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1. Introduction

The aim of this article is to study the biduality theorem and the stronger notion of reflexivity of
varijeties in positive characteristic. Let k be an algebraically closed field of characteristic p > 0, it
is a very old observation that points in the projective space P} correspond to hyperplanes in the
dual projective space and vice versa. This notion of duality can be generalized to closed irredu-
cible varieties M C [P}, and gives rise to a dual variety M* in the dual projective space.

The biduality theorem (known to hold over fields of characteristic 0) asserts that (M*)" = M.
One of the proofs of this fact, [9, p. 29] uses the notion of the conormal bundle, the natural sym-
plectic structure on the cotangent bundle of a manifold. Wallace [29] was the first to consider the
theory of projective duality over fields of positive characteristic. For a nice introduction to pro-

jective duality independent of the characteristic of the base field we refer to [22].
Let M C P} be a projective variety and denote by My, the set of smooth points of M. The

classical conormal variety Con(M) is defined by

Con(M) := {(P,H) € Mgy x P}" : TpM C H} C M x P}* C P} x P}7,

i.e, the Zariski closure of the algebraic set consisted of pairs (P, H), P € My, H € P*" such
that TpM C H.

Let 7, be the second projection Con(M) — m,(Con(M)) := M* C P*"", which will be called
the conormal map. It is known that M* is an algebraic variety of P*”. If Con(M) = Con(M*),
then M is called reflexive. Equivalently, in terms of isomorphisms, M is reflexive if the natural

isomorphism from P} to (P} )" induces the isomorphism
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It is known that reflexivity implies biduality, but there are examples known of bidual varieties
that are not reflexive. Reflexivity also holds for all projective varieties in characteristic zero, while
in characteristic p > 0, reflexivity can fail, see the Fermat-curve example in [29]. In positive char-
acteristic there is the following criterion for reflexivity, whose proof may be found in [14].

Theorem 1 (Monge-Segre-Wallace). A projective variety M is reflexive if and only if the conormal
map m, is separable.

The problems of biduality and reflexivity of a projective variety M C P" have been addressed
by several authors via the use of the Gauss map, i.e., the rational map from M to the Grassmann
variety G(n,m), which sends a smooth point P € M to the m-dimensional tangent space
TpM € P"—in the case of a hypersurcace, the Gauss map is just a map y : M — P*'. As proved
n [19], the separability of the Gauss map and the reflexivity of a variety are equivalent in the
one-dimensional case, i.e. for projective curves. For higher dimensions, the authors in [20]
showed that the Gauss map of a projective variety M is separable if M is reflexive. On the other
hand, the converse of this result, i.e. whether the reflexivity of a projective variety implies the sep-
arability of the Gauss map, was answered recently negatively, since there are specific examples
(such as the Segre varieties) for which this assumption is not true. These examples and further
analysis is found in [7] and the references therein. The previous work and results are, to the best
of our knowledge, the most recent with regard to the study of biduality and reflexivity and are
focused on weather and when they fail or not, in positive characteristic.

The aim of this article is to extend the notions of biduality and reflexivity in the case of posi-
tive characteristic. We will make appropriate definitions which will make some important exam-
ples of varieties reflexive. We generalize the theory of Lagrange varieties presented in [9, p. 29]
for projective varieties in the zero characteristic case, by introducing the respective h-cotagent
bundle and h-Lagrangian subvarieties. The case of hypersurfaces is illuminating and straightfor-
ward calculations can be made in terms of the implicit-inverse function theorem approach of
Wallace, see [29].

Reflexivity has many important applications to enumerative geometry, computations with dis-
criminants and resultants, invariant theory, combinatorics, etc. We hope that our construction
will find some similar applications to positive characteristic algebraic geometry.

From now on k is an algebraically closed field of positive characteristic p and q = p" is a
power of p. Instead of tangent hyperplanes, we will consider generalized hyperplanes, i.e. hyper-

surfaces of the form V(31 aix? h) and the duality will be expressed in terms of these generalized
hyperplanes.

Let V be a finite dimensional vector space over k. Consider M C P(V) an irreducible project-
ive variety and consider the cone M’ C V seen as an affine variety in V. Assume that the homo-
geneous ideal of M’ is generated by the homogeneous polynomials Fi,...,F,. Fix a natural
number h and consider the n+ 1-upple

VW = (ng\ F,-,Dﬁ’”’ Fi,...,Dgh>( F)
P P P
where D,(h) denotes the h-Hasse derivative which will be defined in definition 5. Each F; defines a
p-linear form given by
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n
L =3 (Df,h)’PFi> .
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For the precise definition of p”-linear forms and their space V*" see Sec. 2.2.
For a projective variety M we will define the set M" of smooth h-points in definition 33,
which set if non-empty is dense in M, since we have assumed that M is irreducible.

Definition 2. For a projective irreducible variety M with M"'_ +# () we define the h-tangent space

Tlgh)M at P to be the variety defined by the equations L§h> = 0. The h-conormal space Con") (M)
is defined as the subset of P(V) x P(V*")

Con™ (M) := {(P, H):Pe M! ,H is a p" — linear form which vanishes on Tf,h)M}. (1.1)

By definition of the affine cone M’ of M we see that every point P = [ag : - - - : a,] corresponds
to a line {¢- (ag,...,a,),¢ € k*} C M. Following [27] we will denote by Lag™ (M) C V x V* the
corresponding affine set in V x V*, that is

Lag" (M) = {(P, H) : P € Cone(M! ),H is a p" — linear form which vanishes on TI()h)M}.

Let m; : V x V* — V be the first projection. For every P € M!'_the set n;' N Lag" (M) can
be identified to the space of p"-linear forms on the h-normal space N éh) (M) defined as
h * h
Ny (M) = VT (M).

Indeed, the set of h-linear maps ¢ : N;,h) (M) — k is in bijection with the set of h-linear maps
V*" — k which are zero on T;,h)(M) and the later set is by definition ;! N Lag® (M).

If the variety is not reflexive, we might choose an appropriate h so that we can have a form of
reflexivity based on Con™(M). How are we going to select h? If the characteristic of the base
field k is zero or if the variety M is reflexive, then h=0. If the variety M is just a hypersurface
then the answer is simple: If M fails to be reflexive then the second projection Con(M) — M* is
a map of inseparable degree p”, and in this way we obtain the required h.

Even in the case of hypersurfaces one has to be careful. Projective duality depends on Euler’s
theorem on homogeneous polynomials, since a homogeneous polynomial can be reconstructed by
the values of all first order derivatives. An appropriate generalization of Euler’s theorem is
known, but we have to restrict ourselves to a class of polynomials which we will call h-homoge-
neous. Their precise definition will be given in definition 19.

Definition 3. For an irreducible projective variety M € P(V) generated by h-homogeneous ele-
ments, which also has a non-empty h-nonsingular locus, as these are defined in Definition 19

and Definition 33, respectively, we can define Lag")(M). Let Z = m,(Lag!"(M)) C V*, where
70 V x V¥ — V* is the second projection.

Consider the vector space V*" of p”-linear forms. Assume also that the Z is defined by homo-
geneous polynomials and that the corresponding projective variety Z C P(V*") has also an non-
empty h-nonsingular locus so Lag")(Z) can also be defined.

In Theorem 12 we will introduce the isomorphism F: V — (V*h)*h. If the map

WV VI v ()
(v3) — (2E (),

gives rise to an isomorphism
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xh

¥ (Lag® (M)) = Lag® (2) ¢ V' x (VM) = v x v,

then M will be called h-reflexive.
The main result of our work is the following theorem:

Theorem 4. Let M € P(V) be a projective variety satisfying the assumptions of definition 3.
Assume that we can select an h so that the map m, : V x V" 5 Lag® (M) — m(M) := Z c V*"
is separable and generically smooth and also that Z has a non-empty set of h-nonsingular points.
Then M is h-reflexive.

Notice also that in contrast to ordinary situation where the set of nonsingular points forms a
dense open subset, for h>0 the set of h-nonsingular points can be empty. The existence of a
non-empty set of h-nonsingular points is essential for the definition of the conormal space and
has to be assumed.

The explicit construction of the dual variety involves a projection map which can be computed
using elimination theory, see [6, ex. 14.8, p. 315]. The algebraic set M C P”, gives rise to the con-

ormal scheme Con™ (M) C P" x (P")". If k[&,...,&,] is the polynomial ring corresponding to
the dual projective space and

I = <fl> ’fr> < k[XO; ---)xn]>

the ideal corresponding to M, then the ideal I' < k[xy, ..., X, &y, ..., &,] corresponding to the conor-
mal scheme is generated by I - k[xo, ..., X, &o» ..., ,] and the equations

zr: Z uDIf & =0, ji e k.

i=0 j=0

The dual variety can be computed by eliminating the variables xo, ..., X, 41, ..., 4, and by obtaining
a homogeneous ideal in k[&, ..., &,]. Notice that there are powerful algorithms for performing
elimination using the theory of Grobner bases, see example 39.

