k—0.

H oupperpiky 1816wta tou ouvaptnt Tor ouvendyetat 1ov UMTOAOY1OHO
tou Tor?(k,Sx) Xxpnowornowdviag v Koszul resolution tou k avt yila
v Koszul resolution tou Sy. A¢ou n Koszul resolution tou £ eivat



éva ouprdeypa G-mpotunev KAt oAa ta dapopika eivar popdpiopoil G-
npotuniwv, ot Tor! (k, Sx)q etval pe Ppuokd tpomo G-mpotuna. Qotéco 10
népaopa ot dpdon ermi 1OV yevvnuopwv dev eival ouykekpipévo adou o
100p0pP1opog petady v graded pepov tov 0pev g minimal resolution
Kal ToV Xopev ouvopodoyiag Koszul dev eival cuykekpippévog, adou €pxetat
ano ) paopatiky akoAlouBia rnou StaoPpaAilel ) CUPHETPIA TOU oUVAPTNTH
Tor.

TéAog ot avarntapaotdoelg otov X®wpo 8abpiou d tou kABe F}, p;q : G — GL(F} 4)
Propouv va dlatunmBolv og euby dbpotopa v G-ripotuniov Tor? (k, Sx ).
KAeivovtag arnodsikvuoupe ot ) dourny G-ripoturiou tev F; kabopidetat anod
) yveoorn tng dourg G-mipoturou tou HO(X, Qy) kat tg dounig G-ripoturou
tou kaBe Tor? (k, Sx) yia kabe 0 < i < g — 2.

Euxapiotieg. Y10 onpeio autd opeide va eKPPAc® TNV EUYVOHOOUVI] 110U
otov ermBAenovia kabnynt) K. Aptoteidn Kovioyeopyn yia ) dapkr na-
pouoia kat urnootr)pi§n, kabodnynorn, evbdppuvorn kat doukotnta. Alapé-
00U T®V XPOVOV Kal T®V SUOKOA1®V avartuyxOnkav 1oxupoi deopot apoiBaiou
0eBa0110U KAl KATAVONONG Ol OTT0101 EEMEPVOUV Td OTEVA TMAAiold g OXEONS

Kabnynt)-padnry).

Eykapdieg euxég odpeidm kat ota dUuo dAAa péAn g tpipedoug oupBouleu-
TIKI)G EITITPOIG KAl OUYKEKPIPEVA ToUg Kabnyntég K. lodvvn Avioviadn
kat K. [lavdo Teppida. XZe mepltodoug Orou 1 arootacn duoxepaive tnv
EIMKOVOVIA pag nrav rnavia npobupot va kataBdaAAouv v enUTAEoV 1Po-
orndfela yla v anodpuyr] KOAURATOV.

a v tpn va anodexBouv v poorAnon va eivatl péAn mg entapedoug
eCETAOTIKNAG EMTPOING £ipat undxpeog oe KAOe éva amnd auvtd. E1dikotepa
U0 ano ta péAn g, ouykekppéva o kabnyning k. Fewpylog [lanmag kat n
kabnynipla k. Xapa Xapalapnoug eixav ouoiwdn oupBoAr) ot dtadikaocia
TV AlTOERV PNOU KATd TOUG TeAeutaioug pnveg Kat 6a n6sAa va toug euya-
P1O0TN0® EAIKPIVA.

O1 omtoudég pou mpaypartortow)Onkav oto tpunpa Mabnpauxkev tou Iave-
rmotnpiou AGnvev, uno v Kabodrynon PepK®OV arnd toug KAAUTEPOUS
pabnuatkoug g EAAGdag. e kabe évav opeid® euyvopoouvn Kat e161K0-
Tepa otov eg€xovta Kabnyntr) K. Antootodo 'avvonouAo yia tnv epBANPatike)
10U napouocia ota EAAnvika Mabnpatika.

H owoyévela kat ot iAot pou napeixav éva ouprnayeg miaiolo Kkartavonong
Katl unootnpigng, diaitepa katd i didpkela g navénuiag Covid-19 kat
Ba 1nbsAa va suyxaploton kaBe évav arnd autoug. Katd ) didpkela tov
HETATTTUX1AK®V OrToudwv pou 1 K. Mapia Zruporovlou pou mapeixe v
guyeViKr) tng otpi€n. KAeivoviag Ba f16sAa va suxaplot)o® ) ouvodotrtopo
pou AAegia yla 0Aeg TG OPOPPES OTIYHEG.

Katd ) 8udprela tov PETAMTUXIAK®OV Ormoudov pou €AaBad O1KOVOUIKD
urtootp€n arnod 10 KAnpodotnpa Avieviou IManaddkn kat katd 1 didpkeia
10V 618aKTOp1IK®V Ao 1o Tunpa Mabnpatikev kat aro 1o Idpupa Kpatkov
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Chapter 1

Preliminaries

1.1 Introduction to the theory of HKG
curves

In this chapter we provide the general framework for this thesis. We will
work over an algebraically closed field k£ of characteristic p > 5.

Definition 1.1. A Harbater-Katz-Gabber cover (HKG-cover for short) is a
Galois cover Xukc — P!, such that there are at most two branched k-rational
points P, P, € P!, where P, is tamely ramified and P, is totally and wildly
ramified. All other geometric points of P! remain unramified. In this arti-
cle we are mainly interested in p-groups so our HKG-covers have a unique
ramified point, which is totally and wildly ramified.

Harbater-Katz-Gabber curves grew out mainly due to work of Harbater [21]
and of Katz and Gabber [26]. They, are important because of the Harbater-
Katz-Gabber compactification theorem of Galois actions on complete lo-
cal rings and they proved to be an important tool in the study of local
actions, in the deformation theory of curves with automorphisms and to
the celebrated proof of Oort conjecture, see [5, 40, 41, 33, 14, 12, 13, 43].
The interested reader can also consult the paper by Karanikolopoulos and
Kontogeorgis on HKG curves, [25].

In the w,ork of Harbater, Katz and Gabber it is shown that any finite
subgroup G of Aut(k[[t]]) can be associated with an HKG-curve X. More
precisely, G is the semi-direct product of a cyclic group of order prime to p
(the maximal tamely ramified quotient) by a normal p-subgroup (the wild
inertia group). We are interested in the latter group, so from now on we
will replace the initial group G with the finite p-subgroup of Aut(k[[t]]).

Working with the HKG-curve X allows us to use several global tools like
the genus, the p-rank of the Jacobian etc to the study of k£[[t]]. One can
employ the Weierstrass semigroup attached to the unique ramified point
P and use the results of [25] on relating the structure of the Weierstrass
semigroup to the jumps of the ramification filtration.

16



1.1.1 Ramification filtration

Let X — P! be a HKG-cover, that is, a Galois cover with Galois group a
p-group G fully ramified over one point P € P!. In the associated HKG-
curve X, the group G will coincide with the inertia group of the curve at
the unique ramified point, Gr(P) = {0 € G(P) : vy(o(t) — t) > 1}, where ¢ is
a local uniformizer at P and vp is the corresponding valuation. For more
information on ramification filtration the reader is referred to [45]. We
define G;(P) to be the subgroup of o € G(P) that acts trivially on &,/m’;*,
obtaining the following filtration;

Gr(P) = Go(P) = Gi(P) 2 Go(P) 2 --- 2 {1}. (1.1)

Let us call an integer ¢ a_jump of the ramification filtration if G;(P) = G;11(P)
and denote by

Go(P) = Gi(P) = -+ = G (P) 2 Gpya(P) = -+ = G, (P) Z -+ 2 Gy, (P) 2 {1}
(1.2)
the filtration of the jumps, assuming that there are exactly x4 jumps.

1.1.2 The Weierstrass semigroup

The Weierstrass semigroup H(P) is the semigroup consisting of all pole
numbers, i.e. m € N, such that there is a function f on X with (f), =
mP. For the Weierstrass semigroup H(P) we consider all pole numbers
m; forming an increasing sequence

O=mg < ... <my_1 <m,,

where m, is the first pole number not divisible by the characteristic. If
g > 2 and p > 5 we can prove that m, < 2g — 1, see [31, lemma 2.1].

Let F = k(X) be the function field of the HKG-curve X. For every m;,,
0 < ¢ < r in the Weierstrass semigroup we denote by f; € F' an element
of F' that has a unique pole at P of order m;, i.e. (f;).o = m;P. For each
i€{0,...,r} the set {fy,..., f;} forms a basis for the Riemann-Roch space
L(m;P). The spaces

k= L(moP) < L(mP) C --- C L(m,P) (1.3)

give rise to a natural flag of vector spaces corresponding to the Weier-
strass semigroup. Notice that if p is a pole number in H(P) we have

M = Mdim L(uP)—1-

1.1.3 Representation filtration

For each 0 < i < r we consider the representations
which give rise to a decreasing sequence of groups

G1(P) = kerpy 2O kerp; O kerps O ... D kerp, = {1}. (1.5)



Recall that r is the index of m,, the first pole number not divisible by p.
In [31] A. Kontogeorgis proved that p, is faithful hence the last equality
kerp, = {1}.

We shall call the last filtration the representation filtration of G.

Definition 1.2. An indexi is called a_jump of the representation filtration if
and only if kerp; = kerp; 1.

We will denote the jumps in the representation filtration by
<c<...<cp1<c,=r—1,

that is
kerp., > kerp., 1.

The last equality ¢, = r — 1 is proved in [25, rem. g]. We have now a
sequence of decreasing groups

G1(P) =kerpy = ... = kerp., > ...kerp., , > kerp., > {1} (1.6)
which gives rise to the following sequence of extensions;

FP) = pherpey ¢ pheroe, ¢ ... C fReTPn ¢ (1.7)

1.1.4 Arelation of the two filtrations in the case of HKG-
covers

Following the exposition in [25] one can relate the filtrations defined in eq.
(1.2), (1.6) and the Weierstrass semigroup in the following way:

Theorem 1.3. We distinguish the following two cases:

e If G1(P) > Go(P) then the Weierstrass semigroup is minimally generated
by me, 1 = p"iXi, (\i, p) = 1, 1 <i < n and the cover F /F%®) is an HKG-cover
as well. In this case |Gy(P)| = m;.

e If G1(P) = Go(P) then the Weierstrass semigroup is minimally generated
by me.1 = phiXi, (A, p) = 1, 1 <i < n and by an extra generator p" = |G(P)
which is different by all m., ., forall1 <i < n.

’

Especially when X — P! is an HKG-cover, the number of ramification jumps
i coincides with the number of representation jumps n, i.e. n = u. The
integers \;, which appear as factors of the integers m.,.1, 1 < i < n are the
Jjumps of the ramification filtration, i.e. \; =b; and G,, = ker p., for2 <i < n.
Summing up we have the following options for the ramification filtration

Gi(P)= =G\ 2G\t1= =Gy 2 Grp1 = =Gy, 2 {1}
or
Gi(P)>Gy(P)=-=Gy 2Grt1= =Gy 2 Grpp1 = =Gy, 2 {1}

Proof. See [25, th. 13,th. 14]. O



Remark 1.4. The reader should notice thatker p., = ker py = G1(P) = Gy, (P)
by definition, hence G,, = ker p., for everyi € {1,...,n = u}.

Theorem 1.3 allows us to use the well known fact that the quo-
tients G,,/G,,., are elementary abelian p-groups, hence the quotients
ker p.,/ ker p.,., are elementary abelian too, and the corresponding se-
quence of fields in (1.7) is in fact, a sequence of elementary abelian p-group
extensions.

Also in [25, prop. 27] the authors observed that for a o € ker p., — ker p,
the following hold;
o(f,)=f,forallv <g¢

0(fe;41) = fer1 + C(0) for some C(o) € k™.

They also proved (prop. 20 & rem. 21) that for each i € {1,...,n} we have
}(—vker;),;i_~_12 _ errpci (fci+1) .

In order to simplify the notation we set F; := F* e, i, == m, ., and f; :=
fe.+1, see also eq. (1.10).

