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Abstract In this article we give a detailed overview of the Complex Multiplication
(CM) method for constructing elliptic curves with a given number of points. In the
core of this method, there is a special polynomial called Hilbert class polynomial
which is constructed with input a fundamental discriminant d < 0. The construction
of this polynomial is the most demanding and time-consuming part of the method
and thus the use of several alternative polynomials has been proposed in previous
work. All these polynomials are called class polynomials and they are generated by
proper values of modular functions called class invariants. Besides an analysis on
these polynomials, in this paper we will describe our results about finding new class
invariants using the Shimura reciprocity law. Finally, we will see how the choice of
the discriminant can affect the degree of the class polynomial and consequently the
efficiency of the whole CM method.
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1 Introduction

Complex Multiplication (CM) method is a well-known and efficient method for the
construction of elliptic curves with a given number of points. In cryptographic appli-
cations, it is required that the order of the elliptic curves satisfies several restrictions
and thus CM method is a necessary tool for them. Essentially, CM method is a way
to use elliptic curves defined over the field of complex numbers in order to construct
elliptic curves defined over finite fields with a given number of points. Therefore, we
will begin our article by giving a brief introduction to the theory of elliptic curves
over a field K, which for our purposes will be either the finite field IF,, or the field of
complex numbers C.

We describe the CM method using first the classical j-invariant and its cor-
responding Hilbert polynomial. Hilbert polynomial is constructed with input a
fundamental discriminant d < 0. The disadvantage of Hilbert polynomials is that
their coefficients grow very large as the absolute value of the discriminant D = |d|
increases and thus their construction requires high precision arithmetic and a huge
amount of disk space to store and manipulate them.

Supposing that f is a modular function, such that f(t) for some 7 € Q(~/-D)
generates the Hilbert class field of Q(+/—D), then its minimal polynomial can
substitute the Hilbert polynomial in the CM method and the value f(7) is called
class invariant. These minimal polynomials are called class polynomials, their
coefficients are much smaller than their Hilbert counterparts and their use can
considerably improve the efficiency of the whole CM method. Some well-known
families of class polynomials are: Weber polynomials [15, 23], Mp;(x) polyno-
mials [21], Double eta (we will denote them by Mp , ,,(x)) polynomials [6] and
Ramanujan polynomials [17]. The logarithmic height of the coefficients of all these
polynomials is smaller by a constant factor than the corresponding logarithmic
height of the Hilbert polynomials and this is the reason for their much more efficient
construction.

In what follows, we will present our contribution on finding alternative class
invariants (instead of the classical j-invariant) which can considerably improve the
efficiency of the CM method. Also we will see how the choice of the discriminant
can affect the efficiency of the class polynomials’ construction.

2 Preliminaries

The theory of elliptic curves is a huge object of study and the interested reader is
referred to [2, 25] and references within for more information. An elliptic curve
defined over a field K of characteristic p > 3 is the set of all points (x,y) € K x K
(in affine coordinates) which satisfy an equation

y2=x3+ax+b (1)
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where a, b € K satisfy 4a® 4+ 27b> # 0, together with at special point O which is
called the point at infinity. The set E(K) of all points can be naturally equipped with
a properly defined addition operation and it forms an abelian group, see [3], [38] for
more details on this group.

An elliptic curve E(F,) defined over a finite field IF, is then a finite abelian group
and as such it is isomorphic to a product of cyclic groups:

E(F,) = [ [z/niz.
i=1

The arithmetic complexity of this elliptic curve is reduced to the smallest cyclic
factor of the above decomposition. For example, we can have an elliptic curve of
huge order which is the product of a large amount of cyclic groups of order 2. The
discrete logarithm problem is trivial for this curve. For cryptographic algorithms,
we would like to have elliptic curves which do not admit small cyclic factors and
even better elliptic curves which have order a large prime number. This forces the
curve to consist of only one cyclic factor.

In order to construct an elliptic curve with a proper order, we can either generate
random elliptic curves, compute their order and then check their properties or we
can use a method which constructs elliptic curves with a given order which we
known beforehand that satisfies our restrictions. In this article we will use the second
approach and present the method of Complex Multiplication. This method uses
the theory of elliptic curves defined over the field of complex numbers in order
to construct elliptic curves over finite fields having the desired order.

