
A NEW OBSTRUCTION TO THE LOCAL LIFTING PROBLEM

ARISTIDES KONTOGEORGIS AND ALEXIOS TEREZAKIS

Abstract. We study the local lifting problem of actions of semidirect prod-
ucts of a cyclic p-group by a cyclic prime to p group, where p is the character-
istic of the special fibre. We give a criterion based on Harbater-Katz-Gabber
compactification of local actions, which allows us to decide whether a local
action lifts or not. In particular for the case of dihedral group we give an
example of dihedral local action that can not lift and in this way we give a
stronger obstruction than the KGB-obstruction.

1. Introduction

Let G be a finite group, k and algebraically closed field of characteristic p > 0
and consider the homomorphism

ρ : G ↪→ Aut(k[[t]]),

which will be called a local G-action. Let W (k) denote the ring of Witt vectors of
k. The local lifting problem considers the following question: Does there exist an
extension Λ/W (k), and a representation

ρ̃ : G ↪→ Aut(Λ[[T ]]),

such that if t is the reduction of T , then the action of G on Λ[[T ]] reduces to the
action of G on k[[t]]? If the answer to the above question is positive, then we
say that the G-action lifts to characteristic zero. A group G for which every local
G-action on k[[t]] lifts to characteristic zero is called a local Oort group for k.

After studying certain obstructions (the Bertin-obstruction, the KGB-obstruction,
the Hurwitz tree obstruction etc) it is known that the only possible local Oort groups
are known to be

(1) Cyclic groups
(2) Dihedral groups Dph of order 2ph

(3) The alternating group A4

The Oort conjecture states that every cyclic group Cq of order q = ph lifts locally.
This conjecture was proved recently by F. Pop [26] using the work of A. Obus and
S. Wewers [24]. A. Obus proved that A4 is local Oort group in [21] and this was
also known to F. Pop and I. Bouw and S. Wewers [6]. The case of dihedral groups
Dp are known to be local Oort by I. Bouw and S. Wewers for p odd [6] and by G.
Pagot [25]. Several cases of dihedral groups Dph for small ph have been studied by
A. Obus [22] and H. Dang, S. Das, K. Karagiannis, A. Obus, V. Thatte [11], while
the D4 was studied by B. Weaver [30] For more details on the lifting problem we
refer to [8], [9], [10], [20].
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Probably, the most important of the known so far obstructions is the KGB
obstruction [9]. It was conjectured that this is the only obstruction for the local
lifting problem, see [20], [22]. In particular, the KGB-obstruction for the dihedral
group Dq is known to vanish, so the conjecture asserts that the local action of Dq

always lifts. We will provide in section 6.1 a counterexample to this conjecture by
proving that the HKG-cover corresponding to D125, with a selection of lower jumps
9, 189, 4689, which does not lift.

In this article, we will give a necessary and sufficient condition for a Cq ⋊ Cm-
action and in particular for a Dq to lift. In order to do so, we will employ the
Harbater-Katz-Gabber-compactification (HKG for short), which can be used in or-
der to construct complete curves out of local actions. In this way, we have a variety
of tools at our disposal and we can transform the local action and its deformations
into representations of lineal groups acting on spaces of differentials of the HKG-
curve. We have laid the necessary tools in our article [17], where we have collected
several facts about the relation of liftings of local actions, liftings of curves and
liftings of linear representations.

More precisely let us consider a local action ρ : G → Autk[[t]] of the group
G = Cq ⋊ Cm. The Harbater-Katz-Gabber compactification theorem asserts that
there is a Galois cover X → P1 ramified wildly and completely only at one point
P of X with Galois group G = Gal(X/P1) and tamely on a different point P ′ with
ramification group Cm, so that the action of G on the completed local ring OX,P

coincides with the original action of G on k[[t]]. Moreover, it is known that the
local action lifts if and only if the corresponding HKG-cover lifts.

In particular, we have proved that in order to lift a subgroup G ⊂ Aut(X),
the representation ρ : G → GLH0(X,ΩX) should be lifted to characteristic zero
and also the lifting should be compatible with the deformation of the curve. More
precisely, in [17] we have proved the following relative version of Petri’s theorem

Proposition 1. Let f1, . . . , fr ∈ S := SymH0(X,ΩX) = k[ω1, . . . , ωg] be qua-
dratic polynomials which generate the canonical ideal IX of a curve X defined over
an algebraic closed field k. Any deformation XA is given by quadratic polynomi-
als f̃1, . . . , f̃r ∈ SymH0(XA,ΩXA/A) = A[W1, . . . ,Wg], which reduce to f1, . . . , fr
modulo the maximal ideal mA of A.

And we also gave the following liftability criterion:

Theorem 2. Consider an epimorphism R → k → 0 of local Artin rings. Let
X be a curve which is is canonically embedded in Pg

k and the canonical ideal is
generated by quadratic polynomials, and acted on by the group G. The curve
X → Spec(k) can be lifted to a family X → Spec(R) ∈ Dgl(R) if and only if
the representation ρk : G → GLg(k) = GL(H0(X,ΩX)) lifts to a representation
ρR : G → GLg(R) = GL(H0(X ,ΩX /R)) and moreover the lift of the canonical
ideal is left invariant by the action of ρR(G).

In section 3 we collect results concerning deformations of HKG covers, Artin
representations and orbit actions and also provide a geometric explanation of the
KGB-obstruction in remark 10. In section 4 we prove that the HKG-cover is canon-
ically generated by quadratic polynomials, therefore theorem 2 can be applied.

In order to decide whether a linear representation of G = Cq ⋊Cm can be lifted
we will employ the following
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Theorem 3. Consider a k[G]-module M which is decomposed as a direct sum
M = Vα(ε1, κ1)⊕ · · · ⊕ Vα(εs, κs).

The module lifts to an R[G]-module if and only if the set {1, . . . , s} can be written
as a disjoint union of sets Iν , 1 ≤ ν ≤ t so that

a.
∑

µ∈Iν
κµ ≤ q, for all 1 ≤ ν ≤ t.

b.
∑

µ∈Iν
κµ ≡ a modm for all 1 ≤ ν ≤ t, where a ∈ {0, 1}.

c. For each ν, 1 ≤ ν ≤ t there is an enumeration σ : {1, . . . ,#Iν} → Iν ⊂
{1, .., s}, such that
εσ(2) = εσ(1)α

κσ(1) , εσ(3) = εσ(3)α
κσ(3) , . . . , εσ(s) = εσ(s−1)α

κσ(s−1) .

Condition b., with a = 1 happens only if the lifted Cq-action in the generic fibre has
an eigenvalue equal to 1 for the generator τ of Cq.