Example 1.5. In the Artin-Schreier extension F' = k(z)(y) where y? —y = 2™
only the place P = ~o is ramified with the following ramification filtration:

ZIpZ =Gy =--- =Gy > {1},

i.e. the first and unique ramification jump is at m, see [46, prop. 3.7.8].
The representation filtration is given by

Go = kerpy = -~ = kerp,,_1 > {1},

that is, the first representation jump is at ¢, = m — 1 and fi = Jar1 =9,
wherecy = m—1and ¢y +1 = m. Thus F = F», = Fi(f1), and f, is the
generator x of the rational function field k(x).

1.1.5 The action on the representation filtration

An automorphism of a curve acts on all “invariants” of the curve includ-
ing the Weierstrass semigroup of the unique ramified point. Usually this
action on invariants provides useful information about the action. Unfor-
tunately the action of the group G on the semigroup H(P) is trivial. This
is not the case when we move to the action to appropriate flags of vector
spaces. More precisely we will consider flags of k-vector spaces

Vik=VoCViC---CV,, C---

where V; = L(iP). We will say that a group G is acting on a flag V, if there
is a homomorphism

p:G— Aut(V),
i.e. when p(g) is an isomorphism such that p(g)(V;) = V; for all V; in the
flag.



Remark 1.6. Since the representation p, is faithful it makes sense to con-
sider the representation not on the whole flag but only up to L(m,P). The
natural isomorphisms on this truncated flag are given by invertible upper
triangular matrices.

Recall that s is the the greatest index of m; such that m; < m. For every
1 <i< s and for every 1 < j <r we have

O'(fz) = fz + Oi(O'), where OZ(O') € L((ml — 1)P)
o(fi) = f; + Ci(0), where C;(c) € L((m; — 1)P).

As will be explained in the next chapter, in section 2.1, if fi,..., f, are fixed,
then the values C; for 1 < i < s determine the action completely.

Also notice that for each i € {1,...,r}, f; is a polynomial expression of the
f1,-.., fs. By proposition 1.10 we have C; € L((m; — 1)P) = knm,[fo, - - -, fi1-
The functions ¢ — C;(0) and ¢ — C;(0) are cocycles, i.e.

Ci(o1) = Ci(0) + oCi(T).

Remark 1.7. The selection of the generators f; for 0 < i < s is not unique.
Every element a € knu.[fo, f1,- - -, fi_1] gives rise to a new generator f; + a.

The new cocycle C! which is defined in terms of the generator f; + a is given
by

o(fi+a)=0o(fi) +ola) = fi +a+Ci(o) + o(a) —a= fi+a+Cio).

Therefore B B
Ci(o) = Ci(o) + (0 — 1)a.

Also instead of selecting the generator f;» which has pole order m; at P we
can select \f; for any A € £*. This change leads to cocycle A\C;. Therefore
selecting the generator amounts to giving an element in the projective
space

]P)Hl( G 5 nmeOaflw“vfi—l])

ker p; 4

This gives us the following
Lemma 1.8. The cocycles C;, C! corresponding to different generators fz, f!
with the same pole number m;, that is f| = \fi+ a, a € knm.[fo, fi,-- -, fio1

satisfy the relation ) B
Ci(o) = ACi(0) + (o — 1) Aa

and a generator free description of the action is determined by a series of
classes C; in

Hl (kerC; 10 nml[f07f17"'7ﬁ—1]>(i>H1(G7kn,mi[f07f_‘la'"7.](_‘1'—1]) . [1~8]

| o]

PH! (il kg, oo frs o Jit] ) ™ PHY(G, K, [fos Fis - fic])




These cocycles satisfy certain conditions which will be given in eq. (2.3)
and theorem 2.4. The monomorphism inf is the inflation map in group
cohomology, see [52, 11.2-3, p. 64], while inf[C] of the projective class [C]
of the cocycle C' is given by

inf[C] = [inf(C))].

Remark 1.9. The vector space kam,[fo. f1,- .., fi-1] has as base the space
of monomials f\°f/*... f*]", of degree smaller than m, where v; < p™. The

action on them can be described in terms of the binomial theorem, i.e.

V1 Vi—1
U0 £U1 rVi—-1 9 rro H1 i1\ 7 Fli—1 AV — [ AVi—1—Hi—1
0 1"'fi—1 _>f0 E E (Vl b 1...fi_1 Ol "'Ci—l .
i—

M1 Hi—1

(1.9)
The following proposition should be evident:

Proposition 1.10. For agivenm € H(P), in the case of HKG-covers we have

L((m — 1)P> = kn,m[f()a fl, ey fs],
where

ror F1_ fgo_fl---fﬁj:QSaifp"iforalllgigs,
kn,m[anfl,...,fs]_< and deg(fémffl“-fﬁs)Zijoaymy<m k. (1.10)

In the above equation deg(f;) is the pole order of f; at P. The integer s is
determined uniquely; it is the greatest index of m; such that m; < m holds.
The quantity n = (n4,...,ns) € N* depends on the ramification filtration,
specifically n; is the number of Z/pZ components in each elementary abelian
group G,/G,, obtained by quotients of the lower ramification filtration.

1.2 The canonical ideal

The study of the canonical embedding and the determination of the canon-
ical ideal is a classical subject in algebraic geometry, see [3, III.3], [44].
[39, p. 20], [47] for a modern account.

It is expected that a lot of information of the deformation of the action is
hidden in the canonical ideal, see also [24], [11].

Consider a complete non-singular non-hyperelliptic curve of genus g > 3
over the algebraically closed field k. Let 2y denote the sheaf of holomor-
phic differentials on X. The canonical ideal is defined as Iy in the following
theorem:

Theorem 1.11 (Noether-Enriques-Petri). There is a short exact sequence

0 — Iy — SymH"(X,Qx) » @ H(X, Q") - 0,
n=0
where I x is generated by elements of degree 2 and 3. Also if X is not a non-
singular quintic of genus 6 or X is not a trigonal curve, then [y is generated
by elements of degree 2.



For a proof of this theorem we refer to [44], [20]. The ideal Iy is called the
canonical ideal and it is the homogeneous ideal of the embedded curve
X P

The following is a recent result by Charalampous et al. [11], which provides
a computational criterion for the determination of the canonical ideal. It
roughly states that in order to show that a set of quadratic differentials
generates the canonical ideal, it suffices to show that the “initial terms” of
the differentials generate a large enough subspace of the degree 2 part of
the polynomial ring of symmetric differentials.

Proposition 1.12. Let J be a set of homogeneous polynomials of degree
2 containing the elements GG, and an extra set of generators G' and let I
be the canonical ideal. Assume that the hypotheses imposed by Petri’s
theorem in order for the canonical ideal to be generated by polynomials of
degree two are fulfilled. If dim,, (S/(in<J)), < 3(g — 1), then I = (J), where
S =Sym(H"(X, Q) is the symmetric algebra of H°(X, Qy).

For a proof see [11].



Chapter 2

Describing an HKG-cover as a
sequence of Artin-Schreier
extensions

2.1 The description

It is known, see [18], that every elementary abelian field extension L/K,
with Galois group (Z/pZ)", is given as an Artin-Schreier extension of the
form
L=K(y): Y —y=0 beK.

In our case, the elementary abelian field extension F;,;/F; can be gener-
ated by an element y € F;,; but this element might not be the semigroup
generator f;. We can give a description of the Artin-Schreier extension
F;;1/F; using a monic polynomial

1

A(X) = X" a,,  XP"T 4+ a XP 4 agX — D,

which can be computed in terms of the Moore determinant [19]. Notice
that this polynomial is an additive polynomial minus a constant term. Let
{o1,...,0,,} be a basis of the Galois group Gal(F;,/F;) = (Z/pZ)™, seen as
an F,-vector space, and let wy,...,w,, be elements of £* such that aj(fl-) =
fi +w;. Let W be the F,-subspace of k spanned by the w;, j = 1,...,n;. We
have dimy, W = n,.

Let P(X) = [[,ew (X — a). Since every w; is an element of k, Gal(F;,/F;)
acts trivially on P;(X) and we consider the polynomial

A(X) == P(X) = P(f).
Notice that, for a ¢ € Gal(F};,/F;), we can write ¢ = ¢ o --- 0 0,,;" and

o(fi+a)=fi +viwy + -+ vp,w,, +a, foralla € W C k.

This means that P;(f;) is Gal(F;,,/F;) invariant, i.e. belongs to F;. There-
fore, the polynomial A;(X) belongs to F;[X], is monic of degree p™ = [F;.; :

23



F;] and vanishes at f; hence it is the irreducible polynomial of f; over F,.
The polynomial P;(X) is given by

Awy,wa, .. Wy, X)

P(X) = , 2.1
(X) Awy, wa, ..., wy,) (2.1)
where A(wy,...,w,) is the Moore determinant;

w1 W2 e W,

wy wh . wk

Awy, ..., w,) =det

n;—1 n;—1 n;—1
wy wh cooowh

It is an additive polynomial of the form
P(X) = X" 4 ap 1 X" 4+ a1 XP A+ aoX,

where a; € k C F;. We have proved that the generator f; of the extension
F; 11/ F; satisfies an equation of the form

—p"i _pnifl Zp —
fir +an,_1fi +--Farfi +aof; =D, (2.2)
for some a,, 1,...,a0 € k, D; = P(f;) € F;.

Remark 2.1. Instead of f; one can use \f;. The additive polynomial corre-
sponding to \f; is equal to X" P;(X), where P,(X) is the additive polyno-
mial corresponding to f;. Indeed, when we change f; to \f; the F,-vector
space W is changed to \ - W, that is the basis elements w; are changed to
Aw;. Hence, the Moore determinalnt in the numerator of eq. (2.1) defining

P,(\X) is multiplied by AP+ P""" while the denominator is multiplied by
AUtPE 0" Therefore Pi(AX) = MW" Py(X).

We have the following:

Theorem 2.2. The cocycles C; € H(Gal(F;;1/F), knm,[fo, f1,- - -, fi_1]), when
restricted to the elementary abelian group Gal(F;,/F;) < Gal(F;.,/F;) de-
scribe fully the elementary abelian extension F;,,/F; given by the equation

Pi(Y) = D;.

Moreover the element D; = P(f;) is described by the additive polynomial
Pi(Y) and by the selection of f;. A different selection of f/, i.e. fl = \f; + a,
Jor some a € knm.[fo, fi,---, fis1], X € k* gives rise to the same polynomial
N7 Poand to a different D) given by D, = X" ' D; + A" P,(a). The two
extensions F;(f;) and F;(f!) are equal.

Progf. The only part we didn’t prove is the dependence of the additive
polynomial to the selection of the generator f;. We have seen that changing
fi; adds a coboundary to C;.

But when o belongs to Gal(F;,,/F;), Ci(c) belongs to k, and k admits the
trivial action. Therefore, all coboundaries are zero and the result follows
by lemma 1.8. U



The additive polynomial P;(Y), which depends on the values of C;(0) with
o € Gal(F;,,/F;) gives also compatibility conditions for the cocycle C; on
all elements of Gal(F;;,/F;). Namely, by application of ¢ to eq. (2.2) we
obtain the following

P(Cy(0)) = (o — 1)D; for all o € Gal(F,/F,). (2.3)

So if o keeps D; invariant, for instance when o € Gal(F/F;), then C;(o) €
Fpn C k.

Equation (2.3) is essentially a relation among the cocycles C;(c) and C, (o)
for v < i. Indeed, the element D; € kn.,[fo, fi,--., fi_1] is a polynomial
expression on the elements f;, ..., f;_;, and the action is given in terms of
the elements C, (o) for v < i and f; as given in eq. (1.9).

