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ABSTRACT
The biduality and reflexivity theorems are known to hold for projective
varieties defined over fields of characteristic zero, and to fail in positive
characteristic. In this article we construct a notion of reflexivity and bidual-
ity in positive characteristic by generalizing the ordinary tangent space to
the notion of h-tangent spaces. The ordinary reflexivity theory can be
recovered as the special case h¼ 0, of our theory. Several varieties that are
not ordinary reflexive or bidual become reflexive in our extended theory.
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1. Introduction

The aim of this article is to study the biduality theorem and the stronger notion of reflexivity of
varieties in positive characteristic. Let k be an algebraically closed field of characteristic p � 0, it
is a very old observation that points in the projective space P

n
k correspond to hyperplanes in the

dual projective space and vice versa. This notion of duality can be generalized to closed irredu-
cible varieties M � P

n
k and gives rise to a dual variety M� in the dual projective space.

The biduality theorem (known to hold over fields of characteristic 0) asserts that ðM�Þ� ¼ M:

One of the proofs of this fact, [9, p. 29] uses the notion of the conormal bundle, the natural sym-
plectic structure on the cotangent bundle of a manifold. Wallace [29] was the first to consider the
theory of projective duality over fields of positive characteristic. For a nice introduction to pro-
jective duality independent of the characteristic of the base field we refer to [22].

Let M � P
n
k be a projective variety and denote by Msm the set of smooth points of M. The

classical conormal variety ConðMÞ is defined by

ConðMÞ :¼ fðP,HÞ 2 Msm � P
n�
k : TPM � Hg � M � P

n�
k � P

n
k � P

n�
k ,

i.e., the Zariski closure of the algebraic set consisted of pairs (P, H), P 2 Msm, H 2 P
�n such

that TPM � H:
Let p2 be the second projection ConðMÞ ! p2ðConðMÞÞ :¼ M� � P

�n, which will be called
the conormal map. It is known that M� is an algebraic variety of P�n: If ConðMÞ ¼ ConðM�Þ,
then M is called reflexive. Equivalently, in terms of isomorphisms, M is reflexive if the natural

isomorphism from P
n
k to ðPn�

k Þ� induces the isomorphism
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It is known that reflexivity implies biduality, but there are examples known of bidual varieties
that are not reflexive. Reflexivity also holds for all projective varieties in characteristic zero, while
in characteristic p> 0, reflexivity can fail, see the Fermat-curve example in [29]. In positive char-
acteristic there is the following criterion for reflexivity, whose proof may be found in [14].

Theorem 1 (Monge-Segre-Wallace). A projective variety M is reflexive if and only if the conormal
map p2 is separable.

The problems of biduality and reflexivity of a projective variety M � P
n have been addressed

by several authors via the use of the Gauss map, i.e., the rational map from M to the Grassmann
variety Gðn,mÞ, which sends a smooth point P 2 M to the m-dimensional tangent space
TPM 2 P

n—in the case of a hypersurcace, the Gauss map is just a map c : M ! P
�n: As proved

in [19], the separability of the Gauss map and the reflexivity of a variety are equivalent in the
one-dimensional case, i.e. for projective curves. For higher dimensions, the authors in [20]
showed that the Gauss map of a projective variety M is separable if M is reflexive. On the other
hand, the converse of this result, i.e. whether the reflexivity of a projective variety implies the sep-
arability of the Gauss map, was answered recently negatively, since there are specific examples
(such as the Segre varieties) for which this assumption is not true. These examples and further
analysis is found in [7] and the references therein. The previous work and results are, to the best
of our knowledge, the most recent with regard to the study of biduality and reflexivity and are
focused on weather and when they fail or not, in positive characteristic.

The aim of this article is to extend the notions of biduality and reflexivity in the case of posi-
tive characteristic. We will make appropriate definitions which will make some important exam-
ples of varieties reflexive. We generalize the theory of Lagrange varieties presented in [9, p. 29]
for projective varieties in the zero characteristic case, by introducing the respective h-cotagent
bundle and h-Lagrangian subvarieties. The case of hypersurfaces is illuminating and straightfor-
ward calculations can be made in terms of the implicit-inverse function theorem approach of
Wallace, see [29].

Reflexivity has many important applications to enumerative geometry, computations with dis-
criminants and resultants, invariant theory, combinatorics, etc. We hope that our construction
will find some similar applications to positive characteristic algebraic geometry.

From now on k is an algebraically closed field of positive characteristic p and q ¼ ph is a
power of p. Instead of tangent hyperplanes, we will consider generalized hyperplanes, i.e. hyper-

surfaces of the form VðPn
i¼0 aix

ph

i Þ and the duality will be expressed in terms of these generalized
hyperplanes.

