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Abstract

We consider a Fermat curve Fy : x" + y" + 7" = 0 over an algebraically closed field K of
characteristic p > 0 and study the action of the automorphism group G = (Z/nZ x Z/nZ) x S3 on
the canonical ring R = EBHO(F,,, Q%m) when p > 3, p f n and n — 1 is not a power of p. In
particular, we explicitly determine the classes [H O(Fn, Q?m)] in the Grothendieck group Ko(G, K) of
finitely generated K[G]-modules, describe the respective e(i'uivariant Hilbert series Hg () as a rational
function, and use our results to write a program in Sage that computes Hg ¢ (¢) for an arbitrary Fermat
curve.

© 2022 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction
1.1. Graded representations

Let K be an algebraically closed field of characteristic p > 0, let G be a finite
group and let Ko(G, K) denote the Grothendieck group of the category of finitely generated
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K[G]-modules; it is well-known, see for example [25, Part III] that Ko(G, K) is generated by
the irreducible representations of G over K and that it becomes a commutative ring with unit
with respect to ®k. If V is a K[G]-module, we denote by [V] its image in Ko(G, K) and
recall that if char(k) 1 |G|, then [V] determines uniquely the isomorphism class of V, whereas
if char(k) | |G| this is no longer true.

Next, we consider a finitely generated, N-graded K-algebra R = €D, R; whose graded
components R, are finite dimensional K -vector spaces acted on by G. The respective repre-
sentations p; : G — GL(R,) give rise to a formal power series

oo
Hy.o(t) = ) [Rqlt, where [Ry] € Ko(G, K),

d=0
which is called the equivariant Hilbert series of the action of G on R. Note that if G is trivial,
then [R,] is just the dimension of R; as a K-vector space, and thus Hpg (¢) generalizes the
classic, non-equivariant Hilbert series of R. At the same time, it encodes all the invariants of
the action of G on R, which are infinitely many, in a finite, rational expression, see [9,27].
To explicitly compute Hg c(¢) when char(K) 1 G, one can follow the approach described in
Stanley’s exposition [23].

Each [R;] € K¢(G, K) is uniquely determined by its decomposition R; = @ny vV as a

direct sum of irreducible K[G]-modules; this in turn gives rise to the following decomposition
of the graded K-algebra R:

R=P B nvv= B Pruv.

d=0 V elrrep(G) Velrrep(G) d=0

The graded K -algebras RS = Do na,vV are called the isotypical components of the action
of G on R and we obtain the identity

Hpo)= Y > navIVl.

Velrrep(G) d=0

Thus, the computation of the equivariant Hilbert series Hg ¢(¢) is reduced to determining
the multiplicities n;y € N and studying the convergence of the respective power series for
each V e Irrep(G). This is theoretically doable using character theory, at least in the case of
ordinary representations. However, computations become increasingly hard and thus one needs
to take into account specific properties of R and G to get concrete results.

The most well studied case is when R is the polynomial ring in n variables over some
algebraically closed field K of characteristic 0. The isotypical component corresponding to
the trivial representation is then by definition the ring of invariants R® and every isotypical
component RS for V € Irrep(G) becomes naturally an R®-module. Thus, the study of the
equivariant Hilbert series in this context falls under classic invariant theory, while a beautiful
result of Molien provides an explicit formula for Hg (¢); for an overview of the subject and
some striking applications to combinatorics the reader may refer to Stanley’s exposition [23].

Himstedt and Symonds in [9] studied equivariant Hilbert series in a generalized setting by
dropping the assumption on char(K) and considering finitely generated graded R-modules M
where R in turn is a finitely generated K-algebra. This generalized setting gives a geometric
flavor to graded representation theory, as the results of Himstedt and Symonds are applicable
to line bundles .2 on projective curves which are equivariant under finite group actions.
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From this viewpoint, the study of equivariant Hilbert series relates to that of equivariant Euler
characteristics, as expected from the non-equivariant case; the latter is an active area of research
and has far-reaching applications, from normal integral bases of sheaf cohomology [6], to
Dedekind zeta functions [28] to ramification theory [13,20], to mention a few.

This approach naturally gives a connection between equivariant Hilbert series and the
classic problem of determining the Galois module structure of polydifferentials on projective
curves. The problem was originally posed by Hecke and settled by Chevalley—Weil in [5] for
characteristic O curves; their results were generalized by Ellinsgrud and Lonsted in [7] when
char(K) = p {1 |G| while for modular representation theory the general case remains open
and there exist only partial results. Finally, the case of integral representations, which naturally
contains both ordinary and modular representation theory, has been studied only in very specific
cases, see for example [12,22].

To make things more concrete, we consider a pair (X, G), where X is a smooth, projective
curve of genus g > 4 over K which is not hyperelliptic, and G is a finite subgroup of its
automorphism group. If 2x/x denotes the sheaf of holomorphic differentials on X, then a
classical result of Max Noether ensures that the canonical map

¢ : Sym (H'(X, 2x/x)) — @D H(X. 28%)

is surjective, giving rise to the canonical embedding X — P{ 71; for a modern treatment of the
subject see [24]. The respective homogeneous coordinate ring R = @ H°(X, fo’/d[(), called the
canonical ring, is a graded K-algebra acted on by G. In this setting, the equivariant Hilbert
series of interest is

[e.¢]
Hp(t) =Y [H(X, 281
d=0
and its computation requires determining the K[G]-module structure of the K-vector spaces
HO(X, Qf?/dK) of global holomorphic polydifferentials.

This paper settles the problem in the case when X = F, is a Fermat curve given by the
equation x" + y" 4+ z" = 0 and G is its automorphism group. If n — 1 is not a power of
the characteristic of the ground field K, then the automorphism group G is isomorphic to
(Z/nZ x Z]nZ) x S5, see [16,30]. The case char(K) | n needs to be excluded as well, since
in this case the Fermat curve is not reduced. We also exclude the characteristics 2,3 so the
representation we consider is ordinary. We can‘t resist to point out that the group G appears as
the analogue of GL3(F»), that is the general linear group with entries in the degree n extension
Fy» of the mythical “field” with one element, see [11]. These groups play a significant role in
knot theory [8], and are isomorphic to the complex reflection groups G(d, 1, n), see [18].

Our results are original, as there only exist explicit formulas for the K[G]-module structure
of global holomorphic m-differentials on Fermat curves when m = 1, see [17, Section 6].
The author of [17] makes essential use of the results of [5,7] and the computations are based
on ramification data and information on the local characters of the corresponding stabilizers.
This is a well-studied technique, which has been further developed by several authors, see for
example [10,13,19,21]. It would be probably possible to obtain the K[G]-module structure
of global holomorphic m-differentials on Fermat curves using the results of Chevalley—Weil,
Ellinsgrud-Lonsted, Kani, Nakajima and Kock, however our approach in this paper is different;
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we explicitly compute the characters of the irreducible representations of G and the characters
of the K-vector spaces H°(X, Qf?/d,(), then take their inner product to obtain our results. In
the process, we study sums of roots of unity which resemble Kloosterman sums and apply
combinatorial techniques to count lattice points that satisfy modular congruences. It would
definitely be interesting to inspect whether one could arrive at the same results by applying
the techniques of the above mentioned authors; this is one of the directions we would like to
explore in the future.

1.2. Outline

Our main result is the explicit computation of the Galois module structure of holomorphic
polydifferentials on Fermat curves, the calculation of the respective equivariant Hilbert series
Hpg (¢) and a computer program in Sage [26] that computes Hg (¢) for an arbitrary Fermat
curve.

In Section 2 we review some preliminaries on Fermat curves F, and their automorphism
groups G. Since the latter are given as semidirect products, we use a classic result of Serre in
Proposition 1, to construct all the irreducible representations of G. The list and the respective
character table are given in Proposition 3. We proceed in Section 3 to obtain the characters of
the action of G on the global sections of holomorphic m-differentials. The standard bases which
are given in the bibliography, see Proposition 6, are not suitable for computations; motivated
by our work in [4] on the canonical embedding of smooth, projective curves, we rewrite
m-differentials as a quotient of two K-vector spaces which are easier to manipulate and give
the respective characters in Proposition 11.

The inner products necessary to obtain the decomposition of m-differentials as a direct sum
of the irreducible representations of Proposition 3 reduce to computing various sums of roots
of unity which are interesting in their own sake. We thus devote Section 4 to their explicit
computation and in Proposition 14 we obtain an equivalent characterization of these sums as
the number lattice points inside a triangle which satisfy certain modular congruences. We then
proceed with counting the cardinality of these lattices in Proposition 16 and obtain the exact
values necessary for the subsequent sections in Corollary 17.