Lemma 2.3. An additive polynomial P € k[Y] defines a map

HI(G7kn,mi[f_07 fl? ceey ﬁ*l]) — Hl(G7 kn,mi[f_o, f_17 ey f_.ifl]) (24)
d— P(d),

Proof. Notice first that elements in the space L(vP), for some v € N,
can be multiplied as elements of the ring A, so a polynomial expres-
sion P(d) of a cocycle d makes sense. One has to be careful since the
multiplication of two elements in L(vP), is not in general an element of
L(vP), since it can have a pole order greater than v. Therefore the value
P(d) is an element in L(uP) for some ;1 € N for big enough u. However
notice that eq. (2.3) implies that P(Ci(0)) € knm,[fo, f1,---, fi_1] so that
Pi(Ci) € HY(G, kam,[fo, f1, - s fima])-

Finally observe now that if d is a cocycle, i.e. d(o7) = d(o) + od(7), then
P(d(oT)) = P(d(c) + od(7)) = P(d(0)) + P(od(1)) = P(d(0)) + o P(d(T)).
On the other hand if d(o) = (¢ — 1)b is a coboundary, then
P(d(0)) = P((o — 1)b) = (o — 1)P(})

is a coboundary as well. O

This allows us to give a cohomological interpretation of eq. (2.3):

Theorem 2.4. The cocycles C; given in eq. (1.8 are in the kernel
of the map P, acting on cohomology as defined in lemma 2.3. The
corresponding element D; is then the element expressing P(C;) as a
coboundary. The elementary abelian extension is determined by a se-
ries of cocycles C; € HY(Gal(Fii1/F), knm.[fo, f1,---, fi-1]), which define
a series of additive polynomials P, and extend to cocycles in C; €
HY(Gal(Fi11/F)), knm.[fo, fi,- -, fi_1]) so that each C; is in the kernel of P,.

Remark 2.5. In remark 2.1 we have seen that by changing the generator
fo to \f, the additive polynomial is changed from P, to \’**"' P,. The corre-
sponding map

]P)Hl(G7 kn,mi [an fl? BRI ﬁfl]) — PHl(Ga kn,mi[fm .fla I fi*l])

is not affected.



2.2 Application to Nottingham groups

An automorphism o of the complete local algebra k[[t]] is determined by
the image o(t) of ¢, where o(t) = >_°, a;t" € k[[t]]. We consider the subgroup
of normalised automorphisms that is, automorphisms of the form

o
U:tr—>t+2aiti.
i=2

S. Jennings [23] proved that the set of latter automorphisms forms a group
under substitution, denoted by .4'(k), called the Nottingham group. This
group has many interesting properties, for instance R. Camina proved in
[g] that every countably based pro-p group can be embedded, as a closed
subgroup, in the Nottingham group. We refer the reader to [10] for more
information regarding .# (k). We would like to provide an explicit way to
describe the elements of .#'(k). It is proved in [28, prop. 1.2] and [37,
sec. 4, th. 2.2], that each automorphism of order p is conjugate to the
automorphism given by

ts t(1+et™)"Vm = ¢ <Z <_1V/m) c”t”m) (2.5)

v=0
for some ¢ € £* and some positive integer m prime to p.

In [5] F. Bleher, T. Chinburg, B. Poonen and P. Symonds, studied the
extension L/k(t), where L := k({o(t) : 0 € G}), where G is a finite subgroup
of Autk[[t]]. Notice here that each automorphism of order p" is conjugate
tot — o(t), where o(t) € k[[t]] is algebraic over k(t). Also in [5] the notion of
almost rational automorphism is defined: an automorphism o € Aut(k|[¢]])
is called almost rational if the extension L/k(t) is Artin-Schreier.

The rational function field k(t¢), despite its simple form, is not natural with
respect to the group G acting on the HKG-cover. For example the deter-
mination of the algebraic extension L/k(¢) and the group of the normal
closure seems very difficult.

Here we plan to give another generalization, by using the fact that the
“natural” rational function field with respect to the Harbater-Katz-Gabber
cover is X% and not k(t).

In [31, p. 473] A. Kontogeorgis proposed the following explicit form for an
automorphism of an HKG-cover of order p":

r —1/m
ot)=t (1 + Z ci(a)uitmmi> ,
i=1

where m is the first pole number which is not divisible by the characteristic
p, u;/t™ for 1 < i < r are functions in L(mP) (u; is a unit) and 1/¢™ is the
function corresponding to m (¢ being the local uniformizer). In the latter
function the unit is absorbed by Hensel’s lemma.



A canonical selection of uniformizer

In an attempt to describe in explicit form automorphisms of k[[t]] let us
quote here some results from [31]. We will work with the corresponding

HKG-cover X -Z P! corresponding to a finite subgroup G C Aut(k|[t]]).
Again let m, denote the first pole number not divisible by the character-
istic and f;, i = 1,...,dim L(m,P) = r a basis for the space L(m,P), such
that

(fi)oo = m;. (2.6)

As we have seen this basis is not unique but eq.(2.6) implies that if the
element f; is selected, then f/ = \;f; + a;, where a; € L((m; — 1)P) is also a
basis element of valuation m,.

This means that the base change we will consider, corresponds to invert-
ible upper triangular matrices, i.e. to linear maps which keep the flag of
the vector spaces L(m;P).

Recall that m = m, is the first pole number not divisible by p. Let us focus
on the element f.. This element is of the form f, = u,/t", where u,, is
a unit. Since (m,p) = 1 we know by Hensel’s lemma that u,, is an m-th
power so by a change of uniformizer we can assume that f, = 1/t". When
changing from a uniformizer ¢ to a uniformizer ¢ = ¢(t) = tu(t) (u(t) is a
unit in £[[t]]), the automorphism o € k[[t|] expressed as an element in k[[t']]
is a conjugate of the initial automorphism, i.e. ¢o¢~!. By selecting the
canonical uniformizer with respect to f,. we see that the expression of an
arbitrary o can take a simpler representation after conjugation. Also this
result is in accordance with (and can be seen as a generalization of) the
result of Klopsch and Lubin, [28], [37]. The selection of uniformizer ¢ = ¢y,
is unique once f, is selected.

Definition 2.6. We will call the uniformizer t; = f. /™ the canonical uni-
formizer corresponding to f,.

What happens if we change the function f, to f, = f, +a, where a € L((m—
1)P)? Then a = u/t*, with 0 < < m and in this case the new uniformizer
is given by

u\~l/m m—p\—L1/m m\—1/m
tf4:<fT+t—#) =t (1+ut™) " =t (1 at™) "
Keep in mind that the set of uniformizers for the local ring k[[¢]] equals to

tu(t), where v is a unit of the ring k[[t]].

Let m4, ..., m, be the generators of the Weierstrass semigroup H(P). These
elements correspond to a successive sequence of function fields F; =
Fi_1(fi_1) so that v(f;_,) = pl®E/FIN, | = m,. It is not clear that m; > m;
for j <i. However if for some j we have m; < m; for some i < j then

o(f;) = a(f;) + Cj(0), where C; € k[fo, .. -,ﬁ', coes Fimaly

that is, f; does not appear in any term of the polynomial expression of
Cj(0), for all ¢ € G. This means that we can generate an HKG-cover with



corresponding function field generated by fewer elements than the initial
one.

If we assume that among all HKG-covers which correspond to a local ac-
tion of G on k[[t]] we select one whose function field is minimally generated
then m; < my < ... < ms.

Lemma 2.7. Let m = m, be the first pole number not divisible by the char-
acteristic p. Then m = m, that is the pole number corresponding to the last
generator f,.

Proof. It is clear that not all pole numbers are divisible by p since m &
H(P), p{tm. So at least one generator must be prime to p. On the other
hand F; = F;_(fi_1), thus the pole numbers m; of elements f; for i < s are
divisible by p, see also [25, eq. (6)]. Therefore only the last generator can
be not divisible by p. ]

Theorem 2.8. Let C, € H*(G, knm[fo, f1,-- -, fs_1]) be the cocycle correspond-
ing tom = m,, where m is the first pole number not divisible by p, see lemuna
2.7. We choose as uniformizer the canonical uniformizer t = ﬁ_l/ . We de-
fine the representation:

o G — Aut(k[[t]]))
or— (t—t(1+ C’S(U)tm)_l/m) : (2.7)

The expression 1 + C,(o)t™)~'/™ can be expanded as a powerseries using
the binomial theorem and determines uniquely an automorphisms of k[[t]].
We have that for allo, 7 € G

O(10) = D(0)P(7).
Furthermore ® is a monomorphism.

Proof. We begin by noticing that o(f,) = f, + C,(c) and we can select ¢ so
that t—™ = f,. Using the above expression we can determine the value of
o(t) using
o = o+ (o)
o(tym — tm T Cslo),

see also [31, eq. 4]. In this way o coincides with the image of ®(0) €
Aut(k[[t]]) in eq. (2.7).

Recall that ¢ € G acts on the elements f,..., f,_; by definition in terms
of the cocycles C;(c). This was defined to be a left action. Also this ac-
tion is by construction assumed to be compatible with the action of ¢
on k[[t] in the sense that when we see the elements f; as elements in
E[[t]][t!], then o(f;) = ®(o)(f;), that is the action of ¢ on f; as elements in
knmi i fo, f1, - - -, fs—1] coincides with the action of o on f; seen as an element
in the quotient field of £[[t]]. In other words we have

o(fi(t)) = filo(t)) = fi(t) + Ci(0).



We will prove first that this is a homomorphism i.e.
t(1 4 Cy(ro)t™) Y™ = t(1 4 Cy(a)t™) V™ o t(1 + Cy(r)t™) "1™, (2.8)

where o denotes the composition of two powerseries. The right hand side
of the above equation equals

11+ Cu(r)em) ™ (1 n ffé(—%) " (14 (G + 7))

so eq. (2.8) holds by the cocycle condition for C..

The kernel of the homomorphism ¢, consists of all elements ¢ € G such
that C,(0) = 0. But if C,(0) = 0 then o(t) =t and ¢ is the identity. O

Remark 2.9. The above construction behaves well when we substitute f,,
with f/ = f.,.+a. In any case the representation given in eq. (2.7) is given in
terms of the canonical uniformizer t; corresponding to the element f, = f.
which gives rise to the cocycle Cs.

Remark 2.10. Equation (2.7) implies that the knowledge of the cocycle C,
implies the knowledge of o(t), which in turn gives us how o acts on all
other elements f; forall0 < i < s — 1. Subsequently one may be led to
believe that C, can determine all other cocycles C, foralll <v <s—1. This
is not entirely correct. Indeed, C, is a cocycle with values on the G-module
knm.[fo, fi,- .., fs_1], therefore the action of G on f; for(0 < i < s—1 is assumed
to be known and is part of the definition of the cocycle C,. That means that
C; are assumed to be known and part of the definition of C..

Proposition 2.11. Ifo € G, 0 # 1, then
vp(o(t) —t) =m —vp(Cs(0)) + 1 = I(0),

where —I(o) is the Artin character since k is algebraically closed, see [45,
VI.2]. Therefore o € Gy — Gr(o)41-

Proof. The valuation of o(t) — ¢t comes from the binomial expansion of eq.
(2.7). The rest is the definition of the ramification group. N

2.2.1 Elements of order p in the Nottingham group

It is known that every element of order p in Aut(k[[t]]) is conjugate to the
automorphism
ts t(1+ct™)"Y™  where ¢ € k,

for some m prime to p, see [28, prop. 1.2] and [37, th. 2.2].

We can obtain this result using theorem 2.8. Let ¢ be an automorphism of
k[[t]] of order p. Let X — P! be the corresponding HKG-cover. The sequence
of higher ramification groups equals (o) = Gy = G, = --- = G,,, > {1}, i.e.
there is only one jump in the ramification filtration. If m = 1 then G;(P) =
{1} for i > 2 and in this case the genus gx = 0. This is a trivial case so we



can assume that m > 1. From theorem 1.3 we know that the Weierstrass
semigroup is generated by p = |G1(P)| and m,. If m; is a pole number less
than m, then m,; is a multiple of p, hence the corresponding elements f;
with pole order m; at P will be powers of f, where (fy). = pP.

Since the ramification filtration jumps only once, the same holds for the
representation filtration, i.e.

Gl(P> = kerpm > {1}
So if ¢ is not the identity then by [25, prop.27] we have that

o(fl)=fifori=0,1,...,|m,/p| and
0(fey+1) = o(fr) = fr + C(o) where C(o) € k™.

Compare also with the computation of proposition 2.11. To obtain the re-
sult we notice the following; changing the local uniformizer to a canonical
one imposes the substitution of ¢ by a conjugate which, by theorem 2.8,
maps t to the desired form.

