
Syzygies of Ideals of Polynomial Rings over Principal Ideal
Domains

Hara Charalambous
Dep. of Mathematics, Aristotle University of Thessaloniki

Thessaloniki, Greece
hara@math.auth.gr

Kostas Karagiannis
Dep. of Mathematics, Aristotle University of Thessaloniki

Thessaloniki, Greece
kkaragia@math.auth.gr

Sotiris Karanikolopoulos
Dep. of Mathematics, National and Kapodistrian

University of Athens
Athens, Greece

sotiriskaran@gmail.com

Aristides Kontogeorgis
Dep. of Mathematics, National and Kapodistrian

University of Athens
Athens, Greece

kontogar@math.uoa.gr

ABSTRACT

We study computational aspects of syzygies of graded modules

over polynomial rings 𝑅 [𝑤1, . . . ,𝑤𝑔] when the base 𝑅 is a discrete

valuation ring. In particular, we use the torsion of their syzygies

over 𝑅 to provide a formula which describes the behavior of the

Betti numbers when changing the base to the residue field or the

fraction field of 𝑅. Our work is motivated by the deformation theory

of curves.

CCS CONCEPTS

·Theory of computation→Computational geometry; ·Math-

ematics of computing;

KEYWORDS

Commutive algebra, syzygies, principal ideal domains, reduction,

lifting MSC:13D02, 13P20

ACM Reference Format:

Hara Charalambous, Kostas Karagiannis, Sotiris Karanikolopoulos, and Aris-

tides Kontogeorgis. 2020. Syzygies of Ideals of Polynomial Rings over Prin-

cipal Ideal Domains. In International Symposium on Symbolic and Algebraic

Computation (ISSAC ’20), July 20ś23, 2020, Kalamata, Greece. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3373207.3404046

1 INTRODUCTION

The study of syzygies of modules is one of the main topics of

interest of combinatorial commutative algebra with numerous al-

gorithmic applications. In the context of computational algebraic

geometry, usually one studies syzygies of ideals of the polyno-

mial ring 𝑘 [𝑤1, . . . ,𝑤𝑔], where 𝑘 is a field. However, deformation

theory of curves deals with flat families of curves over discrete

valuation rings 𝑅. In particular, non-hyperelliptic curves of genus

𝑔 are better understood in terms of their canonical ideal, the ideal
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in 𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔] that defines the canonical embedding of the

family in P
𝑔−1
𝑅

.

The last two authors have studied the 𝑅-modules of relative

polydifferentials for certain cyclic covers of the projective line [7],

which lead to a description of the relative canonical ideal by the

first, second and fourth author in [3]. Applications of syzygies and

free resolutions to the study of curves with automorphisms are

given by Terezakis, Tsouknidas and the fourth author in [8]. The

difference in the behaviour of the Betti numbers in the special and

generic fibre is expected to provide new obstructions to the theory

of lifting of curves with automorphisms, see [9], [10], since liftings

of indecomposable representations of the automorphism group

should respect the free and torsion part. Moreover the relative

point of view contributes to the understanding of the situation

concerning Green’s conjecture in positive characteristic, see [2] for

a refined version.

Let 𝑅 be a discrete valuation ring with maximal ideal 𝔪𝑅 = ⟨𝑥⟩,

fraction field𝐾 and residue field𝑘 . Deformation theory andmodular

representation theory are related to the effect of taking the base to

be any of the three rings 𝑅, 𝐾, 𝑘 . Let 𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔] and consider

an 𝑆-module𝑀 such that the generator 𝑥 of𝔪𝑅 is not a zero divisor

on 𝑀 . This leads to the study a) of 𝑆 = 𝐾 [𝑤1, . . . ,𝑤𝑔] and the

respective 𝑆-module𝑀 = 𝑀 ⊗ 𝑆 (corresponding to the generic fibre)

and b) of 𝑆 = 𝑘 [𝑤1, . . . ,𝑤𝑔] and the respective 𝑆-module𝑀 = 𝑀 ⊗𝑆

(corresponding to the special fibre).

Grothendieck’s relative point of view leads to the question of

how the syzygies and the Betti numbers of the special and the

generic fibre of a family are related when considered over 𝑘 or

𝐾 or even over 𝑅. The study of syzygies becomes automatically

more challenging over 𝑅 since the non-zero elements of the PID

may not be invertible and modules might have torsion, see [1, chap.

4] for a more comprehensive account and also [12]. On the other

hand simplicial homology over Z has been extensively studied and

techniques have been developed to account for that case and the

different behavior over Q, [4]. It is well known that, even in the

case of monomial ideals, the minimal free resolution depends on

the characteristic of the ground field, the classical example being

the triangulation of the projective plane.

