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Abstract

We give a relation between the dimension of the tangent space of the deformation functor of curves with automorphisms and the
Galois module structure of the space of 2-holomorphic differentials. We prove a homological version of the local–global principle
similar to the one of J. Bertin and A. Mézard. Let G be a cyclic subgroup of the group of automorphisms of a curve X , so that
the order of G is equal to the characteristic. By using the results of S. Nakajima on the Galois module structure of the space of
2-holomorphic differentials, we compute the dimension of the tangent space of the deformation functor.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 14H37; 14H10

1. Introduction

Let X be a non-singular complete curve of genus g ≥ 2 defined over an algebraic closed field k of positive
characteristic p, and let G be a subgroup of the automorphism group of X . In [1] Bertin and Mézard proved that the
equivariant cohomology of Grothendieck H1(G, TX ) is the tangent space of the global deformation functor of smooth
curves with automorphisms. The dimension of the k-vector space H1(G, TX ) is a measure of the directions in which
a curve can be deformed together with a subgroup of the automorphism group.

Since the genus g of X is g ≥ 2, the edge homomorphisms of the spectral sequence of Grothendieck [4, 5.2.7] give
us

H1(G, TX ) = H1(X, TX )
G , (1)

where TX is the tangent sheaf of the curve X and H1(X, TX ) is the first Čech cohomology group. It is known that
H1(X, TX ) is the tangent space of the deformation functor of smooth curves (without considering any group action) [5,
p. 89]. Eq. (1) tells us that the first equivariant cohomology equals the G-invariant space of the “tangent space” to the
moduli space at the point-curve X . J. Bertin and A. Mézard were successful in computing H1(G, TX ), using a version
of equivariant Čech theory, and proved a local–global theorem.
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In order to compute the G-invariants of the space H1(G, TX ), it is tempting to use Serre’s duality to transfer the
computation to the space H0(G,Ω⊗2

X ). One should be careful using this approach, because we are now considering
the dual space of H1(X, TX ) and it is not the functor of invariants we have to compute, but the adjoint functor, i.e.,
the functor of covariants.

We begin our study, by examining the relation between V G and V ∗

G when G is a p-group, V is a k-vector space
acted on by G and V ∗ denotes the dual space of V . This point of view will allow us to prove that dimk H1(G, TX ) =

dimk H0(G,Ω⊗2
X )G . Furthermore, in order to compute the covariant elements of H0(X,Ω⊗2

X ), we use the normal
basis theorem for Galois extensions and the explicit form of Serre duality in terms of repartitions [6, 7.14.2], [12, I.5].
This leads us to a homological version of the local–global theorem of J. Bertin and A. Mézard (8).

Finally, we apply known results on the Galois module structure of the space of holomorphic differentials, in order
to compute covariant elements. We have to notice here, that, as far as the author knows, if the characteristic p divides
|G|, the Galois module structure of H0(X,Ω⊗s) is far from being understood, and there are only partial results in the
case of tame ramification [7,11,9], in the case of ordinary curves and s = 1 and when G is a cyclic group of order
equal to the characteristic [10].

More precisely, Nakajima in [10] studied the Galois module of H0(G,L(D)) if G is isomorphic to a cyclic group
of order p, and D is a G-invariant divisor of degree> 2gX − 2, where gX denotes the genus of the curve X . We apply
the results of Nakajima in order to compute dimk H0(G,Ω⊗2

X )G = dimk H1(G, TX ) and we are able to recover the
result of J. Bertin and A. Mézard concerning the computation of the dimension of the later space.

Recently, tools from modern representation theory were used in order to extend the results of Nakajima, [2,8]. We
hope that these tools can be applied to give new information on the dimension of the deformation functor of curves
with automorphisms.

2. Dual actions

Let V be a k-vector space equipped with a left G-action. Denote by V G
= {v ∈ V : gv = v} the space of

invariant elements. Let also V ∗
= Homk(V, k) denote the dual space of V . The group G acts on V ∗ in terms of the

contragradient action g f : v 7→ f (g−1v). It is wrong to assume in general that (V ∗)G = (V G)∗.
We consider the restriction map

V ∗
= Homk(V, k) → Homk(V G , k) → 0,

sending f : V → k to the restriction f |V G . The kernel A of the restriction map consists of

V ∗
3 f such that f (v) = 0 for all v ∈ V G .