2.2.2 Elements of order »" in the Nottingham group

Let us now consider an element o of order p". As before the cyclic
group

Go(P) = Gr(P) =+ = G (P) Z G (P) =+ = G (P) 2+ 2 Go, (P) 2 {1}

Since a cyclic group has only cyclic subgroups and all quotients of cyclic
groups are cyclic, while G4,/G,,,, is elementary abelian, we see that the
number of gaps p is equal to h and p"~* is the exact power of p dividing
each m,;.

Observe that all intermediate elementary abelian extensions F;.,/F;, =
Fi(f;)/F; are cyclic. The additive polynomial describing the extension
Fi(f:)/F; is given by

YP-CrlY = ff - O R

by computation of the Moore determinant det ( i ¥ ) , where C; is com-

c? yr
puted at a generator o” of the cyclic group Gal(F,,/F;) = G, 1/ Gh,, (ie.
o? (fi) = fi + Ci(o?")). Since C; € k, if we rescale f; by f;/C;, we can assume
without loss of generality that the equation is an Artin-Schreier one:

Yp—Y:ﬁp—ﬁ:Dl, WhereDiGFi.

Let g be an automorphism of the HKG-cover X. Since g(f,) = f,+¢,(g) and
¢,(g) € F,_1, the automorphism g gives rise to an automorphism g : F,, — F,
for all . We have that

Ci(9)” — Ci(g) = (g = D(fF — fi) = (9 — 1)Dx. (2.9)



Notice that eq. (2.9) has many solutions C;(g) for a fixed g, which differ
by an element ¢;(o) for some o € Gal(F;;,/F;), since (go — 1)(D;) = (g —
1)(D;).

The representation filtration has the following form (the filtrations are col-
lectively depicted in the diagrams below)

FOP) = = FXe10 ¢ [y = FX™ C ... C F, = F¥"r = I,

We have p"~ = |kerp,,,,| for 0 <i < n—1and p" = |G1(P)|. The genera-
tors of the Weierstrass semigroup are p", p"~'\;,... ,p\,_1, \,. We have the
following tower of fields:

F = Fpp1 = Fu(fa) {1} 1

/ Z/pZ P p
Fy = Fy1(fa1) Gy, = kerp,, (o?" ") (order=p)

Z/pZ p p
22 Fiy Gy, =kerp,, | (0"} (order=p?)
b= Fl(fl) Gb2 = kerp02 <Up> (0rder=ph—1)

Z/pL P P

Fy = k(fo) Gy, = ker p,, (o)

— FGi(P) G1(P) G.(P)

For every g € Gal(F'/F,) we have

9(fre1) = fro1 = Cra(g).

For a cyclic group Z/p'Z the cohomology is given by:

{a € A: N(a) =0}
(o; — 1A

HY(Z/p'Z,A) =

where o; is a generator of the cyclic group Z/pZand N = 1+o0 +---4o?' !
is the norm, see [51, th. 6.2.2, p. 168]. In view of theorem 2.4 we will
consider the groups Gal(F;;,/F;), which are generated by the generator o
of the cyclic group Gal(F}1/F1) modulo the subgroup Gal(F},+1/F;11). Thus
in the group Gal(F;,,/F;) the order of ¢ equals p'.

Observe now that 7 = ¢” ' acts trivially on A = kn,[fo, fi,- -, fii1]. We



now compute the norm for Gal(F;,,/F):

p—1pi—1-1
e Yo v e
=0 v=0
z 1 —1
—ZT Z o’
where 7 := ¢* ', and observe that the above equation restricted on A

gives
7.1 —1
l4+o+-+0”"1=p. ZO

which is zero on A. So we finally arrive at the computation:

Hl (Z/pZZ, kmfni [an fla sy ﬁ—l]) = kn,ﬁzi [f07 fl? SRR ]Ei—l]Z/piZa
where the latter space is the space of Z/p'Z-coinvariants.

Proposition 2.12. A cyclic group of the Nottingham group is described by
a series of elements Cyi € kam,[fo, -, fie 1|z/piz So that C? — C; is zero in the
space kg m, [fOu . fz 1]Z/pwz

In order to ensure that the element o has order p" we should have, C,(o?") #
0, forall0 <v < hie.

(1+J+--~+UPV*1)O(J)7§O



Chapter 3

On the canonical ideal of an
HKG curve

3.1 Introduction

In this chapter our aim is to calculate the canonical ideal of an HKG-curve
X/k. In order to do so we use proposition 1.12. Additionally we employ
the breakdown process of an HKG-curve into Artin-Schreier extensions as
described in the previous chapter while also expanding our understanding
of the generating elements (section 3.2). In this chapter we will again
assume that the Galois group of the HKG-cover X — P! is a p-group.

We define a set of possible generators of the canonical ideal (i.e. A+A) and
then define an equivalence relation (def. 3.3) appropriately which throws
away the non-generators, a result in the spirit of the first isomorphism
theorem (section 3.3). There is a bijection (check eq. 3.12)

WiHy — A+ A/ ~ |

where H, can be identified with a basis of the space of holomorphic dif-
ferentials. In this way we are allowed to associate elements of a basis
with sums of elements of A and we use these sums instead, since they are
easier to manipulate. The bijection v also allows us to work interchange-
ably between the space A + A and the space of 2-differentials. Then in
section (3.4) we interpret the equations of the intermediate Artin-Schreier
extensions as equations of quadratic differentials defining a set of rela-
tions K, and K3 ;, which we prove that are part of the canonical ideal, see
proposition 3.6 and 3.10. Of these two K is the “trivial” part, imposed by
the definition of the canonical map while Kj; is slightly less trivial and is
derived from the tower of Artin-Schreier equations giving an HKG-curve.
Notice that in order to be able to generate the canonical ideal by quadratic
polynomials we have to assume that all intermediate extensions satisfy
the assumptions of Petri’s theorem, see lemma 3.8.

In section (3.5) we prove that the aforementioned sets generate the canon-
ical ideal, using the bijection of the previous paragraph, by induction on
the number of intermediate extensions of the function field.
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In the last section (3.6) we give several examples illustrating our con-
struction. These examples are used to demonstrate the fact that, despite
the possibly complicated definition of the generating sets (along with the
proof), computations can be done efficiently in specific situations.

3.2 Preliminaries

As before suppose X is an HKG curve over the algebraically closed field &
(the same assumptions as in the introduction). The canonical ideal I of
X was described in section 1.2.

Extra assumption: We are going to assume that our curves are non-
trigonal, so that the third condition of Petri’s theorem (thm. 1.11) is satis-
fied. In lemma 3.8 the reasons for this demand become apparent.

Summarizing the results of the previous
chapters we have seen that an HKG curve
is defined by a series of extensions F;,; =

F;(f:), where the irreducible polynomials of F = Feoq = Fe(fe)
f; are of the form / ne
p
p"7 () pn1 1 . (1) B ) _

X X + ay X —D,. (3.1) F£ _ F§—1(f5—1)
The coefficients aﬁj ; €k j=1,..,n and pret
D; € F; has pole divisor p™im,;P. IGol | Fey
The Weierstrass semigroup H is generated ‘ :
by the elements {|Go|, my, ..., m} where m; =
prtittneh,. Notice that the ramification Fy = Fi(f))
groups are given by |G,,,,| = p™*t Tt and .
they form the following filtration sequence b

Fy = k(fo)
Go(P) = Gi(P) = - = Gy, (P) Z Gpya(P) = -+
o =Gy(P) z - 2 Gy, (P) 2 {1} _ pGi(P)
We know that (b;,p) = 1 and |G| = p™* 17,
see [25], [33].

The above subset of the Weierstrass semigroup might not be the minimal
set of generators, since this depends on whether G,(P) equals Gy(P), see
[25, thm. 13]. We will denote by

Hy={h:heHh<s(2g—2)} (3.2)

the part of the Weierstrass semigroup bounded by s(2¢g — 2). We will also
denote by A the set

3
A= {(ig,....ic) € N1 1ig|Go| + Y iy, <29 — 2}, (3.3)

v=1



For each h € H, there is a fixed element f, with unique pole at P of order
h. These elements are the field generators, such that F;,; = F;(f;). The
sets H; and A have the same cardinality and moreover the map

H, > h—s fdf$, (3-4)

gives rise to a basis of H°(X,*), see [25, proposition 42]. We will also
denote f,dfs* by w, and since each element of A corresponds to an element
L € H, we will define w; := w;,. This implies that the cardinality of H; is
given by

Ho— g ifs=1
(2s—1)(g—1) ifs>1.

We will denote by T? the monomials of SymH°(X, Q) of degree two (i.e. of
the form wywg). For a graded ring S we will use (5), to denote elements of
degree 2.

The information of the successive extensions is encoded in the coefficients
a§-’) of the additive left part of eq. (3.1) and in the elements D; € F;. Eq.

(3.1) vanishes at f;, yielding the equality

el T 1 a = Dy

where, taking valuations on both sides, yields that the valuation of D; is
—p"im;. Notice that the minus sign comes from the fact that f; has a pole
at P and since it is of order m;, one has vp(D;) = vp(ffi ') = —p"im,. Since
D; belongs to F; = FOP)(f, ... f,_1) and F&(P) = k(f,) (see [25, remark
21]), one can express D, as
3 3 i 2 i
Dilforsfi) = 30 ol e S0 S (3.5)
(60 ..... fi_l)GNi

where Oéé?,...7zi,1 € k are some coeflicients, not to be confused with the coef-
ficients in eq. (3.1). We will need the following:

Lemma 3.1. Assume that ({y,...,0; 1), (wo, ..., w;_1) € N* such that
1</ly,wy<p™ foralll < A<i—1 (3.6)
and
bo|Gol + iy + -+ + Ci_ymi—1 = wo|Go| + wimy + -+ -+ + wi_ 1M1 (3.7)
Then (4o, ..., 0i—1) = (wo, ..., wi_1).
Proof. Assume that ({,...,¢; 1) # (wo,...,w;—1). We have by assumption,

after cancelling p™ ™ "¢ from both sides,

i—2
Lop™ T + Z Cop™ I D 4 by =

o=t (3.8)

i—2
:wopn1+--~+ni_1 _|_§ vanv+l+m+m_lbv‘|‘U)z‘—1bz‘—1-

v=1



By the coprimality of b;,_; and p we get that p™—* divides w;_; —¥¢;_;. Suppose
that the last difference is not zero and assume without loss of generality
that it is positive i.e.

W;—1 — &'71 = )\pm*l, A > 0.

Then w;_; is strictly greater than p™-' which contradicts the inequality
(3.6) so we must have w;_; = ¢;_;. Cancelling the corresponding terms
on either side of eq. 3.7 allows us to perform the same procedure yield-
ing w; o = {; 5. Proceeding with induction we get w; = ¢; which means
that also w, equals /,, a contradiction since the elements were assumed
different. H

The following lemma allows us to manipulate the elements D;:

Lemma 3.2. Let F' = I, be the top field, with generators f;, i = 0,...,¢
and associated irreducible polynomials A; as in equation (3.1):

AX)= X" 4™ x4 dP X — D,

n;—1

where D; is given in equation (3.5),

r r 1 r 7&;,
Di(an ceey fifl) = Z aéo) ..... 0 1 go Ce fi—ll'

(Lo,....,¢;—1)EN?

Then one of the monomials fi° ... f'1' has also pole divisor p"m;P and this
holds foralli=1,... ¢&.

Proof. Recall that D; € F;, f; € F;,, — F; and the pole divisor of D; is p"m;P.
Suppose on the contrary (for D;) that, none of the monomial summands
of D; has pole divisor of the desired order, p™im,;P. In other words,

Co|Go| + b + - -+ + Ly # Py

forall ¢y, ..., ¢;_; appearing as exponents. We can assume that /), w, satisfy
the inequality of eq. (3.6) for all exponents of all monomial summands of
D; since, otherwise, we can substitute the corresponding element f.* with
terms of smaller exponents because of its irreducible polynomial, see also

eq. (3.1).