Section 5 contains the explicit formulas for the Galois module structure of the global sections
of holomorphic differentials. We compute the inner products of the irreducible characters of
Section 2 with the characters of Section 3 using the results of Section 4. The main formulas
are summarized in Theorem 25, and we verify our results in Table 2 by giving the explicit
decomposition of m-differentials for m € {0, ..., 9} in the case of Fermat curves Fy, F5 and
Fs. Finally, in Section 6 we obtain an explicit expression for the equivariant Hilbert series as
a rational function: the main results are summarized in Theorem 26 and we once more verify
the computations by applying the results to get the equivariant Hilbert function in the case of
the Fermat curve Fg. We remark that even though the formulas of Theorems 25 and 26 are
complicated, they are appropriate for computations as they have allowed us to write a program
in Sage which takes as input the value of n that determines the Fermat curve F), and outputs the
equivariant Hilbert function of its canonical ring. The code is uploaded in one of the authors’
website.

2. The irreducible representations of the automorphism group

Let K be an algebraically closed field of characteristic p > 0 and let n € N. In this section
we will study the representation theory of the semidirect product G = A x S3 over K, where
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S3 = (s,1: S =1 = 1, tst = sil) = {l,s,sz, t,st,ts}

A=7Z/nZ xZ/nZ ={04p:0=<0a,f <n—1},
and the action of S3 on A is given by

2
S 0qB =08—q—a> S *Oup =0_Bag—p, | " Oup=0_qgp—a, IS 0up = 0a,

St -0, = Og—p,—B-

In what follows, we assume that n > 4 and that n # 1 4 p" for all 1 € N. Motivation for the
construction of G and the assumptions on p and n comes from the fact that G can be realized
as the automorphism group of a particular class of Fermat curves; more details will be given
in the next section, and the reader may consult [16,30] and [2, Prop. 2.1.2] for the formation
of G.

To describe the irreducible representations of G we will use the technique described by
Serre in [25, section 8.2]. Let = be the group of irreducible characters of A, with elements
denoted by x..,, 0 <x,A <n —1. Then S5 acts on = and we have

B X3 (0 p) = Xien(h™ oy gh),

where x., € 5,008 € A, h € S3 and x5 (0u,p) = CoFhr: we write H, , for the stabilizer
subgroup of S; with respect to x,, and define G,;, = A x H,,. Let p be an irreducible
representation of H, ; and let p be the representation of G, ; obtained by composing p with
the natural projection G, — Gy /A = Hy, . Every character x,, € = of A can be extended
to a character of G, , by defining x,..(ah) = x(.(a), fora € A, h € H, ,, and thus we may
form the tensor product x,; ® p.

Proposition 1 (/25, Prop. 25]). The induced representation 6, , = Ind¢ . (X, ® P) is an
irreducible representation of G and all irreducible representations of G can be obtained in
this manner, up to isomorphism. Further, it suffices to consider only one representative X, for

each orbit of Ss in =, and different orbits give different irreducible representations.

We will use the following explicit description of the action of S5 on ="

hesSs h_laa,,gh X,(,A(h_lamﬂh) R Xea
S| Opraa | LTIV x
s? O—B.a—p gOMHPERD o e "
t O_ap—a g hFbR X—kc—nn
ts OB« gorthr pows
st | Og-pp | ST pe
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Thus, a character x,, € Z is fixed by s or s2 if and only if k = A =0 orkx = A = 5 or

K=MA= 2—" when 3 | n. It is fixed by ¢ if and only if A = —2k, it is fixed by ¢s if and only
if A=« and it is fixed by st if and only if k = —2A. The trivial character is fixed by all Ss.

This is summarized in the following table.

Xea € = | Stabilizer H, Orbit Condition

X0.0 S3 {x0.0}

xu,n S3 {xz,n} 3|n
Xw 2 S3 {X%n,%} 3n

X (ts) {Xieuer Xieo—2100 X=2c) K#E0, Kk #EY k£
Xoe,—2 () {Xicwes Xie.—25 X—26.} K#0, Kk #£5 k#£F
X2k (st) {Xiccr Xoes—260> X—2ucc} K #0, k£ k£
. 1) {Xeh> X—k—rkcs Xri—k—1s £ L Dk £ 20
’ X—k—nns Xk Xi,—r—x}
Thus, a system of representatives for the orbits of S3 in = is given by

{x0.0, X%.% X2 20 Xics X, »} under the restrictions given in the last column of the above table.
By Propo%mon [, all irreducible representations of G are obtained by tensoring the above
representatives with the irreducible representations of the three stabilizers {(1), (ts), S3}. Recall
that S3 has three irreducible representations denoted by Oyiv, Osgn and Oggan.

e For v € {0, 1,2}, the stabilizer Hun e v}n of X v equals the group S3. Thus we have the
representations Oun v, -, Gun vn
the arbitrary element g €G, and obtaln the corresponding characters

6’* w oo We write ¢ = 0480, 04 € A, h € 3 for

XanuTnp (Ga,ﬂh) = é.%"(a-kﬁ)xp(h)’ where v € {0, l, 2} and JOS {ptriVa Psgn pstan}-

e The stabilizer H,, = (ts) of xc. for k # 0,6 # 3,6 # 2” has two one dimensional
representations, oy and pgen, which give rise to the representatlons Occpyiy a0 O i, Psen
respectively. To compute the respective characters, recall that by Proposition 1,
{ptriV7 psgn}, we have that 9;(,:(,,0 = Indgm
character formula [25, Section 7.2] gives

for p €
(0cx ® p) and thus the induced representation

D Xew (r'gr) xo (r~'gr) . where p € {puiv. pugn}- ()
reG
r’lgreGK.;(

XK,K, (g) = T4
’ [

Lemma 2. Let g =04 ph, r =0,52€ G = A% S3 where 04p3,0,5 € A and h,z € S3. Then:

(1) r7'gr € Geo = A % (ts) & z27'hz € (ts).
(2) X,k (rilgr) =2 Xk (Ua,ﬁ)~
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Proof. For (1) we write
—1 -1 _-1 -1 _-1 -1, -1
rogr=2z0,,0qph0y,52 =20, 50qph0y,sh™ 22" hz

and observe that hay,gh’l €EA=> a;;(ra,ﬁhoy,gh’l €EA=> 2710;;0@,[3/10'%5}1712 €A, ie.

€A
— —e

la_laa ho L;hfl zz 'z
y,8CPa,p 110y,
R —

rlegr=z"

€A

cA

and so r~'gr € A x (ts) & z7'hz € (ts).
(2) Follows from extending the action of S3 on the irreducible characters of A to G,,. U

Thus, we may rewrite Eq. (2) as

1 _
Xicie, p (Ua,ﬂh) = W Z 2 X,k (Ua,ﬂ) Xp (Z th)

Z€83
2= hze(s)

1
2 Z <X (%ﬂ) Xp (15),

Z€83
7~ Lhze(s)

If h € {s,s?}, then z7'hz has order 3 and therefore z 'hz ¢ (ts). If h = 1 then trivially
7z 'hz =1 for all z. Finally, for each & € S3 — (s) = {¢, s, st} there are two elements z € S;
such that z7'hz = ts: z=s>orst forh=t,z=1orts forh =ts, 7 =s or t for h = st.
Combining with table (1):

é-/c(aﬁf?) + é-/c(a72ﬁ) + Ck(72a+ﬂ) Jifh=1

@By (ts) ,ifh =ts
Xice,p(Oa,ph) = {K(“_Zﬁ)xp(ts) ,ifh=t

g2y (ts) ,if h = st

0 Jif h=s,s?

e Finally the generic y, , has trivial stabilizer which admits only the trivial representation, so
we have a unique representation 6, ;, p., = Indgk . ( Xk, )\), with character

X (&)= ks Z Xea(r~'gr), or equivalently
KA Priv n2 KA >

reG
r_]grEA
XK,A(ga,ﬁ) + X*K*)\.,K(O‘a,ﬁ) + X)L,fl(f)»(o-a,ﬁ)'i_ lf h=1
XK,A,plriv(aa,ﬂh) = XA.K(Oa,ﬂ) + X—K—A,k(aa,ﬁ) + XK,—A—K(Ua,ﬂ) ’
0 ifh # L

To summarize the above, the irreducible representations of G are given in Table |
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Table 1
The irreducible representations of G.

