
ON THE LIFTING PROBLEM OF REPRESENTATIONS OF A
METACYCLIC GROUP.

ARISTIDES KONTOGEORGIS AND ALEXIOS TEREZAKIS

Abstract. We give a necessary and sufficient condition for a modular rep-
resentation of a group G = Cph ⋊ Cm in a field of characteristic p > 0 to
be lifted to a representation over local principal ideal domain of characteristic
zero containing the ph roots of unity.

1. Introduction

The lifting problem for a representation

ρ : G→ GLn(k),

where k is a field of characteristic p > 0, is about finding a local ring R of char-
acteristic 0, with maximal ideal mR such that R/mR = k, so that the following
diagram is commutative:

GLn(R)

��
G //

;;xxxxxxxxx
GLn(k)

Equivalently one asks if there is a free R-module V , which is also an R[G]-module
such that V ⊗RR/mR is the k[G]-module corresponding to our initial representation.
We know that projective k[G]-modules lift to characteristic zero, [16, chap. 15],
but for a general k[G]-module such a lifting is not always possible, for example,
see [10, prop. 15]. This article aims to study the lifting problem for the group
G = Cq ⋊ Cm, where Cq is a cyclic group of order ph and Cm is a cyclic group of
order m, (p,m) = 1, and also gives a necessary and sufficient condition in order
to lift. We assume that the local ring R contains the q-th roots of unity and k
is algebraically closed, and we might need to consider a ramified extension of R,
in order to ensure that certain q-roots of unit are distant in the mR-topology, see
remark 36. An example of such a ring R is the ring of Witt vectors W (k)[ζq] with
the q-roots of unity adjoined to it.

We notice that a decomposable R[G]-module V gives rise to a decomposable
R-module modulo mR and also an indecomposable R[G]-module can break in the
reduction modulo mR into a direct sum of indecomposable k[G]-summands. We
also give a classification of k[Cq ⋊ Cm]-modules in terms of Jordan decomposition
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and give the relation with the more usual uniserial description in terms of their
socle [1].

Our interest to this problem comes from the problem of lifting local actions. The
local lifting problem considers the following question: Does there exist an extension
Λ/W (k), and a representation

ρ̃ : G ↪→ Aut(Λ[[T ]]),

such that if t is the reduction of T , then the action of G on Λ[[T ]] reduces to the
action of G on k[[t]]?

If the answer to the above question is positive, then we say that the G-action
lifts to characteristic zero. A group G for which every local G-action on k[[t]] lifts to
characteristic zero is called a local Oort group for k. Notice that cyclic groups are
always local Oort groups. This result was known as the “Oort conjecture”, which
was recently proved by F. Pop [15] using the work of A. Obus and S. Wewers [14].

There are a lot of obstructions that prevent a local action from lifting to char-
acteristic zero. Probably the most important of these obstructions is the KGB-
obstruction [4]. It is believed that this is the only obstruction for the local lifting
problem, see [11], [12]. In [10, Thm. 3] the authors have given a criterion for the
local lifting, which involves the lifting of a linear representation of the same group.
The case G = Cq ⋊ Cm and especially the case of dihedral groups Dq = Cq ⋊ C2,
is a problem of current interest in the theory of local liftings, see [12], [6], [18]. For
more details on the local lifting problem we refer to [3], [4], [5], [11].

Keep also in mind that the Cq ⋊ Cm groups were important to the study of
group actions on holomorphic differentials of curves defined over fields of positive
characteristic p, where the group involved has cyclic p-Sylow subgroup, see [2].

Let us now describe the method of proof. For understanding the splitting of
indecomposable R[G]-modules modulo mR, we develop a version of Jordan normal
form in lemma 17 for endomorphisms T : V → V of order ph, where V is a free
module of rank d. We give a way to select this basis, by selecting an initial suitable
element E ∈ V , see lemma 16. The normal form (as given in eq. (11)) of the
element T of order q, determines the decomposition of the reduction. We show
that for every indecomposable summand Vi of V , we can select E as an eigenvalue
of the generator σ of Cm and then by forcing the relation ΓT = TαΓ to hold, we
see how the action of σ can be extended recursively to an action of σ on Vi, this
is done in lemma 25. Proving that this construction gives rise to a well-defined
action is a technical computation and is done in lemmata 27, 28, 29, 33, 34.

The important thing here, is that the definition of the action of σ on E is the
“initial condition” of a dynamical system that determines the action of Cm on the
indecomposable summand Vi. The R[Cq⋊Cm] indecomposable module Vi can break
into a direct sum Vα(εν , κν)-modules 1 ≤ ν ≤ s (for a precise definition of them
see definition 9, notice that κi denotes the dimension). The action of σ on each
Vα(εν , κν) can be uniquely determined by the action of σ on an initial basis element
as shown in section 3, again by a “dynamical system” approach, where we need s
initial conditions, one for each Vα(εν , κν). The lifting condition essentially means
that the indecomposable summands Vα(ε, κ) of the special fibre, should be able
to be rearranged in a suitable way, so that they can be obtained as reductions of
indecomposable R[Cq⋊Cm]-modules. The precise expression of our lifting criterion
is given in the following theorem:
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Theorem 1. Consider a k[G]-module M which is decomposed as a direct sum
M = Vα(ε1, κ1)⊕ · · · ⊕ Vα(εs, κs).

The module lifts to an R[G]-module if and only if the set {1, . . . , s} can be written
as a disjoint union of sets Iν , 1 ≤ ν ≤ t so that

a.
∑

µ∈Iν
κµ ≤ q, for all 1 ≤ ν ≤ t.

b.
∑

µ∈Iν
κµ ≡ a modm for all 1 ≤ ν ≤ t, where a ∈ {0, 1}.

c. For each ν, 1 ≤ ν ≤ t there is an enumeration σ : {1, . . . ,#Iν} → Iν ⊂
{1, .., s}, such that
εσ(2) = εσ(1)α

κσ(1) , εσ(3) = εσ(2)α
κσ(2) , . . . , εσ(s) = εσ(s−1)α

κσ(s−1) .

In the above proposition, each set Iν corresponds to a collection of modules
Vα(εµ, κµ), µ ∈ Iν which come as the reduction of an indecomposable R[Cq ⋊Cm]-
module Vν of V .
Aknowledgements A. Terezakis is a recipient of financial support in the context
of a doctoral thesis (grant number MIS-5113934). The implementation of the doc-
toral thesis was co-financed by Greece and the European Union (European Social
Fund-ESF) through the Operational Programme—Human Resources Development,
Education and Lifelong Learning—in the context of the Act—Enhancing Human
Resources Research Potential by undertaking a Doctoral Research—Sub-action 2:
IKY Scholarship Programme for Ph.D. candidates in the Greek Universities.

2. Notation

Let τ be a generator of the cyclic group Cq and σ be a generator of the cyclic
group Cm. The group G is given in terms of generators and relations as follows:
G = ⟨σ, τ |τ q = 1, σm = 1, στσ−1 = τα for some α ∈ N, 1 ≤ α ≤ ph − 1, (α, p) = 1⟩.
The integer α satisfies the following congruence:
(1) αm ≡ 1 modq

as one sees by computing τ = σmτσ−m = τα
m . Also the integer α can be seen as

an element in the finite field Fp, and it is a (p− 1)-th root of unity, not necessarily
primitive. In particular the following holds:

Lemma 2. Let ζm ∈ k be a fixed primitive m-th root of unity. There is a natural
number a0, 0 ≤ a0 < m− 1 such that α = ζa0

m .

Proof. The integer α if we see it as an element in k is an element in the finite field
Fp ⊂ k, therefore αp−1 = 1 as an element in Fp. Let ordp(α) be the order of α in F∗

p.
By eq. (1) we have that ordp(α) | p−1 and ordp(α) | m, that is ordp(α) | (p−1,m).

The primitive m-th root of unity ζm generates a finite field Fp(ζm) = Fpν for
some integer ν, which has cyclic multiplicative group Fpν\{0} containing both the
cyclic groups ⟨ζm⟩ and ⟨α⟩. Since for every divisor δ of the order of a cyclic group
C there is a unique subgroup C ′ < C of order δ we have that α ∈ ⟨ζm⟩, and the
result follows. □
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Definition 3. For each pi | q we define ordpiα to be the smallest natural number
o such that αo ≡ 1 modpi.

It is clear that for ν ∈ N

αν ≡ 1 modpi ⇒ αν ≡ 1 modpj for all j ≤ i.

Therefore
ordpjα | ordpiα for j ≤ i.

On the other hand α ∈ N and αp−1 ≡ 1 modp so ordpα | p − 1. Also since
σtτσ−t = τα

t we have that αm ≡ 1 modph, therefore ordpα | ordpiα | ordphα | m,
for 1 ≤ i ≤ h.

Lemma 4. The center CentG(τ) = ⟨τ, σord
ph

α⟩. Moreover

|CentG(τ)|
ph

=
m

ordph(α)
=: m′

Proof. The result follows by observing (τνσt)τ(τνσt)−1 = τα
t , for all 1 ≤ ν ≤ q,

1 ≤ t ≤ m. □

Remark 5. If ordpα = m then ordpiα = m for all 1 ≤ i ≤ h.

Lemma 6. If the group G = Cq ⋊ Cm is a subgroup of Aut(k[[t]]), then all orders
ordpiα = m/m′, for all 1 ≤ i ≤ h.

Proof. We will use the notation of the book of J.P.Serre on local fields [17]. By
[13, Th.1.1b] we have that the first gap i0 in the lower ramification filtration of the
cyclic group Cq satisfies (m, i0) = m′.

The ramification relation [17, prop. 9 p. 69]

αθi0(τ) = θi0(τ
α) = θi0(στσ

−1) = θ0(σ)
i0θi0(τ),

implies that θ0(σ)i0 = α ∈ N. From (m, i0) = m′ and the fact that ordθ0(σ) = m
we obtain

m

m′ = ordθ0(σ)
i0 = ordp(α).