Proof. See [18]. □

The idea of the above theorem is that indecomposable k[G]-modules in the de-
composition of H0(X,ΩX) of the special fibre, should be combined together in order
to give indecomposable modules in the decomposition of holomorphic differentials
of the relative curve.

We will have the following strategy. We will consider a HKG-cover

X
Cq

//

G

''
P1

Cm

// P1

of the G-action. This has a cyclic subcover X → P1 with Galois group Cq. We lift
this cover using Oort’s conjecture for Cq-groups to a cover X → SpecΛ. This gives
rise to a representation
(1) ρ : G −→ GLH0(X,ΩX),

together with a lifting

(2) GLH0(X ,ΩX /Λ) = GLg(Λ)

modmΛ

��
Cq

//

66lllllllllllllll
GLH0(X,ΩX) = GLg(k)

of the representation of the cyclic part Cq of G. We then lift, checking the conditions
of theorem 3 the linear action of eq. (1) in characteristic zero in a such a way that
the restriction to the Cq group is our initial lifting of the representation of the Cq

subgroup coming from the lifting assured by Oort’s conjecture given in eq. (2).
Notice that the lifting of the cyclic group acting on a curve of characteristic zero in
the generic fibre has the additional property that every eigenvalue of a generator
of Cq is different than one, see eq. 13. Then using theorem 2 we will modify the
initial lifting X to a lifting X ′ so that X ′ is acted on by G.

Notice that m = 2, that is for the case of dihedral groups Dq of order 2q, there
is no need to pair two indecomposable k[Dq]-modules togehterh in order to lift
them into an indecomposable R[Dq]-module. The sets Iν can be singletons and the
conditions of theorem 3 are trivially satisfied. For example, condition 3.b. does not
give any information since every integer is either odd or even. This means that the
linear representations always lift.
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In our geometric setting on the other hand, we know that in the generic fibre
cyclic actions do not have identity eigenvalues, see proposition 13. This means that
we have to consider lifts that satisfy 3.b. with a = 0. Therefore, indecomposable
modules for G = Cq⋊C2 = Dq of odd dimmension d1 should find an other indecom-
posable module of odd dimension d2 in order lift to an R[G]-indecomposable module
of even dimension d1 + d2. Moreover this dimension should satisfy d1 + d2 ≤ q. If
we also take care of the condition 3.c. we arrive at the following

Criterion 4. The HKG-curve with action of Dq lifts in characteristic zero if and
only if all indecomposable summands U(ε, d), where ε ∈ {0, 1} and 1 ≤ d ≤ qh with
d odd have a pair U(ε′, d′), with ε′ ∈ {0, 1} − {ε} and d+ d′ ≤ qh.

In section 5 we will show that given a lifting X of the Cq action using Oort
conjecture, and a lifting of the linear representation satisfying criterion 4 the lift
X can be modified to a lift X ′, which lifts the action of Dq. In order to apply
this idea we need a detailed study of the direct k[G]-summands of H0(X,ΩX),
for G = Cq ⋊ Cm. This is considered in section 6, where we employ the joint
work of the first author with F. Bleher and T. Chinburg [4], in order to compute
the decomposition of H0(X,ΩX) into indecomposable kG-modules, in terms of the
ramification filtration of the local action.

Then the lifting criterion of theorem 3 is applied. Our method gives rise to an
algorithm which takes as input a group Cq ⋊ Cm, with a given sequence of lower
jumps and decides whether the action lifts to characteristic zero.

In section 6.1 we give an example of an C125 ⋊ C4 HKG-curve which does not
lift and then we restrict ourselves to the case of dihedral groups. The possible
ramification filtrations for local actions of the group Cq⋊Cm were computed in the
work of A. Obus and R. Pries in [23]. We focus on the case of dihedral groups Dq

with lower jumps

(3) bℓ = w0
p2ℓ + 1

p+ 1
, 0 ≤ ` ≤ h− 1.

For the values w0 = 9 we show in this section that the local action does not lift,
providing a counterexample to the conjecture that the KGB-obstruction is the only
obstruction to the local lifting problem.

Finally, in section 6.2 we prove that the jumps of eq. (3) for the value w0 = 1
lift in characteristic zero.

We also have developed a programm in sage [28] in order to compute the decom-
position of H0(X,ΩX) into intecomposable summands, which is freely available1.
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2. Notation

In this article we will study metacyclic groups G = Cq ⋊ Cm, where q = ph is
a power of the characteristic and m ∈ N, (m, p) = 1. Let τ be a generator of the
cyclic group Cq and σ be a generator of the cyclic group Cm.

The group G is given in terms of generators and relations as follows:
(4)
G = ⟨σ, τ |τ q = 1, σm = 1, στσ−1 = τα for some α ∈ N, 1 ≤ α ≤ ph − 1, (α, p) = 1⟩.
The integer α satisfies the following congruence:
(5) αm ≡ 1 modq

as one sees by computing τ = σmτσ−m = τα
m . Also the α can be seen as an

element in the finite field Fp, and it is a (p − 1)-th root of unity, not necessarily
primitive. In particular the following holds:

Lemma 5. Let ζm be a fixed primitive m-th root of unity. There is a natural
number a0, 0 ≤ a0 < m− 1 such that α = ζa0

m .

Proof. The integer α if we see it as an element in k is an element in the finite field
Fp ⊂ k, therefore αp−1 = 1 as an element in Fp. Let ordp(α) be the order of α in F∗

p.
By eq. 5 we have that ordp(α) | p− 1 and ordp(α) | m, that is ordp(α) | (p− 1,m).

The primitive m-th root of unity ζm generates a finite field Fp(ζm) = Fpν for
some integer ν, which has cyclic multiplicative group Fpν\{0} containing both the
cyclic groups ⟨ζm⟩ and ⟨α⟩. Since for every divisor δ of the order of a cyclic group
C there is a unique subgroup C ′ < C of order δ we have that α ∈ ⟨ζm⟩, and the
result follows. □

Remark 6. For the case Cq ⋊ Cm the KGB-obstruction vanishes if and only if
the first lower jump h satisfies h ≡ −1 modm. For this to happen the conjugation
action of Cm on Cq has to be faithful, see [20, prop. 5.9]. Also notice that by [23,
th. 1.1], that if u0, u1, . . . , uh−1 is the sequence upper ramification jumps for the Cq

subgroup, then the condition h ≡ −1 modm, then all upper jumps ui ≡ −1 modm.
In remark 10 we will explain the necessity of the KGB-obstruction in terms of the
action of Cm, on the fixed horizontal divisor of the Cq group.