By the strict triangle inequality there will be at least two different mono-

. r _Zi_ r i — . . .
mials fi°... f;'7', feo... f7" in the sum of D; sharing the same valuation

(2

and the contradiction follows from lemma 3.1. O

3.3 Preparation for the main theorem
Define the Minkowski sum (recall the definition of A given in eq. (3.3))

A+A={L+K:L K €A}



where L + K = (ig + jo, ..., + je) for L = (ig, ..., i), K = (Jo,...,Je). There
is a natural map

3
NS (g, v, yie) = ho— ||B]] = i0|Go| + ) iy, €N, (3.9)

v=1
which restricts to the map

A+Al g (3.10)

|Gl
my ¢
L+ K (L+K) | . | = (io+50)Gol + Y _ (v + ju) e

v=1

me

The map given in eq. (3.10) is not one to one. In order to bypass this we
introduce a suitable equivalence relation ~ on A + A so that there is a
bijection

v:(A+A)/ ~ — H):=Imy C H,.

Definition 3.3. Define the equivalence relation ~ on A + A, by the rule
(L+K)~ (L'+K') ifand only if || L + K|| = ||L’ + K'||.

The function ¢ together with eq. (3.4) allows us to express a quadratic

differential w, corresponding to an element h € H} as an element in A+ A

by selecting a representative L + K € A+ A of the class of ¢(f). That is for
every element h € H) we can write

W([Lp, + K3]) = h for certain elements L, K, € A. (3.11)

It is clear by our definitions that the following equality holds.
’ A+A

= |H,| < |Hs| = 39 — 3. (3.12)

~J

as we mentioned in the introduction, the reasons for the definition of the
equivalence relation will be clear later but the curious reader may check
proposition 1.12. We will need the following:

Lemma 3.4. The equivalence class of the element L + K = (ig + jo, ..., +
Jje) € A+ A corresponds under the assignment

A+ BeA+A— wiwp
to the following set of degree 2 monomials

(wawp € SymH(X,Qyx) : for A= (ag,...,a¢), B =(by,...,be) )
such that:
£—-1
((ao + o) = (io + jo))|Gol + Y (au + by = (iv + ju) )My = Amep™

v=1

Ik =

L and ag + be — (i + je) = —Ap™ for some A € Z



Proof. The equivalence class of L + K is a subset of A + A which corre-
sponds to holomorphic differentials as described below: Notice first that
two equivalent elements L + K, L' + K’ satisfy

3
(i + Jo — (i + JO))Gol + > _(iv + ju — (i) + ju))im, = 0
v=1
which, combined with the facts that (m¢,p) = 1 and m; = p™+ 7"}, yields
that there is an integer A\ such that

£—-1 _
. . . LS . . . My _
fo-+o— G~ 30) S+ St — @R < ame (39
v=1
and ié +jé — (lg + je) = Ap™e. (3.14)

]

Remark 3.5. By Petri’s theorem the canonical map ¢ (check eq. (1.11)) maps
a degree 2 polynomial in the symmetric algebra of H°(X,x) to fydf$* €
HO(X,0%%), that is

¢ (Z aququV) = fhdf?,  a €k (3.15)

It is not correct that a holomorphic 2-differential f,dfy* is the image of a
single element w wg. Indeed, for the genus 9 Artin-Schreier curve

y'—y =2

a basis for the set of holomorphic differentials corresponds to the set

A = {[0,0],[0,1],[0,2],[0,3], [0, 4], [1, 0], [1,1], [1,2], [2, 0]}

Wo,0 = 2%y dx, wo1 = 2Oylde, Wo2 = 2Yy2dx, wo,g = 2%y3dx, Woa = 2Oytde,
Wi = 'y dx, w1y = alyltde, Wi = zly?de, Wo,p = 2y dx

while the holomorphic 2-differential x*ydz®? cannot be expressed as a single

monomial of the above differentials, but as the following linear combination

woy — woo =Yy — y)da®* = atyda®.

If the 2-differential f° - - - fgf dfs’* is the image of a single monomial wxw;, with
K + L= (i, ...,i), then it is clear that the element h = |Golio + Y5_, i, in
H, is the image of L + K € A+ A.

3.4 The generating sets of the canonical
ideal

For any element K = (i,...,i¢) € N°"! we will denote by fx the element
i 3
0 S



Proposition 3.6. Consider the sets of quadratic holomorphic differentials:
K, ::{wLwK — WpWg' € SyInHO(X, QX> VLA = K/, L, K, L/, K' € A}

Then K, is contained in the canonical ideal.

Proof. For the canonical map ¢ : Sym(H°(X,Qx)) — @,., H°(X,Q%) one
has; >
Plwrwr —wiowr) = fK+Ldf(()®2 - fK’+L’df(?2 =0.

Remark 3.7. Since K, is included in the canonical ideal we have that
WK,WL,;, = WK,,WrL,,

modulo the canonical ideal for any selection of K, + Ly, Ky + Ly, representing
h,h' € A+ A such that K, + L, = K, + L. Therefore, we will denote 2-
differentials by w;>.

Using this notation we can rewrite the summands of D; in eq. (3.5) as
2-differentials as explained below:

Lemma 3.8. The elements D; € F; have degree less than 4g—4, yielding that
D; - df$* are 2-holomorphic differentials in F. In particular every monomial
summand féo e fffll that appears in the expression of D; given in eq. (3.5)
can be given as an element

(O,...,O)+<£0,...,€i_170,...,0) cA+A

and the element D; can be written as a 2-differential as

2 i 2
D - dfs* = > 0w, (3.16)
A=(Lo,-,£i—1,0,....0) EA+A
[[IA[|<pim;

Proof. By equation (3.1) we have that the absolute value of the valuation
of D; in Fj, is p"b;. We will first show that p"ib; < 4g5, | — 4.

According to the Riemann-Hurwitz formula the genera of F;.; and F; are
related by
2(9Fi+1 - 1) = pni2(gFi - 1) + (bz + 1)(]7”1 - 1) (317)

Therefore

A(gry, — 1) = p"ibi = 2p"2(gr, — 1) + p"bi — 2b; + 2p™ — 2
=2p"2(gp, — 1) + (p™ — 2)b; + 2(p™ — 1). (3.18)

If g», > 1 then we have the desired inequality. Suppose that g = 0. This
can only happen for i = 1 since p™ > 1 and b; > 1. Therefore we need to
show that

bip™ —2p™ —2by —2>0



and we are working over the rational function field. The assumption on
our curve being non-hyperelliptic implies that p™ > 2 as well as b, > 2 and
the last inequality becomes

bi>2pl—|—27
ST

(3.19)

which is satisfied for p” > 7. Also the remaining cases, i.e. p" = 5, 7 require
b; to be > 4 which is also true since b; = 2 is exluded by non-hyperellipticity
and b; = 3 by non-trigonality.

Now the rest can be proved by induction as follows; We showed that

p"ib; < 4gp,, —4 (3.20)

When we move from F;,; to F;,, the absolute value of the valuation of D;
becomes p"i+1t"ih, and we need to show that

pm+1+mbi S 49F¢+2 —4

By 3.20 it suffices to show that p™+'(4gp,, —4) < 4g5,,, — 4 which by the
Riemann-Hurwitz formula (stated above) is equivalent to (b; 1 +1)(p™i+* —1)
being non-negative, which holds.

]

Remark 3.9. If we assume that F; is neither trigonal nor hyperelliptic then
the same holds for all fields F, for k > i, see [42, Appendix].

The set K, does not contain all elements of the canonical ideal. For in-
stance, it does not contain the information of the defining equation of the
Artin-Schreier extension and also the canonical ideal is not expected to
be binomial.

Before the definition of the other generating sets of the canonical ideal, let
us provide some insight into the process used to construct the elements
of these sets.

Equation (3.1) is satisfied by the element fi, i.e,
a4l - D=0,

This equation can be multiplied by elements of the form f," --- f” for any
Vo, - - ., V¢, giving rise to

Y s Fpi i Fpi—1 i) F
fo ' fe <fzp +a’$1¢)—1fip +"'+a(())fi_Di> =0,

which equals

Folt e R DR R R U f D, = 0,
If the exponents (v, ..., v¢) are selected so that each summand in the last

equation is an element in A+ A, then the equation gives rise to an element
in the canonical ideal.



Proposition 3.10. Set

b= (vg,...,ve) € N&T
Yoip = (Vo,-- -, Vi +P" 7, Vg1, ..., 0e), 0 < v <y
such that ||¥s,0|| < 49 — 4. Also set
Ai={A=(ly,....0i1)eN:0< ¢, <p™ forl <v<i}
Bsix = (los...,4i—1,0,...,0)+ 7 € A+ A.

Define

Ky, = +Z Oug2 — Y ag—\)w?QA (3.21)

B j\eAl
Xl <p™irms

Then K5 ; is contained in the canonical ideal for 1 <i <¢.
Notice here that v is fixed while ) is running.

Progof. Again consider ¢ : Sym(H(X,Qx)) — @, H°(X,Q%). Then

} : 2 : (@), ®2 —
’Yv i,0 + 'Yv i,V 4 a;\ WBEJ;,X B

} : (4) ®2 _
- as f(ﬁo-l—vo ----- L 1+Vi—1,Vi5e,0¢) dfO -
e
[[Al[<p™imm;

= f(vo,--v¢) fp”rz AR 0 fitgiti sy | IS
75\6/\7;
[ <p™imi

which equals 0 due to the relation satisfied by the irreducible polynomial
of f;. O

3.5 The main theorem

We define a term order which compares products of differentials as follows:
Let wywy, - - wi,,wywy - - -wy, be two such products and consider the (k +

L)—tuples I) + -+ Ig = (vo, ..., v¢), Iy + -+ + Ijy = (vg, .- ., vg).



Define
/ /
WrWr, * W, < WRWE Wy, S (o, - -+, Ve) <colex (Vg, - -+, Vg)
that is
® v < vé or
* ve =v; and ve_; < v, Or
o .
ey, =v, foralli=~Fk,...,1and vy < vj.

We are going to work with the initial terms of the sets defined in the
last two propositions where, by “initial term” we mean a maximal term
with respect to the colexicographical order. We denote initial terms with
in(-).

Lemma 3.11. For the element K;; of proposition 3.10 we have that
in<(K17,i) = Wag,i0-

and also, in the polynomial K;; there is another summand which is smaller
colexicographically than ws, , , but has the same || - ||-value.

Proof. Indeed, in eq. (3.21) there are two elements of maximal value in

terms of || - ||. Namely wy, ,, and a(;)w??_ o for the A = (4g,...,%;1,0,...,0) €

A + A corresponding to the monomial f--- fi*;' of minimum valuation

7

which exists due to lemma 3.2. Of these two elements, ws, ,, is bigger

since it corresponds to the element (v, ...,v; +p™,...,v¢), while the other
corresponds to the smaller element (vo + lo,...,vi1 + li_1,0;,...,v¢), With
respect to the colexicographical order. O

We are now ready to state our main result. Recall that we have assumed
throughout this article that X is a Harbater-Katz-Gabber cover which is
non-elliptic of genus > 3 over k. We also have assumed that X is non-
trigonal so that the canonical ideal is generated by elements of degree 2
(see also theorem 1.11).

Theorem 3.12. The canonical ideal is generated by K, and by K5 ;, for 1 <
i < & and for the v € N*™! satisfying the inequality ||7;.0|| < 49 — 4.

Remark 3.13. In the above theorem the condition ||7;, || < 4g — 4 implies
the condition ||7;,.,|| < 4g—4 for0 < v <n;. We will prove in lemuma 3.14 that
it also implies the condition ||3;; ;|| < 4g — 4. This means that the condition
|[Fw.iw|| < 4g — 4 for 0 < v < n; guarantees that, in K;;, not only the first term
(i.e. wgio), but also all the others correspond to 2-differentials.



Lemma 3.14. The condition ||7;.|| < 49 — 4, or in other words,

3
vo|Go| + Z v,m, +pim; < 4g —4 (3.22)
v=1
implies that f3;, 5 lies in A + A, that is, it is also a 2-differential, for all A
associated with the monomials of D;.

Proof. For )\ € A, let

51777;75\ == (UO + £07 /| + gi_l,UZ‘, ce ,Ug).