Thus
m

m′ = ordpα|ordpiα|ordphα =
m

m′ .

Hence all orders ordpiα = m/m′. □

Remark 7. If the KGB-obstruction vanishes and α ̸= 1, then by [11][prop. 5.9]
i0 ≡ −1 modm and ordpiα = m for all 1 ≤ i ≤ h.

3. Indecomposable Cq ⋊ Cm modules, modular representation theory

In this section we will describe the indecomposable Cq ⋊ Cm-modules. We will
give two methods in studying them. The first one is needed since it is in accordance
with the method we will give in order to describe indecomposable R[Cq ⋊ Cm]-
modules. The second one, using the structure of the socle, is the standard method
of describing k[Cq ⋊ Cm]-modules in modular representation theory.
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3.1. Linear algebra method. The indecomposable modules for the group Cq

are determined by the Jordan normal forms of the generator τ of the cyclic group
Cq. So for each 1 ≤ κ ≤ ph there is exactly one Cq indecomposable module of
dimension κ denoted by Jκ. Therefore, we have the following decomposition of an
indecomposable Cq ⋊ Cm-module M considered as a Cq-module.

(2) M = Jκ1
⊕ · · · ⊕ Jκr

.

Lemma 8. In the indecomposable module Jκ, for every element E such that

(τ − Idκ)
κ−1E ̸= 0

the elements B = {E, (τ − Idκ)E, . . . , (τ − Idκ)
κ−1E} form a basis of Jκ such that

the matrix of τ with respect to this basis is given by

(3) τ = Idκ +



0 · · · · · · · · · 0

1
. . . ...

0
. . . . . . ...

... . . . 1 0
...

0 · · · 0 1 0


.

In the above notation Idκ denotes the κ× κ identity matrix.

Proof. Since the set B has κ-elements it is enough to prove that it consists of linear
independent elements. Indeed, consider a linear relation

λ0E + λ1(τ − Idκ)E + · · ·+ λκ−1(τ − Idκ)
κ−1E = 0.

By applying (τ − Idκ)
κ−1 we obtain λ0(τ − Idκ)

κ−1E = 0, which gives us λ0 = 0.
We then apply (τ − Idκ)

κ−2 to the linear relation and by the same argument we
obtain λ1 = 0 and we continue this way proving that λ0 = · · · = λκ−1 = 0. The
matrix form of τ with respect to this basis is immediate. □

Equation (2) is a decomposition of an indecomposable Cq⋊Cm-module in terms
of indecomposable Cq-modules. If we prove that σ acts on each Cq-indecomposable
summand Jκ of eq. (2), then this implies that there is only one indecomposable Cq

summand in the decomposition, that is r = 1. Since the field k is algebraically closed
and (m, p) = 1 we know that there is a basis of M consisting of eigenvectors of σ.
Set κ = κ1 and E = E1. There is an eigenvector E of σ, which is not in the kernel of
(τ − Idκ)

κ−1. Then the elements of the set B = {E, (τ − Idκ)E, . . . , (τ − Idκ)
κ−1E}

are linearly independent and form a direct Cq summand of M isomorphic to Jκ.
We will now show that this module is an k[Cq ⋊Cm]-module. For this, we have

to show that the generator σ of Cm acts on the basis B. Observe that for every
0 ≤ i ≤ κ− 1 < ph

σ(τ − 1)i−1 = (τα − 1)i−1σ.

This means that the action of σ on E determines the action of σ on all other basis
elements eν := (τ − 1)ν−1e, 1 ≤ ν ≤ κ.

Let us compute:
σei+1 = σ(τ − 1)ie = (τα − 1)iζλme
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On the basis {e1, . . . , eκ} the matrix τ is given by eq. (3) hence using the binomial
formula we compute

(4) τα =



1 0 · · · · · · · · · 0(
α
1

)
1

. . . ...(
α
2

) (
α
1

) . . . . . . ...(
α
3

) (
α
2

) . . . 1
. . . ...

...
... . . .

(
α
1

)
1 0(

α
k

) (
α

k−1

)
· · ·

(
α
2

) (
α
1

)
1


.

Thus τα − 1 is a nilpotent matrix A = (aij) of the form:

aij =

{(
α
µ

)
if j = i− µ for some µ, 1 ≤ µ ≤ κ

0 if j ≥ i

The `-th power Aℓ = (a
(ℓ)
ij ) of A is then computed by (keep in mind that aij = 0

for i ≤ j)
a
(ℓ)
ij =

∑
i<ν1<···<νℓ−1<j

ai,ν1aν1,ν2aν2,ν3 · · · aνℓ−1,j

This means that we need i− j > ` in order to have aij ̸= 0. Moreover for i = j+ `
(which is the first non zero diagonal below the main diagonal) we have

ai,i+ℓ = ai,i+1ai+1,i+2 · · · ai+ℓ−1,i+ℓ =

(
α

1

)ℓ

= αℓ.

Therefore, the matrix of Aℓ is of the following form:

(5)



k − ℓ︷ ︸︸ ︷
0 · · · · · · 0

ℓ︷ ︸︸ ︷
0 · · · 0

...
...

...
...

0 · · · · · · 0 0 · · · 0

αℓ . . . 0
...

...

∗ αℓ . . . ...
...

...
... . . . . . . 0

...
...

∗ · · · ∗ αℓ 0 · · · 0


Definition 9. We will denote by Vα(λ, κ) the indecomposable κ-dimensional G-
module given by the basis elements {(τ − 1)νe, ν = 0, . . . , κ− 1}, where σe = ζλme.

This definition is close to the notation used in [9].

Lemma 10. The action of σ on the basis element ei of Vα(λ, κ) is given by:

(6) σei = αi−1ζλmei +

κ∑
ν=i+1

aνeν ,

for some coefficients ai ∈ k. In particular the matrix of σ with respect to the basis
e1, . . . , eκ is lower triangular.
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Proof. Recall that ei = (τ − 1)i−1e1. Therefore

σei = σ(τ − 1)i−1e1 = (τα − 1)i−1σe1 = ζλm(τα − 1)i−1e1.

The result follows by eq. (5) □

We have constructed a set of indecomposable modules Vα(λ, κ). Apparently
Vα(λ, κ) can not be isomorphic to Vα(λ

′, κ′) if κ ̸= κ′, since they have different
dimensions.

Assume now that κ = κ′. Can the modules Vα(λ, κ) and Vα(λ′, κ) be isomorphic
for λ ̸= λ′?

The eigenvalues of the prime to p generator σ on Vα(λ, κ) are

ζλm, αζ
λ
m, . . . , α

κ−1ζλm.

Similarly the eigenvalues for σ when acting on Vα(λ
′, κ) are

ζλ
′

m , αζ
λ′

m , . . . , α
κ−1ζλ

′

m .

If the two sets of eigenvalues are different then the modules can not be isomorphic.
But even if λ ̸= λ′ modm the two sets of eigenvalues can still be equal. Even in
this case the modules can not be isomorphic.

Lemma 11. The modules Vα(λ1, κ) and Vα(λ2, κ) are isomorphic if and only if
λ1 ≡ λ2 modm.

Proof. Indeed, the module Vα(λ1, κ) has an element e so that the vectors

(7) e, (τ − 1)e, (τ − 1)2e, . . . , (τ − 1)κ−1e

form a basis of Vα(λ1, κ), so that σe = ζλ1
m e. Let φ : Vα(λ2, κ) → Vα(λ1, κ) be an

isomorphism. Let e′ ∈ Vα(λ2, κ) be an eigenvalue of σ with σe′ = ζλ2
m e′ so that

e′, (τ − 1)e′, . . . , (τ − 1)κ−1e′ form a basis of Vα(λ2, κ). Set Vα(λ1, κ) ∋ E = φ(e′).
We now express E in the basis of Vα(λ1, κ):

E =

κ−1∑
ν=0

ξν(τ − 1)νe,

for some ξν ∈ k . Observe that ξ0 ̸= 0. Indeed, since φ is an equivariant isomor-
phism, the elements E, (τ − 1)E, . . . , (τ − 1)κ−1 should be a basis of Vα(λ1, κ) and
if ξ0 = 0, then (τ − 1)κ−1E = 0.

Using eq. (6) we see that σ with respect to the basis given in eq. (7) admits the
matrix form: 

ζλ1
m 0 · · · · · · 0
0 αζλ1

m 0 · · · 0
... . . . . . . . . . ...
... . . . . . . ...
0 · · · · · · 0 ακ−1ζλ1

m

 .

Therefore,

(8) σ(E) =

κ−1∑
ν=0

ξiα
νζλ1

m (τ − 1)νe



8 A. KONTOGEORGIS AND A. TEREZAKIS

and on the other hand σ(E) = ζλ2
m E, since φ is an equivariant isomorphism, there-

fore

(9) σ(E) =

κ−1∑
ν=0

ζλ2
m ξi(τ − 1)νe

By comparing the coefficients of the basis element e in expresions (8), (9) we arrive
at

ξ0(ζ
λ1
m − ζλ2

m ) = 0,

and since ξ0 ̸= 0 we have that λ1 ≡ λ2 modm as desired.
□

3.2. The uniserial description. We will now give an alternative description of
the indecomposable Cq ⋊ Cm-modules, which is used in [2].