Definition 1. A lattice L in the field of complex numbers is the set which consists
of all linear Z-combinations of two Z-linearly independent elements e;, e, € C.

Given a lattice L Weierstrass defined a function g depending on the lattice L
p:C—>C

by the formula:

1 1 1
sen=5+ ¥ ()
Z A0} (z+A) A
The function g satisfies the differential equation
9'(2)° = 4p(2)° — 22L)p(2) — g3(L).

Therefore the pair (x,y) = (9(2), §'(z)) parametrizes the elliptic curve

¥ =4x — go(L)x — g3(L).
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Remark 1. The transcendental functions (x, y) = (sin(x), cos(x)) = (sin(x), sin’(x))
satisfy the equation x?> + y> = 1, therefore they parametrise the unit circle.

The function g is periodic with period the lattice L, i.e.

(pGz+ 1), 9" (z+ 1) = (pQ), 9 (2) forevery A € L.

At the level of group theory this means that

C

— = E(C).

- = E(C)
From the topological viewpoint, this means that the fundamental domain of the
lattice, i.e. the set

z=ae;+bey:0<a,b<l1

covers the elliptic curve while the border is glued together giving to the elliptic curve
the shape of a “donut”.
The functions g,(L), g3(L) depend on the lattice L, and are given by the formula

1 1
g2(L) =60 Z F g3(L) = 140 Z F

reL—{0} reL—{0}

2.1 Algebraic Theory of the Equation y* = x> + ax + b

In this paragraph we will study certain invariants of the elliptic curve given by the
equation:

v =x+ax+b.

For every polynomial of one variable f(x) we can define the discriminant. This is a
generalization of the known discriminant of a quadratic polynomial and is equal to
zero if and only if the polynomial f has a double root.

For the special case of the cubic polynomial x> 4 ax 4 b the discriminant is given
by the formula: —16(4a’ + 27b%). We observe that by definition all elliptic curves
have non-zero discriminant.

The j-invariant of the elliptic curve is defined by:

) (4a)? 4a3
J(E) = — 5 =— :
4a’ + 27b A(E)
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Proposition 1. Two elliptic curves defined over an algebraically closed field are
isomorphic if and only if have the same j-invariant.

This proposition does not hold if the elliptic curves are considered over a non-
algebraically closed field k. They became isomorphic over a quadratic extension
of k.

Proposition 2. For every integer jy € K there is an elliptic curve E defined over K
with j-invariant equal to jj.

Proof. 1f j # 0, 1728, then the elliptic curve defined by

. \ 36 1
: xy=x"— x—
yow Jo—1728"  jo— 1728

has discriminant

b

AE) = (o — 1728)3

and j(E) = jo.

When j, = 0 we consider the elliptic curve:
E:y +y=x with A(E) = —27andj = 0
while for j, we consider the elliptic curve:
E:y* =x’ 4 x, with A(E) = —64 and j = 1728.

Proposition 3. Every element in the finite field IF,, is the j-invariant of an elliptic
curve defined over I,,. For j # 0, 1728 this elliptic curve is given by

y2 = x> + 3kc*x + 2k3,

fork = j/(1728—j) and c an arbitrary element in F,. There are two non-isomorphic
elliptic curves E, E' over TF,, which correspond to different values of c. They have
orders

|E|l=p+1—tand|E|=p+ 1+t

In this section we consider the lattices generated by 1, t, where t = a 4+ ibis a
complex number with b > 0. The set of such 7’s is called the hyperbolic plane and
it is generated by H. In this setting the Eisenstein series, the discriminant and the
J-invariant defined above (which depend on L) can be seen as functions of 7.

Proposition 4. The functions g,, g3, A,j seen as functions of t € H remain
invariant under transformations of the form:
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o aTth (" b) € SL(2,2).

ct+d \cd
In particular these functions remain invariant under the transformation 7 + t + 1
so they are periodic. Hence they admit a Fourier expansion. In the coefficients of
the Fourier expansion there is “hidden arithmetic information”. For example, the
Fourier expansion of the j-invariant function is given by:

1
j() = = + 744 + 196884q + 2149376042 + 864299970¢° + - - ,
q

where g = >,
Definition 2. We will say that the function f : £ — E is an endomorphism of
the elliptic curve if it can be expressed in terms of rational functions and moreover
f(Og) = Og, where O is the neutral element of the elliptic curve.

