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On abelian automorphism groups of Mumford curves

Aristides Kontogeorgis and Victor Rotger

Abstract

We use rigid analytic uniformization by Schottky groups to give a bound for the order of the
abelian subgroups of the automorphism group of a Mumford curve in terms of its genus.

Introduction

Let X be a smooth irreducible projective algebraic curve of genus g � 2 over a field k. The
automorphism group Aut(X) is always finite, and it is an interesting problem to determine its
size with respect to the genus. When the ground field k has characteristic 0, it is known that
the Hurwitz bound holds:

|Aut(X)| � 84(g − 1). (1)

Moreover, this bound is best possible in the sense that there exist curves of genus g that
admit 84(g − 1) automorphisms for infinitely many different values of g.

When char(k) = p > 0, then |Aut(X)| is bounded by a polynomial of degree 4 in g. In fact,
it holds that

|Aut(X)| � 16g4

(see [13]), provided that X is not any of the Fermat curves xq+1 + yq+1 = 1, q = pn, n � 1,
which have even larger automorphism group [8].

For Mumford curves X over an algebraic extension of the p-adic field Qp, Herrlich [4] was
able to improve Hurwitz’s bound (1) by showing that actually

|Aut(X)| � 12(g − 1),

provided that p � 7.
Moreover, the first author, in a joint work with Cornelissen and Kato [2], proved that a

bound of the form
|Aut(X)| � max{12(g − 1), 2

√
g(
√

g + 1)2}
holds for Mumford curves defined over non-archimedean-valued fields of characteristic p > 0.

For ordinary curves X over an algebraically closed field of characteristic p > 0, Guralnik and
Zieve (in a forthcoming paper, ‘Automorphisms of ordinary curves’, Talk in Leiden, Workshop
on Automorphism of curves, 18 August 2004) announced that there exists a sharp bound of
the order of g8/5 for |Aut(X)|.

In [10], Nakajima employs the Hasse–Arf theorem to prove that

|Aut(X)| � 4g + 4

for any algebraic curve X with a group of automorphisms that is abelian.
The results of Herrlich compared to those of Hurwitz and those of [2] compared to Guralnik–

Zieve’s indicate that if we restrict ourselves to Mumford curves with abelian automorphism
group, a stronger bound than the one of Nakajima should be expected.
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The aim of this note is to study the size of the abelian subgroups of the automorphism
group Aut(X) of a Mumford curve over a complete field k with respect to a non-archimedean
valuation. These curves are rigid, analytically uniformized by a Schottky group Γ ⊂ PGL2(k),
and their automorphism group is determined by the normalizer N of Γ in PGL2(k).

Our results are based on the Gauss–Bonnet formula of Karass, Pietrowski and Solitar, which
relates the rank of the free group Γ to the index [N : Γ], and on the characterization of the
possible abelian stabilizers Nv ⊂ N of the vertices v ∈ Tk on the Bruhat–Tits tree of k acted
upon by the group N .

1. Abelian automorphism groups of Mumford Curves

For a nice introduction to the theory of automorphism groups of Mumford curves we refer the
reader to [1].

Let k be a complete field with respect to a non-archimedean valuation. Let k̄ denote the
residue field of k and write p = char(k̄) for its characteristic. Choose a separable closure K
of k.

Let Γ ⊂ PGL2(k) be a Schottky group, that is, a discrete finitely generated subgroup
consisting entirely of hyperbolic elements acting on P1

k with limit set LΓ (cf. [3]). By a theorem
of Ihara, Γ is a free group. The rigid analytic curve

Γ \ (P1
k − LΓ)

turns out to be the analytic counterpart of a smooth algebraic curve of genus g = rank(Γ) � 1
over k, which we shall denote by XΓ/k. In a fundamental work, Mumford [9] showed that the
stable reduction of XΓ is a k̄-split degenerate curve: all its connected components are rational
over k̄, and they meet at ordinary double points rational over k̄. Conversely, he showed that
all such curves admit a rigid analytic uniformization by a Schottky subgroup of PGL2(k).

Let Tk denote the Bruhat–Tits tree of k. The set of ends of Tk is in one-to-one correspondence
with the projective line P1(k); we thus identify P1(k) with the boundary of Tk.

Let N be a finitely generated discrete subgroup of PGL2(k) that contains Γ as a normal
subgroup of finite index. The group N naturally acts on Tk. By taking an appropriate extension
of k, we may assume that all fixed points of N in the boundary are rational. In turn, this implies
that N acts on Tk without inversion.