Let V be a finite dimensional vector space over k. Consider M � PðVÞ an irreducible project-
ive variety and consider the cone M0 � V seen as an affine variety in V. Assume that the homo-
geneous ideal of M0 is generated by the homogeneous polynomials F1, :::, Fr: Fix a natural
number h and consider the nþ 1-upple

rðhÞFi ¼ DðhÞ
0

���
P
Fi,D

ðhÞ
1

���
P
Fi, :::,D

ðhÞ
n

���
P
Fi

� �
,

where DðhÞ
i denotes the h-Hasse derivative which will be defined in definition 5. Each Fi defines a

ph-linear form given by
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LðhÞi :¼
Xn
�¼0

DðhÞ
�

���
P
Fi

� �
xp

h

� :

For the precise definition of ph-linear forms and their space V�h see Sec. 2.2.
For a projective variety M we will define the set Mh

sm of smooth h-points in definition 33,
which set if non-empty is dense in M, since we have assumed that M is irreducible.

Definition 2. For a projective irreducible variety M with Mh
sm 6¼ ; we define the h-tangent space

TðhÞ
P M at P to be the variety defined by the equations LðhÞi ¼ 0: The h-conormal space ConðhÞðMÞ

is defined as the subset of PðVÞ � PðV�hÞ

ConðhÞðMÞ :¼ ðP,HÞ : P 2 Mh
sm,H is a ph � linear form which vanishes on TðhÞ

P M
n o

: (1.1)

By definition of the affine cone M0 of M we see that every point P ¼ ½a0 : � � � : an� corresponds
to a line f‘ � ða0, :::, anÞ, ‘ 2 k�g � M: Following [27] we will denote by LagðhÞðMÞ � V � V�h the
corresponding affine set in V � V�h, that is

LagðhÞðMÞ ¼ ðP,HÞ : P 2 ConeðMh
smÞ,H is a ph � linear form which vanishes on TðhÞ

P M
n o

:

Let p1 : V � V�h ! V be the first projection. For every P 2 Mh
sm the set p�1

1 \ LagðhÞðMÞ can

be identified to the space of ph-linear forms on the h-normal space NðhÞ
P ðMÞ defined as

NðhÞ
P ðMÞ ¼ V�h=TðhÞ

P ðMÞ:
Indeed, the set of h-linear maps / : NðhÞ

P ðMÞ ! k is in bijection with the set of h-linear maps

V�h ! k which are zero on TðhÞ
P ðMÞ and the later set is by definition p�1

1 \ LagðhÞðMÞ:
If the variety is not reflexive, we might choose an appropriate h so that we can have a form of

reflexivity based on ConðhÞðMÞ: How are we going to select h? If the characteristic of the base
field k is zero or if the variety M is reflexive, then h¼ 0. If the variety M is just a hypersurface
then the answer is simple: If M fails to be reflexive then the second projection ConðMÞ ! M� is
a map of inseparable degree ph, and in this way we obtain the required h.

Even in the case of hypersurfaces one has to be careful. Projective duality depends on Euler’s
theorem on homogeneous polynomials, since a homogeneous polynomial can be reconstructed by
the values of all first order derivatives. An appropriate generalization of Euler’s theorem is
known, but we have to restrict ourselves to a class of polynomials which we will call h-homoge-
neous. Their precise definition will be given in definition 19.

Definition 3. For an irreducible projective variety M 2 PðVÞ generated by h-homogeneous ele-
ments, which also has a non-empty h-nonsingular locus, as these are defined in Definition 19
and Definition 33, respectively, we can define LagðhÞðMÞ: Let Z ¼ p2ðLagðhÞðMÞÞ � V�h, where
p2 : V � V�h ! V�h is the second projection.

Consider the vector space V�h of ph-linear forms. Assume also that the Z is defined by homo-
geneous polynomials and that the corresponding projective variety Z � PðV�hÞ has also an non-
empty h-nonsingular locus so LagðhÞðZÞ can also be defined.

In Theorem 12 we will introduce the isomorphism F : V ! ðV�hÞ�h: If the map

W : V � V�h ! V�h � V�hð Þ�h

ðx, yÞ 7! ðy, FðxÞÞ,
gives rise to an isomorphism
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WðLagðhÞðMÞÞ ¼ LagðhÞðZÞ � V�h � ðV�hÞ�h ¼ V�h � V:

then M will be called h-reflexive.