The set of endomorphisms will be denoted by End(E) and it has the structure
of a ring where addition is the natural addition of functions and multiplication is
composition of functions.

If we fix an integer n € Z, then we can define the endomorphism sending P € E to
nP. In this way Z becomes a subring of End(E).

For most elliptic curves defined over fields of characteristic 0, End(E) = Z. For
elliptic curves defined over the finite field IF, there is always an extra endomorphism
the so-called Frobenious endomorphism ¢, which is defined as follows:

The element P € E with coordinates (x, y) is mapped to the element ¢ (P) with
coordinates (x, y?). This endomorphism is interesting because we know that x € Fq
is an element in I, if and only if xY = x. So the elements which remain invariant
under the action of the Frobenious endomorphism are exactly the points of the
elliptic curve over the finite field IF,,.

Proposition 5. The Frobenious endomorphism @ satisfies the relation
¢’ —tp+q=0, @)

where t is an integer called the “trace of Frobenious”.

Theorem 1 (H. Hasse). The trace of Frobenious satisfies

1] <2./q.

Proposition 6. For a general elliptic curve if there is an extra endomorphism ¢
then it satisfies an equation of the form:

> +ap +b=0,
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with negative discriminant (the term “complex multiplication” owes his name to
this fact).

Remark 2. The bound of Hasse is equivalent to the fact that the quadratic equation

(2) satisfied by Frobenious has negative discriminant.

Let v € H, for example the one which satisfies the relation
2 —
T —tt+q=0

for a negative discriminant D. The theorem of complex multiplication asserts that
j(t) satisfies an a polynomial f(x) € Z[x] end that the elliptic curve E;, has
J-invariant j(7) end endomorphism ring End(E;) = Z[z].

Moreover, if we reduce the polynomial f(x) modulo p, then the roots of the
reduced polynomials are j-invariants which correspond to elliptic curves IF,, with
Frobenious endomorphisms ¢ satisfying ¢ — t¢p + g = 0.

K.F. Gauss in his work Disquisitiones Arithmeticae [8] studied the quadratic
forms of discriminant D of the form

ax’ + bxy + cyz;b2 —4ac = —-D,a,b,c €Z (a,b,c) =1,
up to the following equivalence relation which in modern language can be defined

as: two quadratic forms f(x, y) and g(x, y) are equivalent if there is a transformation
7 € SL(2, Z) such that

T = (a Z) and f(x,y) = g(ax + by, cx + dy).
c

For more information on this classical subject, we refer to [5].
A full set of representatives CL(D) of the equivalence classes are the elements
(a, b, ¢) such that

D
|b| <a< ‘lg,afc,(a,b,c) = 1,b*> — dac = —D

if || =aora=cthenb > 0.

Theorem 2. Consider t € H which satisfies a monic quadratic polynomial in Z[x].
Consider the elliptic curve E; = C/(Z + t7Z) which has j-invariant j(t).
The complex number j(t) satisfies an algebraic equation given by:

Hpx) = 1_[ (x —J (#)) € Z[x].

la,b.c]eCL(D)
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Moreover a root of the reduction of the polynomial Hp(x) modulo p corresponds
to an elliptic curve with Frobenious endomorphism sharing the same characteristic
polynomial with .

Example. For D = 491 we have compute the following equivalence classes for
quadratic forms of discriminant —491

CL(D) = [1,1,123],[3, £1,41],[9, £7, 15], [5, 3, 25], [11, £9, 3].
For each of the above [a, b, c] we compute the root

b+ i1
- 2s ’

of positive imaginary part.