The structure of the article is as follows: In Sec. 2.1 we define and describe a number of
important tools, notions and results, we are going to use throughout the paper. First we start
with the family of Hasse derivatives, which will be seen as derivatives with respect to some new

ghost variables xgqh). These derivatives were first introduced by Hasse and Schmidt [12, 24] in

order to study Weierstrass points in positive characteristic. Afterwards, we define the so-called
p"-linear forms and their respective space. In the same section we define the g-symplectic form
we are going to use in the last section, in order to create a suitable Lagrangian variety for our
work. In the same section we generalize the Euler identity for homogeneous polynomials and
obtain the h-homogeneous polynomial definition. In Sec. 3 we present the implicit-inverse func-
tion theorem approach of our theory, we make connections with elimination theory, and treat
the hypersurface case. In the last section, we generalize all the respective notions met in
Lagrangian manifold theory for biduality in characteristic zero, [9, p. 29] and using them we
prove Theorem 4.

2. Tools and basic constructions

The main idea behind our approach, assuming that k has characteristic p >0, is to set the quan-

tity xf " as a new variable xgh), for h =0,1,2,.... As it is well known, the classical partial deriva-
tives Dy, on the polynomial ring k[xo, ..., x,] are zero on the polynomials of the form f (xg, ik ),
and this is the reason biduality and reflexivity fail in positive characteristic. The theory of Hasse
derivatives will help us deal with this.
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2.1. Hasse derivatives
Definition 5. A Hasse family of differential operators on a commutative unital k-algebra A, is a
family Dy, ¢ € N"!, of k-vector space endomorphisms of A satisfying the conditions:

\
—
o

(2) D{(c) =0, forall c € k and £ # 0.
(3) DyoD (“[ﬂ)Dg, +m

4 Dea-b)=3;— Dia-Dib,

(1) Do

3
|

where for £ = ({y, ..., £,),m = (my, ...,m,) € N"*!

()= () ()

An example of a Hasse family is given as follows: For A = k[x] = k[xo, ...,x,), and xZ =

xg° -+ xM we define
Dy x™ = (%)xm —L.

Let us denote by D; = Dy, for £; = (0,...,0,1,0...,0), i.e. there is an 1 in the ith position. For
general £ we can recover Dy by D, = Df)" 0---0 Dﬁ”, where Df" denotes the composition of D; ¢;
times. One can prove (see [13]) that for { = st':o Ejpi with 0 < ¢; < p for all j =0, ...,s we have

1 % RN
Df:m(D‘f) (D)™ (D)", 2.1)
therefore for each i, the family (D!), ¢ € N is determined by the operators D}, DY, D/ e
Definition 6. We will denote by D,(f) the operator DY ",

Definition 7. For two integers m, j we consider their p-adic expansions:
o0
m= Zoc,,p", where 0 < o, <p for all v €N

v=0

j= Zﬂl,p”, where 0 < f, <p for all v € N

v=0
We will write m>,j if and only if
o, > f, for all v € N.

If Dfa =0 for some a and j€N, then D" =0 for all m >,j. In particular if Df“ =0,
then Dfﬂﬂ(a) == D‘l-’“+]7l(a) =0.

The following result, [13], will be used several times during derivation processes in the
next sections.

Lemma 8. Let x, t we indeterminate and q = p". If f(t) € k[t], then
(/q q .
Dif(xq) _ D, (f)(x ) if q | t ,
0 if gxt
where D" (resp. D) are the Hasse derivatives defined on k[x] (resp. k[t]).
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Remark 9. Note that in multilinear algebra, a system of divided powers on a k-algebra A, is a col-
lection of functions x +— x4 satisfying a set of axioms given in [6, p. 579]. We observe that the
Hasse derivatives D! form a system of divided powers on the commutative ring of differential
operators k[0/0x;].

2.2. Semilinear algebra
Since first order Hasse derivatives cannot grasp the structure of p-powers, we have to generalize

the notion of tangent space.

2.2.1. Frobenius actions
We consider the action of the Frobenius map F, by acting on the coordinates of elements of V that is

F,
v : v

v=Yu_ohei—=Fp() = Yo_o Hei 22)

| |

Atyevosdg) ——— (F, .., D)
The polynomial ring k[xo,...,x,] is naturally attached to the vector space V since Sym(V*) =
k[xo, ..., xp)-

Remark 10. For an element v € V we will denote by v the element F;(V) for i € Z. Since k is

assumed to be perfect we can also define v — yl/e" similarly by tanking the p" roots of the coor-
dinates of v.

Definition 11. An h-hyperplane H is the algebraic set given by an equation of the form:

n
h
Zaixf' =0,a; € k.

i=0

Such a hyperplane defines a p-linear map:

o:V—k
> xlvler = v ) = Y am ()

The set of p"-linear maps denoted by V** consists of functions ¢ : V — k, such that

(1) QI,')(V] + Vz) h: ¢(V1) =+ ¢(V2) fOl‘ all Vi, V2 € Vv

(2) Q)= ¢(v)forall A€ kandve V.

The space V*" becomes naturally a k-vector space, with basis the set {x/ "0 <i<nj}.

Theorem 12. The space (VY s canonically isomorphic to the initial space V.

Proof. The element v € V is sent by the isomorphism F to the space (V*h)*h defined by:
F.v— (vh)"

v — F(v),

where F(v) is the map defined by:
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E(v): V" =k
o — F)() = o)

Observe first that F(v) is indeed a p"-linear map. Indeed,

F(V)()uld)l + ;ngf)z) = (;“1¢1 (Vl/plh) I /12(152 (Vl/th))P
= )thd,l (VI/P2h)ph " zg“ ¢2(vl/ch)ph
= Allth(V)(‘,bl) + /lghF(v)(d)z),

Now we prove that F is linear:

1/ 2h oh )\ P
F(2avs + 2am) () = ¢ (A7 /7" 4 2P )

— () 4 g ()
= (WF(n) + 22F(v2)) ¢,

e, F(A1vy + A2v2) = L1F(v1) + L F(v,), for all 11,4, € k and v, v, € V.

We will now prove that F is an isomorphism. Since dim V = dim(V*") = dim(V*")™" it is
enough to prove that ker F = {0}. If for a v € V we have F(v) = 0, then for every ¢ € V*" we
have F(v)(¢) = p(v'/P")F "= o. By taking as ¢ the elements e/ of the dual basis of V* we see
that v=0. |

Let us work with coordinates now. Express an element v€ V as v =1 " x;(v)e;, where
{ei};—o,..n is a Frobenius invariant basis as expressed in Sec. 2.2.1, and let ¢ € V* written in

terms of a Frobenius dual basis as ¢ = S_1 yi(¢)e". Set g = p", we have

B0) = 3" 5 Hi(4), 23)

i=0

while we have (recall that F(v) € (V)™
n 9 n
F(v)(¢) = ¢ <Z xi(")l/zq&) = Z xi(v)yi(¢)7. (2.4)

This means that

Vx Vs (1) ———= ¢ () = Y xi(0)yi(¢) € k
i=0

¥ (2.5)
VL (VY S (¢, F() —— FW) (@) = ) xi(»)yi(#)1.

i=0

In our generalized point of view duality means that a point [v] € P(V), represented by the vector

v € V, can be also seen as a g-hyperplane [F(v)] on P((V*")™).
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2.3. g-Symplectic forms

Let I be a field of positive characteristic p and let ¢ = p" be a certain power of p. In order to
define a suitable Lagrangian variety in the positive characteristic case, we need its respective sym-
plectic form.

Definition 13. A g-symplectic form Q on V is a function:
Q:Vx V" -k
which is additive, i.e. for all v;,v, € V, w;, w, € V" we have
Q(vy + vy, wy) = Qv wy) + Q(va, wy), Q(vi, wy + wy) = Qv wy) + Q(vy, wy),
such that there is a symplectic basis {ey, ..., ey, f1,....fo} so that
Q(ei, ¢) = 0 = Q(f;, ), Qlein f;) = 94 Qfi» ¢)) = — 3.

Moreover for arbitrary elements

n n
v="> Jiei+ Y uf
i=0 j=0

and
w= e 3y
i=0 7=0
the symplectic form is computed:
Q(v,w) = (/lfhug - ,u,-igph).

i=0

Remark 14. As in [4, p. 8], the notions of p”-orthogonality, p"-symplectic, p"-isotropic and p"-
Langrangian subvector spaces can be defined. Since these notions are not needed in this note, we
will not develop their theory here.

2.4. Powers of Frobenius as ghost variables

In this section we will add extra ghost variables xgh) for 0 <i<mand for h=1,...,00. This is an
idea coming from the similarities of the p-power Frobenius map and differential equations [10,
sec. .1.9] and the ring of differential polynomials see [3, exam. 5.2.5].

