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Framization of the Temperley-Lieb algebra
Dimos Goundaroulis, Jesús Juyumaya, Aristides Kontogeorgis,

and Sofia Lambropoulou

We propose a framization of the Temperley-Lieb algebra. The
framization is a procedure that can briefly be described as the
adding of framing to a known knot algebra in a way that is both
algebraically consistent and topologically meaningful. Our framiza-
tion of the Temperley-Lieb algebra is defined as a quotient of
the Yokonuma-Hecke algebra. The main theorem provides neces-
sary and sufficient conditions for the Markov trace defined on the
Yokonuma-Hecke algebra to pass through to the quotient algebra.
Using this we construct 1-variable invariants for classical knots
and links, which, as we show, are not topologically equivalent to
the Jones polynomial.
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1. Introduction

Since the original construction of the Jones polynomial the Temperley-Lieb
algebra has become a cornerstone of a fruitful interaction between Knot the-
ory and Representation theory. The Temperley-Lieb algebra was introduced
by Temperley and Lieb [24] and was rediscovered by Jones [10] as a knot
algebra [11].

A knot algebra is an algebra that is used in the construction of invariants
of classical links using Jones’ method [11]. More precisely, a knot algebra A
is a triplet (A, π, τ), where π is an appropriate representation of the braid
group in A and τ is a Markov trace function defined on A. The Temperley-
Lieb algebra, the Iwahori-Hecke algebra and the BMW algebra are the most
known examples of knot algebras.

The ‘framization’ of a knot algebra is a mechanism designed by the sec-
ond and fourth authors, that consists in a generalization of a knot algebra
via the addition of framing generators. In this way we obtain a new alge-
bra which is related to framed braids and framed knots. More precisely, the
framization procedure can roughly be described as the procedure of adding
framing generators to the generating set of a knot algebra, of defining inter-
acting relations between the framing generators and the original generators of
the algebra and of applying framing on the original defining relations of the
algebra. The resulting framed relations should be topologically consistent.
The challenge in this procedure is to apply the framization on the relations
of polynomial type.

The basic example of framization is the Yokonuma-Hecke algebra,
Yd,n(u), which can be regarded as a framization of the Iwahori-Hecke al-
gebra, Hn(u) [15, 19]. The quadratic relation of Yd,n(u) involves intrinsically
the framing generators, while for d = 1 the algebra Y1,n(u) coincides with
Hn(u). Having in mind this example, the second and fourth authors proposed
framizations of several knot algebras [18, 20].

The aim of this paper is to propose a framization of the Temperley-Lieb
algebra and to derive from this new algebra knot and link invariants via an
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appropriate Markov trace. The Temperley-Lieb algebra can be regarded as
a quotient of the Iwahori-Hecke algebra. Therefore, it is natural to search
for a quotient of the Yokonuma-Hecke algebra over an appropriate two-sided
ideal, that can be considered as a framization of the Temperley-Lieb algebra.
Although such an ideal is not unique, it will become clear that our choice
for the ideal that leads to the framization of the Temperley-Lieb algebra
is the most natural one with respect to the construction of related framed
and classical link invariants. Indeed, in Section 4 we first discuss two nat-
ural quotients of Yd,n(u) that could possibly lead to a framization of the
Temperley-Lieb algebra, the Yokonuma-Temperley-Lieb algebra, YTLd,n(u)
(introduced and studied in [9]) and the Complex Reflection Temperley-Lieb
algebra, CTLd,n(u). These two quotient algebras, however, are not suitable
for our purpose, since: The algebra YTLd,n(u) is too restricted and, as a con-
sequence, the invariants for classical links from the algebra YTLd,n(u) just
recover the Jones polynomial [9]. On the other hand, as we shall see, the alge-
bra CTLd,n(u) is too large for our topological purposes. We proceed with in-
troducing a third quotient of Yd,n(u), the Framization of the Temperley-Lieb
algebra, FTLd,n(u), which lies between YTLd,n(u) and CTLd,n(u) and which
will turn out to be the right one. The connection between all three quotients
of Yd,n(u) is then analyzed. We note that for d = 1 all three quotients coin-
cide with the Temperley-Lieb algebra TLn(u). We further provide presenta-
tions with non-invertible generators for the quotient algebras FTLd,n(u) and
CTLd,n(u). Such a presentation for the quotient algebra YTLd,n(u) was given
in [9]. We conclude this section with a result by Chlouveraki and Pouchin [6]
regarding the dimensions of the quotient algebras FTLd,n(u) and CTLd,n(u).

Returning to our basic example, the Yokonuma-Hecke algebra, the sec-
ond author has constructed a unique Markov trace function, tr, on the alge-
bra Yd,n(u) with parameters z, x1, . . . , xd−1 [13]. Consequently, invariants for
framed, classical and singular oriented links have been obtained [16, 17, 19] by
applying the so-called ‘E-condition’ on the parameters x1, . . . , xd−1 so that tr
re-scales according to the negative stabilization move between framed braids
[19]. These invariants, in particular those for classical links, was necessary
to be compared with other known invariants, especially with the 2-variable
Jones or Homflypt polynomial. In [4] it was proved that these polynomial
invariants do not coincide with the Homflypt polynomial, except in trivial
cases. Yet they could be topologically equivalent to the Homflypt polyno-
mial, in the sense that they might distinguish the same pairs of non-isotopic
links. Eventually, in a recent development [3], another presentation for the
Yokonuma-Hecke algebra is employed with parameter q in a new quadratic
relation, where q2 = u [2]. Using this presentation, the authors of [3] have
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been able to establish that the classical link invariants, Θd, obtained from
the isomorphic algebra Yd,n(q) coincide with the Homflypt polynomial on
knots, but they are not topologically equivalent to the Homflypt polynomial
on links (as it was conjectured in [7]).

The next natural question is to examine under what conditions the trace
tr on the algebra Yd,n(u) passes through to the quotient algebras FTLd,n(u)
and CTLd,n(u) respectively. We recall that, in the classical case, as Jones
showed, the Ocneanu trace on the Iwahori-Hecke algebra [11] passes to the
quotient TLn(u) if and only if the trace parameter ζ takes certain specific
values. Accordingly, in Section 5 we provide the necessary and sufficient con-
ditions for the Markov trace tr [13] on the Yokonuma-Hecke algebra to pass
through to the quotient algebras FTLd,n(u) and CTLd,n(u). The correspond-
ing conditions for the algebra YTLd,n(u) are given in [9]. More precisely, we
first find the necessary and sufficient conditions on the trace parameters
z, x1 . . . , xd−1, for the algebra FTLd,3(u) using tools from harmonic anal-
ysis on finite groups (Lemma 8) and then we generalize our result using
induction on n (Theorem 6). Using the same methods we prove the analo-
gous theorem for CTLd,n(u) (Theorem 7). For d = 1 the specific values we
found for z coincide with those found by Jones for TLn(u) [11]. Finally, we
discuss the connections between the necessary and sufficient conditions for tr
to pass to all three quotient algebras CTLd,n(u), FTLd,n(u) and YTLd,n(u).

Using the above conditions on the trace tr and subjecting the trace pa-
rameters x1, . . . , xd−1 to the E-condition, we define in Section 6 invariants
for framed and classical links through the quotient algebras FTLd,n(u) and
CTLd,n(u). We then show that the invariants from the algebras CTLd,n(u)
coincide either with some of the invariants from Yd,n(u) or with some of the
invariants from FTLd,n(u). Since CTLd,n(u) is larger than FTLd,n(u) and
since we do not obtain from CTLd,n(u) any extra invariants, for these rea-
sons FTLd,n(u) is chosen as the framization of the Temperley-Lieb algebra.

Focusing now on the classical link invariants from the algebra FTLd,n(u),
these need to be compared to the Jones polynomial. Following [3], in Section 7
we give a new presentation for the algebra FTLd,n with parameter q deriving
from the new presentation of the Yokonuma-Hecke algebra Yd,n(q). We then
adjust our results so far to the isomorphic algebra FTLd,n(q) and we apply
them to the results of [3]. Namely, by specializing Θd(q, z) to the our specific
value for z, we obtain 1-variable invariants for classical knots and links,
denoted by θd(q). Finally, adapting the results of [3] to the invariants θd(q)
we show that they coincide with the Jones polynomial on knots but they are
not topologically equivalent to the Jones polynomial on links.
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The outline of the paper is as follows: Section 2 is dedicated to providing
necessary definitions and results, including: the Iwahori-Hecke algebra, the
Ocneanu trace and the Yokonuma-Hecke algebra. In Section 3 we recall some
basic tools from harmonic analysis of finite groups, such as the convolution
product, the product by coordinates and the Fourier transform, necessary
for exploring the ‘E-system’. In Section 4 we discuss three quotients of the
Yokonuma-Hecke algebra as possible candidates for the framization of the
Temperley-Lieb algebra. In Section 5 we provide necessary and sufficient
conditions for the tr on the Yokonuma-Hecke algebra to pass through to the
quotient algebras FTLd,n(u) and CTLd,n(u). In Section 6 we define 1-variable
framed and classical link invariants related to the algebras FTLd,n(u) and
CTLd,n(u). Finally, in Section 7 we prove that 1-variable classical link in-
variants derived from the isomorphic algebra FTLd,n(q) are not topologically
equivalent to the Jones polynomial.

The results of this paper lead to further questions worth investigating,
as for example, the possibility of obtaining new 3-manifold invariants related
to the invariants θd, in analogy to the Witten invariants [26].

2. Preliminaries

2.1. Notation

Throughout the paper by the term algebra we mean an associative unital
(with unity 1) algebra over C(u), where u is an indeterminate. Thus we can
regard C(u) as a subalgebra of the center of the algebra. We will also fix two
positive integers, d and n.

As usual we denote by Z/dZ the group of integers modulo d. We will
also denote the underlying set of the group Z/dZ by {0, 1, . . . , d− 1}.

We denote Sn the symmetric group on the set {1, 2, . . . , n}. Let si be
the elementary transposition (i, i+ 1) and let 〈si, sj〉 denote the subgroup
generated by si and sj . We also denote by l the length function on Sn with
respect to the si’s.

Denote by C the infinite cyclic group and by Cd = 〈t | td = 1〉 the cyclic
group of order d. Let ti := (1, . . . , 1, t, 1, . . . , 1) ∈ Cn

d , where t is in the i-th
position. We then have:

Cn
d = 〈t1, . . . , tn | titj = tjti, t

d
i = 1〉.

Define Cd,n := Cn
d � Sn, where the action is defined by permutation on

the indices of the ti’s, namely: sitj = tsi(j)si. Notice that Cd,n is isomorphic
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to the complex reflection group G(d, 1, n). We also introduce the following
notation C∞,n := Cn � Sn.