Theorem 1.1 ([2; 3, p. 216]). The group G = N/Γ is a subgroup of the automorphism
group of the Mumford curve XΓ. If N is the normalizer of Γ in PGL2(k), then G = Aut(XΓ).

For every vertex v on Tk let Nv be the stabilizer of v in N , that is,

Nv = {g ∈ N : g(v) = v}.
Let star(v) denote the set of edges emanating from the vertex v. It is known that star(v) is

in one-to-one correspondence with elements in P1(k̄). Since Nv fixes v, it acts on star(v) and
describes a natural map

ρ : Nv −→ PGL2(k̄). (2)

See [2, Lemma 2.7] for details. The kernel of ρ is trivial unless Nv is isomorphic to the
semidirect product of a cyclic group with an elementary abelian group. In this case, ker ρ is an
elementary abelian p-group (see [2, Lemma 2.10]).

Assume that g � 2. This implies that Γ has finite index in N , due to which both groups N
and Γ share the same set of limit points L. We shall denote by TN the subtree of Tk with end
points that are the limit points of L.
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The tree TN is acted on by N , and we can consider the quotient graph TN := N \ TN . The
graph N \ TN is the dual graph of the intersection graph of the special fibre of the quotient
curve

XN = G \ XΓ = N \ (P1
k − L).

Notice that TN is a tree whenever XN has genus 0.
The quotient graph TN can be regarded as a graph of groups as follows: For every vertex v

and edge e of TN , consider a lift v′ and e′ in TN and the corresponding stabilizer Nv′ and Ne′ ,
respectively. We decorate the vertex v and edge e with the stabilizer Nv′ and Ne′ , respectively.

Let T be a maximal tree of TN , and let T ′ ⊂ TN be a tree of representatives of TN mod N ,
that is, a lift of T in TN . Consider the set Y of lifts of the remaining edges TN − T in TN such
that, for every E ∈ Y , the origin o(E) lies in T ′.

The set Y = {E1, . . . , Er} is finite. There exist elements gi ∈ N such that gi(t(Ei)) ∈ T ′,
where t(Ei) denotes the terminal vertex of the edge Ei of Y . Moreover, the elements gi can be
taken from the free group Γ.

The elements gi act by conjugation on the groups Nt(Ei) and impose the relations
giNt(Ei)g

−1
i = Ngi(t(Ei)). Denote Nt(Ei) by Mi and Ngi(t(Ei)) by Ni.

According to [12, Lemma 4, p. 34], the group N can be recovered as the group generated by

N := 〈Nv, gi〉 = 〈g1, . . . , gr,K | rel K, g1M1g
−1
1 = N1, . . . , grMrg

−1
r = Nr〉,

where K is the tree product of T ′.
Assume that the tree T ′ of representatives has κ edges and κ + 1 vertices. Let vi denote the

order of the stabilizer of the ith vertex and ei the order of the stabilizer of the ith edge. If
fi = |Mi|, then we define the volume of the fundamental domain as

μ(TN ) :=

(
r∑

i=1

1
fi

+
κ∑

i=1

1
ei

−
κ+1∑
i=1

1
vi

)
.

Notice that when r = 0, that is, the quotient graph TN is a tree, this definition coincides
with that given in [2].

Karrass, Pietrowski and Solitar proved in [7] the following discrete Gauss–Bonnet theorem.

Proposition 1.2. Let N,TN , g be as above. The following equality holds:

|N/Γ| · μ(TN ) = g − 1.

In order to obtain an upper bound for the group of automorphisms with respect to the genus,
we aim for a lower bound for μ(TN ). Observe that if we restrict the above sum to the maximal
tree T of TN , we deduce the inequality

μ(T ) :=
κ∑

i=1

1
ei

−
κ+1∑
i=1

1
vi

� μ(TN ),

where equality is achieved if and only if TN is a tree, that is, the genus of XN is 0.
In what follows we pursue lower bounds for μ(T ), where T is a maximal tree. These should

be lower bounds for μ(TN ) as well.

Lemma 1.3. Let G be a finite abelian subgroup of PGL2(Fpn) acting on P1(Fpn). Let S be
the subset of P1(F̄p) of ramified points of the cover

P1 −→ G \ P1.

Then either
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(i) G � Z/nZ, where (n, p) = 1, S = {P1, P2} and the ramification indices are e(P1) =
e(P2) = n, or

(ii) G � D2 = Z/2Z × Z/2Z, p 	= 2 and S = {P1, P2, P3} with ramification indices e(P1) =
e(P2) = e(P3) = 2, or

(iii) G � E(r) = Z/pZ× (r). . . ×Z/pZ for some r � 0 and S = {P}, with ramification index
e(P ) = pr.