Lemma 15. Consider a term xi, where i = (i, ...i,) € N"™', and the p-adic expansions of each index:
o0
=S 0<il)<p
n=0
Therefore, a term x' can be written as
H H o(uo)p™ 'n(ﬂn)P“”. (2.6)
,un_o

Consider the ring

R:= k[xo, ...,xn,x(()l), kD), ...,xém, X 2.7)
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and define the degree degx\) = p'. We also define the homomorphism
¢ :R— k[XO, ...,Xn]

_ v (2.8)
X ol forall 0<i<n0<j<h
The map ¢ is onto, and moreover
¢(ng>f) =DLo(f). (2.9)
Proof. Let f € k[xp, ...,xn|. If we write every term of f as in Eq. (2.6) and replace x]l:j(”)p ' by

(x](“))"f“‘), we get a polynomial f € R such that ¢(f) = f. The relation given in Eq. (2.9) follows
by the property of the Hasse derivative
DB (") = 5,5
xi \Nj ijCh, &>
and the differentiation rules. O

h
In other words, this lemma shows that if we set the quantity ¥/ which appears in the related

- . h
varieties, as a new variable x§ )

(

i

, with the use of suitable expansions, the partial derivation D @

(r)

with respect to the variables x; " will coincide with the Hasse derivatives Dy’

Remark 16. The kernel of the map ¢ of Eq. (2.8) is the ideal generated by x g xfh), which is a
homogeneous ideal by the definition of the degrees deg,x"). Therefore, we have the following
compatible diagram of vector spaces, rings and derivations:

v R = Sym(V*) {Dw 0<i<n0<h<N}
J 3 |
1% k[X0, . . ., %] = Sym(V*) (DM 0<i<n0<h<N}

In the above diagram we have a vector space, the natural ring of polynomial functions on it and
the natural set of derivations. When taking the quotient by the ideal ker¢, the set of derivations
is not altered and the derivations corresponding to the dual basis of V survive, giving rise to
Hasse derivations on the quotient.

Remark 17. The definition of the ring R in this subsection, could provide an alternative way to
force separability and therefore reflexivity to hold, for a class of weighted projective varieties,
which we may call bihomogeneous.

Consider an ideal I of k[xo, ..., x,| generated by elements Fy, ..., F,. Instead of working with the
polynomial ring R, of infinite Krull dimension we restrict ourselves to the ring

. (1 1
Ry = k|xg, ..., Xp> X ),...,x< ),...,xo e X

where N is big enough so that the map ¢, : Ry — k[xo, ..., x,] is onto I. Essentially this means
that every term of all polynomials F; is of the form x{ - - - x’ and the p-adic expansions of i; 0 <
j < n do not involve p-powers p" with N < h. For example for p=3 and the polynomial x'° 4 x?!
we have to take N=2 since

KO = 1 37— o () = xp(x?) + H(x V).
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Let now I be the ideal of Ry defined by ¢~ '(I), then I is generated by the polynomials F; € Ry
defined in the proof of Lemma 15. Since, the procedure of Lemma 15 replaces all powers of the

form x ' by the new coordinates xl(h), which still have degree p”, if I is a homogeneous ideal of

k[xo, ..., xn), then it is generated by homogeneous elements Fj, ..., F; and the corresponding poly-
nomials in new variables are still homogeneous. In other words, if I is a homogeneous ideal of
k[xo, ..., X,], then T is a homogeneous ideal of R.

Recall that a weighted projective space is the quotient P(ay, ...,a,) = (A" — {0})/k* under
the equivalence relation (xg, ..., x,) ~ (A%x, ..., Ax,), for A € k*.

In our case, in order to form algebraic sets corresponding to ideals ¢~'(I), we have to con-
sider the weighted projective spaces, P(1,..., 1, p,.... p, p? cos P2 s pN5 o, pN). In a weighted pro-
jective space linear equations of the form

do not give rise to homogeneous ideals unless they are of the form

n
(h)
Z Any,iX; = = 0,
i=0

and it is not entirely clear what projective duality will mean for weighted projective varieties. Of
course, it is known that every weighted projective variety M is isomorphic to an ordinary project-
ive variety M € P’ for some big enough element ¢, [18, th. 4.3.9]. The homogeneous ideal I cor-
responding to M is generated by polynomials of degree smaller than p, therefore it is reflexive.

We will not pursue here the theory of duality of weighted projective varieties, but we can see
something interesting for some of them; if we consider the polynomial ring

Ro n = k|xo, ...,x,,,x(()l), ...,xg), ...,xém, ...,xff\])],

but now deg(xo)(i) =1 for all 1 <i<h, the ideal ¢ '(I) € Ry n, of a homogeneous ideal I of
k[xo, ..., x,] does not need to be homogeneous in Ry y with this grading. If it is homogeneous,
then we can define it as bihomogeneous. For example, the hypersurface defined by the polyno-

mial Y 7 xfhﬂ gives rise to the ideal generated by the polynomial x(()h)xo + x§h>x1 +ootax,

which is bihomogeneous. On the other hand, the hypersurface defined by the homogeneous poly-

)xo —X1X2 " Xpy1 1S

nomial x*" — x;x, - “Xp41, is not bihomogeneous, i.e., the polynomial xél
homogeneous in the graded ring Ry but not in the graded ring Ry n. Observe now that the pro-
jective algebraic set V(¢ (I)) C P""*V defined by the bihomogeneous ideal ¢~ '(I) C Ro,y does

not have a variable raised to a power of p, therefore it is reflexive.

2.4.1. Example: Generalized quadratic forms
Let x = (xp,....X,)" and consider the homogeneous polynomial

n
fa=x'AxT = xagd,
i,j=0

where A = (a;;) is an (n+1) x (n+ 1) matrix, and g = p". If A =I,,;,, then F is the diagonal
Fermat hypersurface also called Hermitian hypersurface. For g=1 the polynomial f; is just a
quadratic form.
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We compute that for a point P = [ay : ... : a,] € V(fa)

n
h
DYVfa(P) = asal

=0

and

D)(cil)fA (P) = Z aa; .

i=0

We write the coordinates of P as a column vector a = (do,....a,)' and we compute both

Via, Vify,
Vfx = (Dyfas - Dx fa) = Aa? = (AY1g)1
and
Vify = (D, ....DWfy) = a' - A.

The Gauss map a — (A'/9a)? is inseparable.
Define ¢ = (&, ..., én)t and f(q> = (rfé@,...,ffﬂ))t, given by

&=Vfy=Aa? and {9 = (Vi) = (a' - A)' = Ala.

We will now introduce ghost variables in order to force reflexivity. Here we consider the varia-
bles x1 = (xI,....x1)" = y = (Jo,....y»)" as a set of new variables y and we write the homogeneous
polynomial defining the variety as

Fy=x'Ay = Z Xiijj-
i,j=0
The Gauss map in this case is given by:
(a,b) — VE4 = (A-b,A'a).
If for a point (a,b)' € V(F,) satisfying a'F4b =0 we introduce the variables £ = A-b, & =
A" - a, then the point (&, &) satisfies the equation:
EATIE=0
since
EATNE=a'"AATTAb = d'Ab = 0.
Observe that the value ¢ = A9 . g% can be explicitly expressed in terms of the variables ¢ by the
equation:
AATE = AAT . (A)q1 = Agf = &,
Notice also that the map ¢: (X,Y)— (A'Y,AX) = (¢,€) and similarly the map W :
(€8 (AT ATE ) and Yo =poy =1d.
Let M= V(fy) CP(V) and M = V(E4) C P(V). The conormal variety Con(M) C P(V) x
P(V") is given by the pairs (a,b;&, &) = (a,b;A - b, A’ - a). In order to compute the conormal

variety Con(M) C P(V) x P(V*) we pass from M to M by imposing the relation b = a and we
obtain (a,a%; A - a1, A" - a). Observe that &, £, satisfy the equation of the dual

ElATIE = 0.
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2.5. Variants of Euler theorem
The Euler identity for homogeneous polynomials implies that for a homogeneous polynomial

F(x0, ... Xy) € k[0, ..., x,], of degree degF we have

Zx,»Di?F(xo, e Xy) = deg F « F(xo, ..., Xn).
=0

0
If p | degF, a lot of information is lost. In particular the first order partial derivations D%, F can
be zero. Next proposition allows us to get some information, from the higher derivatives Dﬁ‘ We
need the following

Proposition 18. Let q = p" be a power of the characteristic. Let Pj(xo, ..., Xn), Qj(X0....x) be poly-
nomials in Kk[xo,...,Xu), j = 1,...,s, where P; are homogeneous of degree deg,(f), and Q; have no
indeterminate raised to a power bigger than or equal to a power of q. If

f(x0, o0 xy) ZP xO,..., T)Q; (%05 -+ Xn )» (2.10)

then

Zx?DZj(xo, o Xn) = degy (f) - f (%05 .0 Xn).

i=0
Proof. [13, prop. 3.10] O

Definition 19. We will call a polynomial h-homogeneous of degree deg, (f) if it is a linear com-
bination of polynomials given in Eq. (2.10) of the same degree.

Remark 20. A polynomial which is homogeneous and h-homogeneous is bihomogeneous accord-
ing to Remark 17.

2.6. h-Tangent and h-cotangent spaces and bundles

In order to compare our definition of h-tangent space we recall here the classical definition.
Let M be a projective variety defined by h-homogeneous polynomials Fi, ..., F;, as these were
defined in Definition 19, generating the homogeneous ideal I. Let S be the algebra k[xo, ..., x,]/I.