Case 1: If n {3:

1.1. 60,0,p, Where p € {pyiy, Psgns Pstan}-
1.2. 6c.x,p» Where k # 0 and p € {puiv, Psgn}-
1.3, O pyiy» Where i # A, A # =2ic, k # —=2A.

Case 2: If n | 3:
2.1. 9%_%,/,, where v € {0, 1,2} and p € {puiv, Psgns Ostan}-
2.2. O p» Where kK #0, kK # 3, K # % and p € {puiv, Psgn}-
2.3. O pgivs Where K # A, A # =2,k # —=2A.

and the character table of G is given by:

Proposition 3. The irreducible characters of the group G are given in the following table

Character value x (o4 gh),
Representation | Degree Cases
where h € S3,04.8 € A

O 1 £y, () 1.1, 2.1
0%’%4’51&" 2 é‘VTn(a_‘_ﬁ)Xstan(h) 1.1, 2.1
CK((X‘FIS) + Ck(a—Zﬂ) + é—K(ﬁ—Za) , lf/’l -1
ce@th y o (ts) L ifh =ts
Oc.kcp 3 ce=2By ) L ifh=t 1.2, 2.2
gRP20 y, (s1) , if h = st
0 , ifh=s,s%
;"“1'”»/3 JL ;'_(K+)\.)Q+Kﬂ
+§Aa—(K+A)ﬁ+ lfh 3 1
O i 6 ghoteb 4 g=(ethatrg |7 &0 1.3, 2.3
+ Ckaf(/ch)L)ﬁ
0 L ifh#1

3. Character tables for m-differentials

Let F, : x{ + x5 + x; = 0 be a Fermat curve defined over the algebraically closed field K
of characteristic p > 0 introduced in the previous section. Recall that we assume that p 1 n,
n>4andn # 1+ p” for all h € N. The former assumption is to ensure that we deal with
Fermat curves of genus g > 2, since it is well known that F}, has genus g = W see for
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example [29, Prop. 1]; we need the latter assumption to ensure that the automorphism group of
F, is given by the group G = Autg(F,) = (Z/nZ x Z/nZ) x S, introduced in the previous
section. This result is proven in [30], extending a preprint of Leopoldt, which was eventually
published in [16].

In what follows, we will work with the affine model F;, : x"4+y"+1 = 0, obtained by setting
x =L and y = 2. The action of G on F, is then explicitly given by oq,s(x, y) = (¢%x, ¢Py)

1 1 1
s(x,y) = (f ;), tx,y) = (;, )XC) st(x, y) = <§ ;), t5(x, y) = (v, %)

can= (L)
yy

Let (2r, denote the sheaf of holomorphic differentials on the Fermat curve F,. More

and

3)

generally, for m > 1, we write .Q?;’” for the sheaf of holomorphic m-differentials. The global
sections HO(F,, (2%’1"’) form a vector space over the ground field K; its dimension is given by
the Riemann—-Roch Theorem
n—1)n-2)
. - 8= ——F—">
dimg HO(F,, 28") = 2 3)

nn — .
Cm—-1)(g—-1)=2m— I)T, if m > 2.

ifm=1,

We proceed with an auxiliary lemma that will allow us to obtain explicit bases for the spaces
HO(F,, &™),
Lemma 4. For each pair (i, j) € Z* satisfying 0 <i, j,i + j < m(n — 3), the differential

VY
Xy
dx@m

ym(nfl)

is holomorphic.

Proof. This requires computing the divisors of x, y and dx. Such a computation can be found
in the classical articles of Boseck [3, pp. 48-50] and Towse [29, pp. 3359-3360], or in the
work of the fourth author [1,14]. Indeed, from [1, p. 113], we have that

div) =Y =)y, div) =D Bu—) . divd0) =(r—=1))Y B2
=1 v=1 v=1 v=1 v=1 v=1

where for v =1, ..., n, o, are the n points on the Fermat curve F, with x coordinate equal
to zero, B, are the n points of the Fermat curve with y coordinate equal to zero and y, are the
n points at infinity that have z coordinate equal to zero. We then compute

n

iy n n
div <%dx®’") =D iey Y = Y (i —mn =)y,
1 v=1

v= = v=1
and the result follows. [
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Remark 5. The differentials of Lemma 4 do not form a basis for H(F,, .QI%'") form > 2, as
they are not linearly independent. Indeed, if n < i < m(n — 3), then we can write i = gn + v
with 0 < v <n—1 and

x'y) x®" = an—xvyj dx®" = (1 — y")! xVy! dx®m
ym(nfl) ym(nfl) ym(nfl)
q UL,
_ v q nv X7y Qm
- Z(_l) <U>y ym(n—l)dx

v=0
+nv
y]

= Z( 1) < ) m(n—1) dx@m'

We remark that the pairs (i, j') = (v, j + nv) satisfy the inequalities
0<i’<n—-1and0<j,i'+j <mm-3).

Proposition 6. A K -basis for V,, = H'(F,, .Q%m) is given by

j
{de O<l]l+]<n—3},ifm=1
by =1

X'yl e , C :
mdx 0<i<n—-1,0<j,i+j<mmn-3);,ifm=>2.
y

Proof. The result for m = 1 is classic and a proof can be found in [29, Proposition 2].
Lemma 4 implies that the differentials in b,, for m > 2 are holomorphic. The fact that they
are linearly independent is trivial and a simple counting argument verifies that they have the
correct cardinality. [

The above basis is not suitable for computations when m > 2, since it is not symmetric in
i,J.

Definition 7. Let £y, = {(i, j) € 7?0 < i, Jjsi 4+ j < M} be the triangle with vertices
0, 0), (0, M), (M, 0), as in Lemma 4. For m > 1, we will denote by W,, the K-vector space
with basis the symbols

{ i, J) € Enu- 3)]

and, for m > 2, we will denote by I,, its K-subspace generated by the expressions

(m) . (m) (m) (m) [
{ l i = i,j + w1+n J + wl Jj+n ® (l’ ‘]) € Em(n73)7n} ’

Lemma 8. dimg I,, = #E,,(,—3)—n-

(

It suffices to show that the elements nif;') are linearly independent. Let A; ; € K be such

that
_ (m) (m) (m)
0= Z Aij (w < Wi, T+ wi,j+n)
(l.aj)EEm(n—.?)—n
_ (m) (m) m
= 2L g+ ) kg )L hgwl,
U DEEmMn—3)—n (G NDEEmn—3)—n U DEEnn—3)—n
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= Y e Y e Y

G DEEmn—3)—n G NEEp(n—3)—n G DEEp(n—3)—n
i>n j=n

= Z ()\.l‘,j+)\.i_n’j+)\.i’j_”) fj,wherekj_01fz<norj < n.
(i-j)EEm(n—3)—tl

(

Since the elements wl."'j’.) are linearly independent, we obtain that

)\i,j + )»,',,,'j + )w',jfn =0, forall (i, j) € Em(n73)7n- (@)
We will use that A; ; =0 fori <n or j <n and Eq. (4) to prove by induction on m > 2 that
all )‘-i,j =0.
o If m =2, then E,,_3—, = E,_6. Thus A;_, ; = A; j_, = 0 and Eq. (4) gives A; ; = 0.
e Assume that )xiyj =0 for all (i, ]) € E(m—l)(n—3)—n~ If (i, J()) € Em(n—3)—n then
O0<iptjo<mn—-3)—-n=0<ip+jo—n<mmn—-3)—2n < (m—1)n—-3)—n.