Proof. The finite subgroups of PGL2(Fpn) were classified by Dickson (cf. [2, Theorem 2.9;
5, II.8.27; 15]). The list of abelian groups follows by selecting the abelian groups among the
possible finite subgroups of PGL2(Fpn). Notice that the case E(r) � Z/nZ, where (n, p) = 1
and n | p − 1, is never abelian. Indeed, this is due to the fact that Z/nZ acts on E(r) by means
of a primitive nth root of unity [11, Corollary 1, p. 67]. The description of the ramification
locus S in each case is given in [15, Theorem 1].

Lemma 1.4. Let v be a vertex of TN . If the finite group N/Γ is abelian, then Nv is
abelian. Moreover, the map ρ : Nv → PGL2(k̄) is injective unless Nv = E(r1). In this case,
ker(ρ) � E(r2) for some r2 � r1.

Proof. The composition

Nv ⊂ N −→ N/Γ

is injective, since it is not possible for an element of finite order to be cancelled out by factoring
out the group Γ. Hence Nv is a abelian. The possible kernels of � are collected in [2, Lemma
2.10].

Let v be a vertex of TN decorated by the group Nv and assume that there exist s � 1 edges
in its star, decorated by groups Nv

eν
⊂ Nv, ν = 1, . . . , s. We define the curvature c(v) of v as

c(v) :=
1
2

s∑
i=1

1
|Nv

eν
| −

1
|Nv|

.

It is obvious that the following formula holds:

μ(T ) =
∑

v∈Vert(T )

c(v).

In what follows, we shall provide lower bounds for the curvature of each vertex.
We shall call a tree of groups reduced if |Nv| > |Neν

| for all vertices v and edges eν ∈ star(v).
Notice that, if Nv = Ne for a vertex v and an edge e ∈ star(v), then the opposite vertex v′ of
e is decorated by a group Nv′ ⊇ Ne. The contribution of e to the tree product is the amalgam
Nv ∗Ne

Nv′ = Nv′ . This means that e can be contracted without altering the tree product.
From now on we shall assume that the tree T is reduced.

For an element γ ∈ N , define the mirror of γ to be the smallest subtree M(γ) of Tk generated
by the point-wise fixed vertices of T by γ.

Let γ ∈ N be an elliptic element (that is, an element of N of finite order with two distinct
eigenvalues of the same valuation). Then γ has two fixed points in P1(k), and M(γ) is the
geodesic connecting them.

If γ ∈ N is a parabolic element (that is, an element in N having a single eigenvalue), then
it has a unique fixed point z on the boundary P1(k).
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Lemma 1.5. Let P1, P2, Q1, Q2 be four distinct points on the boundary of Tk. Let g(P1, P2),
g(Q1, Q2) be the corresponding geodesic on Tk connecting P1, P2 and Q1, Q2, respectively. For
the intersection of the geodesics g(P1, P2) and g(Q1, Q2) there are the following possibilities:

(i) g(P1, P2), g(Q1, Q2) have an empty intersection;
(ii) g(P1, P2), g(Q1, Q2) intersect at only one vertex of Tk;
(iii) g(P1, P2), g(Q1, Q2) have a common interval as intersection.

Proof. It immediately follows from the fact that Tk is simply connected.

We refer to [6, Proposition 3.5.1] for a detailed description on the arrangement of the
geodesics with respect to the valuations of the cross-ratio of the points P1, P2, Q1, Q2.

Lemma 1.6. Two non-trivial elliptic elements γ, γ′ ∈ PGL2(k) have the same set of fixed
points in P1(k) if and only if 〈γ, γ′〉 is a cyclic group.

Proof. If γ and γ′ generate a cyclic group, then there exists an element σ such that σi = γ
and σi′ = γ′ for some i, i′ � 1. Since any non-trivial elliptic element has exactly two fixed
points, it is immediate that γ, γ′ and σ have the same set of fixed points.

Conversely if γ, γ′ have the same set of fixed points 0,∞ say, then a simple computation
shows that γ, γ′ are of the form

γ =
(

a 0
0 d

)
and γ′ =

(
a′ 0
0 d′

)
,

where a/d and a′/d′ are roots of unity. Hence there exists a σ ∈ PGL2(k) such that σi = γ and
σi′ = γ′.