Example 1. The Betti numbers of

𝐵 = ⟨𝑎𝑏𝑐, 𝑎𝑏𝑓 , 𝑎𝑐𝑒, 𝑎ℎ𝑒, 𝑎ℎ𝑓 , 𝑏𝑐ℎ, 𝑏ℎ𝑒, 𝑏𝑒 𝑓 , 𝑐ℎ𝑓 , 𝑐𝑒 𝑓 ⟩ ◁ 𝑘 [𝑎, 𝑏, 𝑐, 𝑒, 𝑓 , ℎ]
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differ when char(𝑘) = 0 (table on the left) and char(𝑘) = 2 (table

on the right).

0 1 2 3

0 1 0 0 0

1 0 0 0 0

2 0 10 15 6

3 0 0 0 0

0 1 2 3 4

0 1 0 0 0 0

1 0 0 0 0 0

2 0 10 15 6 1

3 0 0 0 1 0

Thus when char(𝑘) = 2, the ideal 𝐵 has a third and a fourth graded

syzygy of degree 6 which do not appear over characteristic zero

(or any other characteristic 𝑝 ≠ 2 for that matter), see also [11, Ex.

12.4].

In the sequel we give explicit reasons for this behavior. We con-

sider syzygies of finitely generated graded 𝑆-modules of the poly-

nomial ring 𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔]. We will see that it makes sense to

consider minimal free resolutions of the graded 𝑆-module𝑀 , and

we will define the graded Betti numbers of𝑀 .

The structure of this paper is as follows: we first discuss min-

imal free resolutions of graded modules over 𝑅 [𝑤1, . . . ,𝑤𝑔] and

Nakayama’s lemma (Lemma 2). Using the classification theorem

for modules over PIDs, we see how the existence of 𝑅-torsion on

the syzygies affects the resolution (Theorem 6).

We also explain how torsion can be read from the Smith normal

form of the reduced matrix of the differentials (Corollary 7). In

the last section we give a detailed computation of Example 1 and

conclude with a method (Algorithm 1) which, given the genera-

tors of a graded ideal 𝐼 of Z[𝑤1, . . . ,𝑤𝑔], outputs all primes 𝑝 for

which the Betti numbers of 𝐼 in F𝑝 [𝑤1, . . . ,𝑤𝑔] differ from the Betti

numbers of 𝐼 in Q[𝑤1, . . . ,𝑤𝑔] and give information for possible

obstructions.

2 SYZYGIES OVER GENERAL RINGS

Let (𝑅, 𝔪𝑅 ) be as in the introduction, and let 𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔] be

the polynomial ring in 𝑔 variables, graded by assigning the degree 1

to each𝑤𝑖 , 𝑖 = 1, . . . , 𝑔. Thus 𝑆 =
∑
𝑖≥0 𝑆𝑖 , with 𝑆0 = 𝑅. We let𝔪 and

𝔪𝑆 be respectively the prime and maximal ideals𝔪 = ⟨𝑤1, . . . ,𝑤𝑔⟩,

𝔪𝑆 = 𝔪 +𝔪𝑅𝑆 of 𝑆 . Observe that 𝑘 = 𝑆/𝔪𝑆 = 𝑅/𝔪𝑅 .

Let 𝑀 be a finitely generated graded 𝑆-module. Thus we have

𝑀 =
∑
𝑖≥𝑎𝑀𝑖 , where 𝑆 𝑗𝑀𝑖 ⊂ 𝑀𝑖+𝑗 and in particular 𝑀𝑖 is an 𝑅-

module, for 𝑖 ≥ 𝑎. Let 𝑚1, . . . ,𝑚𝑛 form a generating set of 𝑀 . It

is clear that {𝑚𝑖 = 𝑚𝑖 +𝔪𝑆𝑀, 𝑖 = 1, . . . , 𝑛} is a generating set of

𝑀/𝔪𝑆𝑀 . The converse, i.e. Nakayama’s lemma, holds when the

elements𝑚𝑖 are homogeneous. The proof follows the same lines as

the standard proof for the graded case, [5, lemma 1.4]. We include

it here for completeness of the exposition.

Lemma 2 (Nakayama). Let 𝑀 be a finitely generated positively

graded 𝑆-module, 𝑚1, . . . ,𝑚𝑛 ∈ 𝑀 homogeneous so that 𝑚𝑖 , 𝑖 =

1, . . . , 𝑛 generate𝑀/𝔪𝑆𝑀 . Then𝑚1, . . . ,𝑚𝑛 generate𝑀 .

Proof. Let𝑀 ′
=
∑𝑛
𝑖=1 𝑆𝑚𝑖 and consider the finitely generated

graded 𝑆-module 𝑁 = 𝑀/𝑀 ′. By our assumption on the𝑚𝑖 ,𝑀
′ +

𝔪𝑆𝑀 = 𝑀 , thus 𝑁 /𝔪𝑆𝑁 = 0 and 𝔪𝑆𝑁 = 𝑁 . If 𝑁 ≠ 0, there is a

nonzero graded element of least degree in 𝑁 . Since 𝔪𝑆𝑁 = 𝑁 , this

element must have degree zero. It follows that 𝑁0 = 𝔪𝑅𝑁0. Since

𝑅 is a local PID, Nakayama’s lemma in the local case gives that

𝑁0 = 0. It follows that 𝑁 = 0 as desired. □

It follows that the least number of homogeneous elements needed

to generate𝑀 is the dimension of the 𝑆/𝔪𝑆 -vector space𝑀/𝔪𝑆𝑀 .