Denote by Bn the braid group of type A, that is, the group generated
by the elementary braidings σ1, . . . , σn−1, subject to the following relations:
σiσjσi = σjσiσj , for |i− j| = 1 and σiσj = σjσi, for |i− j| > 1. We will also
use the d-modular framed braid group Fd,n := Cn

d �Bn, where the action
of Bn on Cn

d is defined by the induced permutation on the indices of the
ti’s. We will also refer to the framed braid group Fn := Cn �Bn. Of course,
we have isomorphisms: Fn

∼= Zn �Bn and Fd,n
∼= (Z/dZ)n �Bn. Finally,

note that the natural projections C → Cd and Bn → Sn induce the following
commutative diagram:

Fn

��

�� Fd,n

��

�� Bn

��

�� 1

C∞,n

��

�� Cd,n

��

�� Sn

��

�� 1

1 1 1

From the above diagram one can define the length function l′ on Cd,n as
the lift of the ordinary length function l of Sn, that is:

(2.1) l′(tasi1 · · · sik) := l(si1 · · · sik),

where ta := ta1

1 · · · tan
n ∈ Cn

d .

Remark 1. We would like to point out that Cd,n and Fd,n appear in the
theory of “fields with one element”. This is a theory dreamt by J. Tits in
his study of algebraic groups. According to the seminal article of Kapranov
and Smirnov [21], GLn(F1) = Sn, GLn(F1[t]) = Bn, GLn(F1n) = Cd,n and
GLn(F1n [t]) = Fd,n, where GLn(F1n) (resp. GLn(F1n [t])) is in “some sense”
the limit case q → 1 of GLn(Fq) (resp. GLn(Fq[t])).

2.2. Background material

We denote by Hn(u) the Iwahori-Hecke algebra associated to Sn, that is,
the C(u)-algebra with linear basis {hw |w ∈ Sn} and the following rules of
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multiplication:

(2.2) hsihw =

{
hsiw for l(siw) > l(w)

uhsiw + (u− 1)hw for l(siw) < l(w).

Set hi := hsi . Then Hn(u) is presented by h1, . . . , hn−1 subject to the
following relations:

hihj = hjhi for all |i− j| > 1(2.3)
hihjhi = hjhihj for all |i− j| = 1(2.4)

h2i = u+ (u− 1)hi.(2.5)

Definition 1. For n ≥ 3, the Temperley-Lieb algebra TLn(u) can be defined
as the quotient of the algebra Hn(u) over the two-sided ideal generated by
the Steinberg elements hi,j :

(2.6) hi,j :=
∑

w∈〈si,sj〉
hw, for all |i− j| = 1.

Consequently, the algebra TLn(u) can be thus presented by h1, . . . , hn−1
subject to relations (2.3)-(2.5) and the following relations:

1 + hi + hj + hihj + hjhi + hihjhi = 0 for all |i− j| = 1.

The defining ideal of the algebra TLn(u) is principal and it is generated by
the element h1,2. Furthermore, using the transformation:

(2.7) fi :=
1

u+ 1
(hi + 1),

the algebra TLn(u) can be presented by the non-invertible generators f1, . . . ,
fn−1 subject to the following relations:

f2
i = fi

fifjfi = δfi, for all |i− j| = 1

fifj = fjfi, for all |i− j| > 1,

where δ−1 = 2 + u+ u−1 [11].
In [8, 11] Ocneanu constructed a unique Markov trace on Hn(u). More

precisely, we have the following theorem.
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Theorem 1 (Ocneanu). Let ζ be an indeterminate. There exists a linear
trace τ on ∪∞n=1Hn(u) uniquely defined by the inductive rules:

1) τ(ab) = τ(ba), a, b ∈ Hn(u)

2) τ(1) = 1

3) τ(ahn) = ζ τ(a), a ∈ Hn(u) (Markov property).

The Ocneanu trace τ passes through to TLn(u) for specific values of ζ.
Indeed, as it turned out [11], to factorize τ to the Temperley-Lieb algebra,
we only need the fact that τ annihilates the expression of Eq. 2.6. So, in [11]
it is proved that τ passes to the Temperley-Lieb algebra if and only if:

(2.8) ζ = − 1

u+ 1
or ζ = −1.

2.3. The Yokonuma-Hecke algebra

The Yokonuma-Hecke algebra of type A, denoted by Yd,n(u) [27], can be
defined by generators and relations [13] and can be regarded as a quotient
of C(u)Fd,n over the two-sided ideal that is generated by the elements:

σ2
i − (u− 1)ei − (u− 1)eiσi − 1,

where ei is the idempotent defined by:

(2.9) ei :=
1

d

d−1∑
s=0

tsi t
d−s
i+1 , i = 1, . . . , n− 1.

Equivalently, one can define Yd,n(u) as follows:

Definition 2. The Yokonuma-Hecke algebra Yd,n(u) is the algebra pre-
sented by generators g1, . . . , gn−1, t1, . . . , tn subject to the following relations:

gigj = gjgi for all |i− j| > 1(2.10)
gi+1gigi+1 = gigi+1gi(2.11)

titj = tjti for all i, j(2.12)
tdi = 1 for all i(2.13)
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giti = ti+1gi(2.14)
giti+1 = tigi(2.15)
gitj = tjgi for j 	= i, i+ 1(2.16)
g2i = 1 + (u− 1)ei + (u− 1)eigi.(2.17)

Note that for d = 1 the quadratic relation (2.17) becomes:

g2i = (u− 1)gi + u.

So, the Yokonuma-Hecke Y1,n(u) coincides with the Iwahori-Hecke algebra.

The algebra Yd,n(u) can also be regarded as a u-deformation of the group
algebra CCd,n. Indeed, if w ∈ Sn is a reduced word in Sn with w = si1 · · · sik
then the expression gw = gsi1 · · · gsir ∈ Yd,n(u) is well-defined since the gen-
erators gi := gsi satisfy the same braiding relations as the generators of Sn

[22]. We have the following multiplication rule in Yd,n(u) (see [12, Proposi-
tion 2.14]):

(2.18) gsigw =

{
gsiw for l′(siw) > l′(w)
gsiw + (u− 1)eigsiw + (u− 1)eigw for l′(siw) < l′(w).

Note also that the generators gti correspond to ti and so, using Eq. 2.1, we
have that: gtiw = gtigw = tigw.

The definition of the idempotents ei can be generalized in the following
way. For any indices i, j we define the following elements in Yd,n(u):

(2.19) ei,j :=
1

d

d−1∑
s=0

tsi t
d−s
j .

We also define, for any 0 ≤ m ≤ d− 1, the shift of ei by m:

(2.20) e
(m)
i :=

1

d

d−1∑
s=0

tm+s
i td−si+1 .

Notice that ei = ei,i+1 = e
(0)
i . Notice also that e

(m)
i = tmi ei = tmi+1ei. Then

one deduces easily that:

e
(m)
i ei+1 = eie

(m)
i+1

ta1t
b
2t

c
3e1e2 = e

(a+b+c)
1 e2,

(2.21)
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for all 0 ≤ m, a, b, c ≤ d− 1.
The following lemma collects some of the relations among the ei’s, the

tj ’s and the gi’s. These relations will be used in the paper.

Lemma 1 ([9, Lemma 1]). For the idempotents ei and for 1 ≤ i, j ≤
n− 1 the following relations hold:

tjei = eitj

ei+1gi = giei,i+2

eigj = gjei, for j 	= i− 1, i+ 1

ejgigj = gigjei for |i− j| = 1

eiei+1 = eiei,i+2

eiei+1 = ei,i+2ei+1.

A word in the defining generators of the algebra will be called a mono-
mial. Notice that using relations (2.14) and (2.15) one can write any mono-
mial m in Yd,n(u) in the following form:

m = ta1

1 · · · tan
n m′,

where m′ = gi1 · · · gin . We then say that every monomial in Yd,n(u) has the
splitting property, which is in fact inherited from the framed braid group Fn.
That is, one can separate the framing part of m (which is the subword in the
framing generators tj) from the braiding part (which is the subword in the
braiding generators gi).

2.4. A Markov trace on Yd,n(u)

Using the multiplication formulas (2.18), the second author proved in [13]
that Yd,n(u) has the following standard linear basis:

(2.22) {ta1

1 · · · tan
n gw | ai ∈ Z/dZ, w ∈ Sn}.

This above linear basis led naturally to the following inductive basis for
the Yokonuma-Hecke algebra, which we will use in the proof of the main
theorem (Theorem 6).
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Proposition 1 ([13, Proposition 8]). Every element in Yd,n+1(u) is a
unique linear combination of words, each of one of the following types:

mngngn−1 · · · gitki or mnt
k
n+1,

where 0 ≤ k ≤ d− 1 and mn is a word in the inductive basis of Yd,n(u).

Employing the above inductive basis, the second author proved that
Yd,n(u) supports a unique Markov trace. We have the following theorem:

Theorem 2 ([13, Theorem 12]). For indeterminates z, x1, . . . , xd−1 there
exists a unique linear Markov trace tr:

tr : ∪∞n=1Yd,n(u) −→ C(u)[z, x1, . . . , xd−1],

defined inductively on n by the following rules:

tr(ab) = tr(ba)

tr(1) = 1

tr(agn) = z tr(a) (Markov property)
tr(atsn+1) = xstr(a) (s = 1, . . . , d− 1),

where a, b ∈ Yd,n(u).

Using the trace rules of Theorem 2 and setting x0 := 1, we deduce that
tr(ei) takes the same value for all i, and this value is denoted by E:

E := tr(ei) =
1

d

d−1∑
s=0

xsxd−s.

Moreover, we also define the shift by m of E, where 0 ≤ m ≤ d− 1, by:

E(m) := tr(e
(m)
i ) =

1

d

d−1∑
s=0

xm+sxd−s.

Notice that E = E(0).

3. Fourier transform and the E-system

An important tool in the proof of the main theorem are some classical identi-
ties of harmonic analysis on the group of integers modulo d. More precisely,
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we will use identities linking the convolution product and the product by
coordinates through the Fourier transform. These tools were also used in
solving the so-called E-system, see [19, Appendix]. Thus, in this section we
shall give some notations and recall some well-known and useful facts of the
Fourier transform along with some facts for the E-system.

3.1. Computations in CCd

Recall that Cd is the cyclic group of order d, generated by t. The product by
coordinates in CCd is defined by the formula:(

d−1∑
r=0

art
r

)
·
(

d−1∑
s=0

bst
s

)
=

d−1∑
i=0

aibit
i

and the convolution product is defined by the formula:

(3.1)

(
d−1∑
r=0

art
r

)
∗
(

d−1∑
s=0

bst
s

)
=

d−1∑
r=0

(
d−1∑
s=0

asbr−s

)
tr.