Definition 21. Let P =ag : ... : a,] be a point on M. The tangent space TpM of M at P, is

defined as the zero space of the differentials (we will denote by D,(CS)

according to definition 6). In other words,

the classical derivative

dF; = ZD P)x, for all 1 <i<t, 2.11)
TpM: V((dFy, ..., dE})).

Definition 22. For every f € R, define the differential form on the tangent space TpM :

df :=> _ DVf(P)x,, (2.12)
v=1
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which gives rise to elements in the dual space TjM, by sending a solution (xo: ---:x,) € TpM
of system (2.11) to the value df given in Eq. (2.12).

The element df is well defined, since if f; — f, € (Fi, ..., F;), then the differentials df;, df, intro-
duce the same linear form on TpM, see [25, chap II. sec. 1]. Let Op(P) be the ring of functions
defined at P. The map

d: k[X(), ...,xn] — (TPM)*

defines an isomorphism of mp/m% to (TpM)", [25, chap IL th. 2.1]. This fact implies that the
dimension of the tangent space is invariant under isomorphism, see [25, chap II. Cor. 2.1].

2.6.1. h-Tangent bundles
For every F € R we define the h-linear form:
L;h) :V—k

h

S wv)e = v S DIFP) 3, (0))

Definition 23. Let M be defined in terms if the homogeneous ideal (Fi, ..., F;). For h > 0, the h-
tangent space Tf,h)M at P € M is defined by

t
TV M = lemg}) cV.

It is clear from the definition that Tlgh)M is a k-vector space.

Remark 24. The notion of classical tangent space is independent of the isomorphism class of a
variety. If ® : M — Y is a local isomorphism from a Zariski neighborhood U of P to a Zariski

neighborhood V of ®(P), then dikaI(JO)M = dikag)()P) Y.

This does not hold for the case of the h-tangent spaces, the space Tl(yh)M depends on the
embedding of M in an ambient space. For example the affine space A' = Spec(k[x]) has one
dimensional tangent space Tl(,h)Al for all > 1, while its isomorphic image Spec(k[x, y]/(x)) C A
has 2-dimensional h-tangent space for all h > 1.

Of course, in order to correct this, one can strengthen the notion of isomorphism @ : X — Y,
by requiring that ® induces an isomorphism to h-tangent spaces as well.

Remark 25. As R. Vakil observes [28, chap. 12], the quantity Y, ch?)F - x; is the linear part of
a given polynomial F € k[xo, ..., X,|. In a similar fashion >} Dgf)F " is the p"linear part of

1

h
the polynomial F, that is all terms that can be written as (Y., aix;)¥ , a; € k.

)

Definition 26. The h-cotangent space T;,*h M for h > 0 at P is defined as the vector space gener-

ated by the elements (set g = p")
dVf = DYf (P (2.13)
v=0

for elements f € k[x, ..., x,]/I(M). Notice that the expression d")f defined for f as above gives
rise to a well defined form on the tangent space. Moreover d"x! is an element in TI(,*h>M .
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Remark 27. Similar to ordinary differentials, the map given in Eq. (2.13) is well defined, i.e., if
fi — fo € (M), then df, — d"f, is the zero map on the tangent space T M. In this way the
differentials in Eq. (2.13) define functions

¢ : Tl(,h)M — k.

Let us consider the example M = Speck|x,y]/(x). In order to compute the h-cotangent space

Té*mM let us compute d"f(x,y) for f(x,y) € k[x,y]. The possible outcomes are all expressions of
the form ax? + by4, a,b € k. Notice that for f € (x) we have d"x = 0, so the h-cotangent space
is two dimensional.

Let R be a finite presented k-algebra. A Frobenius map on R is a ring homomorphism @ :
R — ®(R) C R, such that ®(/x) = /’®(x), for all 2 € k and x € R. The image ®(R) is a subring
of R. In this way we form a sequence of nested subrings of R,

RD ®(R) D ®*(R) D ®*(R) D ---

If R is a local ring with maximal ideal m then all rings ®"R are local rings as well, with maximal
ideals m") = ®"(m). If f:R, — R, is a ring homomorphism of two rings equipped with
Frobenius maps ®@;, @, respectively then we require

f(D}R)) C Dh(Ry).

If moreover f is a local homomorphism of local rings R; with corresponding maximal ideals m;,

for i=1, 2 then f(mgh)) C mgh). In what follows we will consider the polynomial ring
k[xo, ..., x;] /I, and the localizations at certain maximal ideals of the ring k[xo, ..., x,] /1.

2
Definition 28. The intrinsic h-cotangent space @E,*I”M is defined to be the space mg1> / ml(,h) and
equals to the cotangent space of the local ring ®"(Op).

Lemma 29. The space @th)M = mg,h)/(m;h))z is a subspace of Tl(fh)M.

Proof. Consider the map

we will prove it is injective.

Let G € k[xgh, ...,xf,h] be a polynomial representative of an element in m},m so that "G is the
zero form on Tl(,h)M. Assume that the homogeneous ideal of M is generated by the polynomials
Fy,....,F.. Then d®G is a linear combination er/:o )vl,dG’)F,, of the forms d(h)F,, for F,,1<v<
r, generating the homogeneous ideal of M. This means that

G(xgh, oy = aoxgh Totaxd Z a,-jxfhxfh + higher order terms
0<i,j<n

for certain elements a;,a; € k. The linear combination Y_,_, 4,d"F, cancels out by assumption
the >0, aixfh part, so the difference G — fo:o 2, d"WE, € (mgl))z, and the result follows. 0
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Definition 30. Define G)E,h) (M) to be the dual space of @;*h)M, that is

0" (M) = Hom(05" (M), k).

Remark 31. By Eq. (2.13) we have that d<h>(xfh) on the tangent space acts like the g-
form x; — xI.

Corollary 32. The dimension of @E,*h)M is an invariant of the isomorphism class of a variety, i.e. if
®: M — Y is a local isomorphism from a Zariski neighborhood U of P to a Zariski neighborhood

V of ®(P), then dimk®§>h)M = dimk@ggp)y'

Let M C V be an irreducible variety. Consider the algebraic set @ C V x M consisting of pairs
(a,P) € V x M such that a is h-tangent at P. The second projection 7 : ® — M is onto and has

fibers the spaces @E,h)M. By [25, Chap. 1.63 th.7] we have that dimk®g’)M > s for all P € M and
equality is attained at a non-empty open subset of M.

Definition 33. We will say that a point P € M is h-nonsingular if

dim®" = dim; TS M = dim M.

2.6.2. Differential between tangent spaces

Consider the projective varieties V C P, W C P defined in terms of the homogeneous ideals
(fis--ofr) € k[x0, ..., xn) and {g1,...,g) € k[yo, ..., ym| respectively. A map F:V — W is given by
polynomials Fy, ..., F,, € k[xq, ..., x,] such that y; = F(xo, ..., x,,) for i =0, ..., m. Set

DRfy o DA | DYA - DUA

Jon(fis - fr) = : : : : = (AJA")
DY, - DY | DG - DUS

and similarly

DWg - Dygi |Di'gi - Dyg

](),h(gl) >gs) = = (B|B,)
0 0 h h
Dyg - Dﬁm)gs Dyg -+ Dﬁm)gs

The kernel of the matrix A at P (resp. B at F(P)) corresponds to the ordinary tangent space of V
(resp. W) while the kernel of A’ (resp. B’) corresponds to the h-tangent space.
By substitution of y; = F(xg,...,x,) for 0 <i<m in g,....,gs we write each g,...,¢ as an

element in the ideal (f},...,f;). Therefore elements in TpV, resp. T}(,h) V, given as elements in the

kernel of A (resp. A’) are sent to elements in Tpy, resp. TI(Jh) w.
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h

Consider now the matrix (observe that yfh = Fi(x0, .. %)F )
DYFy DYF, | DR, --- DU
oo Eor o Eu o P D Fy D 'F, | DY'F -+ DY'E,
0,h\ L' e Ly L5 e 'y ) = N 1 1 N
DYF b | pPF ... DI'F
DYF, - DYF, | DUE, - DUF,
DYF, pF, | D¥F, --- DIF,
DYF, pF, | D¥F, --- D!F,
0 o |[p®E ... pE
0 o |pPE, ... pDIE
J1T
(o7 )
The chain rule implies
DV - DV | DPg D{g, Ly
: : = (B|B)) “f,
0 O | n® ") 01
Dx(, g Dxmgs on s Dxmgs

spaces satisfies

An element a = (ag,...a,)" € TrpW, b = (bo, ..., b,) € Tl(:h

(

= (BJ|B)' +BJ"").

;J)W by definition of the tangent

Bja=0 (B +BJ")b=0.

