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The Jones polynomial is a famous link invariant that can be defined
diagrammatically via a skein relation. Khovanov homology is a richer link invariant
that categorifies the Jones polynomial. Using spectral sequences, we obtain a
skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we
are able to generalize the Khovanov homology in order to obtain a categorification of
the θ-invariant, which is itself a generalization of the Jones polynomial.

Keywords: framization; categorification; link invariants; Khovanov homology; skein
relation; spectral sequences

2020 Mathematics Subject Classification: 57K14, 57K18, 57K16, 57K10

1. Introduction

One of the greatest achievements in knot theory and low-dimensional topology is the
pioneering construction of the Jones polynomial by V. F. R. Jones in 1984, which
advanced spectacularly the tabulation of knots. The value of the Jones polynomial
J(L) on an oriented link L can be calculated through different methods. One of
them is algebraic and consists of computing the Markov trace of the image of a braid
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representative of L in the Temperley–Lieb algebra. Another one is diagrammatic
and uses the fact that the Jones polynomial satisfies a ‘skein relation’, that is, a
linear relation between the values of the polynomial on a collection of three links
that differ from each other only on a selected crossing. More specifically, for an
indeterminate q, we have

q−2J(L+) − q2J(L−) = (q−1 − q)J(L0)

where L+, L−, L0 is a so-called Conway triple, or equivalently,

q−2J( ) − q2J( ) = (q−1 − q)J( ).

Combining this skein relation with the initial condition that the value of the Jones
polynomial on the unknot is equal to 1 allows us to compute the Jones polynomial
of any link.

The Framization of the Temperley–Lieb algebra, introduced in [7], is a non-trivial
extension of the classical Temperley–Lieb algebra via the addition of the so-called
‘framing’ generators, each of which is a generator of a cyclic group of order d. It is
also endowed with a Markov trace, which gives rise to an invariant of framed links.
When restricted to classical links, this invariant is denoted by θ. It has been shown
in [6,8] that the θ-invariant can be also defined diagrammatically through a skein
relation, which is however not global as in the case of the Jones polynomial. In fact,
the same skein relation as the one satisfied by the Jones polynomial holds, but only
on crossings between different components ; we call these crossings mixed crossings.
Using a recursive proof method developed originally by Lickorish–Millett [12] and
adapted for θ by Kauffman–Lambropoulou [9], it can be shown that calculating
the value of θ on a link L amounts to calculating the value of θ on links that are
unions of unlinked knots and are obtained via the skein relation. More specifically,
a series of switchings and smoothings of mixed crossings transforms the initial link
to a family of unions of unlinked knots, called descending stacks. Then, if L is union
of r unlinked knots, we have

θ(L) = dr−1J(L).

The invariant θ is stronger than the Jones polynomial, in the sense that it
distinguishes links that the Jones polynomial cannot distinguish [5,6,8].

Khovanov homology, introduced by M. Khovanov [11], is an oriented link invari-
ant that arises as the homology of a chain complex associated with a link. It is
regarded as a categorification of the Jones polynomial, which can be obtained as the
graded Euler characteristic of this complex. However, Khovanov homology encom-
passes more information about a link than its Jones polynomial. Further, it is
known that Khovanov homology can detect the unknot [10], while it is still an
open question whether the Jones polynomial can do the same.

Inspired by this and motivated by the fact that the θ-invariant is stronger than
the Jones polynomial, we expect that a categorification of the θ-invariant would
be stronger than all the invariants mentioned above. Given the skein-theoretic
definition of θ, a first step towards a possible categorification is the obtention of
a skein relation satisfied by the Khovanov homology. Unfortunately, the Khovanov
homology does not satisfy a skein relation in the usual sense [15]. So in the first
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part of our article we investigate a skein-type relation for Khovanov homology, using
the machinery of spectral sequences. We show that the Khovanov homology (more
specifically, its Poincaré polynomial) satisfies a generalized skein relation which
involves its values on a Conway triple, plus a ‘defect’ term that arises from spectral
sequences associated to the Khovanov chain complex.

In the second part of our article, we aim to define a ‘framization’ of the Khovanov
homology, which should have the θ-invariant as Euler characteristic. On a union of
unlinked knots, we achieve this by tensoring with the group algebra of the cyclic
group of order d. On an arbitrary link L, we follow the method of Lickorish–Millett
and Kauffman–Lambropoulou. However, their algorithm depends on several choices
made on the link, such as, for instance, the ordering of the link components and
of the mixed crossings. So one has to show that the final result is independent of
these choices. This is achieved in [12] and in [9] thanks to the skein relation and
the properties of the base invariant involved. In our case though, we do not have
a skein relation in the classical sense and we cannot prove the independence of the
choices made in the same way that they did. This is why we slightly modify the
generalized skein relation proved in the first part of the article, before we apply
it only to mixed crossings. By summing over several choices and dividing by their
number, we eventually obtain a link invariant Khd,d′ , depending on d and an extra
parameter d′, which is the Poincaré polynomial of a homology KH∗,∗

d,d′(L), that is,

Khd,d′(L) =
∑
i,j∈Z

tiqj dimKHi,j
d,d′(L).

We prove that both the classical Khovanov homology and the θ-invariant can be
obtained as specializations of Khd,1; the former for d = 1, the latter for t = −1.

2. A generalized skein relation for Khovanov homology

Let q and t be indeterminates over Q.

2.1. Generalities on graded vector spaces

Let V = ⊕mV m be a graded Q-vector space. The graded dimension qdim(V ) of
V is the Laurent polynomial in q given by

qdim(V ) =
∑
m

qmdim(V m).

If V ′ is another graded vector space, the graded dimension satisfies

qdim(V ⊗ V ′) = qdim(V )qdim(V ′) and qdim(V ⊕ V ′) = qdim(V ) + qdim(V ′).

Let l ∈ Z. We define the l-shift V {l} of V to be the graded vector space defined by

V {l}m = V m−l.