In order to define the Fourier transform on Cd we need to introduce the
following elements:

ia :=

d−1∑
s=0

χa(t
s)ts (a ∈ Z/dZ),

where the χk’s denote the characters of the group Cd, namely:

(3.2) χk(t
m) = cos

2πkm

d
+ i sin

2πkm

d
(k,m ∈ Z/dZ).

One can verify that:

ia ∗ ib =
{
d ia if a = b

0 if a 	= b.

On the other hand, we shall denote by δa the element ta of the canonical
linear basis of CCd. It is clear that:

δa · δb =
{
δa if a = b

0 if a 	= b.
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The Fourier transform is the linear automorphism on CCd, defined by:

(3.3) y :=

d−1∑
r=0

art
r �→ ŷ :=

d−1∑
s=0

(y ∗ is)(0)ts,

where (y ∗ is)(0) denote the coefficient of δ0 in the convolution y ∗ is.
The next proposition gathers the most important properties of the

Fourier transform used in the paper.

Proposition 2 ([25, Chapter 2]). For any y and y′ in CCd, we have:

1) ŷ ∗ y′ = ŷ · ŷ′
2) ŷ · y′ = d−1ŷ ∗ ŷ′
3) δ̂a = i−a

4) îa = dδa

5) If y =
∑d−1

r=0 art
r, then ̂̂y = d

∑d−1
r=0 a−rt

r.

Finally, we note that the elements in the group algebra CCd can also be
identified to the set of functions f : Cd → C, where the identification is as
follows:

(3.4) (f : Cd → C)←→
d−1∑
k=0

f(tk)tk ∈ CCd.

Some times we shall use this identification, since it makes some computations
easier.

3.2. The E-system and its solutions

The E-system is a non-linear system of equations that was introduced in
order to find the necessary and sufficient conditions that need to be applied
on the parameters xi of tr so that the definition of link invariants from the
Yokonuma-Hecke algebra would be possible [19].

Definition 3 ([19, Definition 11]). We say that the (d− 1)-tuple of com-
plex numbers (x1, . . . , xd−1) satisfies the E-condition if x1, . . . , xd−1 satisfy
the following system of non-linear equations in C, the E-system:

(3.5) E(m) = xmE (1 ≤ m ≤ d− 1).
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In [19, Appendix] the full set of solutions of the E-system is given by
Gérardin using some tools of harmonic analysis on finite groups. More pre-
cisely, he interpreted the solution (x1, . . . , xd) of the E-system, as a certain
complex function x

D
: Cd → C. The solution is parametrized by a non-empty

subset D of C∗d , where C∗d denotes the dual group of Cd, i.e. the space of
characters of Cd. Since Cd

∼= C∗d ∼= Z/dZ, by small abuse of notation, we will
consider D as a subset of Z/dZ. Recall that the characters χk of Cd are given
by ta �→ χk(t

a), where k runs over Z/dZ, see Eq. 3.2.
The dependence of xD on D is given by the following equation of func-

tions:

(3.6) x
D
=

1

|D|
∑
k∈D

χk.

Notice that the function x
D

can be also seen as an element in CCd,
namely:

(3.7) x
D
=

d−1∑
j=0

xjt
j ,

where xj = x
D
(tj) = 1

|D|
∑

k∈D χk(t
j).

A simple computation shows that the convolution products, where x is
an element in the group algebra CCd, are given by:

(3.8)

x ∗ x = d

d−1∑
k=0

tr(e
(k)
i )tk = d

d−1∑
k=0

E(k)tk,

x ∗ x ∗ x = d2
d−1∑
k=0

tr(e
(k)
1 e2)t

k,

see also [9, Lemma 2]

Remark 2. It is worth noting that the formula for the solutions of the E-
system can be interpreted as a generalization of the Ramanujan sum. Indeed,
by taking the subset P of Cd consisting of the numbers coprime to d, then
the solution parametrized by P is, up to the factor |P |, the Ramanujan sum
cd(k) (see [23]).

We finish this section with a theorem which yields the main connection
among the solutions of the E-system and the trace tr.
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Theorem 3 ([19, Theorem 7]). If the trace parameters (x1, . . . , xd−1)
satisfy the E-condition, then

tr(αen) = tr(α)tr(en) (a ∈ Yd,n(u)).

4. A Framization of the Temperley-Lieb algebra

In this section we explore three quotients of the Yokonuma-Hecke algebra,
the algebras YTLd,n(u), FTLd,n(u) and CTLd,n(u), as potential candidates
for the framization of the Temperley-Lieb algebra and we select one of them,
namely FTLd,n(u), as the most appropriate in view of our topological aims.

4.1. The three potential candidates

As discussed during the Introduction, the Yokonuma-Hecke algebra can be
interpreted as the framization of the Iwahori-Hecke algebra, which is a knot
algebra. Thus a natural question arises, the definition of a framization for
the knot algebra Temperley-Lieb. Considering the fact that the Temperley-
Lieb algebra can be defined as a quotient of the Iwahori-Hecke algebra, it is
natural to try and define a framization of the Temperley-Lieb algebra as a
quotient of the Yokonuma-Hecke algebra. Recall now that the defining ideal
of the Temperley-Lieb algebra (Definition 1) is generated by the Steinberg
elements which are related to the subgroups 〈si, si+1〉 of Sn, for all i. These
subgroups can be also regarded as subgroups of Cd,n. Therefore, using the
multiplication rule of Eq. 2.18 we are able to define the analogous Steinberg
elements gi,i+1 in Yd,n(u),

(4.1) gi,i+1 :=
∑

w∈〈si,si+1〉
gw for all i.

In [9, Definition 2] we defined a potential candidate for the framization of the
Temperley-Lieb algebra, the Yokonuma-Temperley-Lieb algebra, denoted by
YTLn(u) which is defined as the quotient of Yd,n(u) over the two-sided ideal
generated by the gi,i+1’s for all i. It is not difficult to show that this ideal is in
fact principal and it is generated by the element g1,2. Moreover, the necessary
and sufficient conditions for the trace tr to pass through to YTLn(u) were
studied [9, Theorem 6]. Unfortunately, these conditions turn out to be too
strong. Namely, the trace parameters xi must be dth roots of unity, giving rise
to obvious, special solutions of the E-system, which imply topologically loss
of the framing information. Moreover, if we restrict to the case of classical
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links, by representing the Artin braid group Bn in Yd,n(u), considering the
ti’s as formal generators, and then taking the quotient over the ideal that
is generated by the gi,i+1’s [9, Section 5], and using the results of [4], the
derived classical link invariants for the algebras YTLd,n(u) coincide with the
classical Jones polynomial. For the above reasons, YTLd,n(u) is discarded
as framization of TLn(u). Finally, we note that the representation theory of
this algebra has been studied extensively in [5].

Given the fact that Yd,n(u) can be considered as a u-deformation of CCd,n

(recall the discussion in Section 2.3), it is natural to consider subgroups of
Cd,n that involve in their generating set the framing generators of the i-
th and j-th strands along with 〈si, sj〉. As a first attempt, we consider the
following subgroups of Cd,n:

Ci
d,n := 〈ti, ti+1, ti+2〉� 〈si, si+1〉 for all i.

Notice that these subgroups are isomorphic to the group Cd,3, in analogy to
the classical case of TLn(u). We define now the elements ci,i+1 in Yd,n(u) as
follows:

(4.2) ci,i+1 =
∑

c∈Ci
d,n

gc.

We then have the following definition:

Definition 4. For n ≥ 3, we define the algebra CTLd,n(u) as the quotient
of the algebra Yd,n(u) by the two-sided ideal generated by the ci,i+1’s, for all
i. We shall call CTLd,n(u) the Complex Reflection Temperley-Lieb algebra.

Remark 3. The denomination Complex Reflection Temperley-Lieb algebra
has to do with the fact that the underlying group of CTLd,n(u) is isomorphic
to the complex reflection group G(d, 1, 3).

As it will be shown in Theorem 7, the necessary and sufficient conditions
such that tr passes to CTLd,n(u) are, contrary to the case of YTLd,n(u), too
relaxed, especially on the trace parameters xi. So, in order to define link
invariants from the algebras CTLd,n(u), the E-condition must be imposed
on the xi’s.

This indicates that the desired framization of the Temperley-Lieb algebra
for our topological purposes could be an intermediate algebra between these
two. We achieve this, by using for the defining ideal an intermediate subgroup
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of Cn
d that lies between 〈si, si+1〉 and Ci

d,n. Indeed, we consider the following
subgroups of Cd,n,

H i
d,n := 〈tit−1i+1, ti+1t

−1
i+2〉� 〈si, si+1〉 for all i.

We now introduce the following elements:

ri,i+1 :=
∑

x∈Hi
d,n

gx for all i.

Definition 5. For n ≥ 3, the Framization of the Temperley-Lieb algebra,
denoted FTLd,n(u), is defined as the quotient Yd,n(u) over the two-sided
ideal generated by the elements ri,i+1, for all i.

Remark 4. Notice that when d = 1, the Yokonuma-Hecke algebra coin-
cides with the Iwahori-Hecke algebra, hence it follows that YTL1,n(u) also
coincides with TLn(u). Moreover, in this case the subgroups H i

d,n and Ci
d,n

also collapse to 〈si, si+1〉, which is isomorphic to S3. Hence, FTL1,n(u) and
CTL1,n(u) coincide with TLn(u) too.

4.2. Relating the three quotient algebras

We shall now show how the algebras defined above are related. Notice that
the defining ideal for each quotient algebra mentioned above is generated by
sums of elements gx, where x belongs to the underlying group of each ideal.
More precisely, the underlying group of the defining ideal of YTLd,n(u) is
S3 of FTLd,n(u) is H i

d,n and of CTLd,n(u) is Ci
d,n. We have the following

inclusion of groups : S3 ≤ H i
d,n ≤ Ci

d,n. We will show that this implies the
following inclusions of ideals:

(4.3) 〈ci,i+1〉� 〈ri,i+1〉� 〈gi,i+1〉.

The second inclusion of the ideals, 〈ri,i+1〉� 〈gi,i+1〉, is clear. Indeed, every
x in H i

d,n can be written in the form:

x = tai t
−a
i+1t

b
i+1t

−b
i+2w = tai t

b−a
i+1 t

−b
i+2w, where w ∈ S3.