We proceed to construct aminimal graded free resolution of𝑀 .

Let 𝑚1, . . . ,𝑚𝑛 be a minimal set of homogeneous generators of

𝑀 . We let 𝐹0 be the free module 𝐹0 =

⊕
𝑖 𝑆𝑒𝑖 on generators 𝑒𝑖 ,

deg(𝑒𝑖 ) = deg(𝑚𝑖 ) (𝑖 = 1, . . . 𝑛) and let 𝜋0 : 𝐹0 −→ 𝑀 be the

epimorphism determined by 𝜋0 (𝑒𝑖 ) =𝑚𝑖 . This gives the short exact

sequence

0 → ker 𝜋0
𝜄0
−→ F0

𝜋0
−→ M → 0,

where ker𝜋0 ⊂ 𝔪𝑆𝐹0. Since ker𝜋0 is a finitely generated graded

𝑆-module we repeat this procedure to obtain 𝜋1 : 𝐹1 −→ ker𝜋0

and 𝛿1 : 𝐹1 −→ 𝐹0 as the composition 𝐹1
𝜋1
−→ ker𝜋0

𝜄0
−→ 𝐹0. Note

that 𝛿1 (𝐹1) = ker𝜋0 and that we have specified the basis of 𝐹1 that

maps to a minimal homogeneous generating set of ker𝜋0. Iterating

this procedure, we obtain a free graded resolution of 𝑀 which is

minimal since by construction ker𝜋𝑖 ⊂ 𝔪𝑆𝐹𝑖 for all 𝑖 ≥ 0:

(𝐹•, 𝛿•) : · · · −→ 𝐹1
𝛿1
−→ 𝐹0

𝜋0
−→ 𝑀 −→ 0

For each 𝑖 ≥ 1, the resolution above breaks into a short exact

sequence

0 → ker 𝜋i
𝜄i

−→ Fi
𝜋i
−→ ker 𝜋i−1 → 0, (1)

𝛿𝑖 : 𝐹𝑖 → 𝐹𝑖−1 being the composition 𝜄𝑖−1𝜋𝑖 for 𝑖 ≥ 1. We note that

the differentials 𝛿𝑖 are of degree zero, 𝛿𝑖 (𝐹𝑖 ) ⊂ 𝔪𝑆𝐹𝑖−1 and that 𝛿𝑖
maps a basis of 𝐹𝑖 to a minimal set of homogeneous generators of

𝛿𝑖 (𝐹𝑖 ), as in [5, Corollary 1.5]. We write each 𝐹𝑖 as a direct sum,

indexed by Z, of copies of 𝑆 shifted by the degrees of the generators:

𝐹𝑖 =
⊕
𝑗 ∈Z

𝑆 (− 𝑗)𝛽𝑖,𝑗 ,

where finitely many of the 𝛽𝑖, 𝑗 are nonzero. The exponent 𝛽𝑖, 𝑗 ∈ N

that counts the number of minimal generators of degree 𝑗 in 𝐹𝑖 is

called the (𝑖, 𝑗)-graded Betti number of𝑀 and equals the dimen-

sion dim𝑘 Tor
𝑆
𝑖 (𝑘,𝑀) 𝑗 as in [5, Corollary 1.7]. We write 𝛽𝑖, 𝑗 (𝑀)

when needed to emphasize the module𝑀 . The 𝑆-modules

Π𝑖 = ker𝜋𝑖−1 = ker𝛿𝑖−1, (2)

for 𝑖 ≥ 1, are known as the 𝑖-th syzygies of𝑀 , and we set Π0 = 𝑀 ,

so that Π𝑖 is a graded 𝑆-module for all 𝑖 . By successively taking

homology of the short exact sequences in (1) we get that

Tor𝑆1 (Π𝑖−1, 𝑅) = Tor𝑆𝑖 (𝑀,𝑅), 𝑖 ≥ 1. (3)

We let 𝐹𝑖, 𝑗 be the direct summand of 𝐹𝑖 at degree 𝑗 and denote by

𝛿𝑖, 𝑗 the restriction

𝛿𝑖, 𝑗 = 𝛿𝑖 |𝐹𝑖,𝑗 : 𝐹𝑖, 𝑗 −→ 𝐹𝑖−1, 𝑗 .