We have the following short exact sequence:

1 → A → V ∗
→ (V G)∗ → 0. (2)

For a k[G]-module M let us denote by MG = M/〈(g − 1)m〉 = M ⊗k[G] k, i.e. the MG is the module M if we factor
out the module generated by elements of the form gm − m for all g ∈ G and for all m ∈ M . The module MG will
be called the module of covariants of the G-action. If we consider covariants in (2) we have the following long exact
sequence:

· · · → H1(G, (V G)∗) → AG → V ∗

G → ((V G)∗)G → 0.

Observe that (V G)∗ = Homk(V G , k) is a G-invariant space, therefore ((V G)∗)G = (V G)∗.

Lemma 2.1. If G is a p-group then the image of AG in V ∗

G is zero.

Proof. Let W be a k-vector space of characteristic p > 0, such that V = V G
⊕ W . Notice that this is a direct sum

in the category of vector spaces. One of the difficulties that arise in modular representation theory is that W can not
in general be selected so that W is a G-module, i.e., the above direct sum of vector spaces is not a direct sum of
k[G]-modules.
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Consider an element g of order p in the p-group G. Using Jordan decomposition, we have that for a suitable basis
of V , g acts on V in terms of a block diagonal matrix diag(B1, . . . , Bt ) where each component Bi is an ri × ri matrix
that acts on a subspace Vi of V and Bi is of the form:

1 1 0 · · · 0

0 1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 1
0 · · · · · · 0 1

 = Ir + Nr ,

where Ir is the identity and Nr is a nilpotent element, such that N `
r = 0 if and only if ` ≥ r . Since the elements Bi

have order p, and by the above remark we have that r ≤ p.
From the special form of the matrices Bi we conclude that there is an eigenvector of every Vi that is left invariant

under the action of the cyclic group generated by g. Let ei,1, . . . , ei,ri be a basis of the vector space Vi so that the
action of g on Vi is expressed by Bi . Then ei,1 is a generator of the g-invariant subspace, while gei,ν = ei,ν + ei,ν−1
for all other elements (set ei,0 = 0). Thus, for every κ ≥ ν

gκei,ν =

ν∑
µ=0

(
κ

µ

)
ei,ν−µ.

Let us consider the g-invariant element ei,1. Pick an arbitrary

V 3 v =

t∑
i=1

ri∑
ν=1

λi,ν(v)ei,ν,

where λi,ν is the dual basis of V ∗, i.e., the coefficients of v in the expression of v is a linear combination of the basis
elements ei,ν . Fix i0 ∈ {1, . . . , t}. Then

g−1λi0,1(v)− λi0,1(v) = λi0,1(gv)− λi0,1(v) = λi0,2(v).

This proves that for all i the functions λi,2 ∈ AG have image 0 in V ∗

G . We compute in the same way that

g−κλi0,1(v)− λi0,1(v) =

k∑
µ=1

(
k
µ

)
λi0,µ+1(v).

Notice that for all k < p the binomial coefficient
(

k
µ

)
6= 0 so an induction argument gives that all λi,ν have image

zero in V ∗

G . �

3. (Co)Homological computations

It is proved by J. Bertin and A. Mézard that the tangent space to the global deformation functor of smooth curves
with automorphisms is given in terms of Grothendieck equivariant cohomology [1,3,4], i.e., H1(G, TX ), while the
tangent space of the deformation functor of smooth curves is H1(X, TX ).

Proposition 3.1. There is an isomorphism ψ

ψ : H1(G, TX ) → H1(X, TX )
G

⊂ H1(X, TX ).