3. Deformation of covers

3.1. Splitting the branch locus. Consider a deformation X → SpecA of the
curve X together with the action of G. Denote by τ̃ = ρ̃(τ) a lift of the action of
the element τ ∈ Aut(X). Weierstrass preparation theorem [5, prop. VII.6] implies
that:

τ̃(T )− T = gτ̃ (T )uτ̃ (T ),

where gτ̃ (T ) is a distinguished Weierstrass polynomial of degree m + 1 and uτ̃ (T )
is a unit in R[[T ]].

The polynomial gτ̃ (T ) gives rise to a horizontal divisor that corresponds to the
fixed points of τ̃ . This horizontal divisor might not be irreducible. The branch
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divisor corresponds to the union of the fixed points of any element in G1(P ). Next
lemma gives an alternative definition of a horizontal branch divisor for the relative
curves X → X G, that works even when G is not a cyclic group.

Lemma 7. Let X → SpecA be an A-curve, admitting a fibrewise action of the
finite group G, where A is a Noetherian local ring. Let S = SpecA, and ΩX /S,
ΩY /S be the sheaves of relative differentials of X over S and Y over S, respectively.
Let π : X → Y be the quotient map. The sheaf

L (−DX /Y ) = Ω−1
X /S ⊗S π

∗ΩY /S

is the ideal sheaf of the horizontal Cartier divisor DX /Y . The intersection of
DX /Y with the special and generic fibre of X gives the ordinary branch divisors
for curves.

Proof. We will first prove that the above defined divisorDX /Y is indeed an effective
Cartier divisor. According to [16, Cor. 1.1.5.2] it is enough to prove that

• DX /Y is a closed subscheme which is flat over S.
• for all geometric points Speck → S of S, the closed subscheme DX /Y ⊗S k

of X ⊗S k is a Cartier divisor in X ⊗S k/k.
In our case the special fibre is a nonsingular curve. Since the base is a local ring

and the special fibre is nonsingular, the deformation X → SpecA is smooth. (See
the remark after the definition 3.35 p.142 in [19]). The smoothness of the curves
X → S, and Y → S, implies that the sheaves ΩX /S and ΩX /S are S-flat, [19,
cor. 2.6 p.222].

On the other hand the sheaf ΩY ,SpecA is by [16, Prop. 1.1.5.1] OY -flat. There-
fore, π∗(ΩY ,SpecA) is OX -flat and SpecA-flat [14, Prop. 9.2]. Finally, observe that
the intersection with the special and generic fibre is the ordinary branch divisor for
curves according to [14, IV p.301]. □

For a curve X and a branch point P of X we will denote by iG,P the order
function of the filtration of G at P . The Artin representation of the group G is
defined by arP (σ) = −fP iG,P (σ) for σ ̸= 1 and arP (1) = fP

∑
σ ̸=1 iG,P (σ) [27,

VI.2]. We are going to use the Artin representation at both the special and generic
fibre. In the special fibre we always have fP = 1 since the field k is algebraically
closed. The field of quotients of A should not be algebraically closed therefore a
fixed point there might have fP ≥ 1. The integer iG,P (σ) is equal to the multiplicity
of P × P in the intersection of ∆.Γσ in the relative A-surface X ×SpecA X , where
∆ is the diagonal and Γσ is the graph of σ [27, p. 105].

Since the diagonals ∆0,∆η and the graphs of σ in the special and generic fibres
respectively of X ×SpecA X are algebraically equivalent divisors we have:

Proposition 8. Assume that A is an integral domain, and let X → SpecA be
a deformation of X. Let P̄i, i = 1, · · · , s be the horizontal branch divisors that
intersect at the special fibre, at point P , and let Pi be the corresponding points on
the generic fibre. For the Artin representations attached to the points P, Pi we have:

(6) arP (σ) =

s∑
i=1

arPi
(σ).

This generalizes a result of J. Bertin [3]. Moreover if we set σ = 1 to the above
formula we obtain a relation for the valuations of the differents in the special and
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the generic fibre, since the value of the Artin’s representation at 1 is the valuation of
the different [27, prop. 4.IV,prop. 4.VI]. This observetion is equivalent to claim 3.2
in [13] and is one direction of a local criterion for good reduction theorem proved
in [13, 3.4], [15, sec. 5].

3.2. The Artin representation on the generic fibre. We can assume that after
a base change of the family X → Spec(A) the points Pi at the generic fibre have
degree 1. Observe also that at the generic fibre the Artin representation can be
computed as follows:

arQ(σ) =

{
1 if σ(Q) = Q,
0 if σ(Q) ̸= Q.

The set of points S := {P1, . . . , Ps} that are the intersections of the ramification
divisor and the generic fibre are acted on by the group G.

We will now restrict our attention to the case of a cyclic group H = Cq of order
q. Let Sk be the subset of S fixed by Cph−k , i.e.

P ∈ Sk if and only if H(P ) = Cph−k .

Let sk be the order of Sk. Observe that since for a point Q in the generic fibre
σ(Q) and Q have the same stabilizers (in general they are conjugate, but here H
is abelian) the sets Sk are acted on by H. Therefore #Sk =: sk = pkik where ik is
the number of orbits of the action of H on Sk.

Let b0, b1, . . . , bh−1 be the jumps in the lower ramification filtration. Observe
that

Hjk =

{
Cph−k for 0 ≤ k ≤ h− 1
{1} for k ≥ h.

An element in Hbk fixes only elements in S with stabilizers that contain Hbk . So Hb0

fixes only S0, Hb1 fixes both S0 and S1 and Hbk fixes all elements in S0, S1, . . . , Sk.
By definition of the Artin representation an element σ in Hbk − Gbk+1

satisfies
arP (σ) = bk + 1 and by using equation (6) we arive at

bk + 1 = i0 + pi1 + · · ·+ pkik.

Remark 9. This gives us a geometric interpretation of the Hasse-Arf theorem,
which states that for the cyclic p-group of order q = ph, the lower ramification
filtration is given by

H0 = H1 = · · · = Hb0 ≩ Hb0+1 = · · · = Hb1 ≩ Hb1+1 = · · · = Hbh−1
≩ {1},

i.e. the jumps of the ramification filtration appear at the integers b0, . . . , bh−1.
Then
(7) bk + 1 = i0 + i1p+ i2p

2 + · · ·+ ikp
k.

The set of horizontal branch divisors is illustrated in figure 1. Notice that the
group Cm acts on the set of ramification points of H = Cq on the special fibre
but it can’t fix any of them since there are already fixed by a subgroup of Cq and
if a branch point P of Cq was also fixed by an element of Cm, then the isotropy
subgroup of P could not be cyclic. This proves that m divides the numbers of all
orbits i0, . . . , in−1.