Note that qdim(V {l}) = qlqdim(V ).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2020.78
Downloaded from https://www.cambridge.org/core. IP address: 82.254.1.172, on 05 Nov 2020 at 08:45:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2020.78
https://www.cambridge.org/core


4 M. Chlouveraki, D. Goundaroulis, A. Kontogeorgis and S. Lambropoulou

Figure 1. Smoothings of a crossing

2.2. Classical Khovanov homology

In this section, we give a short introduction to Khovanov homology following the
exposition of [14]. Let L be a link and D a diagram of L with n crossings. Each
crossing can be resolved in two ways:

The first resolution in Figure 1 is called a 0-smoothing and the second one is a
1-smoothing. Thus, there are 2n ways of resolving all crossings of D, each of them
resulting to a collection of circles in the plane. If now we number the crossings of
D by 1, 2, . . . , n, then each such collection can be represented by a binary n-string
where the entry 0 or 1 in the j-th position corresponds to a 0-smoothing or 1-
smoothing respectively of the j-th crossing, for all j = 1, . . . , n. In the end, D has
2n smoothings indexed by In := {0, 1}n. We can thus form a hypercube as in the
following figure (for n=3)
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with an edge between words differing in exactly one place. For general n, we see the
smoothings as vertices of the hypercube indexed by In. For α ∈ In, we will denote
by rα the number of 1’s in α and by kα the number of circles in the plane of the
associated smoothing.

In Khovanov homology we further assume that the link L is oriented. We denote
by n+ = n+(D) the number of positive crossings and by n− = n−(D) the number
of negative crossings, and we use the simpler notation n+ and n− whenever the
diagram is fixed. Let V be a 2-dimensional Q-vector space with basis {e, x}. We
grade the two basis elements by deg(e) = 1 and deg(x) = −1. To each α ∈ In we
associate the graded vector space

Vα := V ⊗kα{rα + n+ − 2n−}.

For i ∈ {−n−, . . . , n+}, we define Ci,∗(D) to be the direct sum

Ci,∗(D) :=
⊕

α∈In with rα=i+n−

Vα. (2.1)
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A skein relation for Khovanov homology and a categorification of θ 5

For v ∈ Vα ⊂ C∗,∗(D), we have v ∈ Ci,j(D) if and only if i = rα − n− and j =
deg(v) + rα + n+ − 2n−. We then say that v has homological grading i and quantum
grading j. We will now define a differential d turning (C∗,∗(D), d) into a complex.
First, observe that every edge of the hypercube is between elements of In differing
in exactly one place. It can thus be transformed into an arrow from the string with
0 in that place towards the string with 1 in that place. This arrow can be labelled
by a string that is the same as the ones labelling the tail and the head except that
it has a � in the position that changes. For example, there is an arrow from 0100
to 0110 which is denoted by 01 � 0.

Now note that, for an arrow ζ : α→ α′, the smoothings α and α′ are identical
except for a small disc, the changing disc, around the crossing that changes from
a 0-smoothing to a 1-smoothing (the one marked by a � in the label of ζ). Since
each circle in a smoothing has a copy of the vector space V attached to it, we can
define a linear map dζ : Vα → Vα′ as follows: Let m : V ⊗ V → V be the linear map
defined by

m(e⊗ e) = e, m(e⊗ x) = m(x⊗ e) = x, m(x⊗ x) = 0

and let Δ : V → V ⊗ V be the linear map defined by

Δ(e) = e⊗ x+ x⊗ e, Δ(x) = x⊗ x.

Then dζ is defined to be the identity on circles not entering the changing disc and
either m or Δ on the circles appearing in the changing disc (depending on whether
two circles are fused into one or a circle splits into two when going from α to α′).

Finally, we define a map di : Ci,∗(D) → Ci+1,∗(D) by setting

di(v) :=
∑

ζ with Tail(ζ)=α

sign(ζ)dζ(v) for all v ∈ Vα ⊂ Ci,∗(D)

where sign(ζ) = (−1)# of 1’s to the left of � in ζ . We have di+1 ◦ di = 0.
The graded Euler characteristic of this complex, i.e.,

∑
i

(−1)iqdim(Ci,∗(D)) ∈ Q[q, q−1]

is the unnormalized Jones polynomial Ĵ(L) of L. Dividing Ĵ(L) by q + q−1 yields
the Jones polynomial J(L) of L.

We define the Khovanov homology of the diagram D by

KH∗,∗(D) := H(C∗,∗(D), d).

The Khovanov homology is invariant under the Reidemeister moves, and thus a
link invariant. Hence, it does not depend on the choice of diagram D, and we can
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talk about the Khovanov homology of the link L. We have∑
i

(−1)iqdim(KHi,∗(L)) = Ĵ(L) = (q + q−1)J(L).

The Khovanov homology of L can be also read off the Khovanov polynomial Kh(L)
of L, which is given by

Kh(L) =
∑
i,j

tiqjdim(KHi,j(L)) =
∑
i

tiqdim(KHi,∗(L)).

Obviously, evaluating Kh(L) at t = −1 yields the unnormalized Jones polynomial
Ĵ(L).

We choose not to give right now explicit examples of computations of the classical
Khovanov homology, because: (a) some will be given in § 2.5 along with further
computations; (b) the reader can find plenty in literature (see, e.g., [3] or [14]).

2.3. The effect of switching a crossing

A skein relation relates the value of a link invariant of a diagram D of a link
L with the values of the diagrams obtained by switching and smoothing a given
crossing. Let us consider the numbering of the crossings of D and the associated
hypercube introduced in the previous section. If we switch the j-th crossing the sign
from negative to positive, then every 1 at the j-th position should become 0 and
every 0 should change to 1, as if we take the ‘not’ operator on a given binary number
at the j-th position. In general the operation of switching the crossing induces an
automorphism of the hypercube.

For example, if we take j = 2, then the hypercube
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should change to

Notice that in order to map the new transformed cube to the Khovanov cube with
this changed position we have to rotate the two highlighted faces together with the
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maps at the edges. For a detailed example explaining this rotation after switching
a crossing from negative to positive we refer to the example of the Hopf link in
§ 2.5.1.

2.4. A generalized skein relation

Consider two link diagrams D+ and D− that differ on exactly one crossing, which
is positive in the former and negative in the latter. Equivalently, we can see this
crossing as the one we choose to switch, thus obtaining one diagram from the other.
In order to understand the relation between D+ and D− we will study the relation
of D+ (respectively D−) to the two resolutions D+

0 and D+
1 (respectively D−

0 and
D−

1 ), obtained respectively by the 0-smoothing and the 1-smoothing of the selected
crossing, as in the following picture:

Following [14, Chapter 3], we distinguish the following cases:
Case I: the selected crossing is positive. The diagram D+

0 inherits an orientation
from D+ and for D+

1 we select an arbitrary orientation. Set

c+ := #{negative crossings in D+
1 } − #{negative crossings in D+}.