Proof. We will follow the computation of Bertin and Mézard [1, 3.1] of H1(G, TX ) in terms of Čech cohomology.
Let {Ui } be an open affine covering consisting of G-stable open sets Ui . Let ζ σi be a family of G-derivations, i.e.,
elements in Γ (Ui , TX ), and let δi j be Čech-cocycles in Γ (Ui ∩U j , TX ). Then the equivariant cohomology is given by

H1(G, X) =
{{ζ σi }, {δi j }}

{{σγi − γi }, {γ j − γi }}
, (3)
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where σγi − γi is a family of principal G-derivations and γ j − γi is a family of 1-Čech coboundaries, and moreover

ζ σj − ζ σi = σ(δi j )− δi j . (4)

The desired function H1(G, TX ) → H1(X, TX ) is formed by forgetting the family of derivations { f σi }, i.e., by
sending

{{ζ σi }, {δi j }}

{{σγi − γi }, {γ j − γi }}
7→

{δi j }

{γ j − γi }
∈ H1(X, TX ).

This is a well defined morphism and moreover (4) implies that the image is G-invariant.
This map is onto H1(X, TX )

G because if {δi j } is a G-invariant Čech cocycle, this means that for every σ ∈ G,
σ(δi j ) − δi j is a Čech coboundary, i.e., there are elements ζ σi such that σ(δi j ) − δi j = ζ σi − ζ σj , and one can check
that the function σ 7→ ζ σi is a G-derivation.

The kernel of the map ψ consists of equivalence classes of elements of the form {{ζ σi }, {δi j }} so that δi j = ai − a j ,
i.e., δi j is cohomologous to zero, so an element in the kernel can be represented by {{ζ σi }, {0}}. Then Eq. (4) gives us
that ζ σi = ζ σj , so σ : G → {ζ σi } can be interpreted as a function G → H0(X, TX ) = 0, since g ≥ 2. This proves that
the kernel of ψ is zero. �

Denote by K X the function field of the curve X . LetKX be the constant sheaf K X , and consider the exact sequence
of sheaves

0 → OX → KX →
KX

OX
→ 0. (5)

The sheaf KX
OX

can be expressed in the form

KX

OX
=

⊕
P∈X

i∗(K X/OP ),

where i : {P} → X is the inclusion map.
We tensor the sequence (5) with the sheaf Ω⊗2

X over OX and get the sequence:

0 → Ω⊗2
X → KX ⊗OX Ω⊗2

X →

⊕
P∈X

i∗(K X/OP )⊗ Ω⊗2
X → 0.

We will denote by M⊗2
= KX ⊗OX Ω⊗2

X the sheaf of meromorphic 2-differentials and by Ω⊗2
P = Ω⊗2

X ⊗OX OP .
Thus we might write⊕

P∈X

i∗(K X/OP )⊗ Ω⊗2
X =

⊕
P∈X

i∗(M⊗2/Ω⊗2
P ).

We apply the global section functor:

0 → Γ (X,Ω⊗2
X ) → Γ (X,KX ⊗OX Ω⊗2

X ) →

⊕
P∈X

i∗(M⊗2/Ω⊗2
P ) → H1(X,Ω⊗2

X ) → · · · .

Since X is a curve of genus g ≥ 2 we have that H1(X,Ω⊗2
X ) = 0 and if we denote by Ω = Γ (X,Ω⊗2

X ) and
M = Γ (X,M⊗2) the spaces of global sections of homomorphic and meromorphic differentials we have:

0 → Ω → M → Γ

(
X,
⊕
P∈X

i∗(M⊗2/Ω⊗2
P )

)
→ 0. (6)

Lemma 3.2. Let Y = X/G be the quotient group of the action of G on X. The G-module M as a KY [G] module is
projective.

Proof. Let ω be a meromorphic differential of the curve Y = X/G, and denote by KY the function field of the curve
Y . The lift π∗ω is a G-invariant meromorphic differential on X , and M can be recovered as the set of the expressions

M = { f · π∗(ω), f ∈ K X }.
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We want to apply the functor of covariants, i.e., to tensor with KY ⊗KY [G]. We notice first that by the normal basis
theorem [13, 6.3.7 p. 173] for the Galois extension K X/KY we obtain that K X ∼= KY [G] as a Galois module, thus M
is isomorphic to KY [G] as a KY [G]-module and the desired result follows. �

We consider the long exact homology sequence arising from (6) after taking the functor of covariants:

· · · → H1(G,M) → H1

(
G,Γ

(
X,
⊕
P∈X

i∗(M⊗2/Ω⊗2
P )

))
→ ΩG

α
→ MG

→ Γ

(
X,
⊕
P∈X

i∗(M⊗2/Ω⊗2
P )

)
G

→ 0. (7)

Since M ∼= KY [G] we have H1(G,M) = 0 and MG = { f · π∗(ω)}, with f ∈ KY .
Thus

ΩG = H1

(
G,Γ

(
X,
⊕
P∈X

i∗(M⊗2/Ω⊗2
P )

))
⊕ Imα.