Therefore, from the multiplication rule of Eq. 2.18, we have that gx =
tai t

b−a
i+1 t

−b
i+2gw. Thus we can rewrite the elements ri,i+1 in the following form:



316 D. Goundaroulis, et al.

ri,i+1 =

d−1∑
a,b=0

w∈S3

tai t
b−a
i+1 t

−b
i+2 gw =

⎛⎝ d−1∑
a,b=0

tai t
b−a
i+1 t

−b
i+2

⎞⎠(∑
w∈S3

gw

)
,

hence

(4.4) ri,i+1 = d2eiei+1gi,i+1.

We shall proceed now with the proof of the first inclusion of ideals. We
observe that:

(4.5) Ci
d,n = H i

d,n � Cd.

Indeed, let x = tai t
b
i+1t

c
i+2w an element in Ci

d,n, where w ∈ S3, and let φ be
the following homorphism:

φ : Ci
d,n → 〈ti〉 ∼= Cd

x �→ ta+b+c
i .

Observe that kerφ = H i
d,n, so φ

∣∣
Hi

d,n

= idCd
, which implies Eq. 4.5. There-

fore, for the element x ∈ Ci
d,n we have a unique decomposition x = tki y, where

0 ≤ k ≤ d− 1 and y ∈ H i
d,n. This decomposition of the elements of Ci

d,n to-
gether with the multiplication rule in Eq. 2.18, implies gx = tki gy. This allows
us to write the elements ci,i+1 of Eq. 4.2 in the following equivalent form:

ci,i+1 =
∑

0≤k≤d−1

y∈Hi
d,n

tki gy,

hence:

(4.6) ci,i+1 =

(
d−1∑
k=0

tki

)
ri,i+1.

Equation 4.6 implies that CTLd,n(u) projects onto FTLd,n(u) while Equa-
tion 4.4 implies that FTLd,n(u) projects onto YTLd,n(u). We have thus
proved the following:
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Proposition 3. The inclusions of ideals of Eq. 4.3 yield the following nat-
ural commutative diagram of epimorphisms:

Yd,n(u)

��

�� CTLd,n(u)

��

�� FTLd,n(u)

��

�� YTLd,n(u)

��Hn(u) �� TLn(u)

where the non-horizontal arrows are defined by mapping the framing gener-
ators to 1.

4.3. Principality of the ideals

It is known that the defining ideal of the Temperley-Lieb algebra is principal
[11]. We are going now to prove that the defining ideals of FTLd,n(u) and
CTLd,n(u) respectively are principal ideals too. The method used in the
proof is standard [11] but for self-containedness of the paper we will sketch
the basic ideas. We start with a technical lemma.

Lemma 2. The following hold in Yd,n(u) for all i=1, . . . , n−2, j=1, . . . , n
and 0 ≤ a, b, c ≤ d− 1:

(1 ) tj = (g1 · · · gn−1)j−1 t1 (g1 · · · gn−1)−(j−1)
(2 ) gi = (g1 · · · gn−1)i−1 g1 (g1 · · · gn−1)−(i−1)
(3 ) tai t

b
i+1t

c
i+2 = (g1 · · · gn−1)i−1 ta1tb2tc3 (g1 · · · gn−1)−(i−1)

(4 ) tai t
b
i+1t

c
i+2gi = (g1 · · · gn−1)i−1 ta1tb2tc3g1 (g1 · · · gn−1)−(i−1)

(5 ) tai t
b
i+1t

c
i+2gi+1 = (g1 · · · gn−1)i−1 ta1tb2tc3g2 (g1 · · · gn−1)−(i−1)

(6 ) tai t
b
i+1t

c
i+2gigi+1 = (g1 · · · gn−1)i−1 ta1tb2tc3g1g2 (g1 · · · gn−1)−(i−1)

(7 ) tai t
b
i+1t

c
i+2gi+1gi = (g1 · · · gn−1)i−1 ta1tb2tc3g2g1 (g1 · · · gn−1)−(i−1)

(8 ) tai t
b
i+1t

c
i+2gigi+1gi = (g1 · · · gn−1)i−1 ta1tb2tc3g1g2g1 (g1 · · · gn−1)−(i−1).

Proof. Statement (1) is proved by application of Eqs. 2.14–2.16 and induction
on j. The proof of the second statement is standard in the literature; it follows
from the braid relations (2.10) and (2.11) and induction on i. The other
statements of the Lemma are proved by repeated applications of statements
(1) and (2). �

Lemma 3. The defining ideal of FTLd,n(u) is generated by any single ele-
ment ri,i+1.
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Proof. It is enough to prove that ri,i+1 = (g1 · · · gn−1)(i−1)r1,2(g1 · · ·
gn−1)−(i−1). Indeed, expanding r1,2 in the right-hand side of the equality,
we have:

(g1 · · · gn−1)i−1r1,2(g1 · · · gn−1)−(i−1)

=

d−1∑
a,b=0
w∈S3

(g1 · · · gn−1)i−1 ta1tb−a2 t−b3 gw (g1 · · · gn−1)−(i−1)

=

d−1∑
a,b=0

(g1 · · · gn−1)i−1 ta1tb−a2 t−b3

(∑
w∈S3

gw

)
(g1 · · · gn−1)−(i−1) = ri,i+1,

Therefore the proof is concluded. �

The following is an immediate corollary of Lemma 3.

Corollary 1. FTLd,n(u) is the algebra generated by t1, . . . , tn, g1, . . . , gn−1
which are subject to the defining relations of Yd,n(u) and the relation:

(4.7) r1,2 = 0.

Further, an analogous result (with analogous proofs) holds for the quo-
tient algebra CTLd,n(u). So we have the following:

Corollary 2. The defining ideal of CTLd,n(u) is generated by any single
element ci,i+1. Hence CTLd,n(u) can be presented by t1, . . . , tn, g1, . . . , gn−1
together with the defining relations of Yd,n(u) and the relation:

(4.8) c1,2 = 0.

4.4. Presentations with non-invertible generators

By using the analogous transformation to Eq. 2.7, we obtain presentations for
FTLd,n(u) and CTLd,n(u) through non-invertible generators. More precisely,
set

(4.9) �i :=
1

u+ 1
(gi + 1).
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Proposition 4. The algebra FTLd,n(u) can be presented with generators
�1, . . . , �n−1, t1, . . . , tn, subject to the following relations:

�i�j = �j�i, for |i− j| > 1(4.10)

�i�i+1�i − (u− 1)ei + 1

(u+ 1)2
�i = �i+1�i�i+1 − (u− 1)ei+1 + 1

(u+ 1)2
�i+1(4.11)

tdi = 1, titj = tjti(4.12)

�iti = ti+1�i +
1

u+ 1
(ti − ti+1)(4.13)

�iti+1 = ti�i +
1

u+ 1
(ti+1 − ti)(4.14)

�itj = tj�i, for |i− j| > 1(4.15)

�2i =
(u− 1)ei + 2

u+ 1
�i,(4.16)

eiei+1�i�i+1�i =
u

(u+ 1)2
eiei+1�i.(4.17)

Proof. It is a straightforward computation to see that relations (2.10)–(2.17)
are transformed via Eq. 4.9 into the relations (4.11)–(4.17). We will prove
here some indicative cases. The rest are proved in an analogous way. First
we will prove the quadratic relation (4.16). From Eq. 4.9 we have that:

g2i = ((u+ 1)�i − 1)2 ,

using Eq. 2.17, this is equivalent to:

1 + (u− 1)ei + (u− 1)eigi = (u+ 1)2�2i − 2(u+ 1)�i + 1,

or, via Eq. 4.9, equivalently:

(u− 1)(u+ 1)ei�i = (u+ 1)2�2i − 2(u+ 1)�i,

which leads to :

�2i =
(u− 1)ei + 2

u+ 1
�i.
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Next we will prove Eq. 4.11. From Eq. 4.9 we obtain:

gigi+1gi = (u+ 1)�i�i+1�i − (u+ 1)2�2i − (u+ 1)2�i+1�i(4.18)
+ (u+ 1)�i − (u+ 1)2�i�i+1 + (u+ 1)�i

+ (u+ 1)�i+1 − 1.

gi+1gigi+1 = (u+ 1)�i+1�i�i+1 − (u+ 1)2�2i+1 − (u+ 1)2�i�i+1(4.19)
+ (u+ 1)�i+1 − (u+ 1)2�i+1�i + (u+ 1)�i+1

+ (u+ 1)�i − 1.

Equations 2.11, 4.18, 4.19 and 4.16 lead us to the desired result:

�i�i+1�i − (u− 1)ei + 1

(u+ 1)2
�i = �i+1�i�i+1 − (u− 1)ei+1 + 1

(u+ 1)2
�i+1,

1 ≤ i ≤ n− 2.

Finally, from relations eiei+1gi,i+1 = 0 using Eqs. 4.1 and 4.9 we have for
1 ≤ i ≤ n− 2 that:

0 = eiei+1gi,i+1 = eiei+1 (gigi+1gi + gi+1gi + gigi+1 + gi+1 + gi + 1)

= eiei+1

(
(u+ 1)3�i�i+1�i − (u+ 1)2�2i + (u+ 1)�i

)
.

From Eq. 4.16 we have that:

eiei+1

(
(u+ 1)2�i�i+1�i

)
= eiei+1

(
(u− 1)ei + 1

)
�i,

or equivalently:

eiei+1�i�i+1�i =
u

(u+ 1)2
eiei+1�i,

which is Eq. 4.17. �
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Proposition 5. The algebra CTLd,n(u) can be presented with generators
�1, . . . , �n−1, t1, . . . , tn, subject to the following relations:

�i�j = �j�i, for |i− j| > 1

�i�i+1�i − (u− 1)ei + 1

(u+ 1)2
�i = �i+1�i�i+1 − (u− 1)ei+1 + 1

(u+ 1)2
�i+1

tdi = 1, titj = tjti

�iti = ti+1�i +
1

u+ 1
(ti − ti+1)

�iti+1 = ti�i +
1

u+ 1
(ti+1 − ti)

�itj = tj�i, for |i− j| > 1

�2i =
(u− 1)ei + 2

u+ 1
�i

d−1∑
k=0

e
(k)
i ei+1�i�i+1�i =

d−1∑
k=0

e
(k)
i ei+1

u

(u+ 1)2
�i.