It is known that Aut(Cq) ∼= F∗
p × Q, for some abelian p-group Q. The repre-

sentation ψ : Cm → Aut(Cq) given by the action of Cm on Cq is known to factor
through a character χ : Cm → F∗

p. The order of χ divides p−1 and χp−1 = χ−(p−1)

is the trivial one dimensional character.
For all i ∈ Z, χi defines a simple k[Cm]-module of k dimension one, which we

will denote by Sχi . For 0 ≤ ` ≤ m−1 denote by Sℓ the simple module where σ acts
as ζℓm. Both Sχi , Sℓ can be seen as k[Cq ⋊Cm]-modules using inflation. Finally for
0 ≤ ` ≤ m− 1 we define χi(`) ∈ {0, 1, . . . ,m− 1} such that Sχi(ℓ)

∼= Sℓ ⊗k Sχi .
There are q ·m isomorphism classes of indecomposable k[Cq ⋊Cm]-modules and

are all uniserial. An indecomposable k[Cq ⋊ Cm]-module U is unique determined
by its socle, which is the kernel of the action of τ − 1 on U , and its k-dimension.
For 0 ≤ ` ≤ m − 1 and 1 ≤ µ ≤ q, let Uℓ,µ be the indecomposable k[Cq ⋊ Cm]
module with socle Sa and k-dimension µ. Then Uℓ,µ is uniserial and its µ ascending
composition factors are the first µ composition factors of the sequence

Sℓ, Sχ−1(ℓ), Sχ−2(ℓ), . . . , Sχ−(p−2)(ℓ), Sℓ, Sχ−1(ℓ), Sχ−2(ℓ), . . . , Sχ−(p−2)(ℓ).

Lemma 12. There is the following relation between the two different notations for
indecomposable modules:

Vα(λ, κ) = U(λ+a0(κ−1))modm,κ),

recall that α = ζa0
m . In particular, for the case of dihedral groups Dq we have the

relation
Vα(λ, κ) = Uλ+κ−1mod2,κ.

Proof. Indeed, in the Vα(λ, κ) notation we describe the action of σ on the generator
e, by assuming that σe = ζλme. We can then describe the action on every basis
element ei = (τ − 1)i−1e, using the group relations

σei = σ(τ − 1)i−1e = (τα − 1)i−1σe = ζλm(τα − 1)i−1e

We will use eq. (10) and in particular

σeκ = ακ−1ζλm.

In the Uµ,κ notation, µ is the action on the one-dimensional socle which is the
τ -invariant element eκ = (τ − 1)κ−1e, i.e. σ(eκ) = ζµm. Putting all this together we
have

µ = λ+ (κ− 1)a0 modm.
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In the case of dihedral group Dq, m = 2 and α = −1a0 , i.e. a0 = 1, we have
Vα(λ, κ) = Uλ+κ−1mod2,κ. □

Remark 13. The condition ordpiα = m for all 1 ≤ i ≤ h, is equivalent to requiring
that ψi : Cm → Aut(Cpi) is faithful for all i.

4. Lifting of representations

Proposition 14. Let G = Cq ⋊ Cm. Assume that for all 1 ≤ i ≤ h, ordpiα = m.
If the k[G]-module V̄ lifts to an R[G]-module V , where K = Quot(R) is a field of
characterstic zero, then

m |
(
dim(V ⊗R K)− dimV ⊗R K)Cq

)
.

Let T : V → V be a lift of the generator τ of Cq and S : V → V is a lift of the
generator σ of Cm satisfying

Sm = 1, T q = 1, STS−1 = Tα.

If V (ζα
iκ

q ) is the eigenspace of the eigenvalue ζαiκ
q of T acting on V , then

dimV (ζκq ) = dimV (ζακq ) = dimV (ζα
2κ

q ) = · · · = dimV (ζα
m−1κ

q ).

Proof. Consider a lifting V of V . The generator τ of the cyclic part Cq has eigen-
values λ1, . . . , λs which are ph-roots of unity. Let ζq be a primitive q-root of unity.
Consider any eigenvalue λ ̸= 1. It is of the form λ = ζκq for some κ ∈ N, q ∤ κ. If E
is an eigenvector of T corresponding to λ, that is TE = ζκq E then

TS−1E = S−1T
α
E = ζκαq S−1E

and we have a series of eigenvectors E,S−1E,S−2E, · · · with corresponding eigen-
values ζκq , ζκαq , ζκa

2

q · · · , ζκαo−1

q , where o = ordq/(q,κ)α. Indeed, the integer o satisfies
the relation

καo ≡ κ modq ⇒ αo ≡ 1 mod
q

(q, κ)
.

Using lemma 6 we obtain o = m. Therefore the eigenvalues λ ̸= 1 form orbits of
size m, while the eigenspace of the eigenvalue 1 is just the invariant space V G and
the result follows. □

5. Indecomposable Cq ⋊ Cm modules, integral representation theory

From now on V is a free R-module, where R is an integral local principal ideal
domain with maximal ideal mR, R has characteristic zero and R contains all q-th
roots of unity. Let K = Quot(R).

The indecomposable modules for a cyclic group both in the ordinary and in the
modular case are described by writing down the Jordan normal form of a generator
of the cyclic group. Since in integral representation theory there are infinitely many
non-isomorphic indecomposable Cq-modules for q = ph, h ≥ 3, one is not expecting
to have a theory of Jordan normal forms even if one works over complete local
principal ideal domains [7], [8].

Lemma 15. Let T be an element of order q = ph in End(V ). The minimal
polynomial of T has simple eigenvalues and T is diagonalizable when seen as an
element in End(V ⊗K).
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Proof. Since T q = IdV , the minimal polynomial of T divides xq − 1, which has
simple roots over a field of characteristic zero. This ensures that T ∈ End(V ⊗K)
is diagonalizable. □

Lemma 16. Let f(x) = (x− λ1)(x− λ2) · · · (x− λd) be the minimal polynomial of
T on V . There is an element E ∈ V , such that

E, (T − λ1IdV )E, (T − λ2IdV )(T − λ1IdV )E, . . . , (T − λd−1IdV ) · · · (T − λ1IdV )E

are linear independent elements in V ⊗K.

Proof. Consider the endomorphisms for i = 1, . . . , d

Πi =

d∏
ν=1
ν ̸=i

(T − λνIdV ).

In the above product notice that T − λiIdV , T − λjIdV are commuting endomor-
phisms. Since the minimal polynomial of T has degree d all R-modules KerΠi are
proper subsets of V . Since V can not be a finite union of proper submodules
there is an element E∈ V such that E ̸∈ Ker(Πi) for all 1 ≤ i ≤ d. Consider a
relation

(10)
d∑

µ=0

γµ

µ∏
ν=0

(T − λµIdV )E,

where
∏0

ν=0(T − λνIdV )E = E. We fist apply the operator
∏d

ν=2(T − λνIdV ) to
eq. (10) and we obtain

0 = γ0Π1E,

and by the selection of E we have that γ0 = 0. We now apply
∏d

ν=3(T − λνIdV )
to eq. (10). We obtain that

0 = γ1

d∏
ν=3

(T − λνIdV )(T − λ1IdV ) = γ1Π2E,

and by the selection of E we have that γ1 = 0. We now apply
∏d

ν=4(T − λνIdV )
to eq. (10) and we obtain

0 = γ2

d∏
ν=4

(T − λνIdV )(T − λ2IdV )(T − λ1IdV )E = γ2Π3E

and by the selection of E we obtain γ3 = 0. Continuing this way we finally arrive
at γ0 = γ1 = · · · = γd−1 = 0. □

Lemma 17. Let V be a free R-module of rank d acted on by an automorphism
T : V → V of order ph. Assume that the minimal polynomial of T is of degree d
and has roots λ1, . . . , λd. Then T = (tij) can be written as a matrix with respect to
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the basis as follows:

(11)



λ1 0 · · · · · · 0

a1 λ2
. . . ...

0 a2 λ3
. . . ...

... . . . . . . . . . 0
0 · · · 0 ad−1 λd


i.e.

(12) tij =


λi if i = j

aj if i = j + 1

0 otherwise

Proof. By lemma 16 the elements

E, (T − λ1IdV )E, (T − λ2IdV )(T − λ1IdV )E, . . . , (T − λd−1IdV ) · · · (T − λ1IdV )E

form a free submodule of V of rank d. The theory of submodules of principal ideal
domains, there is a basis E1, E2, . . . , Ed of the free module V such that

E1 = E,(13)
a1E2 = (T − λ1IdV )E1,

a2E3 = (T − λ2IdV )E2,

. . .

ad−1Ed = (T − λd−1IdV )Ed−1.

Let us consider the module V1 = ⟨E1, . . . , Ed⟩ ⊂ V . By construction, the map
T restricts to an automorphism V1 → V1 that has the desired matrix form with
respect to the basis E1, . . . , Ed. We then consider the free module V/V1 and we
repeat the procedure for the minimal polynomial of T , which again acts on V/V1.
The desired result follows. □

Remark 18. The element T as defined in eq. (11) has order equal to the higher
order of the eigenvalues λ1, . . . , λd involved. Indeed, since we have assumed that
the eigenvalues are different the matrix is diagonalizable in Quot(R) and has order
equal to the maximal order of the eigenvalues involved. In particular it has order q
if there is at least one λi that is a primitive q-root of unity. The statement about
the order of T is not necessarily true if some of the eigenvalues are the same. For
instance the matrix

(
1 0
1 1

)
has infinite order over a field of characteristic zero.

Remark 19. The number of indecomposable R[T ]-summands of V is given by
#{i : ai = 0}+ 1.

A lift of a sum of indecomposable kCq-modules Jκ1 ⊕ · · · ⊕ Jκn can form an
indecomposable RCq-module. For example, the indecomposable module where the
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generator T of Cq has the form

T =



λ1 0 · · · · · · 0

a1 λ2
. . . ...

0 a2 λ3
. . . ...

... . . . . . . . . . 0
0 · · · 0 ad−1 λd


where a1 = · · · = aκ1−1 = 1, aκ1

∈ mR, aκ1+1, . . . , aκ2+κ1−1 = 1, aκ2+κ1
∈ mR , etc

reduces to a decomposable direct sum of Jordan normal forms of sizes κ1, κ2, . . ..