Remark 10. In this way we can recover the necessity of the KGB-obstruction since
by eq. (7) the upper ramification jumps are i0−1, i0+ i1−1, . . . , i0+ · · ·+ in−1−1.
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Figure 1. The horizontal Ramification divisor
Fixed by Cph

Orbit size 1
Number of orbits i0

Fixed by Cph−1

Orbit size p
Number of orbits i1

Fixed by Cph−k

Orbit size pk

Number of orbits ik

Fixed by Cp

Orbit size ph−1

Number of orbits ih−1

The Galois cover X → X/G breaks into two covers X → XCq and XCq → CG.
The genus of CG is zero by assumption and in the cover XCq → CG there are
exactly two ramified points with ramification indices m. An application of the
Riemann-Hurwitz formula shows that the genus of XCq is zero as well.

The genus of the curve X can be computed either by the Riemann-Hurwitz
formula in the special fibre

g = 1− pn +
1

2

∞∑
i=0

(|Gi| − 1)

= 1− pn +
1

2

(
(b0 + 1)(pn − 1) + (b1 − b0)(p

n−1 − 1) + (b2 − b1)(p
n−2 − 1) + · · ·

· · ·+ (bn − bn−1)(p− 1))

or by the Riemann-Hurwitz formula on the generic fibre:

g = 1− pn +
1

2

(
i0(p

n − 1) + i1p(p
n−1 − 1) + · · · in−1p

n−1(p− 1)
)
.(8)

Using eq. (7) we see that the two formulas for g give the same result as expected.

4. HKG-covers and their canonical ideal

Lemma 11. Consider the Harbater-Katz-Gabber curve corresponding to the local
group action Cm ⋊Cq, where q = ph that is a power of the characteristic p. If one
of the following conditions holds:

• h ≥ 2
• h = 1 and the first jump i0 in the ramification filtration for the cyclic group

satisfies i0 ̸= 1 and q ≥ 12
i0−1 + 1,

then the curve X has canonical ideal generated by quadratic polynomials.
Proof. We will prove that the curve X has genus g ≥ 6 provided that p or h is big
enough. We will also prove that the curve X is not hyperelliptic nor trigonal.
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Remark 12. Let us first recall that a cyclic group of order q = ph for h ≥ 2 can
not act on the rational curve, see [29, thm 1]. Also let us recall that a cyclic group
of order p can act on a rational curve and in this case the first and only break in
the ramification filtration is i0 = 1. This latter case is excluded.

Consider first the case ph = p and i0 ̸= 1. In this case we compute the genus g
of the HKG-curve X using Riemann-Hurwitz formula:

2g = 2− 2mq + q(m− 1) + qm− 1 + i0(q − 1),

where the contribution q(m−1) is from the q-points above the unique tame ramified
point, while qm− 1 + i0(q − 1) is the contribution of the wild ramified point. This
implies that,

2g = (i0 − 1)(q − 1),

therefore if i0 ≥ 2, it suffices to have q = ph ≥ 13 and more generally it is enough
to have q ≥ 12

i0−1 + 1 in order to ensure that g ≥ 6.
For the case h ≥ 2, we can write a stronger inequality based on Riemann-Hurwitz

theorem as (recall that i0 ≡ i1 modp so i0 − i1 ≥ p)

(9) 2g ≥ (i0 − 1)(ph − 1) + (i0 − i1)(p
h−1 − 1) ≥ ph − p,

which implies that g ≥ 6 for p > 3 or h > 3.
In order to prove that the curve is not hyperelliptic we observe that hyperelliptic

curves have a normal subgroup generated by the hyperelliptic involution j, so that
X → X/⟨j⟩ = P1. It is known that the automorphism group of a hyperelliptic
curve fits in the short exact sequence

(10) 1 → ⟨j⟩ → Aut(X) → H → 1,

where H is a subgroup of PGL(2, k), see [7]. If m is odd then the hyperelliptic
involution is not an element in Cm. If m is even, let σ be a generator of the cyclic
group of order m and τ a generator of the group Cq. The involution σm/2 again
can’t be the hyperelliptic involution. Indeed, the hyperelliptic involution is central,
while the conjugation action of σ on τ is faithful that is σm/2τσ−m/2 ̸= τ . In this
case G = Cm ⋊ Cq is a subgroup of H which should act on the rational function
field. By the classification of such groups in [29, Th. 1] this is not possible. Thus
X can’t be hyperelliptic.

We will prove now that the curve is not trigonal. Using Clifford’s theorem we
can show [2, B-3 p.137] that a non hyperelliptic curve of genus g ≥ 5 cannot have
two distinct g13 . So if there is a g13 , then this is unique. Moreover, the g13 gives
rise to a map π : X → P1 and every automorphism of the curve X fixes this map.
Therefore, we obtain a morphism φ : Cm ⋊ Cq → PGL2(k) and we arrive at the
short exact sequence

1 → kerφ→ Cm ⋊ Cq → H → 1,

for some finite subgroup H of PGL(2, k). If kerφ = {1}, then we have the tower
of curves X π−→ P1 π′

−→ P1, where π′ is a Galois cover with group Cm ⋊ Cq. This
implies that X is a rational curve contradicting remark 12. If kerφ is a cyclic group
of order 3, then we have that 3 | m and the tower X π−→ P1 π′

−→ P1, where π is a
cyclic Galois cover of order 3 and π′ is a Galois cover with group Cm/3 ⋊ Cq. As
before this contradicts remark 12 and is not possible. □
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5. Invariant subspaces of vector spaces

The g×g symmetric matrices A1, . . . , Ar defining the quadratic canonical ideal of
the curve X, define a vector subspace of the vector space V of g× g symmetric ma-
trices. By Oort conjecture, we know that there are symmetric matrices Ã1, . . . , Ãr

with entries in a local principal ideal domain R, which reduce to the initial matrices
A1, . . . , Ar. These matrices Ã1, . . . , Ãr correspond to the lifted relative curve X̃.
Moreover, the submodule Ṽ = ⟨Ã1, . . . , Ãr⟩ is left invariant under the action of a
lifting ρ̃ of the representation ρ : Cq → GLg(k).

Proposition 13. Let g̃ be the genus of the quotient curve X/H for a subgroup H
of the automorphism group of a curve X in characteristic zero. We have

dimH0(X,Ω⊗d
X )H =

{
g̃ if d = 1

(2d− 1)(g̃ − 1) +
∑

P∈X/G

⌊
d
(
1− 1

e(P̃ )

)⌋
if d > 1

Proof. See [12, eq. 2.2.3,2.2.4 p. 254]. □
Therefore, a generator of Cq acting onH0(X,ΩX) has no identity eigenvalues and

m should divide g. This means that we have to consider liftings of indecomposable
summands of Cq, which satisfy condition 3.b. with a = 0. We now assume that
condition 3.b. of theorem 3 can be fulfilled, so there is a lifting of the representation

GLg(R)

modmR

��
Cq ⋊ Cm

ρ //

ρ̃
99rrrrrrrrrr
GLg(k)

satisfying condition, see also the discussion in the introduction after the statement
of this theorem after eq. (2).