Remark. If the order |G| of the group G is prime to the characteristic p then the order |G| is invertible in the module
Γ (X,

⊕
P∈X i∗(M⊗2/Ω⊗2

P )) and the first homology is zero, therefore

ΩG = Imα.

Proposition 3.3. Let b1, . . . , br be the set of ramification points of the cover X → Y , and let Gi = G(bi ) be the
corresponding decomposition groups. The following holds:

H1

(
G,
⊕
P∈X

i∗(M⊗2/Ω⊗2
P )

)
=

(
r⊕

i=1

H1(Gi ,M⊗2/Ω⊗2
bi
)

)
.

Proof. Let P be a point of X , and let tP be a local uniformizer at the point P . Consider an element a =
∑

P∈X aP P ∈

(
⊕

P∈X i∗(M⊗2/Ω⊗2
P )). Let ω be a 2-holomorphic differential. Every meromorphic 2-differential can be written as

a product f ω, f ∈ KX . The tP -expansion of f ω at P is given by(
−1∑
ν=−n

aν
tνP

+

∞∑
ν=0

aν tνP

)
ω, for some n ≥ 0.

The finite sum
∑

−1
ν=−n

aν
tνP

is called the polar part of f ω at P and it can be identified with the coefficient aP of a at P .
The action of an element g ∈ G on f ω is given by ( f ω)g = f gωg . Since ωg is still a 2-holomorphic differential

we have a well defined action of G on M⊗2/Ω⊗2. If we express f ω in terms of a local uniformizer tP at P in the
following form

f ω =

(
−1∑
ν=−n

aν
tνP

+

∞∑
ν=0

aν tνP

)
· ω,

then

( f ω)g =

(
−1∑
ν=−n

aν
g(tP )ν

+

(
∞∑
ν=0

aν tνP

)g)
· ωg

=

(
−1∑
ν=−n

aν
g(tP )ν

)
ωg modulo holomorphic 2 differentials.

The element g(t) is a local uniformizer at the point g(P). Let G(P) = {g ∈ G : g(P) = P} be the decomposition
group at the point P and write G as a disjoint union of cosets: G = ∪

[G:G(P)]
ν=1 gi G(P). If g = gi h, h ∈ G(P) then the
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action of the element g ∈ G on a is of the form

g

(∑
P∈X

aP P

)
=

∑
P∈X

h(aP )gi (P).

Let MP = i∗(M⊗2/Ω⊗2
P ) be the summand corresponding to the point P . We consider the induced module, seen as a

subspace of ⊕P∈X M⊗2/Ω⊗2
P ,

IndG
G(P)MP = KY [G] ⊗KY [G(P)] MP =

⊕
g∈G/G(P)

Mg(P).

For every point Q of Y choose a point PQ ∈ X . We have⊕
P∈X

MP =

⊕
Q∈Y

⊕
g∈G/G(P)

Mg(PQ) =

⊕
Q∈Y

IndG
G(PQ)

MPQ ,

where the above two direct sums are direct sums of G-modules. Shapiro’s lemma [13, 6.3.2] implies that

H1(G, IndG
G(P)MP ) = H1(G(P),MP ).

Thus if P is not a ramification point it does not contribute to the cohomology, and the desired formula comes by the
sum of the contributions of the ramification points. �

We have proved that the following sequence is exact:

0 →

(
r⊕

i=1

H1(G(bi ),M⊗2/Ω⊗2
bi
)

)
→ ΩG → Imα → 0 (8)

which is exactly the dual sequence of Bertin and Mézard [1, p. 206].