This computation is summarized to the following table:

la, b, c] Root j-invariant

[1,1,123] | p; = (=1 4+ iv/491)/2 | —1.7082855E30

[3.1,41] 02 = (—1 4+ ix/491)/6 | 5.977095 E9 + 1.0352632 E101
[3.—1.41] |ps = (14 i/491)/6 5.9770957 E9 — 1.0352632 E101
[9,7,15] ps = (=7 4 in/491)/18 | —1072.7816 + 1418.37931
[9,=7,15] | ps = (7 + i~/491)/18 —1072.7816 —1418.37931
5,3,25] p6 = (=3 + in/491)/10) | —343205.38 + 1058567.01
[5.-3.25] |p7r = (3 +i/491)/10 —343205.38 — 1058567.01
[11,9,13] | ps = (=9 4 i~/491)/22 | 6.0525190 + 170.508001
[11,=9,13] | po = (94 i~/491)/22 | 6.0525190 — 170.508001

We can now compute the polynomial

9
f@ =[]x—je))

i=1

with 100-digit precision and we arrive at (computations by magma algebra
system [3])

x*9 + (1708285519938293560711165050880.0 + 0.E-105xI)*x"8 +
(-20419995943814746224552691418802908299264.0 + 5.527 E-76%I1)*x"7 +
(244104497665432748158715313783583130211556702289920.0 - 3.203 E-66%I)*x 6 +
(168061099707176489267621705337969352389335280404863647744.0 - 8.477 E-61#I)#x"5 +
(302663406228710339993356777425938984884433281603698934574743552.0 + 1.179E-53%I)*x"4 +
(645485900085616784926354786035581108920923697188375949395393249280.0 + 5.552 E-50%I)#x™3 +
(957041138046397870965520808576552949198885665738183643750394920697856.0 - 1.530 E-47+I)*x 2 +
(7322862871033784419236596129273250845529108502221762556507445472002048.0 + 4.458 E-45+1)*X +
(27831365943253888043128977216106999444228139865055751457267582234307592192.0 - 3.587 E-43%I)

which we recognize as a polynomial with integer coefficients (all complex coeffi-
cients multiplied by 107*° or a smaller power are considered to be zero and are just
floating point approximation garbage).
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3 Complex Multiplication Method and Shimura
Reciprocity Law

We would like to construct an elliptic curve defined over the finite field F, with
order p + 1 —m. For this case, we must construct the appropriate j € IF,. The bound
of Hasse gives us that Z := 4p — (p + 1 — m)? > 0. We write Z = Dv? as a square
v? times a number D which is squarefree.

The equation 4p = u? + Dv? for some integer u satisfies m = p + 1 & u. The
negative integer—D is called the CM-discriminant for the prime p.

We have x> — tr(¢)x + p > A = ¢(F)*> — 4p = —Dv>.

Algorithm:

1. Select a prime p. Select the least D together with u,v € Z such that 4p =
u? + Dv?.

2. If one of the values p + 1 —u, p + 1 + u is a prime number, then we proceed to
the next steps, otherwise we go back to step 1.

3. We compute the Hilbert polynomial Hp(x) € Z[x] using floating approxima-
tions of the j-invariant.

4. Reduce modulo p and find a root of Hp(x)modp. This root is the desired j-
invariant. The elliptic curve corresponding to j-invariant j # 0, 1728 is

y: =X + 3kc’x + 2ke’ k = j/ (1728 — j),c € F,,.

To different values of ¢ correspond two different elliptic curves E, E’ which
have orders p + 1 & ¢. One is

V=x+ax+b
and the other is
y2 = x> +ac’x+ bc3,
where ¢ is a quadratic non-residue in F,. In order to select the elliptic curve
with the correct order we choose a point P in one of them and we compute its

order, i.e. the natural number »n such that nP = Op. This order should divide
eitherp+1—torp+ 14+

The CM method for every discriminant D requires the construction of polynomial
Hp(x) € Z[x] (called the Hilbert polynomial)

Hp(x) = [ JGx—i(0)).

for all values t = (—b + +/—D)/2a for all integers [a, b, c] running over a set of
representatives of the group of equivalent quadratic forms.
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Let & be the order of CI(D). It is known that the bit precision required of the
generation of Hp(x) (see [20]):

H — Prec(D) =~ —(h/ +5)+ m Z Z

The most demanding step of the CM-method is the construction of the Hilbert
polynomial, as it requires high precision floating point and complex arithmetic. As
the value of the discriminant D increases, the coefficients of the grow extremely
large and their computation becomes more inefficient.