We have to show that we can modify the space Ṽ ⊂ Symg(R) to a space Ṽ ′ with
the same reduction V modulo mR so that Ṽ is Cq ⋊ Cm-invariant.

Consider the sum of the free modules
W = Ṽ + ρ̃(σ)Ṽ + ρ̃(σ2)Ṽ + · · ·+ ρ̃(σm−1)Ṽ ⊂ RN .

Observe that W is an R[Cq ⋊ Cm]-module and also it is a free submodule of RN

and by the theory of modules over local principal ideal domain there is a basis
E1, . . . , EN of RN such that

W = E1 ⊕ · · · ⊕ Er ⊕ πar+1Er+1 ⊕ · · · ⊕ πaNEN ,

where E1, . . . , Er form a basis of Ṽ , while πar+1Er+1, . . . , π
aNEN form a basis of

the kernel W1 of the reduction modulo mR. Since the reduction is compatible with
the actions of ρ, ρ̃ we have that W1 is an R[Cq ⋊ Cm]-module, while Ṽ is just a
Cq-module.

Let π be the R[Cq]-equivariant projection map W = Ṽ ⊕R[Cq ]−modulesW1 →W1.
Since m is an invertible element of R, we can employ the proof of Mascke’s theorem
in order to construct a module Ṽ ′, which is R[Cq ⋊ Cm] stable and reduces to V
modulo mR, see also [1, I.3 p.12]. Indeed, consider the endomorphism π̄ :W →W
defined by

π̄ =
1

m

m−1∑
i=0

ρ̃(σi)πρ̃(σ−i).
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We see that π̄ is the identity on W1 since π is the identity on W1. Moreover
Ṽ ′ := kerπ̄ is both Cq and Cm invariant and reduces to V modulo mR.

6. Galois module structure of holomorphic differentials, special
fibre

Consider the group Cq⋊Cm. Let τ be a generator of Cq and σ a generator of Cm.
It is known that Aut(Cq) ∼= F∗

p ×Q, for some abelian group Q. The representation
ψ : Cm → Aut(Cq) given by the action of Cm on Cq is known to factor through a
character χ : Cm → F∗

p. The order of χ divides p − 1 and χp−1 = χ−(p−1) is the
trivial one dimensional character. In our setting, using the definition of G given in
eq. (4) and lemma 5 we have that the character χ is defined by
(11) χ(σ) = α = ζa0

m ∈ Fp.

For all i ∈ Z, χi defines a simple k[Cm]-module of k dimension one, which we will
denote by Sχi . For 0 ≤ ` ≤ m− 1 denote by Sℓ the simple module on which σ acts
as ζℓm. Both Sχi , Sℓ can be seen as k[Cq ⋊ Cm]-modules using inflation. Finally
for 0 ≤ ` ≤ m− 1 we define χi(`) ∈ {0, 1, . . . ,m− 1} such that Sχi(ℓ)

∼= Sℓ ⊗k Sχi .
Using eq. (11) we arrive at
(12) Sχi(ℓ) = Sℓ+ia0

.

There are q ·m isomorphism classes of indecomposable k[Cq ⋊Cm]-modules and
are all uniserial. An indecomposable k[Cq ⋊Cm]-module U is uniquely determined
by its socle, which is the kernel of the action of τ − 1 on U , and its k-dimension.
For 0 ≤ ` ≤ m − 1 and 1 ≤ µ ≤ q, let Uℓ,µ be the indecomposable k[Cq ⋊ Cm]
module with socle Sℓ and k-dimension µ. Then Uℓ,µ is uniserial and its µ ascending
composition factors are the first µ composition factors of the sequence

Sℓ, Sχ−1(ℓ), Sχ−2(ℓ), . . . , Sχ−(p−2)(ℓ), Sℓ, Sχ−1(ℓ), Sχ−2(ℓ), . . . , Sχ−(p−2)(ℓ)

Notice that in our notation Vα(λ, k) = Uλ+k,k.
Assume that X → P1 is an HKG-cover with Galois group Cq⋊Cm. The subgroup

I generated by the Sylow p-subgroups of the inertia groups of all closed points of
X is equal to Cq.

Definition 14. For each 0 ≤ j ≤ q − 1 we define

Dj =
∑
y∈P1

dy,jy,

where the integers dy,j are defined as follows. Let x be a point of X above y and
consider the i-th ramification group Ix,i at x. The order of the inertia group at x
is assumed to be pn(x) and we set i(x) = h − n(x). Let b0, b1, . . . , bn(x)−1 be the
jumps in the numbering of the lower ramification filtration subgroups of Ix. We
define

dy,j =

 1

pn(x)

n(x)∑
l=1

pn(x)−l
(
p− 1 + (p− 1− al,t)bl−1

)
for all t, j ≥ 0 satisfying
(13) pi(x)t ≤ j < pi(x)(t+ 1)

and
t = a1,t + a2,tp+ · · ·+ an(x),tp

n(x)−1
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is the p-adic expansion of t. In particular Dq−1 = 0. Observe that dy,j ̸= 0 only
for wildly ramified branch points.

Remark 15. For a divisor D on a curve Y define ΩY (D) = ΩY ⊗ OY (D). In
particular for Y = P1, and for D = Dj = dP∞,jP∞, where Dj is a divisor supported
at the infinity point P∞ we have

H0(P1,ΩP1(Dj)) = {f(x)dx : 0 ≤ deg f(x) ≤ dP∞,j − 2}.

For the sake of simplicity, we will denote dP∞,j by dj . The space H0(P1,ΩP1(Dj))
has a basis given by B = {dx, xdx, . . . , xdj−2dx}. Therefore, the number nj,ℓ
of simple modules appearing in the decomposition ΩP1(Dj) isomorphic to Sℓ for
0 ≤ ` < m, is equal to the number of monomials xν with

ν ≡ `− 1 modm, 0 ≤ ν ≤ dj − 2.