Proposition 3.4. Let b1, . . . , br be the ramification points of the cover π : X → Y , and assume that the groups in the
ramification filtration at each ramification point bk have orders

e(k)0 ≥ e(k)1 ≥ · · · ≥ e(k)nk
> 1.

The dimension of the space Imα is given by:

dimkImα = 3gY − 3 +

r∑
k=1

⌈
2

nk∑
i=1

e(k)i − 1

e(k)0

⌉
.

Proof. We are looking for elements of the form f π∗(ω), f ∈ KY , such that divX f π∗(w) ≥ 0. We know that if ω is
a 2-differential on Y then:

div(π∗(ω)) = π∗(divω)+ 2R, (9)

where R is the ramification divisor of π : X → Y . Therefore π∗(w) is holomorphic if and only if π∗(divω)+2R ≥ 0.
We will push forward again and we will use Riemann–Roch on Y . We want to compute the dimension of the space

L(2KY + π∗(2R)/|G|),

where KY is the canonical divisor on Y .
The ramification divisor is

R =

r∑
k=1

nk∑
i=1

(e(k)i − 1)bk,

and the Riemann–Roch theorem implies that

dimkImα = 3gY − 3 +

r∑
k=1

⌈
2

nk∑
i=1

e(k)i − 1

e(k)0

⌉
. �
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4. The cyclic group case

In this section suppose that G = 〈σ 〉, σ p
= 1. The k[G]-module structure of the module of 2-differentials is

described by Nakajima in [10]. Following the article of Nakajima, we introduce the following notation: Assume that
X → X G

= Y is a branched Galois cover with Galois group the cyclic group G of order p.
Let tP be a normaliser of the local ring at P ∈ X and let vP denote the corresponding valuation. Set Ni + 1 :=

vP (σ (tP )− tP ). Denote by V the k[G]-module with k-basis {e1, . . . , ep} and action given by σe` = e`+e`−1, e0 = 0.
Let V j be the subspace of V generated by {e1, . . . , e j }. The vector spaces V j are k[G]-modules. Using the theory of
Jordan normal forms of matrices, we can show that every k[G]-module is isomorphic to a direct sum of V j . Therefore,

H0(X,Ω⊗2
X ) =

p∑
j=1

m j V j (10)

as a direct sum of k[G]-modules. We observe that dimk VG = 1, therefore

dimk H0(X,Ω⊗2
X )G =

p∑
j=1

m j . (11)

There is a 2-differential on Y so that the support of div(ω) has empty intersection with the branch locus. Using (9)
we obtain that

ni := vPi (div( f ∗ω)) = vPi (2R) = 2(Ni + 1)(p − 1).

Let gY denote the genus of the curve Y and let [·] denote the integer part function, i.e., for every x ∈ R, [x] ∈ Z,
[x] ≤ x < [x] + 1. The integers m j that appear in (10) are computed by Nakajima in [10, p. 90]

m p := 3gY − 3 +

p∑
i=1

[
ni − (p − 1)Ni

p

]
,

and for j = 1, . . . , p − 1,

m j =

r∑
i=1

{
−

[
ni − j Ni

p

]
+

[
ni − ( j − 1)Ni

p

]}
.

Using the above values of m j and (11) we obtain that

dimk H0(X,Ω⊗2
X )G =

p∑
j=1

m j

= 3gY − 3 −

p∑
i=1

[
ni − (p − 1)Ni

p

]
+

p−1∑
j=1

r∑
i=1

{
−

[
ni − j Ni

p

]
+

[
ni − ( j − 1)Ni

p

]}

= 3gY − 3 −

r∑
i=1

[
ni − (p − 1)Ni

p

]
+

r∑
i=1

[
ni

p

]
−

r∑
i=1

[
ni − (p − 1)Ni

p

]

= 3gY − 3 +

r∑
i=1

[
ni

p

]
= 3gY − 3 +

r∑
i=1

[
2(Ni + 1)(p − 1)

p

]
.

The later result coincides with the result of Bertin and Mézard in [1]. (Notice that on pages 235–236 of [1] b·c and d·e

have to be interchanged everywhere.)
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