For each j there is a short exact sequence:

0 → Ci−c
+−1,j−3c+−2(D+

1 ) → Ci,j(D+) → Ci,j−1(D+
0 ) → 0.

Case II: the selected crossing is negative. In this case D−
1 inherits its orientation

from D− and for D−
0 we select the same orientation as for D+

1 . Set

c− := #{negative crossings in D−
0 } − #{negative crossings in D−}.

For each j there is a short exact sequence:

0 → Ci,j+1(D−
1 ) → Ci,j(D−) → Ci−c

−,j−3c−−1(D−
0 ) → 0.

Now, we observe that D+
0 = D−

1 and D−
0 = D+

1 , after choosing the same orientation
for the second pair. We thus have c+ = c− + 1, and so

(i− 2) − c− = i− c+ − 1 and (j − 4) − 3c− − 1 = j − 3c− − 5 = j − 3c+ − 2.
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Therefore, the two short exact sequences above can be combined in a long one:

0 �� Ci−2,j−3(D+
0 )

ψ1 �� Ci−2,j−4(D−)

φ1 �� C(i−2)−c−,(j−4)−3c−−1(D−
0 ) �� 0

0 �� Ci−c
+−1,j−3c+−2(D−

0 )

φ2 ��

����������������������

����������������������
Ci,j(D+)

ψ2 �� Ci,j−1(D+
0 ) �� 0

Lemma 2.1. The above exact sequence can be compactified to a 4-term exact
sequence:

0 �� Ci−2,j−3(D+
0 )

ψ1 �� Ci−2,j−4(D−)
φ

�� Ci,j(D+)
ψ2 �� Ci,j−1(D+

0 ) �� 0

(2.2)
where φ = φ2 ◦ φ1.

Proof. Observe that

kerφ = {x ∈ Ci−2,j−4(D−) |φ2(φ1(x)) = 0} = {x ∈ Ci−2,j−4(D−) |φ1(x) = 0}
= kerφ1 = imψ1.

Similarly,

imφ = φ2

(
φ1(Ci−2,j−4(D−))

)
= φ2(C(i−2)−c−,(j−4)−3c−−1(D−

0 ))

= imφ2 = kerψ2. �

Equation (2.2) gives rise to a double complex which is not zero on a par-
allel band of four lines and also only if i ∈ {−n−(D−), . . . , n+(D+)} (recall
the definition of Ci,∗ in (2.1) and note that n−(D−) > n−(D+

0 ) = n−(D+) and
n+(D−) = n+(D+

0 ) < n+(D+)), so it behaves like a first quadrant double complex.
On this parallel band the quantum degrees j − 3, j − 4, j, j − 1 appear. For every
fixed j we will form a spectral sequence out of this double complex and we will
denote elements on the n-th page by Ei,jn,j , so that the second subindex shows the
dependence on the quantum degree. For a good introduction to spectral sequences,
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the reader may refer to [16, Chapter 5].

0

��

0

��
�� Ci−2,j−3(D+

0 ) ��

��

Ci−1,j−3(D+
0 ) ��

��
�� Ci−2,j−4(D−) ��

��

Ci−1,j−4(D−) ��

��
�� Ci,j(D+) ��

��

Ci+1,j(D+) ��

��
�� Ci,j−1(D+

0 ) ��

��

Ci+1,j−1(D+
0 ) ��

��
0 0

For the creation of the first vertical page Ei,j1,j , we compute Kernel over Image along
each row. This coincides with taking the Khovanov homology in each position. Thus
the first page measures how far each horizontal sequence is from being exact. The
vertical arrows are preserved, and we obtain:

0

��

0

��

0

��

0

��
KHi−3,j−3(D+

0 )

αi−3,j

��

KHi−2,j−3(D+
0 )

αi−2,j

��

KHi−1,j−3(D+
0 )

αi−1,j

��

KHi,j−3(D+
0 )

ai,j

��
KHi−3,j−4(D−)

βi−3,j

��

KHi−2,j−4(D−)

βi−2,j

��

KHi−1,j−4(D−)

βi−1,j

��

KHi,j−4(D−)

βi,j

��
KHi−1,j(D+)

γi−1,j

��

KHi,j(D+)

γi,j

��

KHi+1,j(D+)

γi+1,j

��

KHi+2,j(D+)

γi+2,j

��
KHi−1,j−1(D+

0 )

��

KHi,j−1(D+
0 )

��

KHi+1,j−1(D+
0 )

��

KHi+2,j−1(D+
0 )

��
0 0 0 0
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In the above diagram we introduce the notation αi,j , βi,j and γi,j for the
functions corresponding to the vertical arrows KHi,j−3(D+

0 ) → KHi,j−4(D−),
KHi,j−4(D−) → KHi+2,j(D+), KHi,j(D+) → KHi,j−1(D+

0 ), respectively. That
is, we have:

0 �� KHi−2,j−3(D+
0 )

αi−2,j
�� KHi−2,j−4(D−)

βi−2,j
�� KHi,j(D+)

γi,j
�� KHi,j−1(D+

0 ) �� 0 . (2.3)

The second subindex j illustrates that we are on the spectral sequence E∗,∗
∗,j .

For the creation of the second page Ei,j2,j (Table 1), we take Kernel over Image
along each column. Thus, the second page measures how far the sequences of the
first page are from being exact. Now, in each position we no longer get a link
invariant, so we will use the notation D+t

0 and D+b
0 to differentiate between the

copy of D+
0 appearing in the top line and the copy of D+

0 appearing in the bottom
line. We obtain arrows that go two positions down and one left. We have that:

Ei−2,j−3
2,j (D+t

0 ) = kerαi−2,j (2.4)

Ei−2,j−4
2,j (D−) =

kerβi−2,j

imαi−2,j

Ei,j2,j(D
+) =

kerγi,j
imβi−2,j

Ei,j−1
2,j (D+b

0 ) = cokerγi,j .