If dj ≤ 1 then B = ∅ and nj,ℓ = 0 for all 0 ≤ ` < m. If dj > 1, then we know that in
the dj − 1 elements of the basis B, the first m

⌊
dj−1
m

⌋
elements contribute to every

representative modulo m. Thus, we have at least
⌊
dj−1
m

⌋
elements in isomorphic to

Sℓ for every 0 ≤ ` < m. We will now count the rest elements, of the form {xνdx},
where

m

⌊
dj − 1

m

⌋
≤ ν ≤ dj − 2 and ν ≡ `− 1 modm,

where `− 1 is the unique integer in {0, 1, . . . ,m− 1} equivalent to `− 1 modulo m.
We observe that the number yj(`) of such elements ν is given by

yj(`) =

{
1 if `− 1 ≤ dj − 2−m

⌊
dj−1
m

⌋
0 otherwise

Therefore

nj,ℓ =

{⌊
dj−1
m

⌋
+ yj(`) if dj ≥ 2

0 if dj ≤ 1

For example if dj = 9 and m = 3, then a basis for H0(P1,ΩP1(9P∞)) is given by
{dx, xdx, x2dx, . . . x7dx}. This basis has 8 elements, and each triple {dx, xdx, x2dx},
{x3dx, x4dx, x5dx} contributes one to each class S0, S1, S2, while there are two re-
maining basis elements {x6dx, x7dx, }, which contribute one to S1, S2. Notice that⌊
8
3

⌋
= 2 and y(`) = 1 for ` = 1, 2.

In particular if m = 2, then nj,ℓ = 0 if dj ≤ 1 and for dj ≥ 2 we have

(14) nj,ℓ =


dj−1

2 if dj ≡ 1 mod2
dj

2 − 1 if ` = 0 and dj ≡ 0 mod2
dj

2 if ` = 1 and dj ≡ 0 mod2

Lemma 16. Assume that dj−1 = dj + 1. Then if dj ≥ 2

nj−1,ℓ − nj,ℓ =


1 if dj−1 ≡ 1 mod2 and ` = 0

or dj−1 ≡ 0 mod2 and ` = 1

0 if dj−1 ≡ 1 mod2 and ` = 1

or dj−1 ≡ 0 mod2 and ` = 0
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If dj ≤ 1, then

nj−1,ℓ − nj,ℓ =

{
0 if dj = 0 or (dj = 1 and ` = 0)

1 if dj = 1 and ` = 1

Proof. Assume that dj ≥ 2. We distinguish the following two cases, and we will
use eq. (14)
• dj−1 is odd and dj is even. Then, if ` = 0

nj−1,ℓ − nj,ℓ =
dj−1 − 1

2
− dj

2
+ 1 = 1

while nj−1,ℓ − nj,ℓ = 0 if ` = 1.
• dj−1 is even and dj is odd. Then, if ` = 0

nj−1,ℓ − nj,ℓ =
dj−1

2
− 1− dj − 1

2
= 0,

while nj−1,ℓ − nj,ℓ = 1 if ` = 0.
If now dj = 0 and dj−1 = 1, then nj−1,ℓ − nj,ℓ = 0. If dj = 1 and dj−1 = 2 then
nj,ℓ = 0 while nj−1,ℓ = 0 if ` = 0 and nj−1,ℓ = 1 if ` = 1.

□

Theorem 17. Let M = H0(X,ΩX), let τ be the generator of Cq, and for all
0 ≤ j < q we define M (j) to be the kernel of the action of k[Cq](τ − 1)j. For
0 ≤ a ≤ m − 1 and 1 ≤ b ≤ q = ph, let n(a, b) be the number of indecomposable
direct k[Cq ⋊Cm]-module summands of M that are isomorphic to Ua,b. Let n1(a, b)
be the number of indecomposable direct k[Cm]-summands of M (b)/M (b−1) with socle
Sχ−(b−1)(a) and dimension 1. Let n2(a, b) be the number of indecomposable direct
k[Cm]-module summands of M (b+1)/M (b) with socle Sχ−b(a), where we set n2(a, b) =
0 if b = q.

n(a, b) = n1(a, b)− n2(a, b).

The numbers n1(a, b), n2(a, b) can be computed using the isomorphism

M (j+1)/M (j) ∼= Sχ−j ⊗k H
0(Y,ΩY (Dj)),

where Y = X/Cq and Dj are the divisors on Y , given in definition 14.

For the case of HKG-covers, with ∞ the wild ramified point and 0 the tame
ramified point the divisors Dj are supported only at the wild ramified point and
are given by

Dj =

⌊
1

ph

h∑
l=1

ph−l(p− 1 + (p− 1− al,t)bl−1)

⌋
P∞

t = a1,t + a2,tp+ · · ·+ ah,tp
h−1

is the p-adic expansion of t. Notice that since i(x) = 0 eq. (13) reduces to t = j.

Corollary 18. Set dj =
⌊

1
ph

∑h
l=1 p

h−l(p− 1 + (p− 1− al,t)bl−1)
⌋
. The numbers

n(a, b), n1(a, b) and n2(a, b) are given by

n(a, b) = n1(a, b)− n2(a, b) = nb−1,a − nb,a.
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Proof. We will treat the n1(a, b) case and the n2(a, b) follows similarly. By the
equivariant isomorphism for M = H0(X,ΩX) we have that

M (b+1)/M (b) ∼= Sχ−b ⊗k H
0(P1,ΩP1(Db)).

The number of idecomposable k[Cm]-summands of M (b)/M (b−1) isomorphic to
Sχ−(b−1)(a) = Sa−(b−1)a0

equals to the number of idecomposable k[Cm]-summands
of H0(P1,ΩP1(Dj)) isomorphic to Sa which is computed in remark 15. □

In [23, Th. 1.1] A. Obus and R. Pries described the upper jumps in the ramifi-
cation filtration of Cph ⋊ Cm-covers.

Theorem 19. Let G = Cph ⋊ Cm, where p ∤ m. Let m′ = |CentG(σ)|/ph, where
⟨τ⟩ = Cph . A sequence u1 ≤ · · ·un of rational numbers occurs as the set of positive
breaks in the upper numbering of the ramification filtration of a G-Galois extension
of k((t)) if and only if:

(1) ui ∈ 1
mN for 1 ≤ i ≤ h

(2) gcd(m,mu1) = m′

(3) p ∤ mu1 and for 1 < i ≤ h, either ui = pui−1 or both ui > pui−1 and
p ∤ mui.

(4) mui ≡ mu1 modm for 1 ≤ i ≤ n.

Notice that in our setting CentG(τ) = ⟨τ⟩, therefore m′ = 1. Also the set of
upper jumps of Cph is given by w1 = mu1, . . . , wh = muh, wi ∈ N, see [23, lemma
3.5].

The theorem of Hasse-Arf [27, p. 77] applied for cyclic groups, implies that there
are strictly positive integers ι0, ι1, . . . , ιh−1 such that

bs =

s−1∑
ν=0

ινp
ν , for 0 ≤ s ≤ h− 1

Also, the upper jumps for the Cq extension are given by

(15) w0 = i0 − 1, w1 = i0 + i1 − 1, . . . , wh = i0 + i1 + · · ·+ uh − 1.