On the other hand we have

(20 (i)-

J'b

<Ja+]'b>

therefore B(Ja +J' B) =0 and B’]PhB = 0. This allows us to write the differentials:

dF : Tp(V) — TypyW and dF®) : T3 (V) — TU), W

as follows

dF(a) = Ja +J'b and dF" (b) = J*'

S
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When b = 0 is the zero h-tangent vector then dF is the classical map. The differential in the h-

tangent space is independent on the choice of a € T;O)V.
We have proved the following:

Proposition 34. Let F : V. — W be a map between polynomial varieties, expressed in terms of poly-
nomials Fi, ..., F.. Then the p"-power of the ordinary differential T}()O)V — T W is the natural

E(P)
map Tl(,h)V — TI(TIZI)’) V.

2.7. Vector fields and differential forms

We will now define vector fields as differential operators in terms of Hasse-derivatives. The iden-
tification

mp d
—§ —TpM
mp
proves that dxo, ...,dx, give a basis of the cotangent space, since mp/m? is generated as vector
space by the classes of x, ..., x, modulo m3. Also in the classical case the partial derivatives 9/0x;
give rise to naturally dual elements, i.e. elements in TpM.
Let us assume that the variety M has a non-empty open set of h-nonsingular points. On this
g
open set we will employ the identification (:(—ﬁ))z —>T1(fh)M of Lemma 29, which sends
P
m® n i n ,
P oSm= Zaixf = dWm = Za,vdwx? € Tl(f ‘M.

(mg’)) ’ i=0 i=0

Definition 35. A vector field X is a sum

X= an,(X)DY, (2.14)

o0 n

h=0 i=0

where all but finite coefficients ay, ;(X) are zero. The elements ay ;(X) are coefficients in Oy,
depending linearly on X. Vector fields form Oy-modules.

Definition 36. For every i € {0,...,n} we define the differential form d(h)x?, seen as a formal
symbol. This definition can be given a functorial interpretation, by considering the module of p-
graded Kahler differentials as a universal object representing the functor of Hasse derivations, see
[6, chap. 16].

For a function f € Oy (U) we define the differentials df (with respect to Hasse derivatives,
see also Eq. (2.13)):

40 (f) Z D (F)dD (2.15)
i=0

Recall the notation q = p” and note that from Eq. (2.15) we see that d(x!) = d"x! which can be

seen as an element in T;,*h)M. Without the Hasse derivatives, the differential d(x?), when com-

puted in terms of Eq. (2.15) is zero, but here it is a generator of the alternating algebra of differ-
ential forms.

Definition 37. For g;=p' define the formal monomials d/")x!" A d")x® A ... A d<hf>xzij of
degree j, where for monomials m, n of degrees k and [ we have
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man=(—1)"nAm.

A differential form of degree i is a formal linear combination of monomials of degree p, with
coefficients from Ox(U).
We also require that for a function f we have

fix A dP " = d;  fF L (2.16)

The above requirement is natural since that alternating algebras are defined as quotients of the
tensor algebra, see [6, Appendix 2] of an ordinary form by a p"-form. We will use this definition
in Lemma 46 in order to prove that the h-conormal space is Lagrangian.

A derivation of degree s € Z on Oy (U) is a k-linear operator sending a form of degree j to a
form of degree j+ s such that

D(w A1) =DwAt+(—1)7w A Dr.

We will need the following derivations.

(1)  The derivations d of degree + 1, such that df is given by Eq. (2.15) and d")d" =0
for all b, ' € N.

(2) The derivation iy of degree —1 corresponding to vector field X, given by ix(Ox) = 0 while
for X given by Eq. (2.14) and w given by

w= hz: ZO: by, ((0)d"x1, for by i(w) € Ox(U) we have
=0 =

o0 r
h

ix(@) = >3 (ni(x)']

h=0 i=0

(). (2.17)

Remark 38. A vector field is a section of the tangent bundle, i.e. for every P € X if the functions
ap,; are in Ox(U) for an open set U containing P, then the evaluation of aj,; at P gives us a tan-
gent vector in TpM,

X(P) = zoo: Z ar,i(X)(P)DY. (2.18)
h=0 i=0

Indeed, using the iy derivation we see that the vector field D,(C}f) is the dual basis element to the

differential form d™x?. Thus, the evaluated vector field gives rise to an element in the dual space
of T;M.

Assume now that the maximal ideal at P € M is generated by ty,...,t;, and consider the differ-
entials dt;, ..., dt;.
The classical cotangent vector bundle (see [26, p. 60]) is the vector bundle

M = D Oy,
A classical differential form ¢ is given by

E=) &b, & € Oy
i=0

Keep in mind that a vector bundle in algebraic geometry over an open set U C M is described in
terms of Aj; = SpecOm(U)[Ey, ..., &, ], see [11, ex. 5.18, p. 128].
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In analogy to the classical case, an h-differential form is given by

d=3"cdt", & e o
i=0

3. The case of hypersurfaces

In this section we focus on the hypersurface case. When the variety is given as the zero set of a
single polynomial we can use a form of implicit-inverse function theorem which allows us to
express the coordinates x; as functions of the dual coordinates. This method works if the h-
Hessian is generically invertible. In characteristic zero we consider the hypersurface V(f) C P"
given by a polynomial f, if we set Z; = D,,f € k[x], we can find the ideal in k[E] by eliminating
the variables x. Let us illustrate this method in characteristic zero by the following

Example 39. Consider the Fermat curve given as the zero locus of
xg + xf + xg =0.
This in magma [2] can be done as follows: If y; = D,.f, we fist define the ideal
I={xg+x +x, — 5% + Yo, — 5] +y1, — 5x; +y2) < K[x0, s X2, Y05 -5 2]

and then we eliminate the variables x, X1, x, using the EliminationIdeal function:

R = = s et — 12400°005 + 60%” — Aiyn’ — 12450013
—124y5y1y2" — 4oy’ 0 — YUy T 60y — 7

We can now consider the same elimination process, arriving at the ideal ] generated by the ele-

ments

Q=00 — 0N — 0 6’ — 1249°01y; + 630y — yon” — 1R24yon’y;
— 1245507y," — 403" 1 — 9y 60170y — Ay, +

& = %o — 20y, + 60y5"y7 + 60yy"y3 — 60y5y,° + 1240y7y1;
— 60y,y;° + 20y1° + 620y, Y5 + 6205537y, + 2055y,

g = X1+ 20y°y1 — 60y"y7 + 620y5°y1y5 + 60yoy1* + 1240y5y7y; + 6203y1y5°

—20y)” + 60y;*y3 — 603173 + 20y1y5’

&1 = %2 + 2095y + 620y3° 15 — 60y"ys + 6209531°y5 + 1240371, + 60y5y,*

+ 2091’y — 60y,%y; + 60y7y," — 2095,

Observe that the generators g, g3, g4 express xo,x;,x; as a function of V> which follows by differ-
entiating the defining equation g, of the dual hypersurface with respect to yo, 1,52, ie., x =
Dyg: for i=0, 1, 2. After elimination in the ideal ] of the variables y we arrive at the original

equation as expected.

Similarly, the implicit-inverse function method will allow us to solve “locally” and express E;
as functions of k([xo, ..., x,]. The problem with this method is that Zariski topology does not have
fine enough open sets for the implicit (or the equivalent inverse) function theorem to hold.
Actually this was one of the reasons for inventing etalé topology [23, p. 11]. The approach of
Wallace is based on defining algebraic functions in order for the implicit function theorem to
work. We will follow the ideas of Wallace [29, sec. 4.1]. Let Xj,...,X,, be a set of indeterminates
of the field k. A separable algebraic function ¢ over k(Xj,...,X,) will be called a k-function of
Xiy oo Xn. If x1,...,x, is any set of elements of k and y is a specialization of ¢ over the
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specialization (Xi,...,X,) — (x1,...,x,), then y will be called a value of ¢ at (xi,...,x,), and will
be written y = ¢(xy,...,x,). The partial derivative d¢/0X; for each i, is a rational function of
X1,...,X, and ¢. If this rational function is defined at (xi,...,x,,y) (i.e. has non zero denomin-
ator), then the k-function ¢ will be called differentiable at (xi, ..., x,, y).

Remark 40. If we allow k-functions then the duality theorems have a simpler form. For example
for (a,p) =1 the dual curve of the Fermat curve x¢ + x4 + x5 = 0 is the dual curve x§ +xb +
x5 = 0 such that Ly1=1, see [9, Example 2.3, p. 20].

Theorem 41 (Implicit function theorem). If xi, ..., Xy, satisfy the k-functions ¢;(x, ..., x,) = 0 for
i =1,...,n, differentiable at (xi,...,X2,,0) and the Jacobian n x n-matrix (0¢,/0x;) is invertible,
then there are k-functions fi, ..., fu Of ¥1, ..., yn such that x; = fi(Xpi+1, ... %24) forall 1 <i < n.

Proof. Theorem 6 in [29]. O

The above theorem in practice allows us to work with hypersurfaces as follows: Let V(f) be a
projective hypersurface. We put coordinates (xo, ..., x,) on the space P” and yy, ..., ¥, on P*". We
have the equations:

yi = Of /0xi = ;(x0, .0 Xn). (3.1)

If the Hessian matrix (0¢;/0x;) = (0°/f0x;0x;) is not singular, then the implicit function the-
orem allows us to express x; as k-functions of yy, ..., ys.