Lemma 1.7. Assume that N/Γ is an abelian group, and let γ, γ′ ∈ N , γ 	= γ′, be elements
of prime-to-p finite order. If M(γ) ∩ M(γ′) 	= ∅, then 〈γ, γ′〉 is isomorphic to either D2 or a
cyclic group.

Proof. By Lemma 1.4, the stabilizers Nv of those vertices v such that (|Nv|, p) = 1 are
abelian subgroups of PGL2(k̄). Let Fγ and Fγ′ denote the sets of the fixed points of γ and γ′

in P1(k), respectively.
If M(γ) = M(γ′) then Fγ = Fγ′ , and it follows from Lemma 1.6 that 〈γ, γ′〉 is a cyclic group.
On the other hand, if M(γ) 	= M(γ′), then Fγ 	= Fγ′ and 〈γ, γ′〉 cannot be cyclic, again

by Lemma 1.6. In this case, any vertex v ∈ M(γ) ∩ M(γ′) is fixed by 〈γ, γ′〉, which must be
isomorphic to D2 by Lemma 1.3.

Lemma 1.8. Assume that N/Γ is an abelian group. If Nv is a p-group for some vertex v
in T , then Ne = {1} for all e ∈ star(v).

Proof. Assume that v ∈ Vert(T ) is lifted to v′ ∈ Vert(TN ) and that Nv′ is an elementary
abelian group. Recall the map ρ : Nv′ → PGL2(k̄), which describes the action of Nv′ on star(v′).

If Im(ρ) = {IdPGL2(k̄)}, then every edge e′ ∈ star(v′) would be fixed by Nv′ = ker(ρ). If one
of the edges e′ ∈ star(v′) were reduced in T to an edge e with non-trivial stabilizer then it
would follow that Nv = Ne and the tree would not be reduced.
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Suppose now that Im(ρ) 	= {IdPGL2(k̄)}. By Lemma 1.3 there exists exactly one edge e′ in
the star of v′ which is fixed by the whole group Im(ρ) and all other edges emanating from v′

are not fixed by Im(ρ). Therefore the edge e′ is fixed by the whole group Nv′ . If the edge e′

were reduced in T to an edge e with non-trivial stabilizer, then it would follow that Nv = Ne

and the tree would not be reduced.
Assume now that there exist two vertices v1, v2 on T joined by an edge e such that Nv1 , Nv2

are elementary abelian groups and Ne is a non-trivial proper subgroup both of Nv1 and Nv2 .
Let us show that this cannot happen.

Let σ, τ be two commuting parabolic elements of PGL2(k̄). They fix a common point in the
boundary of P1(k). Indeed, every parabolic element fixes a single point in the boundary. If P
is the unique fixed point of σ, then

σ(τP ) = τ(σP ) = τP,

and τ(P ) is also fixed by σ. Since the fixed point of σ in the boundary is unique, we have
τ(P ) = P .

Let v′
1, v

′
2 be two lifts of v1, v2 on the Bruhat–Tits tree. The apartment [v′

1, v
′
2] is contracted

to the edge e and it is fixed by Ne, but not by a larger subgroup.
Since Ne is contained in both abelian groups Nv′

1
, Nv′

2
, all parabolic elements in Nv′

1
, Nv′

2

have the same fixed point P in the boundary P1(k). Therefore, the apartments [v′
1, P [ and

[v′
2, P [ are fixed by Nv′

1
and Nv′

2
, respectively. Moreover, the apartments [v′

1, P [,[v′
2, P [ have a

non-empty intersection. Since the Bruhat–Tits tree is simply connected, the apartment [v′1, v
′
2]

intersects [v′
2, P [∩[v′

1, P [ at a bifurcation point Q:

[v′
1, v

′
2] ∩

(
[v′

2, P [∩[v′
1, P [

)
= {Q}.

The point Q is then fixed by Nv′
1

and Nv′
2

and it is on the apartment [v′
1, v

′
2], which is a

contradiction.

Lemma 1.9. Let v be a vertex in T . If c(v) > 0, then c(v) � 1
6 . Let s = #star(v), and let

Nv
eν

denote the stabilizers of the edges in the star of v for ν = 1, . . . , s. It holds that c(v) = 0
if and only if:

(i) Nv = D2, s = 1, Nv
e1

= Z2, or
(ii) Nv = Z2, s = 1, |Nv

e1
| = 1.