Remark 3. Let 𝐹• be aminimal graded free resolution of the graded

𝑆-module 𝑀 . By tensoring 𝐹• with 𝑅 = 𝑆/𝔪 (over 𝑆) we obtain a

graded complex of 𝑅-modules:

𝐹• ⊗ 𝑅 : · · · −→ 𝐹1 ⊗ 𝑅
𝛿1⊗1𝑅
−→ 𝐹0 ⊗ 𝑅 −→ 𝑀 ⊗ 𝑅 −→ 0

whose homology at the 𝑖-th position is Tor𝑆𝑖 (𝑅,𝑀), a graded 𝑆-

module. Note that, for 𝛼 > 0, 𝑆 (−𝛼) ⊗𝑅 only lives in degree 𝛼 . Thus,

to compute Tor𝑆𝑖 (𝑅,𝑀) 𝑗 = Tor𝑆1 (𝑅,Π𝑖−1) 𝑗 one needs to consider

the following s.e.s. derived from (1):

0 → Tor𝑆1 (Π𝑖 , 𝑅) 𝑗 → (Π𝑖+1) 𝑗⊗𝑅→(𝑆 (− 𝑗)𝛽𝑖,𝑗 ⊗𝑅) 𝑗→(Π𝑖 ) 𝑗⊗𝑅 → 0.

(4)
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3 SYZYGIES OVER GENERIC AND SPECIAL

FIBRES

Let us start by recalling the notation set-up in the introduction:

𝑅 is a discrete valuation ring with maximal ideal 𝔪𝑅 = ⟨𝑥⟩, 𝐾 is

the fraction field of 𝑅 and 𝑘 = 𝑅/𝔪𝑅 is the residue field. We set

𝑆 = 𝑅 [𝑤1, . . . ,𝑤𝑔],𝔪 = ⟨𝑤1, . . . ,𝑤𝑔⟩ ◁ 𝑆 and𝔪𝑆 = ⟨𝑥,𝑤1, . . . ,𝑤𝑔⟩.

Let 𝑀 be a finitely generated graded 𝑆-module. Note that 𝑆 =

𝐾 [𝑤1, . . . ,𝑤𝑔] is the localization of 𝑆 at the multiplicatively closed

subset 𝑅∗ and similarly for𝑀 = 𝑀⊗𝑆 . Finally,𝔪 = ⟨𝑤1, . . . ,𝑤𝑔⟩◁𝑆

is the maximal graded ideal of 𝑆 = 𝑘 [𝑤1, . . . ,𝑤𝑔] and𝑀 = 𝑀/𝑥𝑀 .

We note that if 𝑁 is a finitely generated 𝑅-module, then since 𝑅

is a local PID, 𝑁 is a direct sum of the form

𝑁 =

rk(𝑁 )⊕
𝑅 ⊕ tor(𝑁 ),

where rk(𝑁 ) is the rank of 𝑁 as an 𝑅-module, while tor(𝑁 ), the

torsion part of 𝑁 , is a direct sum of the form

tor(𝑁 ) =

𝑡 (𝑁 )⊕
𝜈=1

𝑅/𝑅𝑥𝑎 (𝜈,𝑁 ) , where 𝑎(𝜈, 𝑁 ) ∈ N, for 𝜈 = 1, . . . , 𝑡 (𝑁 ) .

Observe that tor(𝑁 ) is still visible when tensoring with 𝑘 (spe-

cial fibre), since 𝑁 ⊗𝑅 𝑘 = 𝑘rk(𝑁 )+𝑡 (𝑁 ) , while it disappears when

tensoring with 𝐾 (generic fibre), since 𝑁 ⊗𝑅 𝐾 = 𝐾rk(𝑁 ) .

Let𝑀 be a finitely generated graded 𝑆-module such that 𝑥 is a

not a zero divisor on𝑀 , i.e. multipication by 𝑥 is injective and𝑀 is

a flat 𝑅-module. Let 𝐹• be a minimal free resolution of𝑀 . To study

𝑀 we will tensor 𝐹• with 𝑅 and get a complex of 𝑅-modules.

It is known that under our assumptions, reduction to the special

fibre preserves exactness, see for example [11, Thm 20.3]. The short

proof is included here for completeness of the exposition.

Lemma 4. If 𝐹• is a free resolution of 𝑀 as an 𝑆-module, then

𝐹• ⊗ 𝑆/𝑥𝑆 is a free resolution of𝑀/𝑥𝑀 as an 𝑆/𝑥𝑆-module.

Proof. The short exact sequences 0 → 𝑆 → 𝑆 → 𝑆/𝑥𝑆 → 0

and 0 → 𝑀 → 𝑀 → 𝑀/𝑥𝑀 → 0, imply that Tor𝑆𝑖 (𝑀, 𝑆/𝑥𝑆) = 0,

for 𝑖 ≥ 1 and thus 𝐹• ⊗ 𝑆/𝑥𝑆 is exact. □

We also note that flatness of 𝐾 over 𝑅 implies flatness of the ring

𝐾 [𝑤1, . . . ,𝑤𝑔] over 𝑆 . Thus we have the following:

Lemma 5. If 𝐹• is a free resolution of 𝑀 , seen as an 𝑆-module

then 𝐹• = 𝐹• ⊗ 𝐾 [𝑤1, . . . ,𝑤𝑔] is a free resolution of 𝑀 = 𝑀 ⊗

𝐾 [𝑤1, . . . ,𝑤𝑔] as an 𝐾 [𝑤1, . . . ,𝑤𝑔]-module.