For example, in characteristic zero (or if p f'a — 1, the hypersurface defined by f=>""  x7
has y; = 0f /Ox; = ax¢~!, therefore x; = (y;/ a)ﬁ. The last expression is in accordance to
Theorem 41, since the Hessian matrix equals a(a — 1) - diag(x2 2, ...,x47?), which is generically
invertible. We can arrive to the dual hypersurface by replacing x; in the defining equation of f,
ie.

in(yo, woyn)t =ala—1) Zy,%l
i=0 i=0

Notice that b = _“; satisfies the symmetric equation 1/a+1/b = 1.

If p|a—1, then the equation y; = ax? ! does not allow us to express x; in terms of y;. Keep
in mind that the rational function field is not perfect, and we are not allowed to take p-roots of
polynomials.

Let V(f) be a hypersurface corresponding to the irreducible homogeneous and h-homogeneous
polynomial f of degree prime to the characteristic. By Eq. (2.10) we have that if the Gauss map is

not separable then y; = 0f /0x; = g ' (x). Moreover by Euler’s theorem we have
n h
f=deg(f) - ingi(ﬁ)p :
i=0

In our approach we propose to consider instead of Eq. (3.1) the equations

Vi = D;(f) (f)-

Then under the assumption that the “Hessian” Di?)D;g?) f is invertible we can express

Xi = gi()/o, ...,}/n),

where g; is a k-function.
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Remark 42. Even in characteristic zero, the Hessian might be singular. Consider for example a
hyperplane V(3 a;x;). The first derivatives are constants and the Hessian is zero. This situation
is related to the case of singular Gauss map. For a detailed study of this case in terms of classical
differential geometry see [1].

A similar example can be given in positive characteristic, for example for 4 > 1 the polynomial
f= xﬁh has D)(Cf’)f =1, which has degree 0, and the Hessian DE;,))chlf)(f) is zero.

These two cases will be excluded in next lemma where we will assume that the degree of the
derivatives are prime to the characteristic.

In some cases we can prove that the Hessian is invertible.

Lemma 43. Let f be a homogeneous polynomial so that so that one at least of its derivatives
Dg:)f, 0 < i< nis not zero, and all non-zero D,(ff)f derivatives have degree d; prime to the charac-
teristic p. Then the (n+ 1) X (n+ 1) matrix D)(C?)D;(f) (f) is generically invertible.

Proof. Assume that the above mentioned map is not invertible, then one column, say the first
one, is a linear combination of the other columns, that is

h
DD oD

= Z vy : (3.2)

oo ) T \ DDl (f)
Notice that if 1; = --- =/, = 0, then D,(C?>D,(£'> (f) =0 for all 0 < i < n, this means that
DY) € k[xg, ... xd],

and so it has degree divisible by the characteristic. Summing along each column of Eq. (3.2) after

multiplying by x,, and using Euler’s theorem we have (set d, = degD,(Cﬁ) f)
n
dOD)(cf]l) (f) = ZluduD;(cﬁ) (f)- (3.3)
n=l1

Let &, be the degree of the polynomial f in the variable x{, g = p". The above Eq. (3.3) is impos-
sible for &y > 0 by considering the degrees of both sides in the variable x{, since the degree of x{
on the left hand side of Eq. (3.3) is less than the degree of x{ of the right hand side. This forces
0=0 and in this case D,(!?f = 0. This forces the right hand side of Eq. (3.3) to be zero, which
allows us to repeat the above argument (recall that in Eq. (3.3) there is at least one more 4; # 0)
for another variable x;, until we prove inductively that all derivatives fo,.‘) are zero, a contradic-
tion. O

Lemma 44. Consider a function f as given in Eq. (2.10) in proposition 18. Then this function satis-
fies the invertible Hessian criterion of Lemma 43 and the dual variety given by equation

G(Y0s Y1) = F(0(¥05 - Yi)s o Xa (Y5 - Ys)) = O.

Let us now consider the Hasse derivatives D}(,io for g = p" of G(y) = >_1, xy;, where x; are
considered as functions of y;

n

u q
wﬂw@ﬁﬁ=z@%wf
i=0

i=0
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We compute

n n n
2yl = (D) st (3.4)
v=0 v=0 i=0
Since xi(¥o, ..., ¥») is homogenous in the variables yy, ..., y, as well the classical Euler identity gives
us that
n
Z y,,Dif)xi = cx; for some c € k,
v=0

so Eq. (3.4) gives us

Zz,yg = ch?yi =0.
v=0 i=0
This means that the point X = (xo, ...,x,) € V(f) C P" has the g-hyperplane
(Xo: -+ : Xy) € P} such that » yiX{ =0
v=0
with coordinates (g, ..., y,) as h-tangent and the point (y, ..., y,) € V(G) C P™ has the g-hyper-
plane

n
(Yo:---:Y,) € P} such that ZZVYZ =0
v=0

with coordinates (2o, ...,z,) as h-tangent. Reflexivity essentially means that the map

Vox Vo e ()
(x,y) = (3 F(x))

induces an isomorphism from Con®(X) to Con™(Y), where F is the isomorphism F:V —

(V*h)*h introduced in Theorem 12. For proving this we will require the notion of Lagrangian var-
iety for algebraic sets defined over the field of complex numbers.

3.1. Example: A class of Fermat hypersurfaces

Let p # 2 be a prime. Consider the hypersurface
n
S,
i=0
(r)

We set also y; = Dy, f = 2« "1 We can express x; in terms of y,, that is

L\
Xi = Eyl .

The dual variety is then described as the zero set of the k-function

2p+1

G(o, .. ¥n) = ny“ =0.
i=0

2
We now compute the derivatives z; = DJ(,IMG =’ ! for some ¢ € k. We now expand
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n 1+P7P n n
i=0 Jj= k=0

_ . 2p+1 (1+p—p?) JerZp—Hpr 2p+1) Z —p*(2p+1)

i=0 k=0
]9&1 k#i

2p+1)(1 _ 2p+1
1(p+ +p—p?) C1§:Zp+'

=0

This proves that (zo, ..., z,) are in V(f).

4. Lagrangian varieties
4.1. h-Cotangent bundle and h-Lagrangian subvarieties

The space V x V*/' can be identified to the h-cotangent bundle TC? (V) of V. Let x, ..., X, be a
set of coordinates on V and &g, ..., &, be a set of coordinates on V*. Notice that a vector field
(here we use vector fields which have non-zero coefficients only at a certain value of h)

n n
Xx=> Y axp?+ > Y bx)DY (4.1)
jE(0,hy v=0 j€(0,h} v=0
by Eq. (2.17) acts on differential forms in terms of the derivation ix by the rule:
h
(@) =000, @) = ),
ix(d9x) = a;(X), ix(d® ) = by(x)"

Consider M C P(V) a projective variety and consider the cone M’ C V seen as an affine var-
iety in V. Assume that the homogeneous ideal of M’ is generated by the homogeneous polyno-
mials fi,....f,, and the set of h-nonsingular points of M is non-empty. Consider the n+ 1-upple

v = (DP£(P), DY4(P), .. DI (P)).
Each f; defines an h-linear form given by

(4.2)

The h-tangent space at P is the variety defined by the equations Lgh) = 0. Recall the definition
of Lag" (M) C V x V*,

Lag" (M) = {(P, H):P e Cone(M! ),H is a p" — linear form which vanishes on T}(,h)M}.

Let m; : V x V*" — V be the first projection. We have seen in the introduction, that for every
PeM" the set 77t N Lag® (M) can be identified to the space of p"-linear forms on the h-nor-

mal space N ( ) defined as
h h h h
Ny (M) = TV T (M) 2 VT (),
Also by the definition of Tl(gh)M the fiber of the h-conormal space at the point P for a projective var-
iety defined by the elements fi, ..., f; is the vector subspace of V*" spanned by Lgh) given in Eq. (4.2):

Lagl (M) = (L 1 <i < 7).
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4.2. The symplectic structure on Vx V"

Definition 45. Let x;, ¢; be coordinates on the vector spaces V, V*/ respectively.
A subvariety A of V x V* with non empty h-nonsingular locus will be called conical h-
Lagrangian if

(1) Theforma)zz Od x/\dé—i—zj Odh A dxj is zero on A.
2) dimA=n
(3) If (P,H)= (%0, Xn Epron&y) €A then  (uP, AH) = (Uxg, ..., txn, 2L, .. 2E,) € A for
every, i, 4 € k*.
Notice that if

S S SURCICESD i) SiMeTi)

ie{0,h} v=0 i€{0,h} v=0
then
CO(X, Y) = iinw =
N o o " o (4.3)
= ap, (X)) bo,,(Y) — ap,,(Y) by, ,(X) — ag,,(X)bp,, (YY) + ao,,(Y)bp, . (X)" ).
v=0

If one restricts on (h,0)-tangent vectors, i.e. ag ;(X) = ao,(Y) = by, i(X) = bp,:(Y) =0 for all i,
then the above computation is compatible with the definition given in Sec. 2.3 since in this case

CU(X, Y) = zn: (ah,u(X)pth,V(Y) - ah,l/(Y)Pth,l/(X))'

v=0

Lemma 46. Assume that h is selected such that m, : Lag" M — Imm, = Z is separable. If M" # 0),
then the conormal bundle Lag" (M) is a Lagrangian manifold of V x V*".