Remark 20. It is an interesting question to classify these matrices up to conju-
gation with a matrix in GLd(R). It seems that the valuation of elements ai should
also play a role.

Definition 21. Let hi(x1, . . . , xj) be the complete symmetric polynomial of degree
i in the variables x1, . . . , xj . For instance

h3(x1, x2, x3) = x31 + x21x2 + x21x3 + x1x
2
2 + x1x2x3 + x1x

2
3 + x32 + x22x3 + x2x

2
3 + x33.

Set

L(κ, j, ν) = hκ(λj , λj+1, . . . , λj+ν)

A(i, j) =

{
aiai+1 · · · ai+j if j ≥ 0

0 if j < 0

Lemma 22. The matrix Tα = (t
(α)
ij ) is given by the following formula:

t
(α)
ij =


λαi if i = j

A(j, i− j − 1) · L(α− (i− j), j, i− j) if j < i

0 if j > i

Proof. For j ≥ i the proof is trivial. When j < i and α = 1 it is immediate, since
L(x, ·, ·) ≡ 0, for every x ≤ 0. Assume this holds for α = n. Set α = n + 1, we
consider first the case j + 1 < i, using eq. (12)

t
(n+1)
ij =

r∑
k=1

t
(n)
ik tkj = λjt

(n)
ij + ajt

(n)
i,j+1 = λjA(j, i− j − 1)L(n− (i− j), j, i− j)+

+ ajA(j + 1, i− j − 2)L(n− (i− j − 1), j + 1, i− j − 1) =

= A(j, i− j − 1)
(
λjhn−(i−j)(λj , . . . , λi) + hn−(i−j)+1(λj+1, . . . , λi)

)
=

= A(j, i− j − 1)hn−(i−j)+1(λj , . . . , λi) =

= A(j, i− j − 1)L(n− (i− j) + 1, i, i− j).
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If j + 1 = i then we compute

t
(n+1)
ij =

r∑
k=1

t
(n)
ik tkj = λjt

(n)
ij + ajt

(n)
i,j+1

= λjA(j, i− j − 1)L(n− (i− j), j, i− j) + ajλ
(n)
j+1,j+1

= λjA(j, 0)L(n− 1, j, 1) + ajλ
(n)
j+1,j+1

= A(j, 0) (λjhn−1(λj , λj+1) + hn(λj+1))

= A(j, 0)hn(λj , λj+1)

= A(j, i− j − 1)L(n− (i− j) + 1, i, i− j).

□

Remark 23. The space of homogeneous polynomials of degree c in n-variables has
dimension

(
n−1+c
n−1

)
. Since all q-roots of unity are reduced to 1 modulo mR the quan-

tity L(α− (i− j), j, i− j) is reduced to the number of terms in hα−(i−j)(λj , . . . , λi),
which is equal to dimension of homogeneous polynomials of degree c = α− (i− j)
in n = (i− j) + 1 variables, that is

L(α− (i− j), j, i− j) ≡
(
n− 1 + c

n− 1

)
=

(
α

i− j

)
modmR.

This computation is compatible with the computation of τα given in eq. (4).

Recall that we have defined in proposition 14 the element S : V → V to be a lift
of the element σ generating Cm.

Lemma 24. There is an eigenvector E of the lift S, which is a generator of the

cyclic group Cm, so that E is not an element in
s⋃

i=1

Ker(Πi ⊗K).

Proof. The eigenvectors E1, . . . , Ed of S form a basis of the space V ⊗ K. By
multiplying by certain elements in R, if necessary, we can assume that all Ei are in
V and their reductions Ei ⊗R/mR, 1 ≤ i ≤ d give rise to a basis of eigenvectors of
a generator of the cyclic group Cm acting on V ⊗R/mR. If every eigenvector Ei is
an element of some Ker(Πν) for 1 ≤ i ≤ d, then their reductions will be elements
in Ker(T − 1)d−1, a contradiction since the later kernel has dimension < d. □

Lemma 25. Let V be a free Cq ⋊ Cm-module, which is indecomposable as a Cq-
module. Consider the basis given in lemma 17. Then the value of S(E1) determines
S(Ei) for 2 ≤ i ≤ d.

Proof. Let S : V → V be a generator of the cyclic group Cm. We will use the
notation of lemma 16. We use lemma 24 in order to select a suitable eigenvector
of E1 of S and then form the basis E1, E2, . . . , Ed as given in eq. (13). We can
compute the action of S on all basis elements Ei by
(14) S(ai−1Ei) = S(T − λi−1IdV )Ei−1 = (T a − λi−1IdV )S(Ei−1).

This means that one can define recursively the action of S on all elements Ei.
Indeed, assume that

S(Ei−1) =

d∑
ν=1

γν,i−1Eν .
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We now have

(T a − λi−1IdV )Eν =

d∑
µ=1

t(α)µ,νEµ − λi−1Eν

= (λαν − λi−1)Eν +

d∑
µ=ν+1

t(α)µ,νEµ.

We combine all the above to

ai−1S(Ei) =

d∑
ν=1

γν,i−1(λ
α
ν − λi−1)Eν +

d∑
ν=1

γν,i−1

d∑
µ=ν+1

t(α)µ,νEµ

=

d∑
ν=1

γ̃ν,iEν ,(15)

for a selection of elements γ̃ν,i ∈ R, which can be explicitly computed by collecting
the coefficients of the basis elements E1, . . . , Ed.

Observe that the quantity on the right hand side of eq. (15) must be divisible
by ai−1. Indeed, let v be the valuation of the local principal ideal domain R. Set

e0 = min
1≤ν≤d

{v(γ̃ν,i)}.

If e0 < v(ai−1), then we divide eq. (15) by πe0 , where π is the local uniformizer of
R, that is mR = πR. We then consider the divided equation modulo mR to obtain
a linear dependence relation among the elements Ei ⊗ k, which is a contradiction.
Therefore e0 ≥ v(ai−1) and we obtain an equation

S(Ei) =

d∑
ν=1

γ̃ν,i
ai−1

Eν =

d∑
ν=1

γν,iEν .

□

For example S(E1) = ζϵmE1. We compute that

a1S(E2) = (Tα − λ1Id)S(E1)

and

S(E2) =
(λα1 − λ1)

a1
ζϵµE1 + ζϵm

d∑
µ=2

t
(α)
µ,1

a1
Eµ

=
(λα1 − λ1)

a1
ζϵµE1 + ζϵm

d∑
µ=2

A(1, µ− 2)L(α− (µ− 1), 1, µ− 1)

a1
Eµ

=
(λα1 − λ1)

a1
ζϵµE1 + ζϵm

d∑
µ=2

a1a2 · · · aµ−1hα−(µ−1)(λ1, λ2, . . . , λµ)

a1
Eµ.

Proposition 26. Assume that no element a1, . . . , ad−1 given in eq. (11) is zero.
Given α ∈ N, α ≥ 1 and an element E1, which is not an element in

⋃d
i=1 Ker(Πi ⊗

K). If there is a matrix Γ = (γi,j), such that ΓTΓ−1 = Tα and ΓE1 = ζϵmE1, then
this matrix Γ is unique.
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Proof. We will use the idea leading to equation (14) replacing S with Γ. We will
compute recursively and uniquely the entries γµ,i, arriving at the explicit formula
of eq. (21).

Observe that trivially γν,1 = 0 for all ν < 1 since we only allow 1 ≤ ν ≤ d. We
compute

γ̃µ,i = γµ,i−1(λ
α
µ − λi−1) +

µ−1∑
ν=1

γν,i−1t
(α)
µ,ν

(16)

= γµ,i−1(λ
α
µ − λi−1) +

µ−1∑
ν=1

γν,i−1A(ν, µ− ν − 1)L
(
α− (µ− ν), ν, µ− ν)

= γµ,i−1(λ
α
µ − λi−1) +

µ−1∑
ν=1

γν,i−1aνaν+1 · · · aµ−1hα−µ+ν(λν , λν+1, . . . , λµ).

Define

[λαm − λx]
j
i =

j∏
x=i

(λαµ − λx)

[a]ji =

j∏
x=i

ax

for i ≤ j. If i > j then both of the above quantities are defined to be equal to 1.
Observe that for µ = 1 eq. (16) becomes

(17) γ1,i =
1

ai−1
γ1,i−1(λ

α
1 − λi−1)

and we arrive at (assuming that Γ(E1) = ζϵmE1)

(18) γ1,i =
ζϵm

a1a2 · · · ai−1

i−1∏
x=1

(λα1 − λx) =
ζϵm

a1a2 · · · ai−1
[λα1 − λx]

i−1
1 .