Proof. The proof is a straightforward computation and totally analogous to
the proof of Proposition 4. �

Remark 5. We know that a linear basis of the Temperley-Lieb algebra can
be constructed from the interpretation of the generators �i as diagrams. In
virtue of Remark 4, then it is desirable to construct a basis of FTLd,n(u)
from the presentation given in Proposition 4. Unfortunately, we do not have
a diagrammatic interpretation for the generators �i yet. In a recent result [5]
Chlouveraki and Pouchin studied extensively the representation theories of
the algebras FTLd,n(u) and CTLd,n(u). Further, they provided linear bases
for both and they also computed their dimensions. We will present here the
dimensions of both of the algebras FTLd,n(u) and CTLd,n(u). For this pur-
pose, let Compd(n) :=

{
μ = (μ1, μ2, . . . , μd) ∈ Nd |μ1 + μ2 + · · ·+ μd = n

}
and let also ck := 1

k+1

(
2k
k

)
be the k-th Catalan number. We then have:

Theorem 4 ([5, Theorems 3.10, 5.5 and Remark 5.6]). The dimension
of the quotient algebra FTLd,n(u) is:

(4.20) dimC(u)FTLd,n(u) =
∑

μ∈Compd(n)

(
n!

μ1!μ2! · · ·μd!

)2

cμ1
cμ2

· · · cμd
.
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The dimension of the quotient algebra CTLd,n(u) is:

dimC(u)CTLd,n(u) =
∑

μ∈Compd(n)

(
n!

μ1!μ2! · · · μd!

)2

cμ1
μ2! · · · μd!.

4.5. Technical lemmas

We finish this section with two technical lemmas concerning the interaction
with the braiding generators g1, g2 of the generators g1,2, r1,2, c1,2 of the
three ideals discussed above. Also, these lemmas will be used in the proof of
Theorems 6 and 7.

Lemma 4. For the element g1,2 we have in Yd,n(u) the following:

(1 ) g1g1,2 = [1 + (u− 1)e1]g1,2

(2 ) g2g1,2 = [1 + (u− 1)e2]g1,2

(3 ) g1g2g1,2 = [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]g1,2

(4 ) g2g1g1,2 = [1 + (u− 1) e2 + (u− 1)e1,3 + (u− 1)2e1e2]g1,2

(5 ) g1g2g1g1,2 = [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]g1,2.

Proof. See [9, Lemma 5]. Cf. [14, Lemma 7.5 ]. �

Lemma 5. For the element r1,2 we have in Yd,n(u):

(1 ) g1r1,2 = [1 + (u− 1)e1]r1,2

(2 ) g2r1,2 = [1 + (u− 1)e2]r1,2

(3 ) g1g2r1,2 = [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]r1,2

(4 ) g2g1r1,2 = [1 + (u− 1) e2 + (u− 1)e1,3 + (u− 1)2e1e2]r1,2

(5 ) g1g2g1r1,2 = [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]r1,2.

Proof. For proving this lemma we will make extensive use of Lemmas 4
and 1. For statement (1) we have:

g1r1,2 = g1e1e2g1,2 = e1e1,3g1g1,2

= e1e2[1 + (u− 1)e1]g1,2

= [1 + (u− 1)e1]e1e2g1,2

= [1 + (u− 1)e1]r1,2.
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In an analogous way we prove statement (2). For statement (3) we have that:

g1g2r1,2 = g1g2e1e2g1,2 = e2e1,3g1g2g1,2

= e1e2[1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]g1,2

= [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]e1e2g1,2

= [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]r1,2.

In an analogous way we prove statement (4). Finally, we have for state-
ment (5):

g1g2g1r1,2 = g1g2g1e1e2g1,2

= e1e2g1g2g1g1,2

= e1e2[1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]g1,2

= [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]e1e2g1,2

= [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]r1,2.

�

Lemma 6. For the element c1,2 we have in Yd,n(u):

(1 ) g1c1,2 = [1 + (u− 1)e1]c1,2

(2 ) g2c1,2 = [1 + (u− 1)e2]c1,2

(3 ) g1g2c1,2 = [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]c1,2

(4 ) g2g1c1,2 = [1 + (u− 1) e2 + (u− 1)e1,3 + (u− 1)2e1e2]c1,2

(5 ) g1g2g1c1,2 = [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]c1,2.

Proof. The proof is completely analogous to the proof of Lemma 5. �

5. Markov traces

The main purpose of this section is to find the necessary and sufficient condi-
tions in order that the trace tr defined on Yd,n(u) [13] passes to the quotient
algebras FTLd,n(u) and CTLd,n(u). Since the defining ideal of FTLd,n(u)
(respectively of CTLd,n(u)) is principal, by the linearity of tr, we have that
tr passes to FTLd,n(u) (respectively to CTLd,n(u)) if and only if we have:

(5.1) tr(m r1,2) = 0 (respectively tr(m c1,2) = 0),
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for all monomials m in the inductive basis of Yd,n(u). So, we seek necessary
and sufficient conditions for Eq. 5.1 to hold. The strategy is to find such
conditions first for n = 3 and then to generalize using induction.

5.1. Computations on tr

Recall that elements in the inductive basis of Yd,3(u) are of the following
forms:

(5.2) ta1t
b
2t

c
3, ta1g1t

b
1t

c
3, ta1t

b
2g2g1t

c
1, ta1t

b
2g2t

c
2, ta1g1t

b
1g2t

c
2, ta1g1t

b
1g2g1t

c
1,

where 0 ≤ a, b, c ≤ d− 1 (see Proposition 1). We need now to compute the
trace of the elements m r1,2, where m runs the monomials listed in (5.2). To
do these computations we will use the following lemma and proposition.

Lemma 7. For all 0 ≤ m ≤ d− 1, we have:

tr
(
e
(m)
1 e2g1,2

)
= (u+ 1)z2xm + (u+ 2)z E(m) + tr(e

(m)
1 e2).

Proof. By direct computation we have:

tr
(
e
(m)
1 e2g1,2

)
= tr

(
e
(m)
1 e2g1

)
+ tr

(
e
(m)
1 e2g2

)
+ tr

(
e
(m)
1 e2g1g2

)
+ tr

(
e
(m)
1 e2g2g1

)
+ tr

(
e
(m)
1 e2g1g2g1

)
+ tr

(
e
(m)
1 e2

)
=

1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k

2 t−k3 g1) +
1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k

2 t−k3 g2)

+
1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k

2 t−k3 g1g2) +
1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k

2 t−k3 g2g1)

+
1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k

2 t−k3 g1g2g1) + tr
(
e
(m)
1 e2

)
= 2zE(m) + 2z2xm ++zE(m) + (u− 1)zE(m) + (u− 1)z2xm

= (u+ 1)z2xm + (u+ 2)zE(m) + tr
(
e
(m)
1 e2

)
.

�

Proposition 6. For all 0 ≤ a, b, c ≤ d− 1, we have:
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1) If m = ta1t
b
2t

c
3,

tr(mr1,2) = (u+ 1)z2xa+b+c + (u+ 2)E(a+b+c)z + tr(e
(a+b+c)
1 e2)

2) If m = ta1g1t
b
1t

c
3 and m = ta1t

b
2g2t

c
2,

tr(mr1,2) = u
[
(u+ 1)z2xa+b+c + (u+ 2)E(a+b+c)z + tr(e

(a+b+c)
1 e2)

]
3) If m = ta1t

b
2g2g1t

c
1 and m = ta1g1t

b
1g2t

c
2,

tr(mr1,2) = u2
[
(u+ 1)z2xa+b+c + (u+ 2)E(a+b+c)z + tr(e

(a+b+c)
1 e2)

]
4) If m = ta1g1t

b
1g2g1t

c
1,

tr(mr1,2) = u3
[
(u+ 1)z2xa+b+c + (u+ 2)E(a+b+c)z + tr(e

(a+b+c)
1 e2)

]
.

Proof. We will prove claim (1). According to Eq. 4.4 we have: mr1,2 =

ta1t
b
2t

c
3r1,2 = ta1t

b
2t

c
3e1e2g1,2. But ta1t

b
2t

c
3e1e2 = e

(a+b+c)
1 e2, hence:

mr1,2 = e
(a+b+c)
1 e2g1,2.

Thus, claim (1) follows by applying Lemma 7.
For proving the rest of the claims we use Lemmas 5 and 7 and we follow

the same argument, so we finish the proof of the proposition by proving
only one representative case. We shall prove claim (3) for m = ta1g1t

b
1g2t

c
2.

This monomial can be rewritten as ta1t
b
2t

c
3g1g2. Now, by using Lemma 5 on

g1g2r1,2, we obtain:

mr1,2 = ta1t
b
2t

c
3g1g2r1,2

= ta1t
b
2t

c
3

[
1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2

]
r1,2,

then using now Eq. 4.4 and the fact the ei’s are idempotents, it follows that:

mr1,2 = ta1t
b
2t

c
3

[
e1e2 + (u− 1)e1e2 + (u− 1)e1e2 + (u− 1)2e1e2

]
g1,2

= u2ta1t
b
2t

c
3e1e2g1,2.

Then, applying Eq. 2.21 we have:

mr1,2 = u2ta1t
b
2t

c
3e1e2g1,2 = u2e

(a+b+c)
1 e2g1,2.

Therefore, by using Lemma 7, we obtain the desired expression for tr(mr1,2).
�
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5.2. Passing tr to the algebra YTLd,n(u)

In [9] we found the necessary and sufficient conditions so that tr passes to
YTLd,n(u). Indeed, we have the following:

Theorem 5 ([9, Theorem 6]). The trace tr passes to the quotient algebra
YTLd,n(u) if and only if the xi’s are solutions of the E-system and one of
the two cases holds:

(i) the x�’s are dth roots of unity and z = − 1
u+1 or z = −1,

(ii) the x�’s are the solutions of the E-system that are parametrized by
the set D = {m1,m2 | 0 ≤ m1,m2 ≤ d− 1 and m1 	= m2} and they are
expressed as:

x� =
1

2

(
χm1

(t�) + χm2
(t�)

)
, 0 ≤ � ≤ d− 1.

In this case we have that z = −1
2 .

5.3. Passing tr to the algebra FTLd,n(u)

The following lemma is key to proving one of our main results (Theorem 6).
Recall that the support of a function x : Cd → C (or equivalently of an el-
ement

∑d−1
k=0 x(t

k)tk ∈ CCd) is the subset of Cd where the values of x are
non-zero.

Lemma 8. The trace tr passes to FTLd,3(u) if and only if the parameters
of the trace tr satisfy:

xk = −z
⎛⎝ ∑

m∈Sup1

χm(tk) + (u+ 1)
∑

m∈Sup2

χm(tk)

⎞⎠
and z = − 1

|Sup1|+ (u+ 1)|Sup2| ,

where Sup1 ∪ Sup2 (disjoint union) is the support of the Fourier transform
of x, and x is the complex function on Cd, that maps 0 to 1 and k to the
trace parameter xk (cf. Section 3.2).