Proof. Assume that M is the zero locus of the homogeneous polynomials Fi, ..., F,. When we
restrict ourselves to Lag") (M) we have that

Z;( DMF) Lk
and
— N dp®™| E =525 po
= Sl = 343
i=1 i=1 v=0
This means that the first summand of o restricted to Lag" (X) has the form

j=0

i=1  j=0 v=0

(h)’ Fidx,
p 1 Ve

W‘ F dWx? A dx
p 1 ] Ve

In a similar way we have, using Eq. (2.16)

Zn;dxj AdP éjq = Zn:dxj A <Z
= =

—1 =0

= ZZ}»IZD 0)‘ ‘ F; dx; A dWxd

j=0 i=1 v=0
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Therefore the form
o= d"xI nd&+> dWEl A d;
=0 =0
is zero on A.

We now compute the dimension of Lag")(M). If P is an h-nonsingular point, then the dimen-
sion of the h-tangent space equals dimM, therefore the dimension of the conormal space is n —

r and the dimension of Lag") (M) = dim(M) 4+ n — r = n.
Finally, if (xg, ..., X Eg» -or &4) € Lag™ (M) then it is obvious that for u, 1 € k* the element
(X5 .o Xy 2Cq s AE,) is an element of Lag™ (M) as well. O

Definition 47. A map f:X — Y between varieties will be called generically smooth if the
induced map f, : TI(,O)X — T}?}J)Y is surjective for an open dense subset U C X.

Similarly we will call a map f : X — Y h-generically smooth if the induced map f : TI@X —

T;Z),)Y is surjective for an open dense subset U C X such that f{U) is an open dense subset of Y.

Remark 48. Proposition 34 implies that if f is generically smooth then it is h-generically smooth.
Also if the function field extension k(X)/k(Y) is separable, then there is an open set U so that f,
is smooth for all points in U [22, p. 169], [15, p. 68].

Remark 49. We consider the identification F: V — (V*")* given in Theorem 12. Define the
map W : V x V" — V* x (V)" given by sending ¥ : (v,w) — (w, F(v)). Notice that if ¢, b
are the coordinates of V*", (V*")™ then the coordinates in V x V*/ are given by (b,¢), see also
the diagram in Eq. (2.5).

The following is essential for proving reflexivity.

Proposition 50. Let m, : V x V" — V* be the second projection. A conical Lagrangian variety
A C V x V" has projection Z = my(A) C V. If the set of h-smooth points of Z forms an non-
empty dense open subset of Z and the map m, : A — Z C V' is h-generically smooth, then the
conormal variety Lag"(Z) C V*" x V' coincides with A under the natural identification ¥ :
Vx vV v v

Proof. This proof follows [9, prop. 3.1], see also [27]. The set of h-smooth points of A is non
empty by definition 45, so it is an open dense set of the irreducible variety A. The projection
m(A) = Z is irreducible since A is irreducible. By assumption the map m, : A — Z is h-generic-
ally smooth, so we can find an open dense set Ag C A, consisted of h-smooth points with the
additional property that m,(A¢) = Zo consists also of h-smooth points and moreover the induced
map 7, forms a surjective map

YA — T, Z.

Since 7, is h-generically smooth we can see every element v € TI(Jh)Z written as
n
— )
v=> D,
i=0

as the image of an element V' € Tg )A which can be written as
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D IZIED DRCIRD SUNE N S )
i=0 0

i= i=0 i=0

for a selection of values a; € k. In selecting Ay and Z, it is essential that open non-empty sets in
irreducible varieties are dense. We have the following diagram:

S
Vx V< OA T Op Lag® (2)—— Vv x v
lnz lﬂz ln’z l /
V*h QZ QZO _ ZO

The map ¥ is the map sending (x,y) € V x V* to (y,x) € V*" x V.

In what follows we consider V** x V — V* as a (trivial) vector bundle, which is identified,
using Theorem 12, to the h-cotangent bundle T¢")(V) of V and to the h-cotangent bundle of
V*h,

T (V) = vt o (vt e v v S v, (4.5)
Keep in mind that the h-cotangent bundle of a vector space V is V x V*". The h-cotangent bun-
dle of V* is V*h x (V*h)™h,

The space V*" 22 V*" x {0} is considered as the zero section of the bundle T*(V*")=
V*h x V. Each point z € V*/ has the vector space V as fiber.

14 7, '(P)
A
EA
Q v
V*h
p v Z

We will prove first that for any h-smooth point P € Zy # 0, ¥(n;'(P) N A) C Lag®(Z). Let
b = (bo, by, ..., b,) be the coordinates of P € Zy C V*. A point Q= n"!(P) N A has coordinates
(b,¢). The second part of coordinates of Q given by ¢ = (cy, ..., c,) corresponds to an element in
V (V*h)*h seen as the vertical fiber 7~ !(P) of the vector bundle in Eq. (4.5). Since the fiber
7 !(P) is the vector space V, we can identify V with its tangent space and write

i=0

This element is considered as an element in the tangent space 70

0) () (175 T
(M)T( M(V*) of the point (b,0)
of the zero section of 7. Since A is conical the element ¢ can be also considered as a tangent vec-
tor of A at Q = (b,¢).
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Since w is zero on A, for v defined in Eq. (4.4) and ¢ given as follows

n

D SUTCEES SUNCES SUNTERD 914
=0 i=0 i=0

i=0

we have by Eq. (4.3)
n
0=ow(V)= Za?ci,
i=0
that is the g-linear form
n
(%05« X)) inqc,»,
i=0

vanishes on the element of the tangent space with coordinates a. The last equation implies that
we can see ¥(&) = (b(P),¢(P)) € V*" x V as an element in Lag"Z, C V*" x V, so ¥(z~'(P) N
A) C Lag"(Z), notice that the coordinates b of P satisfy the defining equations of Z, while the
coordinates of ¢, satisfy the defining equations of m;(A).

We thus arrive to the desired inclusion (7~ (P) N A) C Con™(Z) and W(A) is a dense
subset of the same dimension of the irreducible variety Lag")(Z), therefore ¥(A) = Lag"(Z). 0

Theorem 51 (Reflexivity). Let M € P(V) be an irreducible, reduced projective variety generated by
h-homogeneous elements, which also has a non-empty h-nonsingular locus. Assume that Z :=
> (Lag" (M)) has a nonempty open set of h-nonsingular points and that the map

TV x V5 Lag® (M) — my(Lag® (M) := z c v
is generically smooth. Then

‘P(Lag”‘)(M)) = Con“”(Z) c vhx (V*h)*h —Vvh v

Proof. The conormal variety Lag" (M) which is originally defined as a subset of V x V* can be
also seen through ¥ as a subset of V*'x V2 V* x (V*h)*h and by symmetry it is still
Lagrangian of dimension n.

Let us now prove that the map =, is h-generically smooth. Let f: X — Y be a map and
suppose that P is a smooth point of X and f(P) is a smooth point of Y and f.TpX — Typ)Y is
surjective. If X, Y are irreducible then such a point P exists since the space of smooth points is a
non-empty open dense subset and f is generically smooth.

Set A = Lag" (M). The map 7, : V x V* > Lag" (M) — m,(M) := Z C V*" is assumed to be

generically smooth and by proposition 34 the natural map Tg')/\ — Tflezp)Z is the p"-power of

the classical differential dn;, : Tg))/\ — ngmZ'

There is an open dense set U of A such that for every P € U we have n = dimA = TI(,(])A (isa
classical nonsingular point) and dimIm(dn,) = dim T;,p)Z = dim Z (surjective differential and
m(P) is classical nonsingular) and moreover that 7,(P) is h-nonsingular point of Z. Notice that
non-empty sets of irreducible varieties are dense and hence have nonempty intersection. But
dimker(dn,(P)) = dim ker(dn’éh (P)) hence we obtain

n = dimker(dn,(P)) + dim Im(dmn,(P))

= dim ker(dmn, (P))ph + dim Im(dn, (P))Ph.
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The assumption that 7,(P) is h-nonsingular gives us that dim Tf:zP)Z =dimZ. On the other

hand dim Im(dn, (P))Ph = dim Z and since Im(dn, (P)Ph) C TZ%P)Z if m,(P) is h-nonsingular, that

is dim Tf:;zp)Z = dim Z we finally have that dnr,(P)? " s surjective. Since we proved that 7, is gen-

erically smooth reflexivity follows by Theorem 50. O

Let M C P(V) be an irreducible, reduced projective variety. We can form the connical h-
Lagrangian Lag”’M C V x V*" which has a nonempty open set of h-nonsingular points and also
form the h-dual variety Z = m,(A), where 7, : V x V** — V*! is the second projection. The set
Z is irreducible but determining whether the set of h-nonsingular points is non-empty is a subtle
problem. Irreducible algebraic sets are known to have open dense sets of classical nonsingular
points. For proving a reflexivity theorem we need the set of h-nonsingular points of Z to be non-
empty, hence dense subset of Z. When M is a hypersurface we have given conditions in Lemma
43 so that Z has non-empty set of h-nonsingular points. The condition of h-nonsingular points
requires a computation of the dimension of the algebraic set. Understanding the dimension of
the dual variety Z is a subtle task, see [1, 5, 8, 17, 21, sec. 2.5]. Let us treat here the follow-
ing case

Proposition 52. Let M be a complete intersection described as the zero locus of r polynomials
Fy,....,F, and dim M = n — r, such that all Hasse derivatives D,(CJh)F,- have degree prime to the char-

acteristic. Then the dual variety is a hypersurface. If moreover all Hasse derivatives Dg.l)F,» have
zero h-derivatives for all i =0,...,n and 1 < j < r then the dual hypersurface has non-empty h-sin-
gular locus.