For µ ≥ 2 we have γµ,1 = 0, since by assumption ΓE1 = ζϵmE1. Therefore eq. (16)
gives us

γµ,i =

i−2∑
κ1=0

[λαµ − λx]
i−1
i−κ1

[a]i−1
i−1−κ1

µ−1∑
µ2=1

γµ2,i−1−κ1
[a]µ−1

µ2
hα−µ+µ2

(λµ2
, . . . , λµ)

=

µ−1∑
µ2=1

[a]µ−1
µ2

hα−µ+µ2(λµ2 , . . . , λµ)

i−2∑
κ1=0

[λαµ − λx]
i−1
i−κ1

[a]i−1
i−1−κ1

γµ2,i−1−κ1 .(19)

We will now prove eq. (19) by induction on i, using equation (16). For i = 2, µ ≥ 2

γµ,2 =
1

a1
γµ,1(λ

α
µ − λ1) +

1

a1

µ−1∑
µ2=1

γµ2,1[a]
µ−1
µ2

hα−µ+µ2
(λµ2

, . . . , λµ)

=
1

a1
[a]µ−1

1 hα−µ+1(λ1, . . . , λµ)γ1,1.
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Assume now that eq. (19) holds for computing γµ,i−1. We will treat the γµ,i case.
Using eq. (16)

γµ,i =
(λαµ − λi−1)

ai−1
γµ,i−1 +

1

ai−1

µ−1∑
µ2=1

γµ2,i−1[a]
µ−1
µ2

hα−µ+µ2(λµ2 , . . . , λµ)

=
(λαµ − λi−1)

ai−1

µ−1∑
µ2=1

[a]µ−1
µ2

hα−µ+µ2(λµ2 , . . . , λµ)

i−3∑
κ1=0

[λαµ − λx]
i−2
i−1−κ1

[a]i−2
i−2−κ1

γµ2,i−2−κ1

+
1

ai−1

µ−1∑
µ2=1

γµ2,i−1[a]
µ−1
µ2

hα−µ+µ2
(λµ2

, . . . , λµ)

=

µ−1∑
µ2=1

[a]µ−1
µ2

hα−µ+µ2
(λµ2

, . . . , λµ)

i−3∑
κ1=0

[λαµ − λx]
i−1
i−1−κ1

[a]i−1
i−2−κ1

γµ2,i−2−κ1

+
1

ai−1

µ−1∑
µ2=1

γµ2,i−1[a]
µ−1
µ2

hα−µ+µ2
(λµ2

, . . . , λµ)

=

µ−1∑
µ2=1

[a]µ−1
µ2

hα−µ+µ2
(λµ2

, . . . , λµ)

i−2∑
κ1=1

[λαµ − λx]
i−1
i−κ1

[a]i−1
i−1−κ1

γµ2,i−1−κ1

+

µ−1∑
µ2=1

[a]µ−1
µ2

hα−µ+µ2
(λµ2

, . . . , λµ)
1

ai−1
γµ2,i−1

=

µ−1∑
µ2=1

[a]µ−1
µ2

hα−µ+µ2(λµ2 , . . . , λµ)

i−2∑
κ1=0

[λαµ − λx]
i−1
i−κ1

[a]i−1
i−1−κ1

γµ2,i−1−κ1

and equation (19) is now proved.
We proceed recursively applying eq. (19) to each of the summands γµ2,i−1−κ1

if µ2 > 1 and i − 1 − κ1 > 1. If µ2 = 1, then γµ2,i−1−κ1 is computed by eq. (17)
and if µ2 > 1 and i− 1− κ1 ≤ 1 then γµ2,i−1−κ1 = 0. We can classify all iterations
needed by the set Σµ of sequences (µs, µs−1, . . . , µ3, µ2) such that

(20) 1 = µs < µs−1 < · · · < µ3 < µ2 < µ = µ1.

For example for µ = 5 the set of such sequences is given by

Σµ = {(1), (1, 2), (1, 3), (1, 2, 3), (1, 4), (1, 2, 4), (1, 3, 4), (1, 2, 3, 4)}

corresponding to the tree of iterations given in figure 1. The length of the sequence
(µs, µs−1, . . . , µ2) is given in eq. (20) is s− 1. In each iteration in the sum of eq.
(19) the i changes to i− 1− k thus we have the following sequence of indices

i1 = i→ i2 = i−1−κ1 → i3 = i−2−(κ1+κ2) → · · · → is = i−(s−1)−(κ1+· · ·+κs−1)

For the sequence i1, i2, . . . , we might have it = 1 for t < s − 1. But in this case,
we will arrive at the element γµt,it = γµt,1 = 0 since µt > 1. This means that we
will have to consider only selections κ1, . . . , κs−1 such that is−1 ≥ 1. Therefore we
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µ = 5

µ2 = 1 µ2 = 2

µ3 = 1

µ2 = 3

µ3 = 1 µ3 = 2

µ4 = 1

µ2 = 4

µ3 = 1 µ3 = 2

µ4 = 1

µ3 = 3

µ4 = 1 µ4 = 2

µ5 = 1

Figure 1. Iteration tree for µ = 5

arrive at the following expression for µ ≥ 2

γµ,i =
∑

(µs,...,µ2)∈Σµ

[a]µ−1
µ2

[a]µ2−1
µ3

· · · [a]µs−1−1
µs

s∏
ν=2

hα−µν−1+µν
(λµν

, . . . , λµν−1
)

·
∑

i=i1>i2>···>is≥1

s−1∏
ν=1

[λαµν
− λx]

iν−1
iν+1+1

[a]iν−1
iν+1

· γ1,is

(19)
=

∑
(µs,...,µ2)∈Σµ

s∏
ν=2

hα−µν−1+µν (λµν , . . . , λµν−1)

·
∑

i=i1>i2>···>is≥1

[a]µ−1
1

[a]i−1
is

s−1∏
ν=1

[λαµν
− λx]

iν−1
iν+1+1

ζϵm[λα1 − λx]
is−1
1

[a]is−1
1

=
∑

(µs,...,µ2)∈Σµ

s∏
ν=2

hα−µν−1+µν
(λµν

, . . . , λµν−1
)
[a]µ−1

1

[a]i−1
1

ζϵm
∑

i=i1>i2>···>is≥1

s∏
ν=1

[λαµν
− λx]

iν−1
iν+1+1

(21)

where is+1 + 1 = 1 that is is+1 = 0. Since γµ,i are uniquelly determined the
uniquenss of Γ follows. □

We will now prove that the matrix Γ of lemma 26 exists by cheking that ΓT =
TαΓ. Set (aµ,i) = ΓT , (bµ,i) = TαΓ. For i < d we have

aµ,i =

d∑
ν=1

γµ,νtν,i = γµ,itii + γµ,i+1ti+1,i

(16)
= γµ,iλi + γµ,i(λ

α
µ − λi) +

µ−1∑
ν=1

γν,it
(α)
µ,ν

= γµ,iλ
α
µ +

µ−1∑
ν=1

γν,it
(α)
µ,ν =

µ∑
ν=1

t(α)µ,νγν,i = bµ,i.
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For i = d we have:

aµ,d =

d∑
ν=1

γµ,νtν,d = γµ,dtd,d = γµ,dλd

while, recall lemma 22,

bµ,d =

d∑
ν=1

t(α)µ,νγν,d =

µ−1∑
ν=1

t(α)µ,νγν,d + λαµγµ,d.

This gives us the relation

(22) (λd − λαµ)γµ,d =

µ−1∑
ν=1

t(α)µ,νγν,d

For µ = 1 using eq. (18) we have

γ1,dλd = γ1,dλ
α
1 ⇒ [λα1 − λx]

d
1 = 0.

This relation is satisfied if λα1 is one of {λ1, . . . , λd}. Without loss of generality we
assume that

(23) λαi =

{
λi+1 if m ∤ i
λi−m+1 if m | i

We have the following conditions:

µ = 2 (λd − λα2 )γ2,d = t
(α)
2,1 γ1,d

µ = 3 (λd − λα3 )γ3,d = t
(α)
3,1 γ1,d + t

(α)
3,2 γ2,d

µ = 4 (λd − λα4 )γ4,d = t
(α)
4,1 γ1,d + t

(α)
4,2 γ2,d + t

(α)
4,3 γ3,d

...
...

µ = d− 1 (λd − λαd−1)γd−1,d = t
(α)
d−1,1γ1,d + t

(α)
d−1,2γ2,d + · · ·+ t

(α)
d−1,d−2γd−1,d.

All these equations are true provided that

(24) γ1,d, . . . , γd−2,d = 0.

Finally, for µ = d, we have

(25) (λd − λαd )γd,d =

d−1∑
ν=1

t
(α)
d,νγν,d,

which is true provided that (λd−λαd )γd,d = t
(a)
d,d−1γd−1,d. In lemma 29 we will prove

that eq. (24) holds and eq. (25) will be proved in lemma 34.
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Lemma 27. For n ≥ 2 the vertical sum Sn of the products of every line of the
following array

y
1 1 (x1 − x2) (x1 − x3) · · · · · · (x1 − xn)
2 (z − x1) 1 (x1 − x3) · · · · · · (x1 − xn)

3 (z − x1) (z − x2) 1
. . . . . . ...

...
... . . . . . . . . . ...

...
... . . . ...

n− 1 (z − x1) (z − x2) · · · (z − xn−2) 1 (x1 − xn)
n (z − x1) (z − x2) · · · (z − xn−2) (z − xn−1) 1

is given by

Sn =

n∑
y=1

n∏
ν=y+1

(x1 − xν)

y−1∏
µ=1

(z − xµ) = (z − x2) · · · (z − xn).

In particular when z = xn the sum is zero.

Proof. We will prove the lemma by induction. For n = 2 we have S2 = (x1 − x2) +
(z−x1) = z−x2. Assume that the equality holds for n. The sum Sn+1 corresponds
to the array:

y
1 1 (x1 − x2) (x1 − x3) · · · (x1 − xn) (x1 − xn+1)
2 (z − x1) 1 (x1 − x3) · · · (x1 − xn) (x1 − xn+1)

3 (z − x1) (z − x2) 1
. . . ...

...
...

... . . . . . . ...
...

n− 1 (z − x1) · · · (z − xn−2) 1 (x1 − xn) (x1 − xn+1)
n (z − x1) (z − x2) · · · (z − xn−1) 1 (x1 − xn+1)

n+ 1 (z − x1) (z − x2) · · · (z − xn−1) (z − xn) 1

We have by definition Sn+1 = Sn(x1 − xn+1) + (z − x1)(z − x2) · · · (z − xn), which
by induction gives

Sn+1 = (z − x2) · · · (z − xn)(x1 − xn+1) + (z − x1)(z − x2) · · · (z − xn)

= (z − x2) · · · (z − xn)(x1 − xn+1 + z − x1)

and gives the desired result. □

Lemma 28. Consider A < l < L < B. The quantity∑
l≤y≤L

[λa − λx]
y−1
A · [λb − λx]

B
y+1

is equal to

[λa − λx]
l−1
A · [λb − λx]

B
L+1 ·

[λa − λx]
L
l − [λb − λx]

L
l

(λa − λb)
.