Proof. Recall that the trace tr passes to FTLd,3 if and only if the Eqs. 5.1
hold, for all m in the inductive basis of Yd,3. By using Proposition 6 follows
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that the trace tr passes to the quotient algebra FTLd,3(u) if and only if the
trace parameters z, x1, . . . , xd−1 satisfy the following system of equations:

E0 = E1 = · · · = Ed−1 = 0,

where

Em := (u+ 1)z2xm + (u+ 2)E(m)z + tr(e
(m)
1 e2) = 0, 0 ≤ m ≤ d− 1.

We note now that this system of equations above is equivalent to the system:

(5.3) E0 = 0
Em − xmE0 = 0 where 1 ≤ m ≤ d− 1.

We will solve this system of equations, obtaining thus the proof of the lemma.
Recall that x0 := 1, E(0) = E and e

(0)
i = ei, hence E0 = (u+ 1)z2 + (u+

2)Ez + tr(e1e2). Then the (d− 1) equations Em − xmE0 = 0 of Eq. 5.3 be-
come:

z(u+ 2)
(
E(m) − xmE

)
= −

(
tr(e

(m)
1 e2)− xm tr(e1e2)

)
,(5.4)

1 ≤ m ≤ d− 1.

Interpreting now the above equation in the functional notation of Sec-
tion 3 and having in mind Eq. 3.8, it follows that Eq. 5.4 can be rewritten
as:

(u+ 2)z

(
1

d
x ∗ x− Ex

)
= −

(
1

d2
x ∗ x ∗ x− tr(e1e2)x

)
.

Applying now the Fourier transform on the above functional equality and
using Proposition 2, we obtain:

(5.5) (u+ 2)z

(
x̂2

d
− Ex̂

)
= −

(
x̂3

d2
− tr(e1e2)x̂

)
.

Let now x̂ =
∑d−1

m=0 ymtm. Then Eq. 5.5 becomes:

(u+ 2)z

(
y2m
d
− Eym

)
= −

(
y3m
d2
− tr(e1e2)ym

)
.

Hence

(5.6) ym

(
y2m
d2

+ (u+ 2)z
ym
d
− (u+ 2)zE − tr(e1e2)

)
= 0.
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Now, from equation E0 = 0, we have that−(u+ 2)zE = (u+ 1)z2 + tr(e1e2).
Replacing this expression of −(u+ 2)zE in Eq. 5.6 we have that:

ym

(
y2m
d2

+ (u+ 2)z
ym
d

+ (u+ 1)z2
)

= 0,

or equivalently (notice that the equivalence still holds even if we specialize
u = −1, where the above equation is not quadratic):

(5.7) ym (ym + dz) (ym + dz(u+ 1)) = 0.

Denote Sup1 ∪ Sup2 the support of x̂, where

Sup1 := {m ∈ Cd ; ym = −dz}
and Sup2 := {m ∈ Cd ; ym = −dz(u+ 1)},

hence

x̂ =
∑

m∈Sup1

−dztm +
∑

m∈Sup2

−dz(u+ 1)tm.

Notice again that if specialize u = −1, then the support of x̂ is just Sup1.
Then ̂̂x = −dz

∑
m∈Sup1

δ̂m − dz(u+ 1)
∑

m∈Sup2

δ̂m,

thus from argument (4) of Proposition 2 we have:

̂̂x = −z
⎛⎝ ∑

m∈Sup1

i−m + (u+ 1)
∑

m∈Sup2

i−m

⎞⎠ .

Therefore, having in mind now (5) of Proposition 2, we deduce that:

(5.8) xk = −z
⎛⎝ ∑

m∈Sup1

χm(tk) + (u+ 1)
∑

m∈Sup2

χm(tk)

⎞⎠ .

Having in mind that x0 = 1, one can determine the values of z. Indeed,
from Eq. 5.8, we have that:

(5.9) 1 = x0 = −z(|Sup1|+ (u+ 1)|Sup2|),
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or equivalently (keep in mind that the assumption x0 = 1 forces the denom-
inator to be non-zero and hence the support of x̂ is not empty):

(5.10) z = − 1

|Sup1|+ (u+ 1)|Sup2| .

By the same reasoning z is also non-zero. �
Keeping the same notation with the above lemma, we have:

Theorem 6. The trace tr defined on Yd,n(u) passes to the quotient alge-
bra FTLd,n(u) if and only if the trace parameters z, x1, . . . , xd−1 satisfy the
conditions of Lemma 8, namely Eqs. 5.8 and 5.10.

Proof. The proof is by induction on n. The case n = 3 is the lemma above.
Assume now that the statement holds for all FTLd,k(u), where k ≤ n, that
is:

tr(ak r1,2) = 0,

for all ak ∈ Yd,k(u), k ≤ n. We will show the statement for k = n+ 1. It
suffices to prove that the trace vanishes on any element of the form an+1r1,2,
where an+1 belongs to the inductive basis of Yd,n+1(u) (recall Eq. 1), given
the conditions of the theorem. Namely:

tr(an+1 r1,2) = 0.

Since an+1 is in the inductive basis of Yd,n+1(u), it is of one of the following
forms:

an+1 = angn · · · gitki or an+1 = ant
k
n+1,

where an is in the inductive basis of Yd,n(u). For the first case we have:

tr(an+1 r1,2) = tr(angn · · · gitki r1,2) = z tr(angn−1 · · · gitki r1,2) = z tr(w r1,2),

where w := angn−1 · · · gitki . Notice now that w is a word in Yd,n(u) and so,
by the linearity of the trace, we have that tr(w r1,2) is a linear combination
of traces of the form tr(an r1,2), where an is in the inductive basis of Yd,n(u).
Therefore, by the induction hypothesis, we deduce that:

tr(w r1,2) = 0,

if and only if the conditions of the Theorem are satisfied. Therefore the
statement is proved. The second case is proved similarly. Hence, the proof is
concluded. �
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Corollary 3. In the case where one of the sets Sup1 or Sup2 is the empty
set, the values of the xk’s are solutions of the E-system. More precisely, if
Sup1 is the empty set, the xk’s are the solutions of the E-system parametrized
by Sup2 and z = −1/(u+ 1)|Sup2|. If Sup2 is the empty set, then xk’s are
the solutions of the E-system parametrized by Sup1 and z = −1/|Sup1|.

Proof. The proof follows from Eq. 3.6 and the expression given in theorem
above for the xk’s. �

5.4. Passing tr to the algebra CTLd,n(u)

The method for finding the necessary and sufficient conditions for tr to pass
to the quotient algebra CTLd,n(u) is completely analogous to that of the
previous subsection. So, we will need the following analogue of Proposition 6.

Proposition 7. Define G, as follows:

G = (u+ 1)z2
d−1∑
k=0

xk + (u+ 2)z

d−1∑
k=0

E(k) +

d−1∑
k=0

tr(e
(k)
1 e2).

Then for all 0 ≤ a, b, c ≤ d− 1, we have:

(1 ) tr(mc1,2) = G for m = ta1t
b
2t

c
3

(2 ) tr(mc1,2) = uG for m = ta1g1t
b
1t

c
3 and m = ta1t

b
2g2t

c
2

(3 ) tr(mc1,2) = u2G for m = ta1t
b
2g2g1t

c
1 and m = ta1g1t

b
1g2t

c
2

(4 ) tr(mc1,2) = u3G for m = ta1g1t
b
1g2g1t

c
1.

Following now the analogous reasoning that was used to prove Theorem 6
and having in mind Eq. 5.1, Corollary 2, Lemma 6 and Proposition 7, we
obtain the following theorem.

Theorem 7. The trace tr passes to the quotient algebra CTLd,n(u) if and
only if the parameter z and the xi’s are related through the equation:

(5.11) (u+ 1)z2
∑

k∈Z/dZ
xk + (u+ 2)z

∑
k∈Z/dZ

E(k) +
∑

k∈Z/dZ
tr(e

(k)
1 e2) = 0.

5.5. Comparison of the three trace conditions

In this section we will compare the conditions that need to be applied to the
trace paramaters z and xi, i = 1, . . . , d− 1 so that tr passes to each one of
the quotient algebras YTLd,n(u), FTLd,n(u) and CTLd,n(u).
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By comparing Theorem 5 and Theorem 6, we observe that the conditions
such that tr passes to YTLd,n(u) are contained in the conditions such that
tr passes to FTLd,n(u).

Moreover, Theorem 6 can be rephrased in the following way:

Theorem 8. The trace tr passes to the quotient algebra FTLd,n(u) if and
only if the parameter z and the xi’s are related through the equation:

(u+ 1)z2xk + (u+ 2)zE(k) + tr(e
(k)
1 e2) = 0, k ∈ Z/dZ.

This implies that the conditions such that the trace passes to the quotient
algebra FTLd,n(u) are contained in those of Theorem 7.

All of the above can be summarized in the following table:

Yd,n(u) � CTLd,n(u) � FTLd,n(u) � YTLd,n(u)

z free ←↩ Theorem 7 ←↩ Theorem 8 ←↩ Theorem 5
xi free

Table 1: Relations of the algebras and the trace conditions.

The first row includes the projections between the algebras while the second
shows the inclusions of the trace conditions for each case.

Remark 6. By Theorems 6 and 8 and by Corollary 3, the necessary and
sufficient conditions for the trace tr to pass to FTLd,n(u) include the solutions
of the E-system, leading directly to link invariants derived from this algebra
(see Section 6). On the other hand, the conditions on the xi’s for the algebra
CTLd,n(u) are too loose as indicated by Theorem 7. Moreover, as we shall
see in Section 6 the resulting invariants from CTLd,n(u) coincide either with
invariants from Yd,n(u) or with invariants from FTLd,n(u). For these reasons,
the algebra CTLd,n(u) will be discarded as a possible framization of the
Temperley-Lieb algebra.

6. Knot and link invariants

In this section we define framed and classical link invariants related to the
algebras FTLd,n(u) and CTLd,n(u), using the results of the previous sections.
The general scheme for defining these invariants follows Jones’ method [8, 11].
More precisely, one uses the (framed) braid equivalence corresponding to
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(framed) link isotopy, the mapping of the (framed) braid group to the knot
algebra in question and the Markov trace on this algebra, which, upon re-
scaling and normalization according to the braid equivalence, yields isotopy
invariants of (framed) links.