Let (𝐹•, 𝛿•) be a minimal graded free resolution of the graded

𝑆-module 𝑀 . By Lemma 5, 𝐹• is a graded free resolution of 𝑀 ,

however it might not be minimal. We write Π𝑖, 𝑗 for the 𝑗-th graded

piece of Π𝑖 = ker(𝛿𝑖−1) and Π𝑖, 𝑗 for the 𝑅-module Π𝑖, 𝑗 ⊗ 𝑅 which

we decompose into its cyclic 𝑅-components. We will see that the

quantities 𝑓𝑖, 𝑗 := rk(Π𝑖, 𝑗 ), 𝑡𝑖, 𝑗 := 𝑡 (Π𝑖, 𝑗 ) and 𝑠𝑖, 𝑗 = rk(Tor𝑆1 (𝑅,Π𝑖 ) 𝑗 )

are critical when we measure the difference between the graded

Betti numbers of the generic and the special fibre.

Theorem 6. Let 𝑆 be 𝑅 [𝑤1, . . . ,𝑤𝑔], 𝑀 be a finitely generated

graded 𝑆-module which is flat as an 𝑅-module, Π𝑖 be the 𝑖-th syzygy

of𝑀 and 𝑡𝑖, 𝑗 be the number of nonzero cyclic summands of Π𝑖, 𝑗 , for

𝑖 ≥ 0.

(1) 𝛽𝑖, 𝑗 (𝑀) = 𝛽𝑖, 𝑗 (𝑀), for 𝑖 ≥ 0.

(2) 𝛽𝑖, 𝑗 (𝑀) = 𝛽𝑖, 𝑗 (𝑀) + 𝑡𝑖, 𝑗 + 𝑡𝑖−1, 𝑗 for 𝑖 ≥ 1.

Proof. Let 𝐹• be a minimal graded free resolution of the graded

𝑆-module𝑀 . By Lemma 4, it follows that 𝐹• = 𝐹• ⊗ 𝑆/𝑥𝑆 is a free

resolution of 𝑀 . Moreover, since 𝛿𝑖 (𝐹𝑖 ) ⊂ 𝔪𝑆𝐹𝑖−1, it follows that

𝛿𝑖 (𝐹𝑖 ) ⊂ 𝔪𝐹 𝑖−1 and 𝐹• is a minimal free resolution of 𝑀 . Thus

𝛽𝑖, 𝑗 (𝑀) = 𝛽𝑖, 𝑗 (𝑀).

For the generic fibre, by Lemma 5, 𝐹 = 𝐹• ⊗ 𝐾 [𝑤1, . . . ,𝑤𝑔] is a

free resolution of𝑀 and we need to compute dim𝐾 Tor𝑆𝑖 (𝑀,𝐾) 𝑗 . By

the Künneth formula [13, Th. 3.6.1], Tor𝑆𝑖 (𝑀,𝐾) is the localization

of Tor𝑆𝑖 (𝑀,𝑅) at 𝑅
∗ and

Tor𝑆𝑖 (𝑀,𝐾) 𝑗 � Tor𝑆𝑖 (𝑀,𝑅) 𝑗 ⊗ 𝐾.

Thus by (3) it suffices to examine the 𝑅-structure of Tor𝑆1 (Π𝑖−1, 𝑅) 𝑗 .

We consider the tensor product 𝐹• ⊗ 𝑅. By (4) we have

0 → Tor𝑆1 (Π𝑖−1, 𝑅) 𝑗 → Π𝑖, 𝑗−→𝑅𝛽𝑖−1, 𝑗−→Π𝑖−1, 𝑗 → 0.

Since Π𝑖, 𝑗/Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗 ↩→ 𝑅𝛽𝑖−1, 𝑗 , it follows that the quotient

Π𝑖, 𝑗/Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗 is free and

tor(Tor𝑆1 (Π𝑖−1, 𝑅) 𝑗 ) = tor(Π𝑖, 𝑗 ).

Thus

Π𝑖, 𝑗/Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗 = 𝑅

𝑓𝑖,𝑗−𝑠𝑖−1, 𝑗 .