We now create the third page Ei,j3,j (Table 2) by taking Kernel over Image along
each sequence of the E2-page. We obtain arrows that go 3 positions down and 2 left.
By looking at the E4-page, we immediately obtain that all positions in the E3-page
are exact. Moreover, we observe that Ei−1,j

3,j (D+) ∼= Ei,j3,j(D
+) ∼= Ei−2,j−4

3,j (D−) ∼= 0,
whence we deduce that the positions marked in grey in the E2-page are exact.

By looking at the second, third and fourth pages we obtain the following exact
sequences:

0 �� Ei−1,j−3
3,j (D+t

0 ) �� Ei−1,j−1
3,j (D+b

0 ) �� 0

0 �� Ei−2,j−3
3,j (D+t

0 ) �� Ei−2,j−3
2,j (D+t

0 ) �� Ei−1,j
2,j (D+) �� 0

0 �� Ei−2,j−4
2,j (D−) �� Ei−1,j−1

2,j (D+b
0 ) �� Ei−1,j−1

3,j (D+b
0 ) �� 0

(2.5)
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Table 1. The E2-page; the positions marked in grey are exact.

Table 2. The E3-page; all positions are exact.
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12 M. Chlouveraki, D. Goundaroulis, A. Kontogeorgis and S. Lambropoulou

From now on, abusing notation, we will write Kh(En(D∗)) for
∑
i,j t

iqj

dim(Ei,jn,j(D
∗)). The short exact sequences above imply that

tq3Kh(E3(D+t
0 )) = tqKh(E3(D+b

0 )) , (2.6)

tKh(E2(D+)) = t2q3Kh(E2(D+t
0 )) − t2q3Kh(E3(D+t

0 )) , (2.7)

t2q4Kh(E2(D−)) = tqKh(E2(D+b
0 )) − tqKh(E3(D+b

0 )). (2.8)

Now, equation (2.3) combined with (2.4) yields

(t2q3 − q)Kh(D+
0 ) − t2q4Kh(D−) + Kh(D+) = C , (2.9)

where

C = t2q3Kh(E2(D+t
0 )) − t2q4Kh(E2(D−)) + Kh(E2(D+)) − qKh(E2(D+b

0 )).

Note again that Kh(E2(D+t
0 )) is not necessarily equal to Kh(E2(D+b

0 )). Substituting
Kh(E2(D+)) and Kh(E2(D−)) in the above formula with the use of (2.7) and (2.8)
respectively, we obtain

C = (t2q3 + tq3)Kh(E2(D+t
0 )) − (q + tq)Kh(E2(D+b

0 ))

− tq3Kh(E3(D+t
0 )) + tqKh(E3(D+b

0 ))

The last two terms cancel out because of (2.6), and we conclude that

C = (t+ 1)tq3Kh(E2(D+t
0 )) − (t+ 1)qKh(E2(D+b

0 )) =: C(D+
0 ,D

−,D+). (2.10)

We have thus proved the main result of this section:

Theorem 2.2. The Khovanov polynomial Kh satisfies the generalized skein relation

(t2q3 − q)Kh(D+
0 ) − t2q4Kh(D−) + Kh(D+) = C(D+

0 ,D
−,D+) (2.11)

where C(D+
0 ,D

−,D+) is given by equation (2.10). The generalized skein relation
can be also written more symmetrically as

t−1q−2Kh(D+) − tq2Kh(D−) = (t−1q−1 − tq)Kh(D+
0 ) + Csym(D+

0 ,D
−,D+)

(2.12)
where

Csym(D+
0 ,D

−,D+) = (t+ 1)qKh(E2(D+t
0 )) − (t−1 + 1)q−1Kh(E2(D+b

0 )). (2.13)

Remark 2.3. We observe that for t = −1, we have C(D+
0 ,D

−,D+) = 0, and so we
recover the usual skein relation for the unnormalized Jones polynomial (and for the
Jones polynomial as well):

q−2Ĵ(D+) − q2Ĵ(D−) = (q−1 − q)Ĵ(D+
0 ).

Remark 2.4. The skein relation given in theorem 2.2 is not local, in contrast with
the usual skein relations in literature. This means that the quantity C(D+

0 ,D
−,D+)

depends on all remaining diagrams D+
0 ,D

−,D+.
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Figure 2. Hopf link with two negative crossings and resolution of one crossing

2.5. Examples

In this subsection we will apply theorem 2.2 to the Hopf link and the left-handed
trefoil knot.

2.5.1. The Hopf Link First we will study the Hopf link with two negative crossings
(Figure 2).

Using the invariance of classical Khovanov theory under Reidemeister moves we
see that D+

0 = D−
1 has the Khovanov homology of the unknot:

KH0,1(D+
0 ) = 〈e⊗ e〉 ∼= Q and KH0,−1(D+

0 ) = 〈x⊗ e〉 ∼= Q.

The Khovanov homology of D− is given in [14, example 3.7], while D+ is the
union of two unlinked unknots. The Khovanov homology of the two links is given
in the following tables:

KH(D−):

j\i −2 0
0 Q

−2 Q

−4 Q

−6 Q

KH(D+):

j\i 0
2 Q

0 Q2

−2 Q

We thus have:

(i, j) KHi−2,j−3(D+
0 ) KHi−2,j−4(D−) KHi,j(D+) KHi,j−1(D+

0 )
(0,2) Q Q
(0,0) Q Q2 Q

(0,−2) Q Q
(2,4) Q Q
(2,2) Q Q

and the following exact sequence, given in (2.3), is exact for every i, j:

0 → KHi−2,j−3(D+
0 ) → KHi−2,j−4(D−) → KHi,j(D+) → KHi,j−1(D+

0 ) → 0.

Therefore, in this example, the skein relation (2.11) for the Khovanov polynomial
holds with C(D+

0 ,D
−,D+) = 0.