We need to show that

13 1—1
(UQ + eo)|G0| + Zvymy + nym,, <4g—4.
v=1 v=1

By (3.22) we need to show that

i—1

go’GQ’ + Zﬁyml, S p"lml

v=1

Note that ) is the exponents of a monomial summand of D; and, by the
valuation’s strict triangle inequality one has;

v(fx) =2 v(Di) &
i—1
—(LolGol + Y tym,) > —p"im;

v=1

. i 781',
as expected, where f; is 50 il H

Definition 3.15. Define J to be the set of elements in the canonical ideal

consisting of the elements Ky, K;, for 1 < i < ¢ and for the appropriate
v € N satisfying the inequality ||7s.0|| < 49 — 4.

In order to prove Theorem 3.12, we need to show that J is the canonical
ideal. We will use proposition 1.12, In order to apply proposition 1.12 we

will show that
_ dim (L> (3.23)
(in<(J )> 2 ’ -

where we already know, see eq. (3.12), that the cardinality of the first
quotient is < |Hy| = 3g — 3. We identify a k-basis of (S/(ins(J)), with
T? — {inL(f) : f € J} and, in order to prove equality (3.23), we define the
map

‘A+A

A+A

®:T?— {in,(f): feJ} — (3.24)

wrwg — [L + K]



Lemma 3.16. If (uo,...,us) € A+ A then every (v, ..., u;) with0 < uj, < u,
for1<v<¢isalsoin A+ A.

Proof. Since @ = (ug,...,us) € A+ A there are a = (ag, . ..,a¢), b = (b, . . ., be)
with « = a + b and a,b € A, that is ||a||,||b|]| < 29 — 2. But then every @
(resp. V) with @ = (aj, . .. ,ag) (resp. V= (b),... ,b)) such that 0 < a}, < a,
(resp. 0 < b, <) for 0 < v < ¢ satisfies ||@'|| < ||a|]| < 2g — 2 (resp.
16']] < [|b]] < 29 — 2), that is @', b € A. The result follows. O

We start by showing that ® is one-to-one.

Lemma 3.17. The map ® is injective.

Proof. Consider the following elements of A:
L: (ig,il,...,ig,...,ig) K: (,j07j17---7.j57---7j§>
L= (ig, iy, - - oy dpy - oo i) K= (Jo: J1 - Jos -+ -5 J¢)

such that, wxwr, wpwg are in T? — {in(f) : f € J}. Assume that ®(wiwg) =
d(wpwy), i.e. L+ K ~ L'+ K'. Suppose that i¢ + je = i; + j;. Then we have
the following equality:

3 3

(40 + jo)|Gol + Z(Zz + Je)me = (ig + Jo)|Gol + Z(lle + J) e
(=1 =1

from which we cancel the last terms and divide by p™ in order to have

&—1 _ £—-1 _
. SN g . N2 . N Mg . gy e
(i0 + jo)p™ Tt + ;(Zﬂrﬂ)ﬁ = (ig + Jo)p™ e 4 ;(22 +Jé)zﬁ-

By repeating the above process we can assume that there is an /¢ < ¢ such
that i/, + 5/, =i, + j, for { < v < ¢ and i}, + j;, # i, + j, and assume without
loss of generality that i, + j;, > i; + j,. Then by lemma 3.4, we would have

iy + gy — (ig + jo) = A\p™ (3.25)

for A > 0. Using this we will show that w;wx belongs to in.(./). In order
to do that, we need to build an element K;; which has w wg as its initial
term. In other words we look for an element of the following form;

n;
2 i), @2 (1), ®2
w%m + Z a(j)w%i’y — Z a{ w%i’x, (3.26)
v=1 B AEA;
[IAlI<pmim;
where w§20 = w%,%r - and everything else should be as defined in proposi-
tion 3.10. This comes down to finding v = (v, ..., v¢) € N&*! such that

(Vos -+ s e+ P Vg1 ve) = (Vo -, Ve Py el ) = LA K



Indeed, recall that if we match our element with an initial term corre-
sponding to f7"‘ then all the other terms can be defined by the equation
of the irreducible polynomial of f,.

Define v as follows:

it + 5t for s # ¢
Vs = 3. .
ip+j,—p™ fors=I

The element (v,...,v¢) lies in A + A. Indeed, since L' + K’ is in A + A,
according to lemma 3.16 we only need to show that 0 < v, forall0 < v <¢.
The only thing that needs to be checked is whether v, is nonnegative.
Equivalently, whether i, + j;, > p™. Now recall that i}, + j;, = A\p"™ + (i, + js)
and hence v, = i), + j, — p™ =iy + jo + (A — 1)p™ by eq. (3.25). Since A > 1 we
get

Ap™ + (g + je) = p™

as expected.
This proves that w;/; ks is the initial term of K;, for v = (v, ..., v¢), check
also lemma 3.11, giving us a contradiction so the map & is injective. [

Lemma 3.18. The map ® is surjective.

Proof. Take an equivalence class [L+ K| in (A+A)/~. Recall the definition
of the set I';, x given in lemma 3.4. Consider the minimal element of 'y, x
, i.e. minl';, x := wawp € T2 There is such a minimal element since I';_
is nonempty (for example w wk € ', k) and since our order is a total order.
We still need to show that w,wg is not in in-(.J).

Firstly suppose that wswp € inL(Kj). Then there is w;w; such that w;w; <
wawp and A+ B = I + J. By the last equality, ||[A+ B|| = ||/ + J|| so A+ B ~
I + J. But this means that w;w; is also in I'; x and is colexicographically
smaller than wswg, a contradiction.

Suppose now that wwp € in<(K5;;) for some v,:. Then according to lemma
3.11 there is a second element in the polynomial K;; which has the same

value when || - || is applied, but is smaller in < (a contradiction since,
having the same || - ||[-value means that they are equivalent i.e. they both
lie in FL+K)- Il

3.6 Examples

We provide here some explicit examples of our method for calculating the
canonical ideal of HKG curves.

Artin-Schreier curves

Here we write down the generating sets of the canonical ideal correspond-
ing to Artin-Schreier curves of the form

X ypn —y=2a", (m,p) =1, (8.27)



where the values of m, p are given in the following table. Notice that these
curves form an example of an HKG-cover extension for the k£ = 1 case.

m Petri’s theorem requirement
m>5 pt >3
m=4,5 pt>5

In this case the genus g of the curve is ¢ > 6 and also the curve is not
hyperelliptic nor trigonal. Indeed the above given curves have Weierstrass
semigroup

H:=mZ, +p"Z, (3.28)

at the unique ramified point P. Let G be the p" order Artin-Schreier cover
group generated by the automorphism 7 : y — y + 1,2 — x. Assume that
there is a degree two covering X — P!. This is a Galois covering with Galois
group generated by the hyperelliptic involution j : X — X. The hyperellip-
tic involution cannot be in the p™ order Galois group G of the Artin-Schreier
extension, since p is odd. On the other hand it is well known that the hy-
perelliptic involution is in the center of the automorphism group of X, [7].
Since 7(j(P)) = j7(P) = P we have j(P) = P, otherwise the Galois cover
X — X /G = P! has two ramified points, a contradiction. But then 2 should
be a pole number of the semigroup H, contradicting eq. (3.28).

In order to prove that X is also not trigonal, we can employ the fact
that with the assumptions given in the table above we can indeed find
a quadratic basis of the canonical ideal. Alternatively we can argue as
follows: In characteristic zero we know that at a non ramified point P in
the degree 3 cover X — P! of a trigonal curve the first few elements in the
Weierstrass semigroup at P are 3n,3n+2,3n+3 or 3n,3n+1,3n+ 3,3n + 4
or 2n+2or 2n+1,2n+ 3 for (¢ —1)/n < n < g/2, see [27, thm p.172]. On
the other hand for a Weierstrass point of the trigonal curve which is not
ramified in the degree 3 cover, the Weierstrass semigroup at P is of the
form
a,a+1l,a+2,...;a+(s—g),s+2,5s+3,...

for some g < a < |(s+1)/2] +1land g—1 < s < 2g — 2, [27, lemma 2.5].
The Lefschetz principle implies that this is the structure of Weierstrass
semigroups for a big enough prime p. On the other hand, the ramified
point P in the Artin-Schreier cover is a Weierstrass point, see [17, th. 1].
The semigroup structure at P given in eq. (3.28) is not compatible with
any of the Weierstrass semigroups of trigonal curves, therefore the curve
X is not trigonal at least for big enough p. Unfortunately the bound for the
prime p comes from Lefschetz principle and can not be determined.

Recall that H; denotes the bounded parts of the Weierstrass semigroup
(eq. 3.2). For the case at hand we have that

|Hi|=g=(m—-1)(p"-1)/2
|Hy| = 3(g — 1).

Also A = {L := (i, 1) : iop" +i1m < 2(g — 1)} and
A—l—A: {L+K = (ZO —|—j0,i1 —l—jl) | L = (ig,il) GA, K = (jo,jl) GA}



The equivalence class of L + K € A+ A, as described in lemma 3.4, corre-
sponds to the following set of degree 2 monomials

Iy = {wawp € SymH (X, Qx) : A+B—(L+K) = (Am, —\p") for some \ € Z}.
According to proposition 3.6 K is defined by
Ky = {wpwg —wpwrr € SymH (X, Qx): L+ K =L+ K'|L,K,L'| K’ € A}.

The sets K;,; containing the information of the Artin-Schreier extension
now adopt the following, much simpler form:

— ®2 ®2 ®2
K(Uoﬂil)vl - {w(vo,m—i-p”) - w(vo,v1+l) - w(vo-l—m,vl)}
for the v := (vy, v1) satisfying ||(vo, v1 + p")|| < 49 — 4, equivalently,
vop" +vim +p'm < 4dg — 4.

Notice that if p,n and m are given specific values, the last inequality can
be solved explicitly and the generating sets can be written down.

Example 3.19. Recall that w;; = z'y’dz. Consider the Artin-Schreier curve

y" —y = a2t of genus 9. The canonical ideal is generated by the set K, given
by

2 2
{—wo,4w1,0 + wo,3w1,1, —w1,0w1,1 + wW0,1w2,0,W0,4W1,0 — W0,3W1,1,W1,0W1,1 — W0,1W2,0, —Wg 2 T W0,1w0,3, WH 2 — W0,1w0,35
2
— wp,1w1,1 + wW0,0w1,2,wW0,1W1,1 — W0,0wW1,2, —W0,2W1,1 + W0,1W1,2,wW0,2W1,1 — W0,1W1,2, —W1,1W1,2 + w0,3wW2,0, —Wp 2 + w0,0w0,4,
2 2 2 2
Wp,2 — W0,0w0,4,W1,1W1,2 — W0,3W2,0, —W4 1 T W0,0w0,2,W) 1 — W0,0w0,2, —W0,3W1,1 + wW0,2w1,2, —W] | + wo0,2w2,0,
2
w0,3wW1,1 — Wp,2wW1,2; —W1,0wW1,2 + W0,2wW2,0,W1,0W1,2 — W0,2W2,0, W] 1 — W0,2W2,0, —W0,2W1,0 + W0,0W1,2,W0,2W1,0 — W0,0W1,2;
2
w0,3W1,0 — Wo,2wW1,1, —W0,3wW1,0 + W0,1W1,2, W0,3W1,0 — W0,1W1,2, —W0,2wW1,0 + W0,1W1,1, —W] g + wW0,0w2,0,W0,2W1,0 — WO,1W1,1,
2 2 2
Wi 0 — W0,0w2,0, ~W] 1 T W1,0w1,2,W] 1 — W1,0W1,2, ~W0,1wW0,2 T+ W0,0W0,3, ~W0,4W1,1 T W0,3W1,2,wW0,4W1,1 — W0,3W1,2;,
2 2
— wo,2w0,3 + wW0,1w0,4, W0,2W0,3 — W0,1W0,4, —Wo 3 + W0,2W0,4, Wo, 3 — W0,2W0,4, —W0,1W0,3 + W0,0w0,4, W0,1W0,3 — W0,0w0,4)
2
— w0,4wW1,0 + wW0,2W1,2,wW0,4W1,0 — W0,2W1,2; —W0,1W1,0 + W0,0W1,1,wW0,1W1,0 — W0,0W1,1,W] 5 — W0,4wW2,0;
2
— Wy o + wo,4w2,0,w0,1w0,2 — W0,0w0,3, —W0,3w1,0 + W0,2w1,1}

and one trinomial 5
—w0,0w0,1 + wW0,3wW0,4 — W3 o

HKG-covers with p-cyclic group

This is a case where all the intermediate subextensions F;/F;_; are of de-
gree p and the corresponding irreducible polynomials are

X? +a"X — D;
In this case the generating sets of the canonical ideal are

KO = {WLWK — WLWgr € SymHO(X, QX) . L+K — L/+K,;L7 K7 L,7K/ GA}

o ®2 (i), ®2 B Z (i), ®2
KUJ : w(vo,...,vﬂrp,...,'ug) ta w(vg,...,vi,...,vg) ap, wﬁﬁﬂ.’;\ (329)
ACA+A
[All<prmi

such that ||7;,0|| < 49 — 4 where 3;,5 = (lo,...,li-1,0,...,0) + v as defined
before.