Proof. In this case we can prove that Z has dimension n — 1 since the coordinates (&, ...,¢&,) are
given by

o . D;gol)Fi
=>ul | (4.6)
i=1
& DYF,;

We now compute the (n+ 1) X (n + 1)-matrix

pV¢ .. DY, . (DYDPF ... DYDIF,
: = Zﬂvi : : . (4.7)
pY'e - e, ) T \DEDYE - DEDUF,
(h)

If the elements F; have at least a derivative D, (F;) which is not zero, and degrees d,, ; which are
prime to p, then by Lemma 43 we obtain that each matrix summand in the right hand side of
Eq. (4.7) is generically invertible. Without loss of generality we can assume that for 4, = 1,4, =
-+ = A, = 0 the matrix in Eq. (4.7) is invertible (change projective coordinates in the projective
space P" if not.) In this case the subvariety Z, of the projection Z cut out by equations 1, =
.-+ = 4, is locally isomorphic to our original variety M by using Wallace inverse function con-
struction, which allows as to express (xo, ..., x,) in terms of (&, ..., £,). The dual variety is then
ruled in projective spaces with base Z, and has dimension equal to

dmZ,+r—1=dmM+r—1=n—r+r—1=n-—1.
This means that Z is a hypersurface defined as the zero locus of the polynomial G(&, ..., &,).

If Z has empty set of h-nonsingular points, then all Hasse derivatives D?G =0for0<v<n
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and this means that G has degree smaller than q. Using Eq. (4.6) we can write G as a function of
X0>..»Xy, depending on Aj,..,4. Then G is zero on M and this means that
G(&o(x05 s %) oo En(X05 .., X)) s in the ideal generated by Fy, ..., F,. Let us write

GlE (). 6s5) = 3 G5, 48)

The chain rule gives us that (recall we assumed that DémG =0for0<v<n)

!
(D<°)G DOG, DM G D<h)G> - (D@G p9G,0 o) T
0, .., 006G, DMG, .., D! §6.0LG.00) |

where
Do(cg) S - Di(:) ) Do(cﬁl) So - Dg? o
J= : : and J' = :
Dig)fn e D)(c(,).) én DJ(Cf:)én e D)(c?én

Therefore if fof) fj =0 for all 0 <i,j < n then
(DG, ...,DWG) = (0, .., 0).

Xo Xn

In this case we have by Eq. (4.8)
(D;?G(P), Dgﬁ)c(p)) =" a(P) (D;g)F,»(P), ...,Dnyi(P)).
i=1
But the vectors
VWEF, = (D)(C?F,-(P), ...,D<h)F,»(P)>

are linear independent for every point P in the non-empty set U containing all h-nonsingular
points. This means that for all P € U g(P) =0 for 1 < i <r, which in turn implies that g; are
zero polynomials and G is also zero, a contradiction. O

4.3. Examples

Consider the complete intersection in P} given by 0= (A s An—2))

xlg + x’l‘ + x’z‘ =0

_ xk+xk+xk =0
Cc(A) = _ s CPL (4.9)

Inaxk 4k 4 xk =0

These curves are called “generalized Fermat curves,” see [16]. We consider the matrix of Vf; writ-
ten as rows,

kb=t kU ket 0 00

JakakTl kL0 ko0
(4.10)

InakaxkTt kXU 0 N R
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The conormal space is the subspace in V* of linear forms spanned by the linear forms

L= Z DYfX;
v=0

Consider an arbitrary element in the span of L;, p, ..., t,_, € k:

Yo S Ak !

yl Zu 0 lull‘xllc !

| =k x5! . (4.11)
y" :un Zxk !

The ordinary Lagrangian space is given by

where xo, ..., x, satisfy eq. (4.9)
and yo, ...y, eq. (4.11) '

Lag(C*(1)) = {(xo, cees X Y05 +e0s Vi)

The image of the projection 7, is a codimensional 1 subvariety, hence a hypersurface given by a
single polynomial F(yy, ...,y,) = 0. Finding this polynomial F explicitly is a complicated task in
this case. If p|k — 1 it is clear by Eq. (4.11) that y; are given as polynomials of x/ and the map 7,
cannot be separable, hence reflexivity fails.

Let us study the conormal space of the dual variety Z = m,(Con(C1)). We see equations
(4.11) as parametric equations with parameters y, ..., it,_,. In this case we have that the tangent
space is generated by the vectors

yi Oy Jyi _
V= < AR (R ) = (;,,-xg L0,.,0,48 ‘,o,...,o) for 0<i<n—2,
e Oy Oty

which are subject to the additional condition
VFLVii.e.(VF,V;) = 0. (4.12)

In order to study further Eq. (4.12) we consider the following cases:

e If (k—1,p) =1 then we obtain:

Xo = - o
kZu O'u"/LV

X = o (4.13)
kZV ()'uu

1

Ji \M! .
xi= [ ——— for2<i<n-2.
ki,
This way we obtain a relative curve X — P!, where [uy : -+ : u,_,] serve as projective coordi-

nates of P}~!. The precise equations in terms of algebraic functions are given by:
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& & &
yo k—1 yl k—1 y1+2 k—1 .
G =4 + +( ) =0 for0<i<n-2.
(k ZV (),uy/“l/> (k Z,, 0:“1/) k'ul

The polynomial F can be computed by eliminating g, ..., #t,,_, from the system of the G, We
compute (over the open set g, - - - i,_, 7 0)

R
S U V5 T B U S ki

k
= m (/Iixo, X1 0, 0, Xis 0, veey 0)
Therefore, the compatibility condition given in Eq. (4.12) can be replaced by the conditions:
VilVG; ie. (Vi,VGj) =0 for all 0 <i,j <n—2. (4.14)

We can now confirm that the conditions given in (4.14) are equivalent to the original defining
equations for our curve. It is clear now that the vector (xo, X1, ..., x,) is normal to every generator
of the tangent space of the dual variety Z hence

Con(Z) = {(¥0s o> Yn> X0 -5 %) : E(Yoy .-s yu) = 0} = Con(C*(1)).

In our computation it was essential that we were able to express x; for 0 <i < n — 2 in terms of
y; for 0 <i<n—2 in Eq. (4.13). This could not be done if p | k — 1. We now proceed to the
extreme case k — 1 is a power of p.

e Assume that k = g+ 1 for ¢ = p". Then instead of the matrix given in Eq. (4.10) we consider
the matrix of V", given as

X0 X1 X 0 0
).IX() X1 0 X3 ... 0
(4.15)
ln_zxo X1 0 oes 0 Xn
And now
h n—
y(() ) lezé :uy/llle
h n—
yg ) Zyzé KX
A =k HoX2 : (4.16)
}’,(4’1) Hp—2%n

The relations among elements y(()h>, s y,(fo are given by:

) RQ 4t RO att 5 ot
M =, Yo + L + (=2 =0 for 0<i<n-—2.
[ n—2 n—2
Zl,:():uu}w Zy:o:uu Hi

The h-conormal space is given by
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_ X0, .., X satisfy eq. (4.9)
Lag™ (CK(2)) = { (x50 vy Xy <h),..., (MY . where
g (C*(4)) (%o Yo Yu') and y(()h)’m,y’gh) eq. (4.15)

The variety Z" = m,(Lag" (C*(1))) is given by a hypersurface F) O/éh), s yﬁ,’”) =0, which can
(h)

be computed by eliminating y, ..., it,,_, from the system of G; . Similarly we can compute

(h) (h) (h)
vihgh — A ) Y Yir2
k

0 1 0
; P > 2 5 ey o
ZV:OMV/LV kZu:O'uV k'ul

= (iixo,xl,O...,O,xi,O, ,0)

Again we see Eq. (4.16) as parametric equations with parameters y, ..., it,_,. The tangent space is
generated by the vectors

oy Ay Oy e e _ .
v (28 9 9 (Aix{; L0,.,0,48 l,o,...,o) for 0<i<n—2,
Oy Oy Oty

which are subject to the additional condition

VI LVGY ie (v, VGM) =0 for all 0<ij < n—2. (4.17)
As in the zero characteristic case the last conditions are equivalent to the defining equations of
the curve.
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