Proof. We write ∑
l≤y≤L

[λa − λx]
y−1
A · [λb − λx]

B
y+1
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= [λa − λx]
l−1
A · [λb − λx]

B
L+1 ·

∑
l≤y≤L

[λa − λx]
y−1
l · [λb − λx]

L
y+1

The last sum can be read as the vertical sum S of the products of every line in the
following array:

y
l 1 (λb − λl+1)(λb − λl+2) · · · (λb − λL−1)(λb − λL)

l + 1 (λa − λl) 1 (λb − λl+2) · · · (λb − λL−1)(λb − λL)

l + 2 (λa − λl)(λa − λl+1) 1
...

...
...

...
...

...
...

L− 2(λa − λl)(λa − λl+1) · · · 1 (λb − λL−1)(λb − λL)
L− 1(λa − λl)(λa − λl+1) · · · (λa − λL−2) 1 (λb − λL)
L (λa − λl)(λa − λl+1) · · · (λa − λL−2)(λa − λL−1) 1

If l = b, then lemma 27 implies that S = [λa − λx]
L
b+1. Furthermore, if L = a then

S = 0.
The quantity S cannot be directly computed using lemma 27, if l ̸= b. We

proceed by forming the array:

y
b 1 (λb − λb+1) · · · (λb − λl) · · · · · · · · · · · · (λb − λL)
...

...
...

l − 1 (λa − λb) · · · 1 (λb − λl) · · · · · · · · · · · · (λb − λL)
l (λa − λb) · · · (λa − λl−1) 1 (λb − λl+1)(λb − λl+2) · · · (λb − λL−1)(λb − λL)

l + 1 (λa − λb) · · · (λa − λl−1)(λa − λl) 1 (λb − λl+2) · · · (λb − λL−1)(λb − λL)

l + 2 (λa − λb) · · · (λa − λl−1)(λa − λl)(λa − λl+1) 1
...

...
...

...
... . . . . . . ...

...
L− 2(λa − λb) · · · (λa − λl−1)(λa − λl)(λa − λl+1) · · · 1 (λb − λL−1)(λb − λL)
L− 1(λa − λb) · · · (λa − λl−1)(λa − λl)(λa − λl+1) · · · (λa − λL−2) 1 (λb − λL)
L (λa − λb) · · · (λa − λl−1)(λa − λl)(λa − λl+1) · · · (λa − λL−2)(λa − λL−1) 1

The value of this array is computed using lemma 27 to be equal to [λa−λx]Lb+1. We
observe that the sum of the products of the top left array can be computed using
lemma 27, while the sum of the products of the lower right array is S.

[λa − λx]
l−1
b · S + [λa − λx]

l−1
b+1 · [λb − λx]

L
l = [λa − λx]

L
b+1

we arrive at

[λa − λx]
l−1
b S = [λa − λx]

l−1
b+1

(
[λa − λx]

L
l − [λb − λx]

L
l

)
or equivalently

(λa − λb) · S = [λa − λx]
L
l − [λb − λx]

L
l .

□

Lemma 29. For all 1 ≤ µ ≤ d− 2 we have γµ,d = 0.

Proof. Let µ1 = µ > µ2 > · · · > µs = 1 ∈ Σµ be a selection of iterations and
d = i1 > i2 > · · · > is ≥ 1 > is+1 = 0 be the sequence of i’s. Using eq. (23) we
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see that the quantity [λαµν
− λx]

iν−1
iν+1+1 ̸= 0 if and only if one of the following two

inequalities hold:
either iν+1 >µν −mf(µν)(26)

or iν <µν + 2−mf(µν),(27)
where

f(x) =

{
1 if m | x
0 if m ∤ x

We will denote the above two inequalities by (26)ν ,(27)ν when applied for the
integer ν. Assume that for all 1 ≤ ν ≤ s one of the two inequalities (26)ν ,(27)ν
hold, that is [λαµν

− λx]
iν−1
iν+1+1 ̸= 0. Inequality (26)s can not hold for ν = s since it

gives us 0 = is+1 > 1 = µs, we have m ∤ 1 = µs.
We will keep the sequence µ̄ : µ1 > µ2 > · · · > µs fixed and we will sum over all

possible selections of sequences of i1 > · · · is > is+1 = 0, that is we will show that
the sum

(28) Γµ̄,i :=
∑

i=i1>i2>···>is≥1

s∏
ν=1

[λαµν
− λx]

iν−1
iν+1+1

is zero, which will show that γµ,d = 0 using eq. (21).
Observe now that if (27)ν holds and m ∤ µν , µν−1, then (27)ν−1 also holds.

Indeed the combination of (27)ν and (26)ν−1 gives the impossible inequality

µν + 2
(27)ν
> iν

(26)ν−1

> µν−1.

Assume now that m | ν and (27)ν holds, then (27)ν−1 also holds. Indeed the
combination of (27)ν and (26)ν−1 gives us

µν + 2−m
(27)ν
> iν

(26)ν−1

> µν−1 −mf(µν−1).

If m ∤ µν−1, then the above inequality is impossible since it implies that
µν + 2−m > µν−1 > µν .

If m | µν−1, then the inequality is also impossible since it implies that µν + 2 >
µν−1 so if we write µν−1 = k′m and µν = km, k, k′ ∈ N, k′ > k, we arrive at
2 > (k′ − k)m ≥ m. This proves the following

Lemma 30. The inequality (26)ν−1 might be correct only in cases where m | µν−1,
m ∤ µν .

Assume that for all ν inequality (27) holds. Then for ν = 1 it gives us (recall
that µ ≤ d− 2)
(29) µ+ 2 ≤ d = i1 < µ1 + 2−mf(µ1) = µ+ 2−mf(µ),

which is impossible. Therefore either there are ν such that none of the two inequal-
ities (26)ν , (27)ν hold (in this case the contribution to the sum is zero) or there are
cases where (26) holds.

The summands appearing in eq. (28) can be non-zero, for example the sequence
µ1 = m > µ2 = 1 with i2 = 2 < i1 = d, s = 2 give the contribution

[λαµ2
− λx]

i2−1
1 [λαµ1

− λx]
d−1
i2

= [λα1 − λx]
1
1[λ

α
m − λx]

d−1
i2+1 = (λ2 − λ1)[λ1 − λx]

d−1
3
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while for i2 = 1 < i1 = d it gives the contribution
[λαµ2

− λx]
i2−1
1 [λαµ1

− λx]
d−1
i2+1 = [λα1 − λx]

0
1[λ

α
m − λx]

d−1
2 = [λ1 − λx]

d−1
2 .

It is clear that these non-zero contributions cancel out when added.

Lemma 31. Assume that m | µν0−1 and m ∤ µν0
, where (27)ν0

and (26)ν0−1 hold.
Then, we can eliminate µν0−1 and iν0

from both selections of the sequence of µ’s
and i’s, i.e. we can form the sequence of length s− 1

µ̄s−1 = µs < µ̄s−2 = µs−1 < · · · < µ̄ν0−1 = µν0
< µ̄ν0−2 = µν0−2 < · · · < µ̄1 = µ1.

and the corresponding sequence of equal length
īs−1 = is < īs−2 = is−1 < · · · < īν0

= iν0+1 < īν0−1 = iν0−1 < · · · < ī1 = i1 = d,

so that

Γµ̄,i =
∑

i1>···>is

s∏
ν=1

[λαµν
− λx]

iν−1
iν+1+1 = (?)

∑
ī1>···>īs−1

s∏
ν=1

ν ̸=ν0−1

[λαµν
− λx]

īν−1
īν+1+1

,

where (?) is a non zero element.

Proof. (of lemma 31) We are in the case m | µν0−1 and m ∤ µν0
, where (27)ν0

and
(26)ν0−1 hold,

(30) µν0−1 −m
(26)ν0−1

< iν0

(27)ν0
< µν0

+ 2,

or equivalently
µ0 := µν0−1 −m+ 1 ≤ iν0

≤ µν0
+ 1

For iν0+1 the inequality (26)ν0 iν0+1 > µν0 −mf(µν0) can not hold, since it implies

iν0+1 < iν0

(27)ν0
< µν0

+ 2 < iν0+1 + 2.

Observe that also
iν0+1 + 1 ≤ iν0

≤ iν0−1 − 1.

Set l = max{µ0, iν0+1 + 1} and L = min{µν0 + 1, iν0−1 − 1}. Then y = iν0 satisfies
l ≤ y ≤ L.

By lemma 28 the quantity∑
l≤y≤L

[λµν0
+1 − λx]

y−1
iν0+1+1 · [λµ0 − λx]

iν0−1−1
y+1

equals to

[λµν0
+1 − λx]

l−1
iν0+1+1 · [λµ0 − λx]

iν0−1−1

L+1 ·
[λµν0+1 − λx]

L
l − [λµ0

− λx]
L
l

(λµν0
+1 − λµ0)

(31)
[λµν0+1 − λx]

L
iν0+1+1 · [λµ0

− λx]
iν0−1−1

L+1 − [λµν0+1 − λx]
l−1
iν0+1+1 · [λµ0

− λx]
iν0−1−1

l

(λµν0+1 − λµ0
)

.

Case A1 l = µ0 ≥ iν0+1 + 1. Then [λµ0
− λx]

L
l = 0.