Chapter 4

Automorphisms of curves and
Petri’s theorem

Consider a complete non-singular non-hyperelliptic curve of genus g >
3 over an algebraically closed field K. The automorphism group of the
ambient space PY~! is known to be PGL,(k), [22, example 7.1.1 p. 151]. On
the other hand every automorphism of X is known to act on H°(X, Q)
giving rise to a representation

p:G— GL(H(X,Qx)),

which is known to be faithful, when X is not hyperelliptic and p # 2, see
[29]. The representation p in turn gives rise to a series of representa-
tions

Pd - G — GL(Sd),

where S, is the vector space of degree d polynomials in the ring S :=
klwi, ... wg).

Let X C P" be a projective algebraic set. Is it true that every automorphism
o : X — X comes as the restriction of an automorphism of the ambient
projective space, that is by an element of PGL,(r)? For instance such a
criterion for complete intersections is explained in [30, sec. 2]. In the case
of canonically embedded curves X C P! it is clear that any automor-
phism ¢ € Aut(X) acts also on P! = ProjH’(X, Qx). In this way we arrive
at the following:

Lemma 4.1. Every automorphism ¢ € Aut(X) corresponds to an element
in PGL,(k) such that o(Ix) C Ix and every element in PGL,(k) such that
o(Ix) C Ix gives rise to an automorphism of X.

In the next section we will describe the elements ¢ € PGL,(k) such that
o ([ X) C Ix.

4.1 Algebraic equations of automorphisms

For now on we will assume that the canonical ideal Ix is generated by
polynomials in kfwy,...,w,] = SymH’(X,Qx) of degree 2, that is, the re-

48



quirements for Petri’s theorem hold. Consider such a set of quadratic
polynomials A, ..., A, generating /x.

A polynomial A; of degree two can be encoded in terms of a symmetric g x g
matrix A; = (a,,,) as follows. Set @ = (wy,...,w,)". We have

A(@) = 0" Aiw.

The polynomial o(4;) is still a polynomial of degree two so we write o(A4;)
for the symmetric ¢ x ¢ matrix such that ¢(4;) = &'o(A);@. It is clear that
for an element ¢ € GL,(k), 0(Ix) C Ix holds if and only if for all 1 <i < r,
o(4;) € span, {4,,...,A.}. This means that

(o) Ai(0,,) Z)\ jiA forevery 1 <i < 7. (4.1)

4.2 The automorphism group as an algebraic
set

Let Ay,..., A, be a set of linearly independent g x ¢ matrices such that the
wfA;w 1 < i < r generate the canonical ideal, and v’ = (wy,...,w,) is a
basis of the space of holomorphic differentials. By choosing an ordered
basis of the vector space of symmetric g x g matrices we can represent any

2l , that is

symmetric g x g matrix A as an element A € k

g(g+1)
~: Symmetric g x ¢ matrices — k£ 2

A— A

We can now put together the r elements A; as a g(g + 1)/2 x r matrix
(A4|---|4,), which has full rank r, since {A;,...,4,} are assumed to be
linearly independent.

Proposition 4.2. An element o = (0;;) € GL,(k) induces an action on the
curve X, if and only if the g(g + 1)/2 x 2r matrix

B(o) = [fll, LA ot Ao, ,0tA,0|

has rani r.

We have that ¢ is an automorphism if the g(g + 1)/2 x 2r-matrix B(c) has
rank r, which means that (r+1) x (r+1)-minors of B(c) are zero. This pro-
vides us with a description of the automorphism group as a determinantal
variety given by explicit equations of degree (r + 1)

But we can do better. Using Gauss elimination we can find a ¢ g2+ DS (g“)
invertible matrix @ which puts the matrix (A|---|A,) in echelon form, that

is
_ _ I,
o)




But then for each 1 < i < r eq. (4.1) is satisfied if and only if the lower
(425 1) x 7 bottom block matrix of the matrix

Q (o' Aol - ]atAra) (4.2)
is zero, while the top r xr block matrix gives rise to the representation
p1: G — GL.(k),

defined by equation (4.1). Assuming that the lower (@ — 1) X r bottom

block matrix gives us r(@ — r) equations where the entries ¢ = (o;;)
are seen as indeterminates. In this way we can write down elements of
the automorphism group as a zero dimensional algebraic set, satisfying

certain quadratic equations.

4.3 An example: the Fermat curve

Consider the projective non singular curve given by equation
F,: a2l +zi+x5=0

This curve has genus g = @20V Set & = 2 /zy, y = 2/7. For w = &
xﬁ‘fzil we have that the set

viywfor0<i+j<n-—3 (4.3)

forms a basis for holomorphic differentials, [35], [48], [49]. These g differ-
entials are ordered lexicographically according to (i, j), that is

Woo <wp1 < <Wop—3 <Wio <wWpp <o <Wyppg < < Wp-30-

The case n = 2 is a rational curve, the case n = 3 is an elliptic curve, the
case n = 4 has genus 3 and gonality 3, the case n = 5 has genus 6 and is
quintic so the first Fermat curve which has canonical ideal generated by
quadratic polynomial is the case n = 6 which has genus 10.

Proposition 4.3. The canonical ideal of the Fermat curve F,, for n > 6 con-
sists of two sets of relations

G = {Wi, j1Wig jo — Wig,jsWisja * 11+ 92 = i3+ 14, J1 + Jo = J3 + Ja}, (4.4)

and

i1ﬂ-i2‘:n+a, 'j1<'kj2=b
Ga = Wiy jyWis gy T Wig jsWiy jy T Wis jsWig j ©  8Fia=0, js+ja=n-tb
is+ie=a, js+je=b

(4.5)

where 0 < a,b are selected such that0 < a+ b <n — 6.

We will now prove proposition 4.3 for n > 6, following the method devel-
oped in [11] (i.e. theorem 1.12). Observe that the holomorphic differentials
given in eq. (4.3) are in 1-1 correspondence with the elements of the set
A=1{(j):0<i+j<n-—3} C N First we introduce the following term
order on the polynomial algebra S := SymH°(X, Qy).



Definition 4.4. Choose any term order <; for the variables
{wn,: (N,p) € A} and define the term order < on the monomials of S
as follows:

WN1 a1 WNa iz * " WNg g = WNJw WNG = WNL 'Lfand Only Uc (46)

* d<sor

d=sand)  p; > > u.or

d=sand ) p; =Y u;and> N; <> N/

d=sand > p,=> p.andd N;=> N/ and

WNp 1 WNa g * " WNg g =t WN] put WNG il * " WNLpul -

By evaluating Y7 Z]E:_Oi 1 we can see that

#{(i,j) eN*: 0<i+j<E} = (E+1)(E+2)/2 (4.7)

We extend the correspondence between the variables w; ; and the points of
A to a correspondence between monomials in S of standard degree 2 and
points of the Minkowski sum of A with itself, defined as

A+A={(i+d,j+))]@7), (0 )) €A} SN, (4.8)

Proposition 4.5. Let A be the set of exponents of the basis of holomorphic
differentials, and let A + A denote the Minkowski sum of A with itself, as
defined in (4.8). Then

(p,T) e A+ A& Jw, jwy o € S such that mdeg(wjwy y) = (2, p,T).

For each n € N we write T" for the set of monomials of degree n in S
and proceed with the characterization of monomials that do not appear
as leading terms of binomials in G; C J.

Proposition 4.6. Let 0 be the map of sets

o:A+A — T?
(p, T) = min{w;jwi; T | (p,T) = (i + 1,5+ j)}.

Then
U(A+A) = {wtjwild‘/ S T2 ‘ Wi,g - Wy g 7é 1n<(f), v f S Gl}

The above proposition gives a characterization of the monomials that do
not appear as initial terms of elements of ;, therefore they survive in the
quotient (S/in<(J)),. Indeed, the minimal of the set {w; jwy ; € T? | (p,T) =
(i+4', j+7')} will never appear as the initial term of an element in GG;. There-
fore A+ A is bijective with a basis of the vector space (5/in~G;),. However,
some of these monomials appear as initial terms of polynomials in G, and
these have to be subtracted in order to compute dim;, (S/in<(J)),



Proposition 4.7. Let
C={(p,b)cA+Alp=n+a,0<a+b<n-—6,a,be N}

Then

o(C) C{wijwiy € T?| 3 g € Gy such that w; jwy ; = in,(g)}.
Moreover #C = #0(C) = (n — 5)(n —4)/2.
Proof. Observe that elements in (G, are mapped into elements of the form
4yt (2" + " + 1w? € H(X,Q5?). By the form of the initial term of such an
element of G, we have for iy + i, =n + a = p, j1 + j» = b. Therefore

iztia=a=p—n,J3tjs=n+bistis=a=p—n,J5+jg=0=T

We should have 0 < a +b < n — 6 and by eq. (4.7) we have that the
cardinality of C equals (n — 5)(n —4)/2. O

We now observe that
A+AcC{i,jeN:i+j<2n-6}
so # A+ A) < (2n —5)(2n —4)/2 and

dimy, (S/ins(J)), = #((A+A)\C) = #(A+ A) — #C
(2n—5)2n—-4) (n—=5)(n—4)
2 2

< =3(9g—1).

so by proposition 1.12 we have that [ = J.

4.3.1 Automorphisms of the Fermat curve

The group of automorphisms of the Fermat curve is given by [50], [36]

_ JPGU(3,p"), ifn=1+p"
(Z/nZ x Z./nZ) x S, otherwise
The action of the automorphism group is given in terms of a 3 x 3 matrix
A sending

2 2

L0 T (g ) e S0 T

Zizo Qp,; Ty Zizo A0, T

In characteristic 0, the matrix A is a monomial matrix, that is, it has only
one non-zero element in each row and column and this element is an n-th
root of unity. Two matrices A;, A, give rise to the same automorphism if
and only if they differ by an element in the group {Al; : A € k}. In any case
the group G is naturally a subgroup of PGL; (k). Finding the representation
matrix of G as an element in PGL, (k) is easy when n # 1 + p" and more

x = (x1/x0) >



complicated in n = 1 + p" case. We have two different embeddings of the
Fermat curve F,, in projective space

Py« F, — P2
In both cases the automorphism group is given as restriction of the auto-

morphism group of the ambient space.

The computation of the automorphism group in terms of the vanishing of
the polynomials given in equation (4.2) is quite complicated.

We have performed this computation in magma [6], and it turns out the
automorphism group for the n = 6 case is described as an algebraic set
described by ¢? = 100 variables and 756 equations.

> FermatCurve(6,Rationals());
> T78 % L1910 — 2 % T9,8 * Tg 10 + T10,8 * T7,10,

> >T79 % T10,10 — 2 * Tg,9 * Tg 10 + T10,9 * T7.10



Chapter 5

Syzygies

5.1 Extending group actions

Recall that S = kfwy,...,w,| is the polynomial ring in ¢ variables. Let M
be a graded S-module acted on by the group G, generated by the ele-
ments my, ..., m, of corresponding degrees a4, ...,a,.. We consider the free
S-module Iy, = @)_, S(—a;) together with the onto map

FOZ@S(—CLJ> L>]\4 (51]

J

Let us denote by M, ..., M, elements of Fj,, such that 7(M;) = m;, assuming
also that deg();) = deg(m;), for 1 <i < r. The action on the generators m;
is given by

O'(ml) = Z Ay, My, for some Ay; € S. (52)

v=1

Remark 5.1. We would like to point out here that unlike the theory of vector
spaces, an element x € F, might admit two different decompositions

T

=1 =1

=1

and if a;, — b;, # 0 we cannot assume that a;, — b;, is invertible, so we can’t
express m;, as an S-linear combination of the other elements m,, for i, #
1,1 < ¢ < r in order to contradict minimality. We can only deduce that

{a; = b;}i=1,.., form a syzygy.