2.5.2. The left-handed trefoil knot In this example we will study the trefoil knot
D− with three negative crossings. Then D+ is the unknot and D+

0 is the Hopf link.
The Khovanov homology of the three links is given in the following tables:
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14 M. Chlouveraki, D. Goundaroulis, A. Kontogeorgis and S. Lambropoulou

KH(D−):

j\i 0 −2 −3
−9 Q

−5 Q

−3 Q

−1 Q

KH(D+):
j\i 0
1 Q

−1 Q

KH(D+
0 ):

j\i −2 0
0 Q

−2 Q

−4 Q

−6 Q

From the above tables we compute

Kh(D−) =
1
t3q9

+
1
t2q5

+
1
q3

+
1
q

Kh(D+) =
1
q

+ q

Kh(D+
0 ) =

1
t2q6

+
1
t2q4

+
1
q2

+ 1

We thus have:

(i, j) KHi−2,j−3(D+
0 ) KHi−2,j−4(D−) KHi,j(D+) KHi,j−1(D+

0 )
(−2,−3) Q
(−2,−5) Q
(−1,−5) Q

(0,1) Q Q
(0,−1) Q Q Q Q
(0,−3) Q
(2,3) Q Q
(2,1) Q Q

By looking at the table above, we only need to study the cases where j ∈
{−5,−3,−1, 1, 3}.
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Case j = −5: In the first page, we have the following sequences of Khovanov
homology:

0

��

0

��
0 = KH−4,−8(D+

0 )

��

0 = KH−3,−8(D+
0 )

��
0 = KH−4,−9(D−)

��

E−3,−9
2,−5 (D−)

∼=��
��

��
��

�

����
��

��
��

�

∼= Q ∼= KH−3,−9(D−)

��
0 = KH−2,−5(D+)

��

0 = KH−1,−5(D+)

��
Q ∼= KH−2,−6(D+

0 )

��

∼= E−2,−6
2,−5 (D+b

0 ) 0 = KH−1,−6(D+
0 )

��
0 0

The above diagonal morphism fits within the third sequence in (2.5) for
i = −1, j = −5

0 �� E−3,−9
2,−5 (D−) ∼= Q �� E−2,−6

2,−5 (D+b
0 ) ∼= Q �� E−2,−6

3,−5 (D+b
0 ) �� 0

whence E−2,−6
3,−5 (D+b

0 ) = 0.
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Case j = −3: In the first page, we have the following sequences of Khovanov
homology:

0

��

0

��
0 = KH−4,−6(D+

0 )

��

0 = KH−3,−6(D+
0 )

��
0 = KH−4,−7(D−)

��

E−3,−7
2,−3 (D−)

��
��

��
��

��

����
��

��
��

��

∼= 0 = KH−3,−7(D−)

��
0 = KH−2,−3(D+)

��

0 = KH−1,−3(D+)

��
Q ∼= KH−2,−4(D+

0 )

��

∼= E−2,−4
2,−3 (D+b

0 ) 0 = KH−1,−4(D+
0 )

��
0 0

The above diagonal morphism fits within the third sequence in (2.5) for
i = −1, j = −3

0 �� E−3,−7
2,−3 (D−) ∼= 0 �� E−2,−4

2,−3 (D+b
0 ) ∼= Q �� E−2,−4

3,−3 (D+b
0 ) �� 0

whence E−2,−4
3,−3 (D+b

0 ) ∼= Q.
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We also have the following sequences of Khovanov homology:

0

��

0

��
0 = KH−3,−6(D+

0 )

��

E−2,−6
2,−3 (D+t

0 ) ∼=

��
��

��
��

��

����
��

��
��

��

Q = KH−2,−6(D+
0 )

��
0 = KH−3,−7(D−)

��

0 = KH−2,−7(D−)

��
0 = KH−1,−3(D+)

��

∼= E−1,−3
2,−3 (D+) 0 = KH0,−3(D+)

��
0 = KH−1,−4(D+

0 )

��

0 = KH0,−4(D+
0 )

��
0 0

The above diagonal morphism fits within the second sequence in (2.5) for
i = 0, j = −3

0 �� E−2,−6
3,−3 (D+t

0 ) �� E−2,−6
2,−3 (D+t

0 )∼= Q �� E−1,−3
2,−3 (D+)∼= 0 �� 0

whence E−2,−6
3,−3 (D+t

0 ) ∼= Q.
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Cases j ∈ {−1, 1, 3}: In these cases all vertical sequences are exact so the
corresponding elements in the second page are all zero.

0

��

KH−2,−4(D+
0 ) ∼= Q

��
KH−2,−5(D−) ∼= Q

��
KH0,−1(D+) ∼= Q

��

KH0,−2(D+
0 ) ∼= Q

��
0

0

��

KH0,−2(D+
0 ) ∼= Q

��
KH0,−3(D−) ∼= Q

��
KH2,1(D+) = 0

��

KH2,0(D+
0 ) = 0

��
0

0

��

KH0,0(D+
0 ) ∼= Q

��
KH0,−1(D−) ∼= Q

��
KH2,3(D+) = 0

��

KH2,2(D+
0 ) = 0

��
0

There is also a sequence where the Khovanov homology of D− is equal to 0:

0

��

KH−2,−2(D+
0 ) = 0

��
KH−2,−3(D−) = 0

��
KH0,1(D+) ∼= Q

��

KH0,0(D+
0 ) ∼= Q

��
0
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We now compute:

Kh(E2(D+b
0 )) =

1
t2q6

+
1
t2q4

and Kh(E2(D+t
0 )) =

1
t2q6

and so

C(D+
0 ,D

−,D+) = (t+ 1)q
(
tq2Kh(E2(D+t

0 )) − Kh(E2(D+b
0 )

)

= (t+ 1)q
(

1
tq4

− 1
t2q6

− 1
t2q4

)

= (t+ 1)
(
tq2 − 1 − q2

t2q5

)
.

Moreover, we have

(t2q3 − q)Kh(D+
0 ) − t2q4Kh(D−) + Kh(D+)

=
1
q3

+
1
q

+ t2q + t2q3 − 1
t2q5

− 1
t2q3

− 1
q
− q − 1

tq5
− 1
q
− t2q − t2q3 +

1
q

+ q

=
1
q3

− 1
t2q5

− 1
t2q3

− 1
tq5

=
t2q2 − 1 − q2 − t

t2q5

= (t+ 1)
(
tq2 − q2 − 1

t2q5

)
.

Therefore, equation (2.11) is satisfied.

3. A categorification of the θ-invariant

3.1. The θ-invariant

Our initial motivation for looking for a skein relation for the Khovanov homology
was our desire to categorify the θ-invariant, a skein link invariant that generalizes
the Jones polynomial. The θ-invariant is a 2-variable polynomial invariant defined
in [8], and is obtained as a specialization of the 3-variable polynomial skein link
invariant Θ introduced in [6], in the same way that the Jones polynomial is obtained
as a specialization of the HOMFLYPT polynomial. The invariants Θ and θ are
generalizations of invariants obtained from Markov traces on the Yokonuma–Hecke
algebra of type A and the Framization of the Temperley–Lieb algebra respectively
using Jones’s method (see [6,7] for these algebraic constructions).