6.1. The Homflypt and the Jones polynomials

It is known that by re-scaling and normalizing the Ocneanu trace τ on Hn(u),
one can define the 2-variable Jones or Homflypt polynomial, P (λH, u) [11].
Namely, we have:

P (λH, u)(α̂) =

(
− 1− λH u√

λH(1− u)

)n−1 (√
λH

)ε(α)
τ(π(α)),

where: α ∈ ∪∞Bn, λH = 1−u+ζ
uζ is the “re-scaling factor”, π is the natural

epimorphism of C(u)Bn on Hn(u) that sends the braid generator σi to hi
and ε(α) is the algebraic sum of the exponents of the σi’s in α. Further, by
specializing ζ to − 1

u+1 , the non-trivial value for which the Ocneanu trace τ
passes to the quotient algebra TLn(u), the Jones polynomial, V (u), can be
defined through the Homflypt polynomial [11], as follows:

V (u)(α̂) =

(
−1 + u√

u

)n−1 (√
u
)ε(α)

τ(π(α)) = P (u, u)(α̂).

6.2. Invariants from Yd,n(u)

In [19] it is proved that the trace tr defined on Yd,n(u) can be re-scaled
according to the braid equivalence corresponding to isotopic framed links
if and only if the framing parameters xi’s of tr furnish a solution of the E-
system (recall discussion in Section 3). Let XD = (x1, . . . , xd−1) be a solution
of the E-system parametrized by the non-empty set D of Z/dZ. We have the
following definition:

Definition 6 ([4, Definition 3 ]). The trace map trD defined as the trace
tr with the parameters xi specialized to the values xi, shall be called the
specialized trace with parameter z.
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Note that for d = 1 the traces tr and trD coincide with the Ocneanu
trace. By normalizing trD, an invariant for framed links is obtained [19]:

(6.1) Γd,D(w, u)(α̂) =

(
−(1− wu)|D|√

w(1− u)

)n−1 (√
w
)ε(α)

trD(γ(α)),

where: w = z+(1−u)E
uz is the re-scaling factor, E = 1

|D| [16, 19], γ is the nat-
ural epimorphism of the framed braid group algebra C(u)Fn on the algebra
Yd,n(u), and α ∈ ∪∞Fn.

Further, by restricting the invariants Γd,D(w, u) to classical links, seen
as framed links with all framings zero, in [16] invariants of classical oriented
links Δd,D(w, u) are obtained.

In [4] it was proved that for generic values of the parameters u, z the
invariants Δd,D(w, u) do not coincide with the Homflypt polynomial except
in the trivial cases u = 1 and E = 1. More details are given in Section 7.

6.3. Invariants from YTLd,n(u)

In [9] the invariants that are defined through the Yokonuma-Temperley-Lieb
were studied. More precisely, it was shown that in order that the trace tr
passes to the quotient algebra YTLd,n(u) it is necessary that the xi’s are dth

roots of unity. These furnish a (trivial) solution of the E-system and in this
case E = 1. By [19, Remark 5] the framed link invariants VD(u) that are
derived from YTLd,n(u) are not very interesting, since basic pairs of framed
links are not distinguished. On the other hand, by [4], the classical link
invariants VD(u) that we obtain from YTLd,n(u) coincide with the Jones
polynomial. This is the main reason that the algebra YTLd,n(u) does not
qualify for being the framization of the Temperley-Lieb algebra.

6.4. Invariants from FTLd,n(u)

As it has already been stated, the trace parameters xi should be solutions of
the E-system so that a link invariant through tr is well-defined. Recall that,
the conditions of Theorem 6 include these solutions for the xi’s. So, in order
to define link invariants on the level of the quotient algebra FTLd,n(u), we
discard any values of the xi’s that do not furnish a solution of the E-system.
For a solution of the E-system parametrized by D ⊂ Z/dZ, using Corollary 3,
we have the following:



334 D. Goundaroulis, et al.

Proposition 8. The specialized trace trD passes to the quotient algebra
FTLd,n(u) if and only if:

z = − 1

(u+ 1)|D| or z = − 1

|D| .

Remark 7. As argued also in [11] for the classical case of TLn(u), we do not
take into consideration the case where z = − 1

|D| , since important topological
information is lost. For example, the trace trD gives the same value for all
even (resp. odd) powers of the gi’s, for m ∈ Z>0 [19]:

(6.2) trD(g
m
i ) =

(
um − 1

u+ 1

)
z +

(
um − 1

u+ 1

)
1

|D| + 1 if m is even

and

(6.3) trD(g
m
i ) =

(
um − 1

u+ 1

)
z +

(
um − 1

u+ 1

)
1

|D| −
1

|D| if m is odd,

so the corresponding knots and links are not distinguished.

From the remaining case, where the xi’s are solutions of the E-system and
z = − 1

(u+1)|D| , we deduce for the rescaling factor w that appears in Eq. 6.1
that w = u. We then have the following definition:

Definition 7. Let XD be a solution of the E-system, parametrized by
the non-empty subset D of Z/dZ and let z = − 1

(u+1)|D| . We obtain from
Γd,D(w, u) the following 1-variable framed link invariant:

Γd,D(u, u)(α̂) :=

(
−(1 + u)|D|√

u

)n−1 (√
u
)ε(α)

trD (γ(α)) ,

for any α ∈ ∪∞Fn. Further, in analogy to the invariants of Γd,D(w, u), if we
restrict to framed links with all framings zero, we obtain from Γd,D(u, u) an
1-variable invariant of classical links Δd,D(u, u).

6.5. Invariants from CTLd,n(u)

The conditions of Theorem 7 do not involve the solutions of the E-system
at all, so in order to obtain a well-defined link invariant on the level of
CTLd,n(u) we must impose E-condition on the xi’s. Recall that the solutions
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of the E-system can be expressed in the form:

x
D
=

1

|D|
∑
k∈D

ik ∈ CCd,

where ik =
∑d−1

j=0 χk(t
j)tj , χk is the character that sends tm �→ cos 2πkm

d +

i sin 2πkm
d and D is the subset of Z/dZ that parametrizes this solution of

the E-system. Let now ε be the augmentation function of the group algebra
CCd, sending

∑d−1
j=0 xjt

j to
∑d−1

j=0 xj . We have that:

(6.4) ε(x
D
) =

1

|D|
∑
k∈D

ε(ik) =
1

|D|
d−1∑
j=0

∑
k∈D

χk(t
j) =

{
d
|D| , if 0 ∈ D

0, if 0 /∈ D
.

From this we deduce that:

d−1∑
j=0

E(j) = ε
(x ∗ x

d

)
=

1

d|D|2
∑
k∈D

ε(ik ∗ ik)(6.5)

=
1

|D|2
∑
k∈D

ε(ik) =

{
d
|D|2 , if 0 ∈ D

0, if 0 /∈ D

and also that:

d−1∑
j=0

tr(e
(j)
1 e2) = ε

(x ∗ x ∗ x
d2

)
=

1

d2|D|3
∑
k∈D

ε(ik ∗ ik ∗ ik)(6.6)

=
1

|D|3
∑
k∈D

ε(ik) =

{
d
|D|3 , if 0 ∈ D

0, if 0 /∈ D

Using now Eqs. 6.4–6.6, we have that Eq. 5.11,for the case where 0 ∈ D,
becomes :

(6.7)
d

|D|
(
(u+ 1)z2 +

(u+ 2)

|D| z +
1

|D|2
)

= 0.

Notice also that for the case where 0 /∈ D, Eq. 5.11 vanishes. We thus have
the following:

Proposition 9. Assume that the xi’s are restricted to solutions of the E-
system. Then, the specialized trace trD passes to the quotient algebra
CTLd,n(u) if and only if one of the following cases hold:
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(i) When 0 ∈ D, the trace parameter z takes the values:

z = − 1

(u+ 1)|D| or z = − 1

|D| .

(ii) When 0 /∈ D, the trace parameter z is free.

We will discuss now the invariants that are derived from the algebras
CTLd,n(u).

Case (i) 0 ∈ D. In this case the values for z in case (i) of Proposition 9
coincide with the values for z in Proposition 8. Further, much like the case
of FTLd,n(u), the value z = − 1

|D| is not taken into consideration. Thus, the
invariants that are obtained from trD on the level of the quotient algebra
CTLd,n(u), for subsets D containing zero, coincide with the corresponding
invariants Γd,D(u, u) and Δd,D(u, u) derived from FTLd,n(u), since the condi-
tions that are applied to the trace parameters are the same for both quotient
algebras.
Case (ii) 0 /∈ D. In this case z remains an indeterminate. Thus, the only
condition that is required so that the trace trD passes to the quotient algebra,
is that the xi’s comprise a solution of the E-system. This means that the
invariants that are derived from the quotient algebra CTLd,n(u), for subsets
D not containing zero, coincide with the corresponding invariants Γd,D(w, u)
and Δd,D(w, u) that are derived from Yd,n(u). We have thus proved the
following:

Proposition 10. Let XD be a solution of the E-system parametrized by
D ⊂ Z/dZ. The invariants derived from the algebra CTLd,n(u):

(i) if 0 ∈ D, they coincide with the invariants derived from the algebra
FTLd,n(u) and

(ii) if 0 /∈ D, they coincide with the invariants derived from the algebra
Yd,n(u).

Remark 8. As we see from the above, the type of invariants we obtain
from the algebra CTLd,n(u) depends on whether zero belongs or not to the
parametrizing set D of the specific solution of the E-system. The intrinsic
reason for this peculiar condition on the set D is the fact that when summing
up all n-roots of unity we get zero, unless n = 1, see Eq. 6.4.

Remark 9. The results of Propositions 9 and 10 seem to be in accordance
with the recent results of Chlouveraki and Pouchin [6], where they prove
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that the algebra is isomorphic to a direct sum of matrix algebras over tensor
products of Temperley-Lieb and Iwahori-Hecke algebras.

To summarize, the solutions of the E-system (which are the necessary
and sufficient conditions so that topological invariants for framed links can
be defined) are included in the conditions of Theorem 6, while for the case of
CTLd,n(u) we still have to impose them. Even by doing so, this algebra does
not deliver any new invariants for (framed) links. This is the main reason
that led us to consider the quotient algebra FTLd,n(u) as the most natural
non-trivial analogue of the Temperley-Lieb algebra in the context of framed
links.

We conclude this section with presenting the following tables that give
an overview of the invariants for each quotient algebra:

d, |D| > 1 Yd,n(u)
CTLd,n(u) FTLd,n(u) YTLd,n(u)0 /∈ D 0 ∈ D

Fd,n Γd,D(w, u) Γd,D(w, u) Γd,D(u, u) Γd,D(u, u) −
Bn Δd,D(w, u) Δd,D(w, u) Δd,D(u, u) Δd,D(u, u) −

Table 2: Overview of the invariants for |D| > 1.

d, |D| = 1 Yd,n(u)
CTLd,n(u) FTLd,n(u) YTLd,n(u)0 /∈ D 0 ∈ D

Fd,n Γd,D(w, u) Γd,D(w, u) VD(u) VD(u) VD(u)
Bn P (λ, u) P (λ, u) VD(u) VD(u) VD(u)

Table 3: Overview of the invariants for |D| = 1.