By the short exact sequence

0 // Π𝑖, 𝑗/Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗

// 𝑅𝛽𝑖−1, 𝑗 // Π𝑖−1, 𝑗
// 0

𝑅 𝑓𝑖,𝑗−𝑠𝑖−1, 𝑗 𝑅 𝑓𝑖−1, 𝑗 ⊕ tor(Π𝑖−1, 𝑗 )

we have that

• 𝛽𝑖−1, 𝑗 = 𝑓𝑖−1, 𝑗 + 𝑡𝑖−1, 𝑗 (from the epimorphism),

• 𝛽𝑖−1, 𝑗 =
(
𝑓𝑖, 𝑗 − 𝑠𝑖−1, 𝑗

)
+ 𝑓𝑖−1, 𝑗 (from the additivity of ranks).

It follows that the rank 𝑠𝑖−1, 𝑗 of Tor
𝑆
1 (Π𝑖−1, 𝑅) 𝑗 is equal to

𝑠𝑖−1, 𝑗 =
(
𝑓𝑖, 𝑗 + 𝑓𝑖−1, 𝑗

)
− 𝛽𝑖−1, 𝑗 = 𝑓𝑖, 𝑗 +

(
𝑓𝑖−1, 𝑗 − 𝛽𝑖−1, 𝑗

)
=(

𝛽𝑖, 𝑗 − 𝑡𝑖, 𝑗
)
− 𝑡𝑖−1, 𝑗 .

We tensor Tor𝑆𝑖 (𝑅,𝑀) 𝑗 with 𝐾 to obtain that

𝛽𝑖, 𝑗 (𝑀) = 𝑠𝑖−1, 𝑗 = 𝛽𝑖, 𝑗 (𝑀) − 𝑡𝑖, 𝑗 − 𝑡𝑖−1, 𝑗 .

□

How does one compute 𝑡𝑖, 𝑗 ? This can be done by computing the

Smith normal form of the matrix of differentials 𝛿𝑖, 𝑗 = 𝛿𝑖, 𝑗 ⊗ 𝑅. We

proceed as in [4]. Note that 𝑅𝛽𝑖,𝑗 = 𝐹𝑖, 𝑗 ⊗𝑅, while 𝑅
𝛽𝑖−1, 𝑗 = 𝐹𝑖−1, 𝑗 ⊗𝑅

and 𝛿𝑖, 𝑗 : 𝑅
𝛽𝑖,𝑗 −→ 𝑅𝛽𝑖−1, 𝑗 . Let 𝐵𝑖, 𝑗 be the matrix of 𝛿𝑖, 𝑗 with respect

to the canonical bases of 𝑅𝛽𝑖,𝑗 and 𝑅𝛽𝑖−1, 𝑗 . There is a change of basis

for 𝑅𝛽𝑖,𝑗 and 𝑅𝛽𝑖−1, 𝑗 so that the matrix of 𝛿𝑖, 𝑗 with respect to these

new bases is the Smith normal form of 𝐵𝑖, 𝑗 , say 𝐴𝑖, 𝑗 . The Smith

normal form 𝐴𝑖, 𝑗 contains an upper left diagonal block

diag
(
𝑏1, 𝑏2, . . . , 𝑏𝑡 (𝑖−1, 𝑗)

)
,

with 𝑏1 |𝑏2 | · · · |𝑏𝑡 (𝑖−1, 𝑗) ≠ 0, while the rest of the blocks of 𝐴𝑖, 𝑗 are

zero. We note that since 𝐹• is a minimal resolution, all 𝑏𝑎 ∈ 𝔪𝑅 , for

𝑎 = 1, . . . , 𝑡 (𝑖 − 1, 𝑗) and thus 𝑏𝑎 = 𝑥𝑒 (𝑎) , for some positive integer
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𝑒 (𝑎). It is clear that 𝑡 (𝑖−1, 𝑗) is the rank of Im 𝛿𝑖, 𝑗 and thus the rank

of ker𝛿𝑖, 𝑗 equals 𝛽𝑖, 𝑗 − 𝑡 (𝑖 − 1, 𝑗). Let us now consider the Smith

normal form for 𝛿𝑖+1, 𝑗 . Suppose that its nonzero block is

diag
(
𝑐1, 𝑐2, . . . , 𝑐𝑡 (𝑖, 𝑗)

)
and let 𝜖1, . . . , 𝜖𝛽𝑖,𝑗 be the basis of 𝑅𝛽𝑖,𝑗 relative to this normal

form. Thus 𝑐𝑎𝜖𝑎 ∈ Im 𝛿𝑖+1, 𝑗 . Since 𝛿𝑖, 𝑗𝛿𝑖+1, 𝑗 = 0, we have that

𝛿𝑖, 𝑗 (𝑐𝑎𝜖𝑎) = 𝑐𝑎𝛿𝑖, 𝑗 (𝜖𝑎) = 0, and we conclude that 𝜖1, . . . , 𝜖𝑡 (𝑖, 𝑗) are

in ker𝛿𝑖, 𝑗 , for 𝑎 = 1, . . . , 𝑡 (𝑖, 𝑗). Thus,

Tor𝑆𝑖 (𝑀,𝑅) 𝑗 � 𝑅
𝛽𝑖,𝑗−𝑡 (𝑖−1, 𝑗)−𝑡 (𝑖, 𝑗) ⊕ 𝑅/𝑐1𝑅 ⊕ · · · ⊕ 𝑅/𝑐𝑡 (𝑖, 𝑗)𝑅.