Let L denote the set of oriented links. Let L ∈ L with components K1, . . . ,Kr

(r � 1). Given a diagram D of L, we will call a crossing mixed if it is between two
different components of D. We will write L = �ri=1Ki if there exists a diagram of
L without mixed crossings, that is, L is a union of r unlinked knots. We can define
θ as follows [8, theorem 1]:
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Theorem 3.1. Let q, E be indeterminates. There exists a unique ambient isotopy
invariant

θ : L → C[q±1, E±1]

defined by the following rules:

(a) For all r � 1, we have

θ(�ri=1Ki) = E1−rJ(�ri=1Ki). (3.1)
(b) On mixed crossings the skein relation of the Jones polynomial holds, that is,

q−2θ(L+) − q2θ(L−) = (q−1 − q)θ(L0) (3.2)

where L+, L−, L0 is a Conway triple.

Remark 3.2. The skein relation (3.2) is actually not the same as the one of [8,
theorem 1]. We have changed it slightly, replacing q by −q, in order to be in
agreement with the skein relation satisfied by the Jones polynomial in this paper.

Remark 3.3. We have J(�ri=1Ki) = (q−1 + q)r−1
∏r
i=1 J(Ki).

Remark 3.4. Note that in L0 the two components involved in the mixed crossing
have been fused into one.

The invariant θ is a specialization of the 3-variable polynomial invariant, first
introduced in [6, theorem 8.1], Θ : L → C[q±1, E±1, μ±1], which is defined in the
same way as θ, but satisfying the skein relation

μ−1Θ(L+) − μΘ(L−) = (q−1 − q)θ(L0).

Taking μ = q2 yields θ.
The existence of the invariant Θ is proved in [6] by showing that it coincides with

a variation of a 3-variable invariant for tied links defined by Aicardi and Juyumaya
in [1,2]. Another diagrammatic proof of its existence is given by Kauffman and
Lambropoulou in [9], using the notion of ‘descending stacks’. We will make use of
them when we define the categorification of θ in the next sections.

Let d ∈ N∗. For E = 1/d, the invariants Θ and θ can be defined algebraically as
Markov traces on the Yokonuma–Hecke algebra of type A and the Framization of
the Temperley–Lieb algebra respectively, using Jones’s technique. This algebraic
construction is the third proof of their existence. For the rest of the paper, we will
only be interested in this case, that is, when E is the inverse of a positive integer
d. For d = 1, the invariants Θ and θ coincide with the HOMFLYPT and the Jones
polynomial respectively. In general, by [6, theorem 8.2] and [8, theorem 5] (see also
[5, example 4.16]), we have:

Theorem 3.5. The invariants Θ and θ are stronger than the HOMFLYPT and the
Jones polynomial respectively.

By ‘stronger’ we mean that these invariants distinguish links that the others (the
‘weaker’ ones) cannot distinguish.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2020.78
Downloaded from https://www.cambridge.org/core. IP address: 82.254.1.172, on 05 Nov 2020 at 08:45:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2020.78
https://www.cambridge.org/core


A skein relation for Khovanov homology and a categorification of θ 21

3.2. Knot theory via recursive relations

In this section, we will describe the algorithm of [12] and [9] for associating to
each oriented link diagram a family of unions of unlinked knots, called ‘descending
stacks’. This will allow us to compute the value of any map f on L that satisfies a
generalized skein relation via a recursive process whose initial condition is the value
of f on any union of unlinked knots. However, constructing the descending stacks
depends on several choices that we make, so in order to prove the f is well-defined,
we have to further show that the value of f on an oriented link does not depend on
the choices made.

Let L be an oriented link diagram. We say that L is ordered, if an order is given
to its components, and based, if a basepoint is chosen on each component. If L is
both ordered and based, we say that L is generic. We can turn every oriented link
diagram to a generic one by making the needed choices. Of course, the associated
generic diagram is not unique.

A generic diagram is a descending stack if, when walking along its components
in their given order following their orientations and starting from their basepoints,
every mixed crossing is first traversed along its over-arc. The structure of a descend-
ing stack depends on the ordering of its components, but not on the choice of
basepoints or the numbering of the mixed crossings.

Starting from a generic link diagram L, with components K1,K2, . . . ,Kr, we can
associate to it a family of descending stacks as follows:

Step 1. We perform the following procedure for i = 1, then i = 2, i = 3, until we
reach i = r: We start walking from the basepoint on Ki following its orien-
tation and every time we come across a mixed crossing along its under-arc,
we mark it. We continue until we return to the basepoint. Note that if
all marked mixed crossings so far are switched, we obtain a generic dia-
gram with r components, whereK1, . . . ,Ki are unlinked from the remaining
components and lie above them, and K1 lies above K2, K2 lies above K3,
etc.

Step 2. We proceed with replacing our initial diagram by two new generic dia-
grams as follows: The first one, denoted by L1, is obtained by switching
the first marked mixed crossing of the previous step, and thus has r com-
ponents. The second one, denoted by L(1), is obtained by smoothing the
first marked mixed crossing of step 1, and thus has r − 1 components (two
of the original components are fused into one). These two new diagrams
are made generic by the same choices as for L. For a component resulting
from the merging of two, we choose as basepoint the one of the smaller in
order component involved. We repeat the same procedure on the second
marked mixed crossing of L1, and obtain two diagrams L2 and L(2). We
continue until have done the same thing for all marked mixed crossings of
step 1. If s is the total number of such mixed crossings, then we end up
with an r-component link Ls =: δL, which is a descending stack with com-
ponents K1,K2, . . . ,Kr, and s (r − 1)-component links L(1), L(2), . . . , L(s).
We define s to be the distance of L from δL. Clearly, the distance of a
generic diagram is well-defined.
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Step 3. We apply the above procedure (steps 1 and 2) for each generic diagram
L(1), L(2), . . . , L(s) obtained through the smoothing of mixed crossings of L.

We repeat steps 1–3 until we end up with a family of descending stacks {δ1 :=
δL, δ2, . . . , δm}. Among them only δ1 has r components, while all other descending
stacks have less than r components.