= A

Thus (iy — n, jo), (io, jo — 1) € Em-1)n-3)-n and so A io.jo—n = 0 by the

io—n. jo

inductive hypothesis. Eq. then (4) gives A;,, j, = 0.
Proposition 9. We have that
w , ifm=1
HOF,, 0gm =1 ! g
" Wi/ln , ifm=>2
Proof. When m = 1, the result follows trivially since
dim H(F,, 22") = #b; = #E,_3 = dim W.
For m > 2, consider the K-linear map
Y
b1 Wy —> HOF,, 02", wl") > =2 dx®",
ym n—

which is well defined by Lemma 4. It is onto, since every differential in b,, is the image of a
symbol w(m) € E,n-3) that satisfies 0 < i <n — 1. We thus have that

HO(F,, 28") = W, /kergp,

and it remains to show that ker ¢ = I,,. For an arbitrary rr ) e 1,,, we have that

xl J l+n J xl j+n
¢< 1(17)) = ym(gil) dx@m + ym(n yl) d'x + ym)(]nfl)d'x®m
xiyj ®m n n
= ym(nfl)dx (] +x +y ) = O’

by the defining equation of F},, and thus I,, C ker ¢. For the inverse inclusion, we first remark

that the cardinality of the lattice points in the triangle E,; is given by

M+ DM +2)

#Ey = 5
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By Lemma 8 we get

dlmK (Wm/]m) = #Em(n73) - #Em(n73)7n
_ [m(n —3)+ 1][m(n — 3) + 2]

2
_[m(n—3)—n+1][m(n—3)—n+2]
2
=Q2m— 1)@ = @m —1)(g — 1) = dimg H(F,, 2g™). O

The reader may observe that this decomposition of HO(F,, Q%’”) is closely related to the
classic result of M. Noether, F. Enriques and K. Petri on the canonical ideal of non-hyperelliptic
curves: indeed the graded ring @ W, is isomorphic to the quotient of Sym (H O(F,, 2, )) by
some binomial relations, whereas the elements of I, are the missing generators for the kernel
of the canonical map

Sym (H(F,.. 2,)) — @ HO(F,. 25

For more details on the explicit construction in the case of Fermat curves see [I5], an
application of a more general technique given in [4].

Next, we describe the appropriate action of G on the vector spaces W,, and I, that makes
the isomorphism of Proposition 9 G-equivariant.
Proposition 10. Ler w(m) and n(r;') be the generators of W, and I, respectively, as in
Definition 7. We define an action of G on W, via the first column of the table below, which
induces an action of G on I, as in the second column. Then the isomorphism of Proposition 9
is G-equivariant, where the action on HO(F,, Qg’”) is given by Eq. (3).

(m) (m)
geG g-w;; g
Oup g—a(i+m)+,3(]+m)wlfyn;) é-a(i+m)+ﬁ(j+m)ni€77)
s (m) (m)
m(n 3)—(i+j),i m(n 3)—(i+j)—n,i
2 (m) (m)
s wim(n %) (+)) T jm(n=3)=G+j)=n
(m)
t =D"w m(n y—G+j | T T3yt jyon,j
ts (—1)'"wj.’j;> (—1yma
(m)
st (=D"w lm(n y—+p) | T m—3)—i+jy—n

Proof. For o, 4 € Z/nZ x Z/nZ we have that

i o N\ B J i 8 i
Oq,p <%dx®m) - %d (g-ax)®m _ Mgamdx&bm

_ {“(i+m)+/3(j+m) —xlyj dx®m
- ym(nfl)

and thus ¢ (aa 8- w( )> = Oup @ ( (m)> For the element s € §3 of order 3 we first note

that differentiating the Fermat equation x" 4+ y" + 1 = 0 gives dy = — """ dx and thus

n]
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d (X) = Xzy%dx. We then have

x
x'yl ¥ 1 N (1 \"
$ dx@m — m(n 1)d< ) — xm(l’lfl)*(l‘i'j)yl dx@m
ym(n—l) x x] x x2yn—l
xm(n73)7(i+j)yi

— ®m
- ym(n—l) dx

and thus ¢ (s w“?) =s5-¢ (w('")) For the element ¢ € S3 of order 2 we have

xi j 1 j xm(n_]) 1 ®m xl?l(n—l)_(i+.i) J 1
(22 ) 2 LY (LN T e L
ym(n 5 _ x2m

xi xJ ym(n—l) x ym(n 1)

X=3)=Gi))y

=(=1)" dx®"

ym(nfl)
and thus ¢ (t w("')) =t-¢ ( (’")) The remaining cases follow similarly. [

We proceed with an explicit description of the character tables of the representations
G—> GLW,)and G — GL (I,):

Proposition 11. The characters xw,, and ¥, of the representations py, : G — GL (W,,) and
. - G — GL (I,) respectively are given in the following table

g€l Character xw, (g) Character x;,(g) m > 2
m(n—3) m(n—3)—i m(n—3)—n m(n—3)—n—i
(i+m)+B(j+m) (i+m)+B(j+m)
Oup Z Z ;al m)+B(j+m Z Z é-lll m)+B(j+m
i—0  j=0 i—0 =0
mn . n(m—1) .
oo [P s nor s m | [ i3 ngm - 1)
P 0, if3tnand3tm 0, otherwise
o | [ee P i3 nor3im | (e i3 an — 1)
O A
op 0, if31nand3tm 0, otherwise
L)?z(n273)J | Lm(n33)fnJ |
Oupl (-1)" Z ;(0—25)(1-5-7”) (=" Z ;(0—2/3)(1-5-17!)
i=0 i=0
= E=g
O’a,ﬂlS (_ l)m Z é—(otJrﬁ)(ier) (_ l)m Z ;_(aJrﬂ)(ier)
i=0 i=0
Lm(}373)J | Lrn(n33)fnJ |
O'a,ﬂst (_ l)m Z ;(572a)(l+m) (_ 1)m Z {(ﬁ72a)(l+m)
i=0 i=0
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Proof. By Proposition 10, the matrix pw,, (04,) is diagonal with trace

_ (i+m)+B(j+m)
XWp, (Ua,ﬂ) = Z Ca .
(iaj)EEm(n—3)

Similarly, the diagonal entries of the matrix p(s) are either O or 1. The number of non-zero
such diagonal entries equals the number of pairs (i, j) that satisfy the relations:

O<it+j<mn—3),i=mm—-3)—(G+j)i=j

which gives 3i = m(n — 3). Thus, we have a unique non-zero diagonal entry if only if
3| m(m—3),ie. if 3| n or 3 | m. The formula for xw, (o4, gs) is then obtained by substituting
i=j= @ in the expression for xw,,(04.p), and the same holds for xw,, (0u,g5?).

Again by Proposition 10 we have that the diagonal entries of the matrix pw,, (¢) are either
0 or —1. The number of non-zero such diagonal entries, is given by the number of pairs (7, j)
that satisfy the relations:

0<i+j<mmn—=3), i=mn-3)—0G+)).

Thus, for each value of i we have that j = m(n — 3) — 2i. Since both i and j must be
non-negative, the number of pairs (7, j) satisfying the above relations is equal to the number
of unique i-values that satisfy

0<i<\\m(rz—3)J
izl —— |

The formula for xw, (04 t) follows from substituting j = m(n — 3) — 2i in the expression
for xw,,(0q,p). The remaining cases for the character yw,, easily follow from the computations
above.

The character yx,, is obtained by replacing throughout E,,;,—3) by Enp—3—n. U

The above result and the G-equivariant isomorphism W,,/I,, = H(F,, (2?,"”) allow us to
obtain the characters of the spaces V,, = HO(F,, 27"):

Theorem 12. The character for the space H(F,, 2r,) is equal to the character of the
space Wy, while the character for H(F,, Q%m), for m > 2 equals xw, — xi,> where
AW X1, are given in Proposition 11.

4. Computing sums of roots of unity

To determine the K[G]-module structure of the spaces HC(F,, Q%l’”) we will use
the standard approach of computing the inner product of the irreducible characters of G,
given in Proposition 3, with the characters xw, — xj, given in Proposition 11. These
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computations require finding closed formulas for two types of sums that involve nth roots of

unity:

Definition 13. For M € Z, let Eyy = {(i, j) € N2:0<i, Jyi+j <M} C N? be the triangle
with vertices (0, 0), (0, M), (M, 0). For any X, Y € Z, we define the quantities

[M/2]
IM,X,Y) = Z Z CUHOTBUEY) g X = Z Z ¢ @HB+X)
o,BEL/nZ (i,j)EE p a,BeZ/nZ i=0

For M € Z_, the triangle E,, is empty and thus we set I[(M, X,Y) = J(M, X) = 0.

Proposition 14. For M € Zs(, we have that

IM,X,Y)=n>#{(i,j) € Ey: i=—Xmodn and j = —Y mod n}

[M/2] . [M/2] _
J(M, X) — Z Z C(ot—Zﬂ)(H—X) — Z Z C(ﬁ—Za)(H—X)
a,BeZ/nZ i=0 oa,BeEZ/NZ i=0

5 . . M .
=n"-#lieN:0<i < 5 andi =—-Xmodny.

Proof. The formula for I(M, X, Y) follows from the fact that for fixed (i, j) € Ej) we have

Z gAY — {HZ, ifi=—Xmodn and j = —Y mod n

a,Bel/nZ 0, otherwise.