In order to overcome this difficulty, alternative class functions were proposed by
several authors. It was known in the literature [13, 27, 28] that several other complex
valued functions can be used in order to construct at special values the Hilbert class
field. Usually one tries functions of the form

n(pr) or n(pt)n(qr)
n(r)  nlpgo)n(c)’

where 7 is the Dedekind zeta function defined by

n(r) = ¥t/ l_[(l —¢").7 € C,Im(zr) > 0,g = ™.

n>1

All such constructions have the Shimura reciprocity law as ingredient or can be
written in this language. This technique was proposed by Shimura [24], but it was
Gee and Stevenhagen [9-11, 26] who put it in form suitable for applications. In
order to define Shimura reciprocity law, we have to define some minimum amount
of the theory of modular functions.

Consider the group SL(2, Z) consisted by all 2 x 2 matrices with integer entries
and determinant 1. It is known that an element

__fab
o= (C d) € SL(2,72)

acts on the upper complex plane H := {z € C : Im(z) > 0} by Mdbious
transformations by

az+ b
cz+d

o7 =

Moreover it is known that SL(2, Z) can be generated by the elements S : z > —1
and T : z +— z + 1. Let I'(N) be the kernel of the map SL(2, Z) — SL (2, Z/NZ).

Let H* be the upper plane H U P'(Q). One can show that the quotient I"(N)\H*
has the structure of a compact Riemann surface which can be described as an
algebraic curve defined over the field Q(¢y), where ¢y is a primitive N-th root of
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unity. We consider the function field Fy of this algebraic curve defined over Q(y).
The function field Fy is acted on by

F(N)/{=£1} = Gal(Fn/F1(¢n)).

For an element d € (%)* we consider the automorphism oy : {y +— . Since the
Fourier coefficients of a function & € Fy are known to be in Q({y), we consider the
action of o, on Fy by applying o, on the Fourier coefficients of 4. In this way we
define an arithmetic action of

Gal(Fy (&) /F1) = Gal(Q(6y)/Q) = (1%) ,

on Fy. We have an action of the group GL (2 A) on Fy that fits in the following

> NZ
short exact sequence.

7 VA det 7 *
1-SL{2,—]|—>GL|2,— ]| — | — — 1.
(252) ~ o (52) = ()

The following theorem by A. Gee and P. Stevehagen is based on the work of
Shimura:

Theorem 3. Let 0 = Z[0] be the ring of integers of an imaginary quadratic
number field K of discriminant d < —4. Suppose that a modular function h € Fy
does not have a pole at 0 and Q(j) C Q(h). Denote by x*> + Bx + C the minimum
polynomial of 0 over Q. Then there is a subgroup Wy 9 C GL (2, %) with elements
of the form:

t—Bs —Cs Z "
= L2, —): .
oo { (PO e (o 2) s o0

The function value h(0) is a class invariant if and only if the group Wy ¢ acts trivially
on h.

Proof. [9, cor. 4].

The above theorem can be applied in order to show that a modular function gives
rise to a class invariant and was used with success in order to prove that several
functions were indeed class invariants. Also A. Gee and P. Stevenhagen provided us
with an explicit way of describing the Galois action of C1(&) on the class invariant
so that we can construct the minimal polynomial of the ring class field.

The authors have used in [16] this technique in order to prove a claim of
S. Ramanujan that the function

nBo)n(r/3+2/3)
n*(7)

Ry(t) =
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gives rise to class invariants. Ramanujan managed somehow (we are only left with
the final result written in his notebook) to compute the first class polynomials
corresponding to this class invariant and many years later, Berndt and Chan [4]
proved that these first polynomials where indeed class invariants and the class
polynomials written by Ramanujan were correct. We would like to notice that
these Ramanujan invariants proved to be one of the most efficient invariants for
the construction of prime order elliptic curves [17, 18] if one uses the CM method.

We will present now an algorithm which will allow us not only to check that a
modular function is a class invariant but also to find bases of vector spaces of them.
Let V be a finite dimensional vector space consisting of modular functions of level
N so that GL(2,7Z/NZ) actson V.

Example 1 (Generalized Weber Functions). An example of such a vector space of
modular form is given by the generalized Weber functions defined as:

no(NO) 170(1 k)

01 ON

o = vVN———Z>andyy = ———>= 0<k<N-1. 3)
n n

These are known to be modular functions of level 24N [10, thS. p.76]. Notice that
VN € Q(¢y) € Q(&4.v) and an explicit expression of +/N in terms of ¢y can be
given by using Gauss sums [7, 3.14 p. 228].