Let now R be an integral domain, and let D be the set of all oriented link
diagrams. We say that f : D → R satisfies a generalized skein relation if

r+f(L+) + r−f(L−) + r0f(L0) + r∞(L+, L−, L0) = 0, (3.3)

where r+, r− ∈ R×, r0, r∞(L+, L−, L0) ∈ R and L+, L−, L0 is a Conway triple. In
a classical skein relation, we have r∞(L+, L−, L0) = 0, but the above expression
allows us to handle also the case of the Khovanov homology.

Let L be an oriented link diagram, which we turn to a generic one by making
the needed choices. Let Δ = {δ1, δ2, . . . , δm} be the family of descending stacks
associated to it. Applying the generalized skein relation to every marked mixed
crossing that we switch or smooth to reach Δ (let us denote their number by M)
yields

f(L) =
m∑
i=1

αi(r+, r−, r0)f(δi) + α∞(r∞), (3.4)

where the coefficients αi(r+, r−, r0) are products of ±r±1
+ , ±r±1

− , ±r0, for i =
1, . . . ,m, while α∞(r∞), is a product of M terms of the form −r∞(c), where c
runs over Conway triples, multiplied with either r−1

+ or r−1
− . Therefore, if we have

an ‘inital condition’ that gives the value of f on any union of unlinked knots, then
we can compute f(L).

Now, the map f is well-defined if and only if the value of f(L) given by (3.4) is
independent of the choice of basepoints and the ordering of the components of L,
when L is turned to a generic link diagram. If further f respects the Reidemeister
moves, f is an ambient isotopy invariant of links. Link invariants that satisfy skein
relations or generalized skein relations, such as the Jones polynomial, the θ-invariant
or the Khovanov homology, are particularly interesting.

3.3. Categorifying θ: the case of knots

Let d ∈ N∗ and E = 1/d. As in the case of the Jones polynomial, we would
like to construct a homology whose Poincaré polynomial, evaluated at t = −1,
yields the unnormalized θ-invariant θ̂, which is given by θ̂(L) = d(q + q−1)θ(L)
on any oriented link L. Further, for d = 1, it should become the classical Khovanov
homology.

Let now G be the cyclic group of order d. For any knot K, we define

KHi,j
d (K) := Q[G] ⊗Q KH

i,j(K). (3.5)

The corresponding Poicaré polynomial is

Khd(K) =
∑
i

tiqdim(KHi,∗
d (K)) = d · Kh(K).
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If now L1, L2 are unions of unlinked knots, then we can define inductively KHi,j
d

on L1 � L2 as follows:

KHi,j
d (L1 � L2) :=

⊕
ν1+ν2=i
μ1+μ2=j

KHν1,μ1
d (L1) ⊗KHν2,μ2

d (L2). (3.6)

The above result implies the multiplicativity of the corresponding Poincaré
polynomial:

Khd(L1 � L2) = Khd(L1) · Khd(L2).

Remark 3.6. For d = 1, and thus the classical Khovanov homology, one can prove
(3.6) using the Künneth spectral sequence [16, theorem 3.6.1], after observing that
the Khovanov complex of L1 � L2 is the tensor product of the Khovanov complexes
of L1 and L2. It is important that we are working over the field Q for this to
hold. The case of Khovanov homology with coefficients in Z or, even worse, over an
arbitrary ring is much more complicated.

We deduce that if K1, . . . ,Kr are knots, then

Khd(�ri=1Ki) =
r∏
i=1

Khd(Ki) =
r∏
i=1

dKh(Ki) = drKh(�ri=1Ki). (3.7)

Evaluating the above formula at t = −1 yields:

Khd(�ri=1Ki) |t=−1= drKh(�ri=1Ki) |t=−1= drĴ(�ri=1Ki) = θ̂(�ri=1Ki).

3.4. Categorifying θ: the case of links

Equation (3.7) is the categorified equivalent of equation (3.1). We would now
like to obtain the value of Khd on any link L by applying the following rule: On
mixed crossings the skein relation of the Khovanov polynomial holds. However, the
Khovanov polynomial does not satisfy a skein relation in the classical sense; the
closest to a skein relation that we have is equation (2.12), which can be rewritten
as follows:

Kh(L) = y2εPKh(σPL) − εP y
εP zKh(sPL) + C ′(L, σPL, sPL) (3.8)

where z = tq − (tq)−1, y = tq2, σPL is the link with a given crossing P switched
(i.e., L+ for L− and vice versa), sPL is the link with the crossing P smoothed, εP =
±1 is the sign of the crossing P and C ′(L, σPL, sPL) = εP y

εPCsym(sPL,L−, L+) ∈
Q[q±1, t±1]. We say that C ′(L, σPL, sPL) is the defect of the skein relation. Unfor-
tunately, C ′(L, σPL, sPL) depends on all three diagrams L, σPL and sPL. Because
of our lack of control on the value of the defect, we were not able to show that, by
applying rule (3.8) only on mixed crossings, we obtained a well-defined link invari-
ant. This is the reason why we decided to introduce an extra framing variable d′
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and the following variation of the generalized skein relation

Khd,d′(L) = y2εPKhd,d′(σPL) − εP y
εP zd′Khd,d′(sPL) + dα(L)C ′(L, σPL, sPL)

(3.9)

where α(L) is the number of components of the link L. We can now construct a
link invariant as follows:

We start with an oriented link L with components K1, . . . ,Kr. There are r! ways
of ordering the components of L, each corresponding to a permutation β ∈ Sr. We
will consider the ordering as part of the structure of L and we will denote the link
L with the ordering β by Lβ .

Now, let β ∈ Sr and let ΓLβ denote the set of diagrams representing Lβ that
have minimal number of crossings. It is clear that any diagram in this set can be
transformed to another one in this set by a sequence of Reidemeister moves. For
every diagram D ∈ ΓLβ , we denote by mix(D) the set of its mixed crossings and
by Cmix(D) the subset of mix(D) of crossings at which the component below is
smaller than the component above with respect to the β-ordering. Therefore, the
set Cmix(D) consists of the mixed crossings that need to be switched so that in
the descending stack δLβ the order of the resulting knot components from top to
bottom is given by the β-ordering (with the smallest component on top).