We have

• c(v) = 1
6 if and only if Nv = Z3 and s = 1;

• c(v) = 1
4 if and only if Nv = D2 with s = 2 and |Nv

e1
| = |Nv

e2
| = |2|, or Nv = D2 with s = 1

and |Nv
e1
| = 1.

In the remaining cases we have c(v) � 1
3 .

Proof. • Assume that Nv = D2. Then c(v) � 0. The equality c(v) = 0 holds only when s = 1
and the only edge leaving v is decorated by a group of order 2. If we assume that c(v) > 0,
then

1
4 � c(v),

and equality is achieved if s = 2 and |Ne1 | = |Ne2 | = 2, or if s = 1 and |Nv
e1
| = 1.

• Assume that Nv = Zn. Then

c(v) =
s∑

i=ν

1
2|Neν

| −
1
n

.
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By Lemma 1.7, the stabilizer of each edge in the star of v is trivial. Indeed, if there were an
edge e ∈ star(v) with Ne > {1}, then e would be fixed by a cyclic group Zm, where m | n. Let
σ be a generator of Zn, and let σκ be the generator of Zm. The elements σ, σκ have the same
fixed points. Hence a lift of the edge e in TN would lie on the mirror of σ. But then Ne = Nv,
and this is not possible by the reducibility assumption. See also [4, Lemma 1].

If n > 2, then
1
6

� n − 2
2n

� sn − 2
2n

= s
1
2
− 1

n
� c(v),

and equality holds only if s = 1, n = 3. If n = 2 and c(v) > 0 then s � 2, and c(v) = s1
2 − 1

2 � 1
2 .

• Assume that Nv = E(r). Then s = 1, and it follows from Lemma 1.8 that |Ne1 | = 1. If
pr = 2 then c(v) = 0. Hence if c(v) > 0 then pr > 2 and

1
6

� c(v) =
1
2
− 1

pr
=

pr − 2
2pr

,

and equality holds only if pr = 3.

Theorem 1.10. Assume that N/Γ is abelian. If N is isomorphic to neither Z2 ∗ Z3 nor
D2 ∗ Z3, then

|N/Γ| � 4(g − 1).

If we exclude the groups of Table 1 then

|N/Γ| � 3(g − 1).

The case N = Z2 ∗ Z3 gives rise to a curve of genus 2 with an automorphism group that is a
cyclic group of order 6. The case N = D2 ∗ Z3 gives rise to a curve of genus 3 with automorphism
group D2 × Z3.

Proof. Since g � 2 and therefore μ(TN ) > 0, we see by Proposition 1.2 that

|Aut(X)| =
1

μ(TN )
(g − 1) � 1

μ(T )
(g − 1) � 6

λ
(g − 1),

where
λ = #{v ∈ Vert(TN ) : c(v) > 0}.

If λ � 2 the result follows. Assume that there is only one vertex v such that c(v) > 0. Since
g � 2, there exist other vertices v′ on the tree TN but their contribution is c(v′) = 0. Notice
that if we contract a tree along an edge connecting the vertices v1, v2 forming a new vertex v
then c(v1) + c(v2) = c(v). Therefore, one can check that c(v) � 0, using Lemma 1.3.

Case 1: c(v) = 1
6 . Then Nv = Z3 and there exists a single edge e at the star of v. Let v′

denote the terminal vertex of e. Since c(v′) = 0 if and only if there exists a single edge leaving

N N/Γ g

D2 ∗ Z4 D2 × Z4 2

Z2 ∗ Z4 Z2 × Z4 2

D2 ∗ D2 Z
4
2 4

Z2 ∗ D2 Z
3
2 2

D2 ∗Z2 D2 ∗Z2 D2 Z
4
2 2

Table 1.
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v′, the only possibilities for N are N = D2 ∗ Z3 and N = Z2 ∗ Z3. Since N/Γ is abelian, the
groups Γ1 := [D2, Z3] and Γ1 := [Z2, Z3] are contained in Γ. According to [2, Lemma 6.6], Γ1 is
a maximal free subgroup of N and thus Γ = Γ1. The rank of Γ is (4 − 1)(2 − 1) = 3 in the first
case and (3 − 1)(2 − 1) = 2 in the second. Therefore the first amalgam gives rise to a curve of
genus 3 with automorphism group D2 × Z3, and the second gives rise to a curve of genus 2
with automorphism group Z2 × Z3

∼= Z6.

Case 2: c(v) = 1
4 . This occurs only when Nv = Z4,D2 and s = 1 or Nv = D2, s = 2, |Ne1 | =

|Ne2 | = 1
2 . The possible groups are given in Table 1.