The group SL(2,Z) acts on the (N + 1)-th dimensional vector space generated
by them. In order to describe this action we have to describe the action of the two
generators S, T of SL(2,7Z) givenby S : z —% and T : z — z + 1. Keep in mind
that

noT(z) = {un(z) and o S(z) = & ' Vizn(2).
We compute that (see also [10, p.77])

wvo oS =voyand vygo T = &y oo,

von 0S8 = vygand voy o T = &5l v,

for1 <k < N—1andN is prime

—C\ .1=n N(k—c) _
iy oS = (7) i28, TandvgyoT =85y viri N,

where ¢ = —k~' mod N. The computation of the action of S on 7 is the most
difficult, see [13, eq. 8 p.443].

Notice that every element a € GL(2,7Z/NZ) can be written as b - ((]) 2)

d € Z/NZ* and b € SL(2,Z/NZ). The group SL(2,Z/NZ) is generated by
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the elements S and 7. The action of S on functions g € V is defined to be
goS =g(—1/z) € V and the action of T is defined go 7T = g(z+ 1) € V.

So in order to define the action of SL(2,Z/NZ) we first use the decomposition
based on Chinese remainder theorem:

GL(2.Z/NZ) = [ [ GL2.Z/p" ™ 7).
pIN

where v,(N) denotes the power of p that appears in the decomposition in prime
factors. Working with the general linear group over a field has advantages and
one can use lemma 6 in [9] in order to express an element of determinant one in
SL(2,Z/p»™Z) as word in elements S,, T, where S, and T, are 2 x 2 matrices
which reduce to S and T modulo p*»™) and to the identity modulo ¢*") for prime
divisors g of N, p # q.

This way the problem is reduced to the problem of finding the matrices S, T,
(this is easy using the Chinese remainder Theorem), and expressing them as
products of S, T. For more details and examples, the reader is referred to the article
of the second author [19].

The action of the matrix ((]) 2) is given by the action of the elements

o4 € Gal(Q(¢n)/Q)

on the Fourier coefficients of the expansion at the cusp at infinity [9].

4 Class Invariants and Invariant Theory
Since every element in SL(2,7Z/NZ) can be written as a word in S, 7 we obtain a
function p

p

/\

(:2)" —% GL(2,2/NZ) —— GL(V), @
where ¢ is the natural homomorphism given by Theorem 3.

The map p defined above is not a homomorphism but a cocycle. Indeed, if
ei,...,enis a basis of V, then the action of ¢ is given in matrix notation as

oo =Y p(o)uier

v=1

and then since (¢; 0o 0) o T = ¢; o (0T) we obtain
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m

eio(0t) = Y p(0)p(T)vep.

v,u=1
Notice that the elements p(0),; € Q({x) and T € GL(2,Z/NZ) acts on them as
well by the element oue(r) € Gal(Q(¢y)/Q). So we arrive at the following:

Proposition 7. The map p defined in Eq. (4) satisfies the cocycle condition

p(ot) = p(t)p(0)* o)

and gives rise to a class in H' (G, GL(V)), where G = (O /NO)*. The restriction of
the map p in the subgroup H of G defined by

H:={xeG:det(p(x)) =1}

is a homomorphism.

The basis elements ey, ...e,, are modular functions. There is a natural notion
of multiplication for them so we consider them as elements in the polynomial
algebra Q(¢y)[e1, . .., em]. The group H acts on this algebra in terms of the linear
representation p (recall that p when restricted to H is a homomorphism).

Classical invariant theory provides us with effective methods (Reynolds operator
method,linear algebra method [14]) in order to compute the ring of invariants
Q(w)[et, - .., en]™. Also there is a well-defined action of the quotient group G/H =
Gal(Q(¢v)/Q) on Q(w)ler. - -, em]”.

Define the vector space V), of invariant polynomials of given degree n:
Vo= {F € Q(ty)[er,....en]" : deg F = n}.
The action of G/H on V,, gives rise to a cocycle

p' € H'(Gal(Q(¢n))/Q), GL(V,)).