Let D ∈ ΓLβ . For any mixed crossing P ∈ Cmix(D), we can perform a switching
and smoothing according to the relation given in equation (3.9). More specifically,
we have (we change the notation to KhPd,d′ in order to keep track of the crossing P ):

KhPd,d′(D) = y2εPKhPd,d′(σPD) − εP y
εP zd′KhPd,d′(sPD) + dα(L)C ′(D,σPD, sPD).

We observe that the number of components α(L) of L does not depend on the choice
of the diagram D. As far as the ordering is concerned, the link σPD, where the
components at the mixed crossing P are switched, inherits the ordering of Lβ , while
in sPD, where the components at the mixed crossing P are merged together, the
new component inherits its numbering from the smallest of the two components
involved; the ordering of the components of sPD corresponds to a permutation
β′ ∈ Sr−1 which respects otherwise the β-ordering of the components of L. It is
clear that repeating this procedure will result in descending stacks, where Khd,d′
can be defined with the use of equation (3.7) (replacing Khd with Khd,d′). Indeed,
the diagram σPD has smaller distance from the descending stack δLβ than the
original diagram D and the diagram sPD has a mixed crossing less than D.

If now L is a union of r unlinked knots, then we define Khd,d′(L) := Khd(L).
Otherwise, we have #Cmix(D) �= 0 for all D ∈ ΓLβ with β ∈ Sr, and we define

Khd,d′(L) :=
1
r!

∑
β∈Sr

1
#ΓLβ

∑
D∈Γ

Lβ

1
#Cmix(D)

∑
P∈Cmix(D)

KhPd,d′(D) (3.10)

This is essentially a quantity which is summed over all possible choices we made
on the level of the generic diagram, hence it is independent of them. It is also clear
that, thanks to the use of the set ΓLβ , the value of Khd,d′(L) is invariant under
Reidemeister moves. Hence, Khd,d′ is a well-defined link invariant.
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We will now see why we consider the link invariant Khd,d′ a categorification of
θ. First, we observe that for d′ = 1 and t = −1, equation (3.9) becomes

Khd,1(L) = y2εPKhd,1(σPL) − εP y
εP zKhd,1(sPL)

with z = q−1 − q and y = −q2, which is the same skein relation satisfied by θ on
mixed crossings. Since θ is a well-defined link invariant, it is invariant under all
possible choices. So in equation (3.10), we sum over all possible choices the same
value and obtain

Khd,d′(L) � t=−1,d′=1
�� θ(L).

Let us now consider the case d′ = d. We extend the definition of Khd on any link L
by establishing the following rule: On mixed crossings Khd satisfies the generalized
skein relation

Khd(L) = y2εPKhd(σPL) − εP y
εP zdKhd(sPL) + dα(L)C ′(L, σPL, sPL).

We will show that Khd is well-defined; in particular, we have Khd(L) = dα(L)Kh(L).
We deduce that

Khd,d′(L) � d=d′ �� Khd(L).

We start with a generic diagram of an oriented link L with r components. We follow
the algorithm described in § 3.2 in order to form the family of descending stacks
{δ1, . . . , δm} associated to it. We can draw a graph, called the skein tree of L, whose
vertices are labelled by the link diagrams appearing when applying the algorithm
(starting from L at the top and resulting to the descending stacks δ1, . . . , δm at the
bottom) and whose edges connect any link diagram with its switched and smoothed
versions at a given mixed crossing. Each vertex of the skein tree is the outcome of
a series of switchings and smoothings, starting from the link diagram L.

Assume that we are in the vertex Lv of the skein tree of L, and that Lv is
obtained from L after applying rv switchings and r′v smoothings. This link Lv has
r − r′v components and its contribution Khd(Lv) in the computation of Khd(L) is
multiplied by dr

′
v . Therefore, by construction, the ‘total defect’ in the computation

of Khd(L) is given by

∑
v

dr−r
′
vdr

′
vC ′(Lv, σPvLv, sPvLv),

where Pv is the mixed crossing that is switched and smoothed at the vertex Lv of
the skein tree according to the algorithm. It is clear that Khd(L) = drKh(L).

We note that, in order to be able to obtain both θ and Khd as specializations of
the link invariant Khd,d′ , we could not have simply imposed the rule (3.9) on mixed
crossings, because we would not be able to show invariance under Reidemeister
moves. This is why we defined Khd,d′ by summing over all possible choices as in
equation (3.10).
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3.5. Open questions

As mentioned in the introduction and in the previous section, it is an open
question whether we could have applied the method of Lickorish–Millett and
Kauffman–Lambropoulou in order to define a framization of the Khovanov homol-
ogy with the use of the generalized skein relation (2.12), which is the one satisfied
by the classical Khovanov homology with scalars extended to Q[G]. It is certain
that we cannot imitate their proof and show that our function Khd is independent
of all choices made by relying on the properties of the base invariant involved. This
is why we choose to (a) sum over all possible choices and divide by their number,
and (b) introduce the framing parameter d′.

The next step is to prove that this new function is indeed a link invariant by
showing stability under the Reidemeister moves. The Reidemeister I move poses no
problem, since it is handled by the base invariant at each individual component.
However, stability under the Reidemeister II move does not seem to hold, since the
proofs found in [12] and in [9] use the independence of the choices made and such
a treatment is not possible in our case. So instead of working with an arbitrary
diagram representing a link L, we work with diagrams with minimal number of
crossings. In this way, we arrive at the invariant Khd,d′ defined by equation (3.10).

The drawback of our method is that it seems very difficult to compute the value
of the invariant Khd,d′ . Given a link L, there is no simple way to find all diagrams
with minimal number of crossings. Moreover, assuming that we have a diagram
of L with minimal number of crossings, it seems equally difficult to find all other
diagrams which represent L and still have the same minimal number of crossings.

We believe that it is interesting, in order to address the above problem, to find
a way of constructing all link diagrams with a given number of minimal crossings.
The existing lists, for example in the ‘Knot Atlas’ [4], give information of only one
representative of the Reidemeister equivalence class. If such a set ΓL of minimal
crossings diagrams for a given link L is provided, then summing a well-defined
function f on the set of link diagrams over D ∈ ΓL provides us with a link invariant
hf , that is,

hf (L) :=
∑
D∈ΓL

f(D).

In this article we have selected the appropriate function to give us the θ-invariant.
An interesting example for a function to integrate in this way in a future work is the
ζ-function of graphs (cf. [13]). We would like also to investigate further properties
of these ‘integrals’, such as the existence of a generalized skein relation.
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