Case A2 l = iν0+1 + 1 > µ0. We set z := iν0+1, which is bounded by eq. (27)ν0+1

that is
µ0

Case A2
≤ z

(27)ν0+1

≤ µν0+1 + 1.
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Notice that in this case m ∤ µν0+1. If m | µν0+1, then since we have assumed that
inequality (27)ν0+1 holds we have

µν0−1 −m = µ0 − 1
(Case A2)

< iν0+1

(27)ν0+1

< µν0+1 + 2−m,

which implies that µν0−1 < µν0+1 + 2, a contradiction. Thus for l = z + 1 we
compute ∑

µ0≤z≤µν0+1+1

[λαµν0+1
− λx]

iν0+1−1
iν0+2+1 · [λµ0 − λx]

L
l =

=
∑

µ0≤z≤µν0+1+1

[λµν0+1+1 − λx]
z−1
iν0+2+1 · [λµ0

− λx]
L
z+1 =

= (?) ·
[λµν0+1+1 − λx]

µν0+1+1
µ0 − [λµ0 − λx]

µν0+1+1
µ0

λµν0+1+1 − λµ0+1
= 0.

Case B1 L = µν0
+ 1 ≤ iν0−1 − 1. In this case [λµν0+1 − λx]

L
l = 0.

Case B2 L = iν0−1 − 1 < µν0 + 1. In this case eq. (31) is reduced to

[λµν0
+1 − λx]

iν0−1−1
iν0+1+1

(λµν0
+1 − λµ0)

This means that we have erased the µν0−1 from the product and we have∑
i1>···>is

s∏
ν=1

[λαµν
− λx]

iν−1
iν+1+1 = (?)

∑
i1>···>is

s∏
ν=1

ν ̸=ν0−1

[λαµν
− λx]

iν−1
iν+1+1,

where (?) is a non zero element. This procedure gives us that the original quantity

[λαµν0
− λx]

iν0−1
iν0+1+1 · [λ

α
µν0−1

− λx]
iν0−1−1
iν0+1

after summing over iν0 becomes the quantity

[λαµν0
− λx]

iν0−1−1
iν0+1+1 = [λαµ̄ν0−1

− λx]
īν0−1−1

īν0+1
,

that is we have eliminated the µν0−1 and iν0
from both selections of the sequence

of µ’s and i’s, i.e. we have the sequence of length s− 1

µ̄s−1 = µs < µ̄s−2 = µs−1 < · · · < µ̄ν0−1 = µν0
< µ̄ν0−2 = µν0−2 < · · · < µ̄1 = µ1.

and the corresponding sequence of equal length
īs−1 = is < īs−2 = is−1 < · · · < īν0

= iν0+1 < īν0−1 = iν0−1 < · · · < ī1 = i1 = d,

□

Remark 32. One should be careful here since īν0−1 = iν0−1 > iν0
> īν0

= iν0+1,
so īν0−1 > īν0

+ 1. This means that the new sequence of īs−1 > · · · > ī1 satisfies a
stronger inequality in the ν0 position, unless ν0 − 1 = d in the computation of γd,d.

Consider the set s, s − 1, . . . , ν0 such that m ∤ µν for s ≥ ν ≥ ν0 and assume
that m | µν0−1 and (27)ν0

and (26)ν0−1 hold. We apply lemma 31 and we obtain
a new sequence of µ’s with µν0−1 removed, provided that ν0 − 1 > 1. We continue
this way and in the sequence of µ’s we eliminate all possible inequalities like (30)
obtaining a series of µ which involves only inequalities of type (27). But this is not
possible if µ ≤ d− 2, according to equation (29). This proves that all γµ,d = 0 for
1 ≤ µ ≤ d− 2, and completes the proof of lemma 29. □



24 A. KONTOGEORGIS AND A. TEREZAKIS

Lemma 33. If µ2 ̸= d − 1, then the contribution of the corresponding summand
Γµ̄,i to γd,d is zero.
Proof. We are in the case µ = d = i. We begin the procedure of eliminating all
sequences of inequalities of the form (23)ν0

, (22)ν0−1, where m | ν0−1, m ∤ ν0, using
lemma 31. For ν = 1 inequality (27)1 can not hold since it implies the impossible
inequality d = i1 < d+ 2−m. Therefore, (26)1 holds, that is i2 > d−m. On the
other hand we can assume that (27)2 holds by the elimination process, so we have

d−m
(26)1
< i2

(27)2
< µ2 + 2.

Following the analysis of the proof of lemma 29 we see that the contribution to γd,d
is non zero if case B2 holds, that is (ν0 = 2 in this case) d− 1 = iν0−1 − 1 < µ2 +1,
obtaining that µ2 = d− 1. □
Lemma 34. Equation (25) holds, that is

(λd − λαd )γd,d =

d−1∑
ν=1

t
(α)
d,νγν,d = t

(α)
d,d−1γd−1,d.

Proof. We will use the procedure of the proof of lemma 31. We recall that for
each fixed sequence of µs > · · · > µ1 we summed over all possible sequences i1 >
· · · > is+1 = 0. In the final step the inequality (30) appears, for ν0 = 2, and
µν0

= µ2 = d− 1 and ν0 − 1 = 1 and µν0−1 = µ = d, that is:

0 = µν0−1 −m
(26)2
< iν0

(27)1
< µν0

+ 2 = d+ 1.

As in the proof of lemma 31 we sum over y = iν and the result is either zero in case
B1 or in the B2 case, where µν0 = µ2 = d− 1 and µ0 = µν0−1 −m+1 = d−m+1,
the contribution is computed to be equal to

[λαµν0
+1 − λx]

iν0−1−1
iν0+1+1

(λµν0
+1 − λµ0

)
=

[λαd − λx]
d−1
i3+1

λd − λαd
.

The last µν0−1 = µ1 = d is eliminated in the above expression. This means that
for a fixed sequence µ1 > . . . > µs the contribution of the inner sum in eq. (28) is
given by

1

λd − λαd
·

∑
d−1=i2>i3>···>is≥1

s∏
ν=2

[λαµν
− λx]

iν−1
iν+1+1.

Observe that µ1 = d does not appear in this expression and this expression corre-
sponds to the sequence µ̄1 = µ2 = d− 1 > µ̄2 = µ3 > · · · > µ̄s−1 = µ̄s = 1. Notice,
also that the problem described in remark 32 does not appear here, since we erased
i1 which is not between some i’s but the first one. Therefore, we can relate it to
a similar expression that contributes to γd−1,d. Conversely every contribution of
γd−1,d gives rise to a contribution in γd,d, by multiplying by λd − λαd . The desired
result follows by the expression of γµ,d given in eq. (21). □

We have shown so far how to construct matrices Γ, T so that
(32) T q = 1,ΓTΓ−1 = Tα.

We will now prove that Γ has order m. By equation (32) Γk should satisfy the
equation

ΓkTΓ−k = Tαk

.
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Using proposition 26 asserting the uniqueness of such Γk with α replaced by αk we
have that the matrix multiplication of the entries of Γ giving rise to (γ

(k)
µ,i ) = Γk

coincide to the values by the recursive method of proposition 26 applied for Γ′ = Γk,
α′ = αk and Γ′E1 = ζϵkmE1. In particular for k = m, we have αm ≡ 1 modpν for all
1 ≤ ν ≤ h, that is the matrix Γk should be recursively constructed using proposition
26 for the relation ΓmTΓm = T , ΓmE1 = E1, leading to the conclusion Γm = Id.
Notice that the first eigenvalue of Γ is a primitive root of unity, therefore Γ has
order exactly m.

By lemma 10 the action of σ in the special fibre is given by a lower triangular
matrix. Therefore, we must have

(33) γν,i ∈ mR for ν < i.

Proposition 35. If

(34) v(λi − λj) > v(aν) for all 1 ≤ i, j ≤ d and 1 ≤ ν ≤ d− 1,

then the matrix (γµ,i) has entries in the ring R and is lower triangular modulo mR.

Proof. Assume that the condition of eq. (34) holds. In equation (21) we compute
the fraction

(35) [a]µ−1
1

[a]i−1
1

=


1

[a]i−1
µ

if i > µ

1 if i = µ

[a]µ−1
i if i < µ

The number of (λαµ −λx) factors in the numerator is equal to (recall that is+1 = 0)
s∑

ν=1

(iν − 1− iν+1 − 1 + 1) = i− s,

and i > µ ≥ s, so i − s > 0. Therefore, for the upper part of the matrix i > µ we
have i − s factors of the form (λαi − λj) in the numerator and i − µ factors ax in
the denominator. Their difference is equal to (i − s) − (i − µ) = µ − s ≥ 0. By
assumption the matrix reduces to an upper triangular matrix modulo mR. □

Remark 36. The condition given in equation (34) can be satisfied in the following
way: It is clear that λi − λj ∈ mR. Even in the case vmR

(λi − λj) = 1 we can
consider a ramified extension R′ of the ring R with ramification index e, in order to
make the valuation vmR′ (λi − λj) = e and then there is space to select vmR′ (ai) <
vmR′ (λi − λj).

Proposition 37. We have that

(36) γi,i ≡ ζϵmα
i−1 modmR

Let A = {a1, . . . , ad−1} ∈ R be the set of elements below the diagonal in eq. (11).
If ai ∈ mR, then

γµ,i ∈ mR for µ ̸= i,

that is Ei is an eigenvector for the reduced action of Γ modulo mR. If aκ1 , . . . , aκr

are the elements of the set A which are in mR, then the reduced matrix of Γ has
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the form: 
Γ1 0 · · · 0

0 Γ2
. . . ...

... . . . . . . 0
0 · · · 0 Γr


where Γ1,Γ2, . . . ,Γr+1 for 1 ≤ ν ≤ r + 1 are (κν − κν−1) × (κν − κν−1) lower
triangular matrices (we set κ0 = 0, κr+1 = d).

Proof. Consider the matrix Γ:

γ11
... . . . 0
γκ1,1 · · · γκ1,κ1

γ11 γκ1+1,κ1+1

... . . .
γµ,i γκ2,κ1+1 · · · γκ2,κ2

γκ1+1,κ1+1 γµ,i
. . .