Assume that for all 0 < ν ≤ h−1 we have wν = pwν−1. Equation (15) implies that

i1 = (p− 1)w0, i2 = (p− 1)pw0, i3 = (p− 1)p2w0, . . . , uh−1 = (p− 1)ph−2w0.

Therefore,

bℓ + 1 =

ℓ∑
ν=0

iνp
ν = 1 + w0 + (p− 1)w0 · p+ (p− 1)pw0 · p2 + · · ·+ (p− 1)pℓ−1w0 · pℓ

= 1 + u0 + p(p− 1)u0

(
ℓ−1∑
ν=0

p2ν

)
= 1 + w0 + p(p− 1)w0

p2ℓ − 1

p2 − 1

= 1 + w0 + pw0
p2ℓ − 1

p+ 1
= 1 + w0

p2ℓ+1 + 1

p+ 1

where we have used that w0 = b0 = i0 − 1.



A NEW OBSTRUCTION TO THE LOCAL LIFTING PROBLEM 15

6.1. Examples of local actions that don’t lift. Consider the curve with lower
jumps 1, 21, 521 and higer jumps 1, 5, 25, acted on by C125 ⋊ C4. According to eq.
(5), the only possible values for α are 1, 57, 68, 124. The value α = 1 gives rise to a
cyclic group G, while the value α = 124 has order 2 modulo 125. The values 57, 68
have order 4 modulo 125. The cyclic group F∗

5 is generated by the primitive root 2
of order 4. We have that 57 ≡ 2 mod5, while 68 ≡ 3 ≡ 23 mod5.

Using corollary 18 together with remark 15 we have that H0(X,ΩX) is decom-
posed into the following indecomposable modules, each one appearing with multi-
plicity one:

U0,5, U3,11, U2,17, U1,23, U0,29, U3,35, U2,41, U1,47, U0,53, U3,59,
U2,65, U1,71, U0,77, U3,83, U2,89, U1,95, U0,101, U3,107, U2,113, U1,119

We have that 119 ≡ 3 mod4 so the module U1,119 can not be lifted by itself. Also
it can’t be paired with U0,5 since 119 + 5 ≡ 4 ̸= 1 mod4. All other modules have
dimension d such that d+ 119 > 125. Therefore, the representation of H0(G,ΩX)
cannot be lifted.

The case of dihedral groups is more difficult to find an example that does not
lift. We have the following

The HKB-curve with lower jumps 9, 9 · 21 = 189, 9 · 521 = 4689 has genus 11656
and the following modules appear in its decomposition, each one appearing with
multiplicity one:

U0,1, U1,1, U0,2, U1,2, U1,3, U0,4, U1,4, U0,5, U1,6, U0,7, U1,7, U0,8, U1,8, U0,9, U1,9, U0,11,
U1,11, U0,12, U1,12, U0,13, U1,13, U0,14, U1,15, U0,16, U0,17, U1,17, U0,18, U1,18, U0,19, U1,19,
U0,21, U1,21, U0,22, U1,22, U0,23, U1,23, U1,24, U0,25, U1,26, U0,27, U1,27, U0,28, U1,28, U0,29,
U1,29, U0,31, U1,31, U0,32, U1,32, U0,33, U0,34, U1,34, U1,35, U0,36, U0,37, U1,37, U0,38, U1,38,
U0,39, U1,39, U0,41, U1,41, U0,42, U1,42, U0,43, U1,43, U1,44, U0,45, U0,46, U1,46, U1,47, U0,48,
U1,48, U0,49, U1,49, U0,51, U1,51, U0,52, U1,52, U0,53, U0,54, U1,54, U1,55, U0,56, U0,57, U1,57,
U0,58, U1,58, U0,59, U1,59, U0,61, U1,61, U0,62, U1,62, U0,63, U1,63, U1,64, U0,65, U0,66, U1,66,
U1,67, U0,68, U1,68, U0,69, U1,69, U0,71, U1,71, U0,72, U1,72, U0,73, U1,73, U0,74, U1,75, U0,76,
U0,77, U1,77, U0,78, U1,78, U0,79, U1,79, U0,81, U1,81, U0,82, U1,82, U0,83, U1,83, U1,84, U0,85,
U1,86, U0,87, U1,87, U0,88, U1,88, U0,89, U1,89, U0,91, U1,91, U0,92, U1,92, U0,93, U1,93, U0,94,
U1,95, U0,96, U1,96, U0,97, U0,98, U1,98, U0,99, U1,99, U0,101, U1,101, U0,102, U1,102, U1,103,
U0,104, U1,104, U0,105, U1,106, U0,107, U1,107, U0,108, U1,108, U0,109, U1,109, U0,111, U1,111,
U0,112, U1,112, U0,113, U1,113, U0,114, U1,115, U0,116, U1,116, U0,117, U0,118, U1,118, U0,119,
U1,119, U0,121, U1,121, U0,122, U1,122, U0,123, U1,123, U1,124,

The above formulas were computed using Sage 9.8 [28]. In order to be completely
sure that are correct we will compute the values we need by hand also. We have

dj =

⌊
1

125

(
52
(
4 + (4− a1)9

)
+ 5
(
4 + (4− a2)189

)
+
(
4 + (4− a3)4689

))⌋
=

⌊
1

125
(23560− 225a1 − 945a2 − 4689a3)

⌋
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j p−adic dj nj,0 nj,1 nj−1,0 − nj,0 nj−1,1 − nj,1

0 0, 0, 0
⌊
23560
125

⌋
= 188 93 94 − −

1 1, 0, 0
⌊
23335
125

⌋
= 186 92 93 1 1

2 1, 0, 0
⌊
23110
125

⌋
= 184 91 92 1 1

3 1, 0, 0
⌊
22885
125

⌋
= 183 91 91 0 1

4 1, 0, 0
⌊
22660
125

⌋
= 181 90 90 1 1

5 0, 1, 0
⌊
22615
125

⌋
= 180 89 90 1 0

6 1, 1, 0
⌊
22390
125

⌋
= 179 89 89 0 1

...
...

...
...

...
...

...
120 0, 4, 4

⌊
1024
125

⌋
= 8 3 4

121 1, 4, 4
⌊
799
125

⌋
= 6 2 3 1 1

122 2, 4, 4
⌊
574
125

⌋
= 4 1 2 1 1

123 3, 4, 4
⌊
349
125

⌋
= 2 0 1 1 1

124 4, 4, 4
⌊
124
125

⌋
= 0 0 0 0 1

Notice that U1,123, U0,123 can be paired with U1,0, U1,1, and then for U0,121, U1,121

there is only one U1,3 to be paired with. The lift is not possible.