The formula for J(M, X) follows similarly, since for fixed 0 <i < L%J we have that

Z é.(ot+/3)(i+X) — Z C(a72/3)(i+X) — Z C(ﬁ72a)(i+X)

o,BEL/NT o,BEL/nT o,BEL/nT
_|n? ifi=-Xmodn 0
N 0, otherwise.

To obtain explicit formulas for the above quantities, we will use the following auxiliary
result.

Lemma 15. Let X, L € N. Denote by vy, v_x, the remainder of the division of L, —X, by n.
Then

L )

{—J +1 ifv_x <y
n
L )

\\—J lfU_x > vr.

n

L —vu_
S
n
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Proof. To prove equality (1), note that the greatest multiple of n always less than L is L%J n.

The interval 0 < i < |£]n — 1 contains exactly | £ | subintervals of length n, and thus it
contains exactly L%J solutions to the congruence i = —X mod n. The congruence has one

more solution in the interval |£|n <i <L =|%]|n+ v, if and only if v_y < v;.
To prove equality (2) we write L = L%J n + vy as above and observe that

L —u_ Ln—i—u —U_ L —U_
LﬁJH []n+ v XJ*”H*LMJ“
n n n n

L .
\‘—J +1 if v_y <vg
n

= O

E
— lfU_x>UL.
n

Recall that our motivation for computing the quantities /(M, X,Y) and J(M, X) is to

obtain the Galois module structure of the global sections of m-differentials for m > 1.
Since the respective characters are given by the differences xw, — xi, we need formulas
for differences of these quantities for different values of M. Recall that when M < n — 1,
IM—n,X,Y)=JWM —n, X)=0.

Proposition 16. For X, Y, M € N, let

-1 ifvx>vyandv_x+v_y >vy+n
M, X, Y)=11 ifux <uvyand v_x +v_y < vy
0 otherwise.

where v_x, U_y, Uy denote the respective remainders when dividing by n. Then

IM, X, Y)—I(M —n,X,Y)=n? (LMJ +8(M, X, Y)),

n
M _ M—n| _
J(M,X)-J(M-n,X):nzqtzjn U‘XJ—L 2 Jn U‘XDe{o,nz}.

Proof. The formula for J(M, X) — J(M — n, X) follows directly by Proposition 14 and the
second equality of Lemma 15 for L = L%J and L = LMz_ "J respectively.
To obtain the formula for I(M, X, Y) — I(M — n, X, Y), we first assume that M > n — 1.

By Proposition 14, I(M, X, Y) is equal to n? times the number of solutions to the system

{iE—Xmodn )

j=-Y modn

that lie inside the trapezoid Ejp \ Ep—, with vertices (O,M —n + 1),(0,M),(M — n +
1,0), (M, 0). We remark that Ey \ Ey—, can be written as the disjoint union of the sets I/
and T where II is the parallelogram with vertices (0, M —n + 1), (0, M), (M — n,1),(M
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—n,n) and T is the triangle with vertices (M — n + 1,0),(M — n + 1,n — 1),(M,0).
That is

H={Gjj):0<i<M-—-nM-n—i+1<j<M-—il}
T={GJj)  M—n+1<i<MO0<j<M-—i}.

Thus, we compute the number of solutions to the system (5) inside Ey; \ Ep—, by computing
the number of solutions inside II and the number of solutions inside 7' separately:

M

M—-—n+1

one solutiof

0
M—nFT~—M

L%J — 1 solutions toi = — X one solutionto i = —X

olf(,j)ell,then0 <i <M —-—nand M —n—-i+1<j < M —i. Thus, for a
fixed value of i satisfying 0 < i < M — n there exist exactly n values of j such that
(i, j) € II and exactly 1 of them satisfies the congruence j = —Ymod n. Hence, the
number vy of solutions to the system (5) inside II is equal to the number of solutions to
the congruence i = —Xmod n that satisfy 0 <i < M —n. To count the cardinality of the
set{i e N:0<i<M—nandi= —Xmod n}, we apply the first equality of Lemma 15
for L = M — n and observe that LM;"J = L%J — 1 to obtain

B
— if vy < vy
n
S
— =1 lfU_X>'UM.
n

e To count the number of solutions to the system (5) inside the triangle 7 we observe that
its base consists of n consecutive integers and so the congruence i = —Xmod n has
exactly one solution iy. For this solution iy, there exists a point (ip, jo) in 7 satisfying
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Jjo = —Y mod n if and only if iy + v_y < M, since 0 < jo < n — 1. Division of iy by n
gives
] |
— |n+uvu_yx Jf vy < vy
. n
o =
0 M '
(L—J — l)n—i—v_x ,if v_y > vy
n
and thus
M .
Ux+UySM—{—Jn=UM yif voy < vy
n
ip+v_y =<M<% M
U_X+v_y§M—<{—J —1>n:vM+n ,if v_x > vy.
n

We conclude that the number of solutions vy to the system (5) inside T is given by

1 ifvy<vyandv_y+v_y <uvy

1 ifig+v_y<M 0 ifv_y <vyand v_y +v_y > vy
Vr = e = .
0 ifip+vy<M 1 ifv_yxy>vyandv_y+v_y <vy—+n
0 ifv_y>uvyand v_y +v_y > vy +n.

The formula for I(M, X,Y)— I(M —n, X, Y) follows by combining the cases for v;; and vr.

For M <n — 1, we have I(M —n, X,Y) = 0 and the trapezoid considered in the previous
case degenerates to the triangle T = Ej; with vertices (0, 0), (0, M), (M, 0). The system (5)
has a unique solution inside E); if and only if (v_x, v_y) € Ej which is equivalent to the
condition v_y +v_y <M. O

We conclude this section with substituting the value of M that we will need for the
computations on m-polydifferentials:

Corollary 17. If n > 4 and M = m(n — 3) for m € N, we define 8;"1), =d(mn —3),X,Y)
and
1Y) = Im(n — 3), X, Y) — I(m(n — 3) —n, X, Y), J{"
=Jmmn —-3),X)—Jmmn —3) —n, X).

-1 ifuv_x >vosyand v_x +v_y > vz, + 0
where 83;";, =11 ifvx <vispand v_x +v_y <v_3,
0 otherwise .
mmn=3) [ mmn=3)—n [
Jm 2 L 2 J v-x L 2 J v-x 2
x =n — € {0, n"}.
n n
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Proof. The formula for J )((m) follows directly from the substitution M = m(n — 3). The formula
for 1y") follows from the observation that L@J =m+ [22] =m— [2]. For the

conditions defining I)((m}, we remark that v,,,—3) = v_3,. O

5. The Galois module structure of holomorphic poly-differentials

For m > 1, let V,, = HF,, Q?;’”) denote the K-vector space of global sections of
holomorphic m-differentials on the Fermat curve F,,. By Theorem 12, we have that the character
of the representation py, : G — GL(V,,) is given by xv,, = xw,, — X1, where xw,, and x,
are given in Proposition 11. Notice that for m = 1 the character x; = 0. Thus, the Galois
module structure of V,, can be computed as follows:

Corollary 18. Let x, ., € Itrep(G) denote any of the irreducible representations of G given

in Proposition 3. Then

{ )—LZ( (0u.p8) = X1,(00.58)) (0a.58)
XV s Xic,h,p = on2 XWy,(Oa,p8 X1y Oa,88)) Xic,r,p\Oa,p8

a,BeL/nZ
8€S3

Hence, the computation of each (xv,,, X«,x,,) breaks down in computing (at most) six sums

over Z/nZ x 7./ nZ, one for each element g € S3. We remark that by the results of the previous

section, the sums corresponding to o, g will be computed using the quantities / )((m}), and the sums

corresponding to o gt, 04,85, 04 gst Will be computed using J,((m) . For the sums corresponding
to 04 85, Og, ﬁsz, which appear only in the multiplicities of the irreducible representations of
degree 1 and 2, we have the following:

Lemma 19. For v € {0, 1, 2} let

1, if3|m—v
r'm=14-1 ,if3|m—v+2
3

0 , otherwise

Then for , i € {1,2} and p € {pyiv, Psgn} We have that

D X Oups e u p(Oupsh) = I € (=n®,0,n%)
o,BEL/nZ

and for p = pgan we have that

D KON O ps) =~ T € (=n?,0,07)
a,BEZ/nZ
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Proof. By Propositions 3 and 11, for v € {0, 1,2}, i € {1,2} and p € {pgiv, Psen}, We have
that if 3 | mn then

 — mn~ T ovn (m—v)n
Z XW,, (Ga,ﬁsl)x%,'%—",p(o—a,ﬁsl) — Z é-(OH-ﬂ) 3 g-(DH‘,B) — Z é-(a+ﬁ)73

o,BeL/nZ o,feL/nL o,feL/nT
. n? ,ifn|@_ n?> L, if3|m—v
o , otherwise. o , otherwise,

sincenl@@@=knf0rsomekeZ©@zkéZ@?alm—v.
Similarly, if 3 | (m — 1)n then Proposition 11 gives

 — (m=Dn =~~~ vn (m—v—Dn
Z le(Ua,ﬂSI)X%,%,p(Ua,ﬁS')= Z g(w+ﬂ)73 é-(ﬂt+/3)3 — Z g(w+ﬂ)73

o,B€Z/n o,BEL/n o,BEL/n
n?Litn O R i3 m—v 42
0 , otherwise. 0 , otherwise.