The multidimensional Hilbert 90 theorem asserts that there is an element P €
GL(V,) such that

o (o) =P 'P°. (6)
Let vy, ..., v, be abasis of V,. The elements v; are by construction H invariant. The
elements w; := v;P~! are G/H invariant since

WP 00 = (v00)(P™)" = vip(@)(P~)7 = v~ P (P = uP.

The above computation together with Theorem 3 allows us to prove
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Proposition 8. Consider the polynomial ring Q({y)ler,...,en] and the vector
space V,, of H-invariant homogenous polynomials of degree n. If P is a matrix such
that Eq. (6) holds, then the images of a basis of V,, under the action of P~ are class
invariants.

For computing the matrix P so that Eq. (6) holds one can use the probabilistic
algorithm of Glasby-Howlett [12]. In this method one starts with the sum

Bg:= Y p(0)Q°. ™

0€G/H

We have to find 2 x 2 matrix in GL(2,Q(¢y)) such that By is invertible then
P:= Bél. Indeed, we compute that

By= ) plo)' Q. @®

0€G/H

and the cocycle condition p(ot) = p(a)p(r), together with Eq. (8) allows us to
write:

By= Y plon)p(x)"'Q7" = Bop;"
0€G/H

ie.

p(t) = Bg (B’Q)_1 )

We feed Eq. (8) with random matrices Q until B, is invertible. Since non invertible
matrices form a Zariski closed subset in the space of matrices practice shows that
we obtain an invertible By almost immediately. For examples on this construction
we refer to [19].

This method does not give us only some class invariants but whole vector spaces
of them. For example for the space of the generalized Weber functions gy, g1, g2, g3
defined in the work of Gee in [10, p. 73] as

n(%) o n(E GS) n(37)
a B0 =T ey =S 0

which are the functions defined in Example 1 for N = 3. We find first that the
polynomials

go(7) = g,(1) =3

I == goga + 550103, L= gogs + (=05 + ) g

are indeed invariants of the action of H. Then using our method
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Table 1 Minimal polynomials using the go, . .., g3 functions

Invariant | Polynomial

Hilbert | £ + 400497845154831586723701480652800* +
8185208091546130657700382653342904483841> +
43982507524220948112386894195744223037268951041> —
16319730975176203906274913715913862844512542392320t+
15283054453672803818066421650036653646232315192410112

e £ — 9361 — 6091243 — 2426112¢> — 403107841 — 3386105856

e £ — 1512¢* — 29808¢° + 979776¢> + 3359232t — 423263232

er = (12088 + 1288 g0gs + 12850005 + 129,92 + 129193,
er: = 12850102 + (12835 + 1285)g0g3 + (12835 + 12)g193 + 12530195

generate a Q-vector space of class invariants. All Q linear combinations of the form
Arer + Aqe; also provide class invariants. Finding the most efficient class invariant
among them is a difficult problem which we hope to solve in the near future. For
comparison we present in Table 1 the polynomials generating the Hilbert class field
using the j invariant and the two class functions we obtained by our method.

S Selecting the Discriminant

We have seen in the previous sections that the original version of the CM method
uses a special polynomial called Hilbert class polynomial which is constructed with
input a fundamental discriminant d < 0. A discriminant d < 0 is fundamental if
and only if d is free of any odd square prime factors and either —d = 3 (mod 4) or
—d/4 = 1,2,5,6 (mod 8). The disadvantage of Hilbert class polynomials is that
their coefficients grow very large as the absolute value of the discriminant D = |d|
increases and thus their construction requires high precision arithmetic.

According to the first main theorem of complex multiplication, the modular
function j(6) generates the Hilbert class field over K. However, the Hilbert class field
can also be generated by modular functions of higher level. There are several known
families of class polynomials having integer coefficients which are much smaller
than the coefficients of their Hilbert counterparts. Therefore, they can substitute
Hilbert class polynomials in the CM method and their use can considerably
improve its efficiency. Some well-known families of class polynomials are: Weber
polynomials [23], Mp;(x) polynomials [21], Double eta (we will denote them by
Mpp, p,(x)) polynomials [6] and Ramanujan polynomials [17]. The logarithmic
height of the coefficients of all these polynomials is smaller by a constant factor
than the corresponding logarithmic height of the Hilbert class polynomials and this
is the reason for their much more efficient construction.
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A crucial question is which polynomial leads to the most efficient construction.
The answer to the above question can be derived by the precision requirements
of the polynomials or (in other words) the logarithmic height of their coefficients.
There are asymptotic bounds which estimate with remarkable accuracy the precision
requirements for the construction of the polynomials. The polynomials with the
smallest (known so far) asymptotic bound are Weber polynomials constructed with
discriminants d satisfying the congruence D = |d| = 7 (mod 8). Naturally, this
leads to the conclusion that these polynomials will require less precision for their
construction than all other class polynomials constructed with values D’ close
enough to the values of D.