6.2. Examples of actions that lift. Our aim now is to prove the following

Theorem 20. Assume that the first lower jump equals b0 = w0 = 1 and each other
lower jump is given by

bℓ =
p2ℓ+1 + 1

p+ 1
.

Then, the local action of the dihedral group Dph lifts.

Remark 21. Notice that in this case if dj−1 > dj then dj−1 = dj + 1.

Lemma 22. Write
j − 1 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)ps−1 + asp

s + · · ·
j = (as + 1)ps + · · ·

where s is the first power in the p-adic expansion of j−1 such that the corresponding
coefficient 0 ≤ as < p− 1. Then

B(j)−B(j − 1) = ph−s.

Proof. By definition of the function B(j) we have that
B(j)−B(j − 1) = bs−1p

h−s − (p− 1)(b0p
h−1 + · · ·+ bs−2p

h−s+1)

=
p2s−1 + 1

p+ 1
ph−s − (p− 1)

s−1∑
ν=1

ph−ν p
2ν−1 + 1

p+ 1

= ph−s.

□

Definition 23. We will call the element j of type s if all p-adic coefficients of j
corresponding to pν for ν ≤ s− 1 are p− 1, while the coefficient corresponding to
ps is not p− 1. For example j − 1 in lemma 22 is of type s, while j is of type 1.
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Proposition 24. Write πj =
⌊
B(j)
ph

⌋
. Then, πj = πj−1 + 1 if and only if j =

k(p+ 1). Also ph ∤ B(j) for all 1 ≤ j ≤ ph − 1.

Proof. In the following table we present the change on B(j) after increasing j − 1
to j, where j − 1 has type s, using lemma 22.

j B(j)
⌊
B(j)
ph

⌋
0 0 0
1 ph−1 0

a1 = 2, . . . , p− 1 a1p
h−1 0

p (p− 1)ph−1 + ph−2 0

p+ 1 ph + ph−2 1

p+ 2 ph + ph−2 + ph−1 1
p+ a1, a1 = 3, . . . , p− 1 ph + ph−2 + (a1 − 1)ph−1 1

2p ph + 2ph−2 + (p− 2)ph−1 1
2p+ 1 ph + 2ph−2 + (p− 1)ph−1 1

2p+ 2 2ph + 2ph−2 2

2p+ 3 2ph + 2ph−2 + ph−1 2
2p+ a1 2ph + 2ph−2 + (a1 − 2)ph−1 2

3p 2ph + 3ph−2 + (p− 3)ph−1 2
· · · · · · · · ·

(p− 1)p (p− 2)ph + (p− 1)ph−2 + ph−1 p− 2
· · · · · · · · ·

(p− 1) + (p− 1)p (p− 1)ph + (p− 1)ph−2 p− 1
p2 (p− 1)ph + (p− 1)ph−2 + ph−3 p− 1
· · · · · · · · ·

(p− 1) + p2 (p− 1)ph + (p− 1)ph−2 + ph−3 + (p− 1)ph−1 p− 1

p+ p2 ph+1 + ph−3 p

1 + p+ p2 ph+1 + ph−1 + ph−3 p

Indeed, if the type of j− 1 is s = 1 then B(j) = B(j− 1)+ ph−1 and it is clear that
we will get one more ph at kp + k, for 1 ≤ k ≤ p. We will prove the result in full
generality by induction. Observe that if j − 1 is of type s, and πj = πj−1 +1, then
B(j) = B(j − 1) + ph−s and moreover

B(j − 1) = (p− 1)ph−1 + (p− 1)ph−2 + · · ·+ (p− 1)ph−s + πj−1p
h + u

B(j) = ph + πj−1p
h + u

for some u =
∑h−2

ν=0 γνp
ν , 0 ≤ γν < p. Set T = πj−1p

h + u. Assume by induction
that this jump occurs at j = k(p + 1). Then the next jump will occur at j =
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k(p+ 1) + (p+ 1), since

B(j + 1) = B(j) + ph−1 + T

B(j + 2) = B(j) + 2ph−1 + T

· · ·

B(j + (p− 1)) = B(j) + (p− 1)ph−1 + T

B(j + p) = B(j) + (p− 1)ph−1 + ph−2 + T

B(j + p+ 1) = B(j) + ph + T + ph−2.

□

Theorem 25. Assume that w0 = 1, and the jumps of the Cq action are as in
theorem 20. Then each direct summand U(ε, j) of H0(X,ΩX) has a compatible pair
according to criterion 4, which is given by

U(ε′, ph − 1− j) if h is odd
U(ε′, ph − p− j) if h is even

Proof. For every 1 ≤ j ≤ ph − 1, set j̃ = ph − 1− j. For every 1 ≤ j ≤ ph − 1 write
B(j) = πjp

h + vj , 0 ≤ vj < ph. Recall that

dj =

⌊
ph − 1 +B(ph − 1)−B(j)

ph

⌋
=

⌊
ph − 1 +B(j̃)

ph

⌋
= 1 + πj̃ +

⌊
−1 + vj
ph

⌋
.

Since vj ̸= 0, we have that
⌊
−1+vj

ph

⌋
= 0. Therefore, dj−1 > dj if and only if

πj̃+1 < πj̃ that is
j̃ + 1 = k(p+ 1) ⇒ j̃ = k(p+ 1)− 1.

Observe now that if h is odd and dj−1 = dj + 1, that is j̃ = k(p+ 1)− 1. Then

j = ph − 1− j̃ = ph − k(p+ 1).

• If h is odd, then j̃ = ph − (1 + ph) + k(p + 1) = ph − k′(p + 1) for some integer
k′ = ph+1

p+1 − k, since in this case p+ 1 | ph + 1. Since ˜̃j = j we can assume that
j < j̃. Then dj − dj̃ is the number of jumps between dj , dj̃ , that is the number
of elements x = ph − lx(p+ 1) ∈ N of the form

j = ph − k(p+ 1) < ph − lx(p+ 1) ≤ ph − k′(p+ 1)

that is k′ ≤ lx < k. This number equals k − k′ = 2k − ph+1
p+1 , which is odd since

ph+1
p+1

∑h−1
ν=0(−p)ν is odd.

• If h is even, then j′ = ph − p − j = ph − (p + ph) + k(p + 1) = ph − k′(p + 1)
for some integer k′, since in this case p + 1 | ph + p. Again since j′′ = j we can
assume that j < j′. Again dj −dj′ is the number of jumps between dj , dj′ , which
equals to 2k − ph+p

p+1 = pph−1+1
p+1 , which is odd.

Observe that we have proved in both cases that dj is odd if and only if dj̃ (resp.
d′j) is even. The change of ε to ε′ follows by lemma 16. □
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