γκr+1,κr+1

· · ·
... . . .

γκ1,κ1
γκ2,κ2

γd,κr+1 · · · γd,d


1 ≤ i ≤ κ1 < m ≤ d

κ1 < i ≤ κ2 < µ ≤ d

We have that µ = i and the only element in Σµ which does not have any factor of
the form (λαy − λx) is the sequence

1 = µs = µs−1 − 1 < µs−1 < · · · < µ2 = µ1 − 1 < µ1 = µ

For this sequence eq. (21) becomes

γi,i =

s∏
ν=2

hα−1(λµν
, λµν−1

)ζϵm modmR,

which gives the desired result since hα−1(λµν
, λµν−1

) ≡
(
α
1

)
= α modmR.

For proving that all entries γµ,i ∈ mR for κν < i ≤ κν+1 < µ ≤ d, that is for
all entries below the central blocks, we observe that from equation (21) combined
with eq. (35) that γµ,i is divisible by [a]µ−1

i = aiai+1 · · · aκν+1 · · · aµ−1 ∈ mR.
□

Recall that by lemma 2 there is an 1 ≤ a0 ≤ m such that α = ζa0
m .

Proposition 38. The indecomposable module V modulo mR breaks into a direct
sum of r + 1 indecomposable k[Cq ⋊ Cm] modules Vν , 1 ≤ ν ≤ r + 1. Each Vν is
isomorphic to Vα(ε+ a0κν−1, κν − κν−1).

Proof. By eq. (36) the first eigenvalue of the reduced matrix block Γν is

ζϵmα
κν−1 = ζϵ+(κν−1)a0

m .

Since that first eigenvalue together with the size of the block determine the last
eigenvalue, that is the action of Cm on the socle the reduced block is uniquely
determined up to isomorphism. □
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This way we arrive at a new obstruction. Assume that the indecomposable
representation given by the matrix T as in lemma 17 reduces modulo mR to a sum
of Jordan blocks. Then the σ action on the leading elements of each Jordan block
in the special fibre should be described by the corresponding action of σ on the
leading eigenvector E of V . The corresponding actions on the special fibre should
be compatible.

This observation is formally given in theorem 1, which we now prove. Recall
that the k[G]-module M is decomposed as a direct sum

M = Vα(ε1, κ1)⊕ · · · ⊕ Vα(εs, κs).

Each set Iν , 1 ≤ ν ≤ t corresponds to an indecomposable R[G]-module, which
decomposes to the indecomposables Vα(εµ, κµ), ν ∈ Iν of the special fiber. Inde-
composable summands have different roots of unity in R, therefore

∑
µ∈Iν

kµ ≤ q,
this is condition (1.a.). The second condition (1.b.) comes from proposition 14.
If 1 is one of the possible eigenvalues of the lift T , then

∑
µ∈Iν

κµ ≡ 1 modm. If
all eigenvalues of the lift T are different than one, then

∑
µ∈Iν

κµ ≡ 0 modm. If
#Iν = q, then there is one zero eigenvalue and the sum equals 1 modm.

It is clear by eq. (36) that condition (1.c.) is a necessary condition. On the other
hand if (1.c.) is satisfied we can write (after a permutation if necessary) the set
{1, . . . , s}, s =

∑t
ν=1 #Iν as a disjoint union

{1, . . . , s} = I1 ∪ I2 ∪ · · · ∪ It

where each set Iν , 1 ≤ ν ≤ t contains the indecomposable representations Vα(εµ, kµ)
that will form the reduction of an indecomposable representation of R[G]. Assume
that the representations indexed by the set I1 have dimensions {κ(1)1 , . . . , κ

(1)
r1 },

where r1 = #I1, the represetnations indexed by I2 have dimensions {κ(2)1 , . . . , κ
(2)
r2 },

where r2 = #I2 and finally the representations indexed by It have dimensions
{κ(t)1 , . . . , κ

(t)
rt }, where rt = #It. We define

b1 =

r1∑
j=1

k
(1)
j ,

b2 = b1 +

r2∑
j=1

k
(2)
j ,

b3 = b1 + b2 +

r3∑
j=1

k
(3)
j ,

...

bt−1 = b1 + · · ·+ bt−2 +

rt−1∑
j=1

k
(t−1)
j .

The matrix given in eq. (11), where

ai =


0 if i ∈ {b1, . . . , bs−1}
π if i ∈ {κ(ν)1 , κ

(ν)
1 + κ

(ν)
2 , κ

(ν)
1 + κ

(ν)
2 + κ

(ν)
3 , . . . , κ

(ν)
1 + κ

(ν)
2 + · · ·+ κ

(ν)
rν−1}

1 otherwise
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lifts the τ generator, and by (15) there is a well defined extended action of the σ
as well.
Example: Consider the group q = 52,m = 4, α = 7,

G = C52 ⋊ C4 = ⟨σ, τ |σ4 = τ25 = 1, στσ−1 = τ7⟩.
Observe that ord57 = ord527 = 4.

• The module Vα(ε, 25) is projective and is known to lift in characteristic
zero. This fits well with theorem 1, since 4 | 25− 1 = 4 · 6.

• The modules Vα(ε, κ) do not lift in characteristic zero if 4 ∤ κ or 4 ∤ κ −
1. Therefore only Vα(ε, 1), Vα(ε, 4), Vα(ε, 5), Vα(ε, 8), Vα(ε, 9), Vα(ε, 12),
Vα(ε, 13), Vα(ε, 16), Vα(ε, 17), Vα(ε, 20), Vα(ε, 21), Vα(ε, 24), Vα(ε, 25) lift.

• The module Vα(1, 2)⊕ Vα(3, 2) lift to characteristic zero, where the matrix
of T with respect to a basis E1, E2, E3, E4 is given by

T =


ζq 0 0 0
1 ζ2q 0 0
0 π ζ3q 0
0 0 1 ζ4q


and S(E1) = ζqE1.

• The module Vα(1, 2)⊕Vα(1, 2) does not lift in characteristic zero. There is
no way to permute the direct summands so that the eigenvalues of a lift S
of σ are given by ζϵm, αζϵm, α2ζϵm, α

3ζϵm. Notice that α = 2 = ζm.
• The module Vα(ε1, 21)⊕ Vα(2

21 · ε1, 23) does not lift in characteristic zero.
The sum 21 + 23 is divisible by 4, ε2 = 221ε1 is compatible, but 21 + 23 =
44 > 25 so the representation of T in the supposed indecomposable module
formed by their sum can not have different eigenvalues which should be
25-th roots of unity.

References
[1] J. L. Alperin. Local representation theory, volume 11 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, 1986. Modular representations as an
introduction to the local representation theory of finite groups.

[2] Frauke M. Bleher, Ted Chinburg, and Aristides Kontogeorgis. Galois structure of the holo-
morphic differentials of curves. J. Number Theory, 216:1–68, 2020.

[3] T. Chinburg, R. Guralnick, and D. Harbater. Oort groups and lifting problems. Compos.
Math., 144(4):849–866, 2008.

[4] Ted Chinburg, Robert Guralnick, and David Harbater. The local lifting problem for actions
of finite groups on curves. Ann. Sci. Éc. Norm. Supér. (4), 44(4):537–605, 2011.

[5] Ted Chinburg, Robert Guralnick, and David Harbater. Global Oort groups. J. Algebra,
473:374–396, 2017.

[6] Huy Dang, Soumyadip Das, Kostas Karagiannis, Andrew Obus, and Vaidehee Thatte. Local
oort groups and the isolated differential data criterion, 2019.

[7] A. Heller and I. Reiner. Representations of cyclic groups in rings of integers. I. Ann. of Math.
(2), 76:73–92, 1962.

[8] A. Heller and I. Reiner. Representations of cyclic groups in rings of integers. II. Ann. of Math.
(2), 77:318–328, 1963.

[9] Sotiris Karanikolopoulos and Aristides Kontogeorgis. Representation of cyclic groups in pos-
itive characteristic and Weierstrass semigroups. J. Number Theory, 133(1):158–175, 2013.

[10] Aristides Kontogeorgis and Alexios Terezakis. The canonical ideal and the deformation theory
of curves with automorphisms, 2021.

[11] Andrew Obus. The (local) lifting problem for curves. In Galois-Teichmüller theory and arith-
metic geometry, volume 63 of Adv. Stud. Pure Math., pages 359–412. Math. Soc. Japan,
Tokyo, 2012.



ON THE LIFTING PROBLEM OF REPRESENTATIONS OF A METACYCLIC GROUP. 29

[12] Andrew Obus. A generalization of the Oort conjecture. Comment. Math. Helv., 92(3):551–
620, 2017.

[13] Andrew Obus and Rachel Pries. Wild tame-by-cyclic extensions. J. Pure Appl. Algebra,
214(5):565–573, 2010.

[14] Andrew Obus and Stefan Wewers. Cyclic extensions and the local lifting problem. Ann. of
Math. (2), 180(1):233–284, 2014.

[15] Florian Pop. The Oort conjecture on lifting covers of curves. Ann. of Math. (2), 180(1):285–
322, 2014.

[16] Jean-Pierre Serre. Linear representations of finite groups. Springer-Verlag, New York, 1977.
Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathe-
matics, Vol. 42.

[17] Jean-Pierre Serre. Local fields. Springer-Verlag, New York, 1979. Translated from the French
by Marvin Jay Greenberg.

[18] Bradley Weaver. The local lifting problem for D4. Israel J. Math., 228(2):587–626, 2018.

Department of Mathematics, National and Kapodistrian University of Athens Pane-
pistimioupolis, 15784 Athens, Greece

Email address: kontogar@math.uoa.gr

Department of Mathematics, National and Kapodistrian University of Athens, Panepis-
timioupolis, 15784 Athens, Greece

Email address: aleksistere@math.uoa.gr