Therefore one might ask if the matrix (a,;) given in eq. (5.2) is unique. In
proposition 5.4 we will prove that the elements a,; which appear as coefft-
cients in eq. (5.2) are in the field k and therefore the expression is indeed
unique.

The natural action of Aut(X) on H°(X,Qy) can be extended to an action
on the ring S = SymH’(X,Qx), so that o(zy) = o(x)o(y) for all z,y € S.
Therefore if M = Ix then for all s € S, m € Ix = M we have o(sm) =

54



o(s)o(m). All the actions in the modules we will consider will have this
property.

For a free module I = P;_, S(—a;), generated by the elements M;, 1 <i <,
deg(M;) = a; and a map 7 : F' — M we define the action of G by

T

o (Z stj) = 0(s) D avi(o)M, =) (Z a,,,j(a)a(sj)) M,,

=1 = v=
where degg a, ; + a, = deg, m;. This means that under the action of o € ¢

the r-tuple (si,...,s,.)" is sent to

$1 a1a(o) aia(o) -+ ai.(o) o(s1)

Sy ar1(o) ar2(0) -+ an.(0) o(s)

If A(o) = (a;;(0)) is the matrix corresponding to ¢ then for o,7 € G the
following cocycle condition holds:

A(or) = A(o)A(T)°.

If we can assume that GG acts trivially on the matrix A(r) for every 7 € GG
(for instance when A(7) is a matrix with entries in k for every 7 € G), then
the above cocycle condition becomes a homomorphism condition.

Also if A(o) is a principal derivation, that is there is an r x r matrix @,
such that

Alo) =0(Q)- Q7"

then after a basis change of the generators we can show that the action
on the coordinates is just given by

(517 T >Sr>t 'L> (U(Sl)’ T 7U(Sr))tv

that is the matrix A(o) is the identity. We will call the action on the free res-
olution F obtained by extending the action on M the standard action.

5.2 Group actions on free resolutions

Recall that S = k[wy, . .. ,w,| is the polynomial ring in ¢ variables. Let M be

a graded S-module generated by the elements my, ..., m, of corresponding
degrees a4, ...,a,. Consider the minimal free resolution
Pg #1
0 1 e L — Iy, (5.3)

where coker(¢,) = Fy/Im¢, = Fy/kerr = M. Let m be the maximal ideal
of S generated by (wy,...,w,). Each free module in the resolution can be

written as
F =D S,
J



where the integers 3, ; are the Betti numbers of the resolution. The Betti
numbers satisfy

Bij = Bg—2—ig+1-j- (5-4)
as one can see by using the self duality of the above resolution by twisting
by S(—g) see [38, prop. 4.1.1], [15, prop. 9.5] or by using Koszul cohomol-
ogy, see [16, prop. 4.1].

Assume that M and each F; is acted on by a group G and that the maps
; are G-equivariant. We will now study the action of the group G on the
generators of F;. First of all we have that

T4 ,81 v

F; = @@ewsw@s )

v=1 p=1

In the above formula we assumed that F; is generated by elements e, ,
such that the degree of ¢;,, = d;, for all 1 < ;o < 3;,. We also assume
that

d@l < d@g <0 < diﬂ“i'

The action of ¢ is respecting the degrees, so an element of minimal degree
d;1 is sent to a linear combination of elements of minimal degree d;;. In
this way we obtain a representation

pi1:G— GL(ﬂm, k).

In a similar way an element e;,, of degree d,, is sent to an element of
degree d; , and we have that

612 671
612“ § :)‘ZQMJ1612]1+§ )\ZQMjle'Ll]Q’

J1i=1 Jo=1

where all Ay, ; € k and all ), ,;, € m%2~%1  In this case we have a
representation with entries in an ring instead of a field, which has the
form:

pio i G — GL(Bi1 + Big, m¥z7di1),

o (Aléa) ﬁlj((;))) ,

where A, (0) € GL(8;1, k) and Ay(o) € m%i2=41GL(B; o, k).
By induction the situation in the general setting gives rise to a series of

representations:
pij i G — GL(Bi1 + Bi2, m%97 %)

Ai(o) Aiap(o) - Au(o)
. 0 AQ(O’) AQJ‘ (O’)
o Alo) = : . : (5.5)

0 e 0 A(o)
where A,(0) € GL(f;,, k) and A, \(0) is an §;,, x f5; ,» matrix with coefficients

in m#»~%i~ The representation p; ., taken modulo m reduces to Tor? (k, M),
seen as a k|[G|-module.



5.3 Unique actions

Let us consider two actions of the automorphisms group G on H°(X,Qx),
which can naturally be extended on the symmetric algebra SymH°(X, Qx).
We will denote the first action by gxv and the second action by gowv, where
g € G, veSymH(X,Qx).

Proposition 5.2. [f the curve X satisfies the conditions of faithful action of
G = Aut(X) on H°(X,Qy), that is X is not hyperelliptic and p > 2, [29, th.
3.2] and moreover both actions *, o restrict to actions on the canonical ideal
Ix, then there is an automorphismi : G — G, such that g xv =i(g) o v.

Proof. Both actions of G on HY(X,Qy) introduce automorphisms of the
curve X. That is since G* [y = I[x and G o [x = Iy, the group G is mapped
into Aut(X) = G. This means that for every element g € G there is an
element ¢* € Aut(X) = G such that g x v = ¢g*v, where the action on the
right is the standard action of the automorphism group on holomorphic
differentials. By the definition of the group action for every ¢;,¢92 € G
we have (g1¢2)*v = gjgiv for all v € H°(X,wy) and the faithful action of
the automorphism group provides us with (¢g1¢2)* = gjg¢s, i.e. the map
i : g — ¢* is a homomorphism. Similarly the map corresponding to the
o-action, i, : g — ¢° is a homomorphism and the desired homomorphism i
is the composition of i,i 1. O

The map Homg(F;, S(—g)) induces a symmetry of the free resolution F by
sending F; to F,_,_;. Each free module F; of the resolution F is equipped
by the extension of the action on holomorphic differentials, according to
the construction of section 5.2. On the other hand since S(—yg) is a G-
module we have that F,_,_; = Homg(F;, S(—g)) is equipped by a second
action namely every ¢ : F; — S(—g) is acted naturally by G in terms of
¢ — ¢° = 0 '¢o. How are the two actions related?

Lemma 5.3. Denote by = the action of G on F; induced by taking the S(—g)-
dual. The standard and the x-actions are connected in terms of an auto-
morphism ¢; of G, that is for allv € F; g xv = ¢;(g)v.

Proof. Assume that i < g — 2 —i. Consider the standard action of G on
the free resolution F. The module F,_,_; obtains a new action g x v for
g € G,v € F,. By 5.2 this x action is transferred to an action on all F} for
Jj > g — 2 —1i, including the final term F,_, which is isomorphic to S(—1).
This gives us two actions on H°(X, Q) which satisfy the requirements of
proposition 5.2. The desired result follows, since the action can be pulled
back to all syzygies using either F or F*. ]

Proposition 5.4. Under the faithful action requirement we have that all
automorphisms o € G send the direct summand S(—j)%i of F; to itself, that
is the representation matrix in eq. (5.5) is block diagonal.

Proof. Consider F;, = @' | M,,S, where M,,,...,M,;,, are assumed to be
minimal generators of F; with descending degrees «;, = deg(m;,), 1 <v <



r;. The action of an element ¢ is given in terms of the matrix A(o) given in
equation (5.5). The element ¢ € Homg(F;, S(—g)) is sent to

h : Homg(F;, S(—g)) — Fy_o_; (5.6)
¢ — (¢(M;n), ..., d(Mi,,))

Each ¢();,) can be considered as an element in S(—¢g—1+deg(m;,)) inside
F,_»_;. Observe that the element ¢ € Homg(F;, S(—g)) is known if we know
all ¢(M;,) for 1 < v <r;. From now on we will identify such an element ¢
as a r;-tuple (¢(M;,))

1<v<r;”

Recall that if A, B are G-modules, then there is an natural action on
Hom(A, B), sending ¢ € Hom(A, B) to ?¢, which is the map

“p: A ar op(oca).

We have also a second action on the module F,_,_;,. We compute “¢(M, )
for all base elements 1, , in order to describe “¢:

p=1

o ((/b(U_IMi,u))lSVSH = (20(0‘##(0_1))0925(]\4@}#))

p=1

= <i: a(amy(d_l))X(U)Qb(Miw))

where in the last equation we have used the fact that ¢(M;) are in the
rank one G-module S(—g) = AY~1QL hence the action of ¢ € G is given by
multiplication by x(c), where x (o) is an invertible element is S.

In order to simplify the notation consider 7 fixed, and denote M, = M, ,, r =
ri, a;; = aj. We can consider as a basis of Hom(F;, S(—g)) the morphisms
¢, given by

Ou(M;) = 0,5+ E, (5.7)
where F is a basis element of degree ¢ of the rank 1 module S(—g) = S - E.
This is a different basis than the basis M, 5 ;,, 1 <n <r, o, of F,_» ; we
have already introduced.

According to eq. (5.4) if M; has degree a; then the element ¢, has degree
g+ 1—a;. Assume that M, has maximal degree a,. Then, ¢, has minimal
degree. Moreover, in order to describe “¢, we have to consider the tuple
(GQST(Ml)a s 7(7 ¢T(MT)) We have

(U¢T(MV)) 1<v<r = (Z U(a/(j,)u(o—_l)) X(O—)¢T(MN)>

p=1



In this way every element « € F,_,_, is acted on by ¢ in terms of the action
oxz=h("h!(z)),

where h is the map given in eq. (5.6). On the other hand the elements
h(¢,) are in F,_,_, and by lemma 5.3 there is an element ¢’ € G such that

o'h(dy) =Y ol (0" Vh(gy).
v=1

Since the element ¢, has maximal degree among generators of F; the ele-
ment h(¢,) has minimal degree. This means that all coefficients
0l (") = o (a0 ™)x(0)

v, v

are zero for all v such that degm, < deg u,.. Therefore all coefficients a(ﬂ,(a)
for v such that degm, < degm, are zero. This holds for all ¢ € G. By
considering in this way all elements ¢,_1,¢,_o,...,¢;, which might have

greater degree than the degree of ¢, the result follows. O

5.4 Representations on the free resolution

Each S-module F; in the minimal free resolution can be seen as a series
of representations of the group G. Indeed, the modules F; are graded
and there is an action of G on each graded part F; 4, given by representa-
tions

pia: G — GL(F ),

where F}, is the degree d part of the S-module F;. The space Tor? (k, Sx))
is clearly a G-module, and by proposition 5.4 there is a decomposition of
G-modules
Tor? (k, Sx) = @Torf(k, Sx);j,
JEZ
where Tor? (k, Sx); is the k-vector space generated by generators of F; that
have degree j. This is a vector space of dimension f; ;.

Denote by Ind(G) the set of isomorphism classes of indecomposable k[G]-
modules. If k£ is of characteristic p > 0 and G has no-cyclic p-Sylow
subgroup then the set Ind(G) is infinite, see [4, p.26]. Suppose that
each Tor!(k,Sx); admits the following decomposition in terms of U ¢
Ind(G):
Torf(k, SX)j = @ ai,j,UU where a;ju € 7.
Uelnd(G)

We obviously have that

ﬂi,j = E a; ;U dlmk U.
Uelnd(G)

The G-structure of F; is given by
Tor? (k, Sx) ® S,



that is the G-module structure of F;; is given by

Fiqg= @ @TOT;S(/{:, SX)d—j & Sj.

dez jez
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