In what follows, we will show that this is not really true in practice. Clearly,
the degrees of class polynomials vary as a function of D, but we will see that on
average these degrees are affected by the congruence of D modulo 8. In particular,
we prove theoretically that class polynomials (with degree equal to their Hilbert
counterparts) constructed with values D = 3 (mod 8) have three times smaller
degree than polynomials constructed with comparable in size values of D that satisfy
the congruence D = 7 (mod 8). Class polynomials with even discriminants (e.g.,
D = 0 (mod 4)) have on average two times smaller degree than polynomials
constructed with comparable in size values D = 7 (mod 8). This phenomenon
can be generalized for congruences of D modulo larger numbers. This leads to
the (surprising enough) result that there are families of polynomials which seem to
have asymptotically larger precision requirements for their construction than Weber
polynomials with D = 7 (mod 8), but they can be constructed more efficiently than
them in practice (for comparable values of D).

The degree of every polynomial generating the Hilbert class field equals the class
number &p which for a fundamental discriminant —D < 4 is given by [22, p. 436]

-1
thzifL(l,X)zg—fH(l—XT(m) ,

where y is the quadratic character given by the Legendre symbol, i.e. y(p) = (_TD>.
Let us now consider the Euler factor

(1 itplD
(1_X_(l’)) _ )i (2) =1 ©)
p 0D

Observe that smaller primes have a bigger influence on the value of /. For example,
if p = 2, then we compute

O\ 1 if2|D
(1 — T) =12 ifD=7 (mod 8) (10)
2 if D=3 (mod 8).
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This leads us to the conclusion that on average the degree of a class polynomial with
D =3 (mod 8) will have three times smaller degree than a polynomial constructed
with a comparable value of D = 7 (mod 8). Similarly, the degree of a polynomial
constructed with even values of D = 0 (mod 4) will have on average two times
smaller degree than a polynomial with D = 7 (mod 8).

Going back to Eq. (9), we can see that for discriminants of the same congruence
modulo 8, we can proceed to the next prime p = 3 and compute

-1 1 if3|D
x3) _J3 e (oD
(1-57) =y
1 if (37) =1
This means that for values of D such that (_TD) = —1 the value of hp is on average
two times smaller than class numbers corresponding to values with (=2) = 1.

Consider for example, the cases D = 3 (mod 8) and D = 7 (mod 8). If we
now include in our analysis the prime p = 3, then we can distinguish 6 different
subcases D = 3,11,19 (mod 24) and D = 7,15,23 (mod 24). Having in mind

—1 —1
the values (1 — @) and (1 — %3)) , we can easily see, for example, that the

polynomials with D = 19 (mod 24) will have on average 6 times smaller degrees
than the polynomials with D = 23 (mod 24).
What happens if we continue selecting larger primes p? Equation (9) implies that

if we select a discriminant —D such that for all primes p < N we have (_TD) =

—1 then the class number corresponding to D has a ratio that differs from other
discriminants by a factor of at most

NE-ne-2) o

p<N p<N

Since the series Zp % diverges (p runs over the prime numbers), the product in
Eq. (11) diverges as well [1, p.192 th. 5]. Therefore, the product in Eq. (11) can have
arbitrarily high values for sufficiently large values of N. This also means that if D is
sufficiently big we can choose discriminants that correspond to class numbers that
have an arbitrarily high ratio with respect to other discriminants of the same size.

6 Conclusions

In this paper, we have given a detailed overview of the CM method for the construc-
tion of elliptic curves. We have presented the necessary theoretical background and
we have described our published results on finding new class invariants using the
Shimura reciprocity law. The proper selection of a suitable discriminant D for the
construction of class polynomials, combined with the above results, will hopefully
lead us to more efficient constructions in the future using new families of class
polynomials.
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