The result follows by Theorem 12: for p € {pgiv, Psgn} W€ subtract the two sums while for
£ = Pstan €verything needs to be multiplied by gun(s) = Xsan(s?) = —1. O

Next, we apply the results of the previous section for computing the part of (xv,,, Xi.x,p)
that corresponds to o, g:

Lemma 20. For v € {0, 1, 2} and p € {puiv, Psgns Pstan} We have that

7 N . 37’}’1 m
Y 1 Oapxy g o (0up) = dim(p) - n® (m - [71 + A%;)

a,BeZ/nZ

where A(ﬁ) = 65’1'”_)& mw € {=1,0,1} is as defined in Corollary 17.
3 33

Proof. By Propositions 3 and 11, for v € {0,1,2}, i € {1,2} and p € {pyiv, Psgn}, We have
that

Z me(%,ﬁ)—x%,%,p(%.ﬁ)= Z Z ceFmtpG+m) p (@)

o,BEL/nT o, BEL/nZ (i, j)EEmn—3)

a,BEL/nZ (i, j)EEmn—3)

=I(m(n—3),m—v—,m——>

and similarly

— vn vn
> a3 @) = 1 (mn =3) = nom = ==m — ).
o,Bel/n
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The result follows by Theorem 12 and Corollary 17. For p = pg,, we multiply the sum by
dim pgan = 2. O

Finally, we apply the results of the previous section for computing the parts of (xv,,, X«.x,p)
that correspond to o gt, 04 gtS, Oy gst:

Lemma 21. For v € {0, 1, 2} let
1
BS) = (=" =", € {=1,0,1)
3 n 3
Then for g € {t, ts, st} we have that
D KOs 2 g, Oup8) = n*BY € {—=n®,0.n%)
oa,BEL/NZ

D X OupX 2 e O p8) = —n*Bly € {=n®,0,n%)
o,BeL/nL

Proof. Recall from Proposition 14, that when computing the above sums, we may replace the
term ¢*+# that appears in X (04,88) in Proposition 3 by any of £*~?# or £#~2*. Hence,
by Propositions 3 and 11, for v € {0, 1, 2}, we have that

\\m(nz—:i)J
Z KW O X2 2 (G p1) = (—1)" Z Z £ @2 4m) @ =2p)
o,BEL/NT a,BeZ/nZ  i=0
Lm(n273)J |
— (_1)m Z Z g(&*Zﬂ)(!#*mf?

a,BeZ/nZ  i=0
vn

—(=1)"J <m(n —3),m— ?)

and similarly

I — m vn
Y K Ca X O = (=1 (mn = 3) = nom = =)
o,BEL/nL

Theorem 12 combined with the definition of J}:’?M given in Corollary 17 give
3

D X OapA 2 Capt) = (=1
a,BEZ/nZ

The same arguments give that

D X Oaptxm e Oapls) = D X (Oapsxn w0 pS1)
a,BeZ/n a,BeZ/nZ

= (=1)"I",,.
3

For p = psgn we multiply everything by xsen(t) = Xsen(ts) = Xsen(st) = —1. [

1091



H. Charalambous, K. Karagiannis, S. Karanikolopoulos et al. Indagationes Mathematicae 33 (2022) 1071-1101

We collect the above results in the following:

Proposition 22. For v € {0, 1, 2}, we have that

1 [3m ]
XV X ) = 5 (m - =+ A(’”) + 3B<’"> + 2F<’”>>
( — ) = l m— _3_m _|_A(m) _3B(m)+2]—v(m)
XV X3 5 psn! = g n 5 5 5
! [3m ] o
<XVm’XUTn’v3l’pslan) = § (m_ 7 +Avn _F%
where each of A(U'f,’), B(U',',’), F(m) take values in {—1,0, 1} as in Lemmata 19, 20, 21.

Proof. For p € {puiv, Psen» Psan} and v € {0, 1, 2}, Corollary 18 gives
1 -
s X ) = oz D (X0 p®)) Xp 9 (0 ).
n ot,ﬁe%/nZ
8€53

The summand corresponding to g = 1 was computed in Lemma 20, the summand correspond-
ing to g € {s, s?} in Lemma 19, and the summand corresponding to g € {t, ts, st} in Lemma 21.
Note that the absence of a B\’ term in the formula for pyyy is due to the fact that x osan(8) =0
for g € {t,ts,st}. O

We proceed with the multiplicities of the 3-dimensional irreducible representations:

Proposition 23. For k ¢ {0, % 2 3 1 we have that

1 3m m "

(X Vs Xoeeopy) = 3 (m — {7—‘ +A(K ) Bﬁ )) ’
1
2

o)
n Kk

A = (3<m> T + 8m ) B = 1" J<m>

<Xva XK,K,psgn> =

where

m—Kk,m—Kk m— Km+2K m—+2k,m—«

and 5&;";, I are as defined in Corollary 17.

Proof. As in the proofs of Lemmata 20, 21, Corollary 17 gives that

7 R Y (m) (m) (m)
Z XVm(GOZ,/S)XK,K,,OMV(UOAIS) = Imme Tt Imme+2K + ImW-Lﬁ-ZKm —K

o,BEL/nT
3
= n? [3 (m— [—’"D 480
n

+8 + 80 }

m—k,m—+2k m+2k,m—k
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and that for g € {t, ts, st}

Z XVm(Ua,ﬁg)XK,K,pmv(o'a,ﬁg) = (=" Jrf‘lm—)K
o,BEL/nT

Thus, we obtain that

1 -
<XV,,,7 XK,K,pmV) = @ Z XVm(aa,ﬁg)XK,K,p(aa,ﬂg)

a,BeZ/n
8E€S3

1 3m (m) (m)
= 6 (3 (m — ’77—‘> (Sm—;(,m—/( + Sm—K,m-‘rZK

1
(m) (m)
+ 5m+2/(,m7/( + 3(_])m ;Jmk>

1 3m 1 1o ) m
=3 (m - ’V_—‘ + (Smflc,mfl( + Smmflc,erZ/c + 8m+2/<,mfl<>

2 n|'3
1 m
+(_1)mﬁ']rfq—)i(>
Substituting
X 1
m (m) ) (m) " "I
Afc )= § (Sm_Kvm—K + 8m—K,m+2K + 8’”""2’(”“_'() ’ B'E '= =D ﬁ‘]m_’(

gives the desired formula for pyy. The result for pgg, follows in the same manner. [J

Finally, we obtain the multiplicities of the 6-dimensional representations:

Proposition 24. For « ¢ {0, 3, ZT”}, we have that
3m
<XVm’ XKv)»-ﬂu‘iv) =m-— ’77—‘ + A’(('TI)\?
where

1
AM =
K A 6

(m) (m)
+ 8m—k,m+K+A + 8m+/<+k,m—k)

and 83"} € {0, 1} is as defined in Corollary 17.

(m) (m) (m) (m)
(81’}17](,”[7)» + Smf)»,mfl( + 8’"7K,m+l(+}x + 8m+K+A,m7K

Proof. The result follows as in the proofs of Lemma 20 and Proposition 23:

I(Wl)

m—Kk,m—A

m

m—A,m—«k —Kk,m+Kk+A

Z XV (Ua,ﬁ)XK,A,p[riv(Ua,ﬁ) =
o,BEL/nT

(m) (m) (m)
+ 1m+K+A,m—K + Im—A,m+K+A + Im-‘rK-H»,m—A

3
= n2 |:6 <m - lr_m—‘> 8f1:,13K m—x
n ,
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(m) (m)
+ 8m7)n,m7/( + 8}}’17/(.”’14’/(“1’)»

(m) (m) (m)
+ 8m+K+A,m—K + 8m—k,m+x+k + 8m+l(+)\,m—)\i| D

Theorem 25.