In this case we have the following bound:

|Aut(X)| � 1
μ(T )

(g − 1) � 4(g − 1).

Case 3: c(v) � 1
3 . Similarly as above we obtain that

|Aut(X)| � 1
μ(T )

(g − 1) � 3
λ

(g − 1) � 3(g − 1).

Example (Subrao curves). Let (k, | · |) be a complete field of characteristic p with respect
to a non-archimedean norm | · |. Assume that Fq ⊂ k, for some q = pr, r � 1. Define the curve

(yq − y)(xq − x) = c,

with |c| < 1. This curve was introduced by Subrao in [14], and it has a large automorphism
group compared to the genus. This curve is a Mumford curve [2, p. 9] and has chessboard
reduction [2, par. 9]. It is a curve of genus (q − 1)2 and admits the group G := Zr

p × Zr
p

as a subgroup of the automorphism group. The group G consists of the automorphisms
σa,b(x, y) = (x + a, y + b), where (a, b) ∈ Fq × Fq. The discrete group N ′ corresponding to G
is given by Zpr ∗ Zpr and the free subgroup Γ giving the Mumford uniformization is given by
the commutator [Zpr , Zpr ], which is of rank (q − 1)2 (see [12]).

Our bound is given by

q2 = |G| � 2(g − 1) = 2(q2 − 2q).

Notice that the group N ′ is a proper subgroup of the normalizer of Γ in PGL2(k), since the
full automorphism group of the curve is isomorphic to Z2r

p � Dpr−1 (see [2]).

1.1. Elementary abelian groups

Proposition 1.11. Let 
 be a prime number, and let XΓ/k be a Mumford curve over a
non-archimedean local field k such that p = char(k̄) 	= 
. Let A ⊂ Aut(XΓ) be a subgroup of
the group of automorphisms of XΓ such that A � Z/
Z × Z/
Z × . . . × Z/
Z.

If 
 = 2 then all stabilizers of vertices and edges of the quotient graph TN are subgroups
of Z/2Z × Z/2Z and μ(TN ) = a/4 for some a ∈ Z. If 
 > 2 then all stabilizers of vertices and
edges of TN are subgroups of Z/
Z and μ(TN ) = a/
 for some a ∈ Z.

Proof. Let A ⊂ Aut(XΓ). There is a discrete finitely generated subgroup N ′ ⊂ N such that
ΓN ′ and N ′/Γ = A. Let Nv be the stabilizer of a vertex in TN , and let N ′

v = Nv ∩ N ′. The
composition

N ′
v ⊂ Nv ⊂ N −→ N/Γ

is injective, since it is not possible for an element of finite order to be cancelled out by factoring
out the group Γ.
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The map ρ : N ′
v → PGL2(k̄) = PGL2(Fpm) of Lemma 1.4 is injective since (|N ′

v|, p) = 1, and
hence we can regard N ′

v as a finite subgroup of PGL2(k̄) = PGL2(Fpm).
Assume first that 
 = 2. Then by Lemma 1.3 the only abelian finite subgroups of PGL2(k̄)

for p 	= 2 are Z/2Z and the dihedral group of order 4. Hence N ′
v is a subgroup of Z/2Z × Z/2Z.

Since the group N acts without inversions, the stabilizer of a vertex is the intersection of the
stabilizers of the limiting edges. It again follows that Ne ⊆ Z/2Z × Z/2Z. Finally, we obtain
from its very definition that μ(TN ) = a/4 for some a ∈ Z.

For the case 
 > 2 we observe that Z/
Z is the only abelian subgroup of PGL2(Fpm), and it
follows similarly that μ(TN ) = a/
 for some a ∈ Z.

As an immediate corollary of Proposition 1.11 we obtain the following formula for the 
-
elementary subgroups of the group of automorphisms of Mumford curves.

Notice that the result below actually holds for arbitrary algebraic curves, as it can be proved
by applying the Riemann–Hurwitz formula to the covering X → X/A.

Corollary 1.12. Let 
 	= char(k̄) be a prime number, and let X/k be a Mumford curve of
genus g � 2 over a non-archimedean local field k. Let A ⊆ Aut(X) be a subgroup of the group
of automorphisms of X such that A �

⊕s
i=1 Z/
Z for some s � 2.

(i) If 
 	= 2 then 
s−1 | g − 1.
(ii) If 
 = 2 then 2s−2 | g − 1.

Acknowledgement. The authors would like to thank the referee for his remarks and
corrections.
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