By the uniqueness of the decomposition of Tor𝑆𝑖 (𝑀,𝑅) 𝑗 and induc-

tion on 𝑖 , it follows that 𝑡 (𝑖, 𝑗) = 𝑡𝑖, 𝑗 for all 𝑖 . We have shown the

following:

Corollary 7. If (𝐹•, 𝛿•) is a minimal graded free resolution of

𝑀 over 𝑆 and the Smith normal form of the matrix of 𝛿𝑎,𝑗 has rank

𝑡 (𝑎 − 1, 𝑗), 𝑎 ≥ 1, then 𝑡𝑖, 𝑗 = 𝑡 (𝑖, 𝑗) for 𝑖 ≥ 0 and 𝛽𝑖, 𝑗 (𝑀) = 𝛽𝑖, 𝑗 (𝑀)−

𝑡𝑖, 𝑗 − 𝑡𝑖−1, 𝑗 .

4 EXAMPLE

Let us now return to Example 1. Let Z2 be the ring of 2-adic integers

with fraction field Q2 and residue field F2. Let 𝑆 = Z2 [𝑎, . . . , ℎ],

𝔪 = ⟨𝑎, . . . , ℎ⟩, 𝐵 = ⟨𝑎𝑏𝑐, 𝑎𝑏𝑓 , 𝑎𝑐𝑒, 𝑎ℎ𝑒, 𝑎ℎ𝑓 , 𝑏𝑐ℎ, 𝑏ℎ𝑒, 𝑏𝑒 𝑓 , 𝑐ℎ𝑓 , 𝑐𝑒 𝑓 ⟩

and𝑀 = 𝑆/𝐵. We will show that

𝛽0,0 (𝑀) = 1, 𝛽1,3 (𝑀) = 10,

𝛽2,4 (𝑀) = 15, 𝛽3,5 (𝑀) = 6, 𝛽3,6 (𝑀) = 1, 𝛽4,6 (𝑀) = 1,

and that𝑀 has a minimal graded free resolution over 𝑆 of the form

𝐹4 𝐹3 𝐹2 𝐹1

0 // 𝑆 (−6)
𝛿4

// 𝑆 (−5)6 ⊕ 𝑆 (−6)
𝛿3

// 𝑆 (−4)15
𝛿2

// 𝑆 (−3)10

𝛿1

// 𝑆 = 𝐹0 // 𝑀 −→ 0

(5)

We will show that Π4, the kernel of 𝛿3 : 𝐹3 → 𝐹2, has a minimal

generating set of two elements, with the generator of degree 6

becoming torsion in 𝐹• ⊗𝑆 𝑅 � 𝐹• ⊗ 𝑆/𝔪, impling that 𝑡4,6 = 1.

This means that for 𝑆 = Q2 [𝑎, . . . , ℎ], we get the following exact

diagram:

0 // 𝑆 (−6)
�

//
� _

��

𝑆 (−6) //
� _

��

0

0 // 𝑆 (−6)
𝛿4

// 𝑆 (−5)6 ⊕ 𝑆 (−6)
𝛿3

// 𝑆 (−4)15

𝛿2

// 𝑆 (−3)10
𝛿1

// 𝑆 // 𝑀 // 0

The degree 6 elements in both 𝐹4, 𝐹3 have to be removed in order

to obtain a minimal free resolution in the generic fibre.

We used Macaulay2 [6] in order to compute the above resolution.

The following code

T = ZZ[a,b,c,e,f,h]

J = ideal(a*b*c,a*b*f,a*c*e,a*h*e,a*h*f,

b*c*h,b*h*e,b*e*f,c*h*f,c*e*f)

rs = res J

rs.dd

produces the free resolution 𝐺• of 𝑇 /𝐽 over 𝑇

0 // 𝑇 2 𝜃4
// 𝑇 10 𝜃3

// 𝑇 17 𝜃2
// 𝑇 10 𝜃1

// 𝑇, (6)

where the differentials 𝜃3, 𝜃4 correspond to the matrices (also de-

noted for simplicity by 𝜃3, 𝜃4)