(XVm’ XK,)L,P) = 6 n KA, P 2 3

where A™  B™ are defined using the quantities 852";, and J of Corollary 17 as

dim 6, 3m . . 1o
——f) <m - [—-‘ +A™ ) +-B" 4+ -1

K,h,p° TKhp
follows:
(m) (m)
K, A, p AK,,\,p BK,,\,p
vn  vn i (m) (G Yy (U]
3+ 3 Piv Sm,%,m,% 2 Jm,%
(m) (=1t 2 om)
%7 %v psgn (Sm_%ﬂ,m_%ﬂ 2 m—%
%7 UT”? Ioslan SfZ?l’l m—n 0
3> 3
1 (m) (m) (m) D" g (m)
K, K, Ptriv 2 (ame,me + 6m—K,m+2K + (Sm+2/(,m—/<) n_ZJm*K
1 (s(m) (m) (m) 0t g m)
K, K, psgn 3 ((Sm*/(,m*l( + 8"17K,'11+2K + 8m+2k,m71<) n2 ‘Im*K
1 (m) (m) (m)
Ky Ay Puiy 3 <8m—K,m—A T G ot T G oty
(m) (m) (m)
+8m+K+A,m7K + (SWL*)\,WL*K + 5m+K+A,mk) 0
and
1, if3|m—v
Fl()zn)vn = Fl(zrrrl)vn = _Fg’l?)vn = -1 if3|m—v 2
33 +Priv 3573 »Psgn 3 73 +Pstan 3 +
0 , otherwise
(m) — (m) _ pm) —
FKt?‘i(thriv - FKT‘qpsgn - FK’)"ptriv - 0

Note that in the above Theorem, we have extended the definition of Fﬁi,’,’) given in Lemma 19
3

by setting
(m) (m) (m) (m)
me A:FMM :_FMM :FM»
3 53 »Priv 3 53 sPsgn 3 >3 s Pstan 3
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the definition of B™ given in Lemma 21 and Proposition 23 by setting

vn
B™ —=_Bm = pm, (including the case k = ?>

KK, Priv K,K, Psgn

and that of A" and Al(('"/\) given in Lemma 21, Propositions 23 and 24 by setting

m A m) _ am) [ . _n
Al e = Aeopugn = A (mcludmg the case k = ?> ,
(m) _ A(m) _ p(m)
AK’)\qP[riv - Kq)hapsgn - KA

To convince the reader that the above information can give explicit results, we have included
Table 2, which treats Fermat curves corresponding to n = 4,5,6. The first 9 columns
contain the multiplicities of one-dimensional and two-dimensional representations. For the
3 dimensional representations € ,, © € {Quiv, Psgn} if the symbol [k, t] appears then this
means that the representation 6, . , appears with multiplicity ¢. Similarly if [(x, 1), ] appears
then 6., ,.;, appears with multiplicity ¢. For example the 6th row indicates that for the curve

Fy : x* + y* 4+ z* = 0 we have the decomposition
0 6
H"(Fy, Q}‘% ) = 60,0.tiv D 011, piy D 02.2.p01 D 033,010 D 622,50 D 3.3, 500 P 60,111 -

We remark that the last column of Table 2 serves as an extra verification that the multiplicities
add to the expected K-dimension of H F,, Q%m).

6. Generating functions

Let R = P, H(F,, Qﬁm) denote the canonical ring of the Fermat curve F, : x" 4+ y" +
7" =0and let G = (Z/nZ x Z/nZ) x Sz be the automorphism group of F,. The equivariant
Hilbert function of the action of G on R is defined as

o]

Hpc(t) =Y [H(F,, 28")"

m=0

where [HO(F,, (Zglm)] denotes the class in the Grothendieck group Ky(G, K). For each
irreducible representation 6, ; , of G we denote by H, ) ,(¢) the equivariant Hilbert series of

the respective isotypical component of the action of G on R, so that

Hr(t) =) Heyo(0).

KA, p

We then have the following:
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Theorem 26. Let 6,5, , € Irrep(G) be as in Proposition 3, let A,(:lk)’p and B%\)!p be as in
Theorem 25 and let

o 1 ) l:fel(,)\,p = QO«O»Ptriv
nO,K,A,/J — .
0 , otherwise.

The equivariant Hilbert function H, ) ,(t) is given by the following rational function

dim 6, oo 1 2
HK,A,p(t) = (nO,K,A,p - TKPA;(;K,,D - EBIE,)YLL,),O>

+dim9k’“’ t 1 3¢" L F( -G o
6 (1T—12 1-—m\1—1t Acp

1 1
T 2 Gs,, () + gGFM,p(l‘)

1
where
L r3m
Fity=Y_ [——‘ "
m=0 n
n—1
GAKJ»,p(t) = Z A(Kr,n?:’,—z)tm
m=0
2n—1
G, (1) = Z B,g'f;")t’"
m=0
GFKJ\,pmv (t) = GF‘(v)isgn (t) = _GFKJ\-Pstan (t)
v — tv+1
97— if/c:)»:"—;’andve{o,l,Z}
0 , otherwise.

Proof. For m > 0, let V,, = H(F,, Q%m). Observe that Vg = K and 50 {Xv,, Xc.1.p) = 10.c,1,p
whereas for m > 1, (xv,,, X« ) is given by Theorem 25. Thus

oo
Hesp@) =D (s Xer )"
m=0
o [dim 6 3m 1 1
_ he. b (m) (m) m | m
= N0,k,A,p + r; [T <m — ’77—‘ + AK,A,p) + EBK,)MP + gFK7A,p:| .
Note that the quantities Af(m,\) , and B,E'.’;\)’ , are defined only for m > 1 and have no meaning for
m = 0. However, we observe that by Theorem 25 and Corollary 17, the quantity A,((m)f , depends
only on the value of m modulo n and thus we extend the definition by setting A(K(ﬁ’ p = Af{"i o
Further, recall that for n large enough and for any « € Z/nZ, by Corollary 17
mn=3) [ _ mn=3)—n | _
J(m) _ n2 L—z J Uemtx B { > J Umtx
m—k n n
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Thus, if m = m’ mod 2n then J,Elm_),( = J,fzqfk and, by Theorem 25, B,((”f\) o= B,Efr;:?p. This allows
— B(zn) .

us to extend the definition by setting B,E(’)i’ , = B, finally, we observe that by Theorem 25
F,ff);’ , = 0 and thus we set

>, [dim 6, 3m - 1 o Lo 1o
B0 = 30| S (= |22 A, ) 380, 4 312, |
m=0

dlm 9,(7)“ ) 1 (2n) e dlm 9,(’)\’ 3m (m)
:(TpAK,A,p+§BK,A,p +Z Tp m—|— |+ KA P

n
m=1
1 1
(m) (m) m
+ EBK,MO + gpk,k,p:| r.

To compute H, , ,(7), we rewrite
d1m9 Aup ad 3m (m) 1 ad (m) 1 ad (m)
Hi = ——=2 ) (m= | == [+ AL, )"+ 5 3 BE "+ 3 2 T,
m=0 m=0 m=0
then observe that

oo

S =
i

— (CE))]

and similarly

0 3m n—1 oo 3/m+3v n—1 [e'e} n—1 3u 00
Z[ﬂ " ZZ{—,@ W’ =Zt“23w*‘"+2[ﬂ Yo
v=0 n=0 v=0

m=0 v=0 pu=0 n=0

n—1 n—

1
3t" 1 3v
P E—— ¥ — | v

n—1
1 3" 3v
= — V).
-t <l—t+g’7n—‘ )
Next, we recall that by Theorem 25, I, , is non-zero only if k = A = ”T” in which case

o0

) o0
§ (m) m __ 3ty 3utv+l !
F%’%’pl‘ = Eot E t =
//L:

1-7
m=0 n=0

v tl)+]

The arguments used above that Afcmx) , depends only on the value of m modulo n and B,E’,?,l\), o
depends only on the value of m modulo 2n give that:

oo oo n—1 1 n—1 1 n—1
m) .m __ (m) _un+m __ (m) .m __ (m+n) ,m
S = ST A = LS o LS g,
m=0 n=0m=0 m=0 m=0
[} oo 2n—1 1 2n—1
m) .m __ (m) _ u2n+m __ (m) _.m
S = Y Y B e LS g
m=0 n=0 m=0 m=0
1 2n—1
_ (m+2n) ,m
- 1 — t2n Z BKJ“/) . |:|
m=0
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Although the expression for H, , ,(t) given in Theorem 26 is complicated, it serves well for
computations as it has allowed us to write a program that computes the equivariant Hilbert
function of any Fermat curve; see the example below:

Example 27. We consider the Fermat curve Fg : x® + y® 4 20 = 0, which has genus g = 10
and automorphism group G = (Z/6Z x Z/6Z) x S3. By Proposition 3, G has the following
19 irreducible representations:

60,0.001v» 922,010 044,91y
Dimension 1 00,0, psan » 92,2»Psgn’ 6’4,4,psg11
DlmenSlon 2 OO’O,Pstan’ 92727p5121n’ 94»4qpstan

01s1~ﬂlriv’ 93f3vplriv’ stsvplriv
Dimension 3 01,1, psgn> 933,050 05,505

Dimension 6 | 60,1, p41v> 00.2,p01v> 01,2010 3,400

We use our computer code' to explictly compute the equivariant Hilbert functions Hy ; ,(¢) of
the respective isotypical components, which are given in the following table:

(K, A) Prtriv Psgn Pstan
©.0) B TS — 1 M= TP — 4 *
' B —i2—r 41 B3 -2 -1 41 17—t —1+1
2.2 12—t 10 % g6 5 4t e N e R
' B—r2—r41 tB—r2—r41 77—t —t+1
0O Sy (1312 T 464 S S — 544
*.9 B3 -2 —r41 B —112—r41 17—t —t+1
t12 — 1106 4 M4 =347+ 241
(a.b B -2 —r41 B3 -2 — 141 B
33 28— 402 M0 T — 3
-3 B3 —12— 141 B3 —12— 141 B
(08B (312 1T 6 5 3
©:3) B2 41 B2 741 B
t3
0,1 — _
©.1 P =24+ +r2-2t+1
0,2) -
' B2 —t1+1
[
(1,2) * _ _
B =244+ 4+12 -2 +1
P -t
(3, 4) + - -
15243+ 12 -2t + 1

1 File: FinalCodeFermatReps.ipynb, url: https://tinyurl.com/3hvart2d.
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Table 2
The K[G]-module structure of H(X,

Q™) for n € {4,5,6} and m € {1,2...,9}.

n.om  Paiv Psgn Pstan Ky K5 Prriv K, K5 Psgn K, A dim HO(X’ ‘Q?m)
4 10 - -0 - -0 - - [, 11 3
4 20 -0 - 0 - - [2,1],[3 1] 6
4 30 - -1 - - 0 - - [3, 1] [, D, 1] 10
4 40 - - 0 - - 1 — — [L1L[21 [0, D, 1] 14
4 50 - - 0 - - 0 - — [L1] (1, 11, [2, 11, 3, 1] [©, D, 1] 18
4 61 - — 0 - - 0 — — [1,1L12 11,13 1] [2, 11, [3, 1] [©, n, 1 22
4 70 - - 0 - - 1 - - [31] [1, 1], [2, 1], [3, 1] [0, 1), 2] 26
4 81 - — 0 — — 1 — — [I,1L12 11,03 1] [1, 11, [2, 1] [©, 1, 2] 30
4 90 - — 1 — — 0 — — [1,1L12 11, 3 1] (1, 21, [2, 11, 3, 1] [©, 1), 2] 34
4 100 - — 0 — — 1 — — [1,1L12 2], 3 2 (1, 11, [2, 11, 13, 11 [©, 1, 2] 38
4 11 0 - — 1 - — 1 — — [1,1L 12 11, [3 1] (1, 11, [2, 11, [3, 2] [, 1), 3] 42
4 121 - — 1 — — 1 — — [I,21, 12 2], [3 1] (1, 11, [2, 11, 3, 1] [©, 1, 3] 46
4 130 - — 0 - — 1 — — [1,2L0[2 11, [3 1] (1, 21, 12, 21, [3, 2] [, 1), 3] 50
510 --0- -0 - - (1, 1, [2. 1] 6
5 20 - -0 - -0 - — [211,[3 1,4 1 [, 2), 11 15
5 30 - -1 - -0 - — [31] (1, 11, [3, 11, [4, 1] [©, 1), 11, [(0, 2), 1] 25
5 40 - - 0 - - 1 - — [LI1L,[21, 031,41 @4 1 [©, 1), 21, [(0, 2), 1] 35
5 50 — — 1 — — 1 — — [1, 1], [2 1] (1, 11, [2, 11, [3, 11, [4, 1] [0, 1), 21, [(O, 2), 2] 45
561 - - 0 - — 0 — — [L,21,[2 2,03 11, [4 11 [, 11,12 11,3, 11, [4, 11 [(0, 1), 2], [(O, 2), 2] 55
5 70 - — 0 — — 1 — — [L,1,[2 11,3, 11, [4 11 [1, 11,2 21, [3, 2], [4, 2] [(0, 1), 2], [(O, 2), 3] 65
5 81 — - 0 - — 1 — — [L2,[2 11,32, [4 2] [, 11,102 11,03, 21, 4, 11 [(0, 1), 3], [(O, 2), 3] 75
5 9 1 — — 1 — — 1 — — [L,1,[2 11,3 11, [4 2] [1,2], 12 2], [3, 2], 4 2] [(O, 1), 4], [(0, 2), 3] 85
501 - - 0 - - 2 — — [1,2],[2 2], [3, 2], [4, 2] [L, 2], (2 2], [3, 1], [4, 11 [0, 1), 4], [(0, 2), 4] 95
511 0 — — 1 — — 1 — — [1,2],[2 2], (3 2], [4 2] [1,3],12 3], 3, 2], (4, 2] [(O, 1), 4], [(0, 2), 4] 105
5 121 - — 1 — — 1 — — [L,21,12 31,03 3], [4 3] [L2],12 21,13, 2], [4, 2] [, 1), 4], [(0, 2), 5] 115
5 13 0 - — 1 — — 2 — — [1,2],[2 2], (3 3], [4 2] [1, 3], 12 21, (3, 3], (4 3] [, 1), 5], [(0, 2), 5] 125
6 1 000 010000 [1, 1] 1,2, 1 10
6 2000 00 1 1 00 [311I[51] [©, 2), 11, [(1, 2), 11, [3, 4), 1] 27
6 3010000 001 [31 [1, 11, [3, 11, [5, 1] [©, D, 11, [0, 2), 11, [(1, 2), 11, [3, 4), 2] 45
6 400 1 1 00 1 0 1 [1,1],[3 115 1] (1, 11, [5, 1] [©, 1), 21, [0, 2), 21, [(1, 2), 1], [(3, 4), 2] 63
6 501 1 001 01 0 [1,1,[3 115 1 [1, 11, [3, 11, [5, 2] [©, ), 31, [0, 2), 21, [(1, 2), 21, [3, 4), 2] 81
6 6 1 1 1 1 01 00 1 [1,2],[32](5 1] (1, 11, [3, 11, [5, 1] [©, 1), 31, [(0, 2), 31, [(1, 2), 3], [(3, 4), 2] 99
6 700 1 1 1 1 01 1 [1,2,[3 1105 1 [1, 21, [3, 21, [5, 2] [0, 1), 31, [(0, 2), 31, [(1, 2), 4], [3, 4), 3] 117
6 8 1 0 1 1 02 1 1 1 I[1,2],I[32]1(5 2] (1, 11, [3, 21, [5, 2] [©, 1), 31, [(0, 2), 4], [(1, 2), 4], [3, 4), 4] 135
6 91 11 011 01 2 [L2],I3 2105 2] [1, 21, [3, 31, [5, 2] [0, 1), 4, [(0, 2), 4], [(1, 2), 4], [(3, 4), 5] 153

‘v 12 sopnodojoyupavy *§ ‘SUDISLADY Y ‘SHOQUIDIDADYD)
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As further evidence that our computations are correct, the sum of the above functions weighted
with the dimensions of the corresponding representations is computed in Sage and yields the
rational function

£+ 82+ 8+ 1
2—-2r+1
whose Taylor expansion is

o0
14101+ ) " 9(2m — 1™,
m=2
We note that the coefficient of # is ¢ = 10, whereas for m > 2 the coefficient of " is
(2m — 1)(g — 1) and thus we retrieve the classic, non-equivariant Hilbert series Hg(t), as
expected.
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