7. Identifying the invariants from FTLd,n(u) on classical
knots and links

It has been a long standing problem how the classical link invariants derived
from the Yokonuma-Hecke algebras compare with other known invariants,
especially with the Homflypt polynomial. Finally, in a recent development [3]
it is proved that these invariants are topologically equivalent to the Homflypt
polynomial on knots but not on links. For proving these results, a different
presentation for the algebra Yd,n(u) was employed, leading to classical link
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invariants denoted by Θd,D. As proved in [3] the invariants Θd,D do not
depend on the sets D, so the notation was simplified. More precisely, by
results in [3], the specialized trace trD on classical knots and links depends
only on |D| and not on the solution XD of the E-system. Further, for d, d′

positive integers with d ≤ d′, we have Θd,D = Θd′,D′ as long as |D| = |D′|.
We deduce that, if |D′| = d, then Θd′,D′ = Θd,Z/dZ. Therefore, the invariants
Θd,D can be parametrized by the natural numbers, setting Θd := Θd,Z/dZ for
all d ∈ Z>0 [3, Proposition 4.6]. However, to avoid confusion, we will keep
the notation trD for the specialized trace, keeping in mind that D = Z/dZ.

In order to compare the classical link invariants from the Framization of
the Temperley-Lieb algebra with the Jones polynomial we will consider in
this section a new presentation for this algebra (according to [3]) and we will
adapt our results so far.

7.1. A different presentation for Hn(u) and Yd,n(u)

The Iwahori-Hecke algebra is generated by the elements h′1, . . . , h′n−1 sat-
ifsfying the relations h′ih

′
j = h′jh

′
i, for |i− j| > 1 and h′ih

′
i+1h

′
i = h′i+1h

′
ih
′
i+1,

together with the quadratic relations: (h′i)
2 = 1 + (q − q−1)h′i. The transfor-

mation from the presentation that was given in Section 2 to this one can be
achieved by taking u = q2 and hi = qh′i [3]. Consequently, the defining ideal
(2.6) for the algebra TLn(q) becomes:

1 + q(h′1 + h′2) + q2(h′1h
′
2 + h′2h

′
1) + q3h′1h

′
2h
′
1.

Further, the Ocneanu trace τ passes to the quotient algebra for the following
values of the trace parameter ζ ′ :

ζ ′ = − q−1

q2 + 1
or ζ ′ = −q−1.

On the other hand, the algebra Yd,n(q) is generated by the elements
g′1, . . . , g′n−1, t1, . . . , tn, satistfying the relations (2.10)–(2.16) and the quad-
ratic relations [3]:

(7.1) (g′i)
2 = 1 + (q − q−1)eig′i.

One can obtain this presentation from the one given in Definition 2 by
taking u = q2 and

(7.2) gi = g′i + (q − 1)eig
′
i (or, equivalently, g′i = gi + (q−1 − 1)eigi).
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Further, on the algebra Yd,n(q) a unique Markov trace is defined, analogous
to tr, satisfying the same rules [3], for which we retain here the same notation.
Note also that, the E-system remains the same for Yd,n(q) so we can talk
about the specialized trace trD [3]. Consequently, in [3], invariants for framed
links were derived which restrict to invariants of classical links:

(7.3) Θd(λd, q)(α̂) =

(
1− λd√

λd(q − q−1)E

)n−1√
λd

ε(α)
trD(δ(α)),

where α ∈ ∪∞Bn, E = 1/d, ε(a) is as in Definition 7, δ is the natural homo-
morphism C(q)Bn → Yd,n(q) and λd = z′−(q−q−1)E

z′ is the re-scaling factor
for the trace tr.

7.2. A different presentation for FTLd,n(u)

Applying now Equations 7.1 and 7.2 to the defining relation (4.4) of the
Framization of the Temperley-Lieb algebra, we obtain:

(7.4) e1e2

(
1 + q(g′1 + g′2) + q2(g′1g

′
2 + g′2g

′
1) + q3g′1g

′
2g
′
1

)
= 0.

This gives rise to a new presentation, with parameter q, for the Framization
of the Temperley-Lieb algebra, as the quotient of Yd,n(q) over the ideal that
is generated by the relations (7.4). We shall denote this isomorphic algebra
by FTLd,n(q).

Given this new presentation for FTLd,n(q), the necessary and sufficient
conditions of Theorem 6 such that the trace tr on Yd,n(q) passes to the
quotient become:

x′k = −qz′
⎛⎝ ∑

m∈Sup1

χm(tk) + (q2 + 1)
∑

m∈Sup2

χm(tk)

⎞⎠ ,(7.5)

z′ = − 1

q|Sup1|+ q(q2 + 1)|Sup2| .(7.6)

Here we used the symbols x′k and z′ for the trace parameters in order to
distinguish them from those of FTLd,n(u). If we choose the x′k’s of Eq. 7.5 to
be solutions of the E-system (by letting either Sup1 or Sup2 to be the empty
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set), we obtain (respectively) two values for z′, the following:

(7.7) z′ = − q−1E
q2 + 1

or z′ = −q−1E.

The parameters z and z′ are related through the equation: z = qz′. Thus,
by specializing in Θd(λd, q) the trace parameter z′ = − q−1E

q2+1 , we obtain the
invariants for classical knots and links:

(7.8) θd(q)(α̂) :=

(
−1 + q2

qE

)n−1
q2ε(α)trD(δ(a)) = Θd(q, q

4)(α̂),

where α ∈ ∪∞Bn, d and E, λd, ε(a) and δ are as in Eq. 7.3 By choosing the
values mentioned above for the trace parameters z′ and x′k, 0 ≤ k ≤ d− 1,
we obtain λd = q4.

Remark 10. The value z′ = −q−1E of Eq. 7.7 corresponds to the value
z = − 1

|D| of Proposition 8 for the algebra FTLd,n(u). As in Remark 7, we
also discard here the value z′ = −q−1E for topological reasons. Indeed, taking
the corresponding classical Temperley-Lieb algebra TLn(q) and setting ζ ′ =
−q−1, we notice that the resulting invariant fails to distinguish the unknot
from the Hopf link.

7.3. Identification on knots

For the case of braids in ∪nBn, whose closure is a knot, the results of [3]
adapt to the following:

Proposition 11. The invariants θd are topologically equivalent to the Jones
polynomial on knots.

Proof. Let α ∈ Bn such that its closure α̂ is a knot. By [3, Theorem 5.17] we
have that:

(7.9) Θd(q)(α̂) = Θ1(q, λ
z′/E
d )(α̂) = P (q, λ

z′/E
H )(α̂),

where λ
z′/E
d (resp. λz′/E

H ) stands for the re-scaling factor λd (resp. λH) with
the trace parameter z′ (resp. ζ ′) specialized to z′/E.

Notice now that: z′

E = − q−1

q2+1 , which is the value of ζ ′ for which the
Ocneanu trace τ passes to the algebra TLn(q). This implies that: λz′/E

d =
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q4 = λ
z′/E
H . Thus, Eq. 7.9 becomes:

θd(q)(α̂) = θ1(q, λ
z′/E
d )(α̂) = P (q, λ

z′/E
d )(α̂) = P (q, q4)(α̂) = V (q)(α̂).

�

7.4. Identification on links

For the case of classical links, we work as follows. In [3], using data from [1],
it was observed that, out of 89 pairs of non-isotopic links, which have the
same Homflypt polynomial, there are 6 pairs that are distinguished by the
invariants Θd(λd, q). More precisely, the differences of the polynomials for
each pair of links were computed and were found to be non-zero. Indeed:

Θd(L11n358{0, 1})−Θd(L11n418{0, 0})

=
(E − 1)(λd − 1)(q − 1)2(q + 1)2

(
q2 − λd

) (
λdq

2 − 1
)

Eλ4
dq

4
,

Θd(L11a467{0, 1})−Θd(L11a527{0, 0})

=
(E − 1)(λd − 1)(q − 1)2(q + 1)2

(
q2 − λd

) (
λdq

2 − 1
)

Eλ4
dq

4
,

Θd(L11n325{1, 1})−Θd(L11n424{0, 0})

= −(E − 1)(λd − 1)(q − 1)2(q + 1)2
(
q2 − λd

) (
λdq

2 − 1
)

Eλ3
dq

4
,

Θd(L10n79{1, 1})−Θd(L10n95{1, 0})

=
(E − 1)(λd − 1)(q − 1)2(q + 1)2

(
λd + λdq

4 + λdq
2 − q2

)
Eλ4

dq
4

,

Θd(L11a404{1, 1})−Θd(L11a428{0, 1})

=
(E − 1)(λd − 1)(λd + 1)(q − 1)2(q + 1)2

(
q4 − λdq

2 + 1
)

Eq4
,

Θd(L10n76{1, 1})−Θd(L11n425{1, 0})
=

(E − 1)(λd − 1)(λd + 1)(q − 1)2(q + 1)2

Eλ3
dq

2
.

Note that the factor (E − 1), that is common in all six pairs, confirms
that the pairs have the same Homflypt polynomial, since for E = 1 the dif-
ference collapses to zero. Further, in [3] the values of Θd were computed
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theoretically for one of the six pairs, using a special skein relation satisfied
by Θd. Namely, as it is shown in [3], the invariants Θd satisfy the Homflypt
skein relation, but only for crossings between different components.

For the invariants θd, we specialize in the above computations z′ = − q−1E
q2+1

(which implies λd = q4). Clearly, for E 	= 1 the six pairs of links above are
also distinguished by the invariants θd. Moreover, the special skein relation
of Θd is also valid for the invariants θd, specializing to the following:

(7.10) q−2 θd (L+)− q2 θd (L−) = (q − q−1) θd (L0),

where the oriented links L+, L−, L0 comprise a Conway triple involving a
crossing between different components. From the above, we have thus proved
the following:

Theorem 9. For d ∈ Z>1, the invariants θd(q) for classical links are not
topologically equivalent to the Jones polynomial. Further, the invariants θd(q)
satisfy the special skein relation of Eq. 7.10 only for crossings between dif-
ferent components.

7.5. Concluding notes

The link invariants from the algebras FTLd,n(u) still remain under investiga-
tion. In this paper the invariants from FTLd,n(q) have been compared to the
Jones polynomial and have been proved to be topologically non-equivalent.
So the related framed link invariants might lead to new 3-manifold invari-
ants analogous to the Witten invariants. Note that in the case of the algebras
YTLd,n(u) the Witten invariants only can be recovered, since the related link
invariants recover the Jones polynomial [9].
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