𝜃4 =

©­­­­­­­­­­­­­­­­«

0 𝑓

𝑒 0

−𝑏 0

−ℎ 0

0 −𝑐

−𝑐 0

0 𝑎

𝑎 0

−1 1

−1 −1

ª®®®®®®®®®®®®®®®®¬

𝜃3 =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­«

0 −ℎ 0 𝑒 0 0 0 0 −𝑒 ℎ −𝑒 ℎ

−ℎ 0 0 −𝑓 0 0 0 0 𝑓 ℎ 0

−𝑏 0 −𝑓 0 0 0 0 0 𝑏 𝑓 0

0 0 −𝑐 0 0 𝑏 0 0 0 0

0 −𝑐 0 0 0 −𝑒 0 0 0 0

𝑒 𝑓 0 0 0 0 0 0 0 𝑒 𝑓

𝑎 0 0 0 0 0 −𝑓 0 0 0

−𝑐 0 0 0 −𝑓 0 0 0 0 0

0 0 0 0 𝑎 0 𝑐 0 0 0

0 0 0 𝑐 ℎ 0 0 0 0 −𝑐 ℎ

0 𝑎 0 0 0 0 0 −𝑒 0 0

0 −𝑏 −𝑒 0 0 0 0 0 0 0

0 0 𝑎 0 0 0 0 𝑏 0 0

0 0 0 𝑎 0 0 0 ℎ 0 0

0 0 ℎ −𝑏 0 0 0 0 0 0

0 0 0 0 −1 1 0 0 −𝑐 0

0 0 0 0 0 0 −1 −1 0 −𝑎

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
The matrix of 𝜃4 is reduced modulo ⟨𝑎, . . . , ℎ⟩ to a 10 × 2 matrix,

which is zero in all entries except for the lower 2× 2 submatrix. We

see that (
−1 1

−1 −1

)
=

(
1 1

0 1

) (
2 0

0 1

) (
0 1

−1 −1

)
.

A similar computation shows that the reduction of the matrix of 𝜃3
modulo ⟨𝑎, . . . , ℎ⟩ has a Smith normal formwhose nonzero diagonal

block is the two by two identity matrix. Thus, through a series of

base changes 𝐺• ⊗ Z2 [𝑎, . . . , ℎ] breaks into

0 // 𝑆
�

// 𝑆 // 0
⊕ ⊕

0 // 𝑆
𝛿4

// 𝑆7
𝛿3

// 𝑆15
𝛿2

// 𝑆10
𝛿1

// 𝑆
⊕ ⊕

0 // 𝑆2
�

// 𝑆2 // 0
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The middle row above gives the minimal graded free resolution

(𝐹•, 𝛿•) of (5). In particular, with respect to the appropriate basis

of 𝑆7, the differential 𝛿4 is

𝜃4 =
(
−𝑓 𝑒 −𝑏 ℎ 𝑐 𝑎 2

)𝑇
and we can see that the kernel of 𝛿3 ⊗𝑆 𝑆/𝔪 is isomorphic to

Z62 ⊕ Z2/2Z2.

Let us now consider 𝐵 in 𝑆 = Z𝑝 [𝑎, . . . , ℎ], where 𝑝 is a prime,

𝑝 ≠ 2. We note that 2 is now a unit and through a series of base

changes 𝐺• ⊗ 𝑆 breaks into

0 // 𝑆2
�

// 𝑆2 // 0
⊕

0 // 𝑆7
𝛿3

// 𝑆15
𝛿2

// 𝑆10
𝛿1

// 𝑆
⊕ ⊕

0 // 𝑆2
�

// 𝑆2 // 0

where hemiddle row above gives theminimal graded free resolution

𝑆/𝐵. In this case the Betti numbers of𝑀 = 𝑆/𝐵 in the special and

generic fibre coincide. The uniqueness of the Smith normal form

leads us to the following algorithm, to decide whether the Betti

numbers differ in the special and generic fibre.

Algorithm 1: Testing whether the minimal free resolution

depends on the characteristic of the base field.

Input: Homogeneous elements

𝑓1, . . . , 𝑓𝑠 ∈ 𝑇 = Z[𝑤1, . . . ,𝑤𝑔].

Output: The set of primes 𝑝 for which the Betti numbers of

𝐼 = ⟨𝑓1, . . . , 𝑓𝑠 ⟩ in 𝑘 [𝑤1, . . . ,𝑤𝑔] depend on char(𝑘).

Method:

(1) Compute a free resolution (𝐺•, 𝜃•) of 𝑇 /𝐼 .

(2) Let 𝐴𝑖 be the corresponding matrices of the differentials, for

𝑖 ≥ 1. Set𝑤1, . . . ,𝑤𝑔 = 0 for all entries of 𝐴𝑖 to obtain the

matrices 𝐵𝑖 , for 𝑖 ≥ 1.

(3) Compute the Smith normal form of 𝐵𝑖 , for 𝑖 ≥ 1.

(4) Collect all primes 𝑝 that divide some nonzero entry of the

Smith normal form of 𝐵𝑖 , for 𝑖 ≥ 1.

We note that given a graded ideal 𝐼 of Z[𝑤1, . . . ,𝑤𝑔], the above

algorithm indicates the primes for which the Betti numbers of

𝐼Q𝑝 [𝑤1, . . . ,𝑤𝑔] differ from the Betti numbers of 𝐼F𝑝 [𝑤1, . . . ,𝑤𝑔]

and provide possible obstruction to the lifting problem.
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