The main result of our work is the following theorem:

Theorem 4. Let M 2 PðVÞ be a projective variety satisfying the assumptions of definition 3.
Assume that we can select an h so that the map p2 : V � V�h 	 LagðhÞðMÞ ! p2ðMÞ :¼ Z � V�h

is separable and generically smooth and also that Z has a non-empty set of h-nonsingular points.
Then M is h-reflexive.

Notice also that in contrast to ordinary situation where the set of nonsingular points forms a
dense open subset, for h> 0 the set of h-nonsingular points can be empty. The existence of a
non-empty set of h-nonsingular points is essential for the definition of the conormal space and
has to be assumed.

The explicit construction of the dual variety involves a projection map which can be computed
using elimination theory, see [6, ex. 14.8, p. 315]. The algebraic set M � P

n, gives rise to the con-

ormal scheme ConðhÞðMÞ � P
n � ðPnÞh�: If k½n0, :::, nn� is the polynomial ring corresponding to

the dual projective space and

I ¼ hf1, :::, fri / k x0, :::, xn½ �,
the ideal corresponding to M, then the ideal I0 / k½x0, :::, xn, n0, :::, nn� corresponding to the conor-
mal scheme is generated by I � k½x0, :::, xn, n0, :::, nn� and the equations

Xr
i¼0

Xn
j¼0

kiD
ðhÞ
xi fi � n

ph

i ¼ 0, ki 2 k:

The dual variety can be computed by eliminating the variables x0, :::, xn, k1, :::, kr and by obtaining
a homogeneous ideal in k½n0, :::, nn�: Notice that there are powerful algorithms for performing
elimination using the theory of Gr€obner bases, see example 39.

The structure of the article is as follows: In Sec. 2.1 we define and describe a number of
important tools, notions and results, we are going to use throughout the paper. First we start
with the family of Hasse derivatives, which will be seen as derivatives with respect to some new

ghost variables xðq
hÞ

i : These derivatives were first introduced by Hasse and Schmidt [12, 24] in
order to study Weierstrass points in positive characteristic. Afterwards, we define the so-called
ph-linear forms and their respective space. In the same section we define the q-symplectic form
we are going to use in the last section, in order to create a suitable Lagrangian variety for our
work. In the same section we generalize the Euler identity for homogeneous polynomials and
obtain the h-homogeneous polynomial definition. In Sec. 3 we present the implicit-inverse func-
tion theorem approach of our theory, we make connections with elimination theory, and treat
the hypersurface case. In the last section, we generalize all the respective notions met in
Lagrangian manifold theory for biduality in characteristic zero, [9, p. 29] and using them we
prove Theorem 4.

2. Tools and basic constructions

The main idea behind our approach, assuming that k has characteristic p> 0, is to set the quan-

tity xp
h

i as a new variable xðhÞi , for h ¼ 0, 1, 2, :::: As it is well known, the classical partial deriva-

tives Dxi on the polynomial ring k½x0, :::, xr� are zero on the polynomials of the form f ðxp0, :::, xpr Þ,
and this is the reason biduality and reflexivity fail in positive characteristic. The theory of Hasse
derivatives will help us deal with this.
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2.1. Hasse derivatives
Definition 5. A Hasse family of differential operators on a commutative unital k-algebra A, is a
family D‘ , ‘ 2 N

rþ1, of k-vector space endomorphisms of A satisfying the conditions:

(1) D0 ¼ Id
(2) D‘ ðcÞ ¼ 0, for all c 2 k and ‘ 6¼ 0:

(3) D‘ 
 Dm ¼ ‘ þm
‘

� �
D‘ þm

(4) D‘ ða � bÞ ¼
P

iþj¼‘ Di a � Dj b,

where for ‘ ¼ ð‘0, :::, ‘nÞ,m ¼ ðm0, :::,mnÞ 2 N
nþ1

‘

m

 !
¼ n0

m0

 !
� � � nn

mn

 !
:

An example of a Hasse family is given as follows: For A ¼ k½x� ¼ k½x0, :::, xn�, and xm ¼
xm0
0 � � � xmn

n we define

D‘ xm ¼ m
‘

� �
xm � ‘:

Let us denote by Di ¼ D‘ i for ‘ i ¼ ð0, :::, 0, 1, 0:::, 0Þ, i.e. there is an 1 in the ith position. For

general ‘ we can recover D‘ by D‘ ¼ D‘0
0 
 � � � 
 D‘n

‘ , where D‘i
i denotes the composition of Di ‘i

times. One can prove (see [13]) that for ‘ ¼Ps
j¼0 ‘jp

j with 0 � ‘j < p for all j ¼ 0, :::, s we have

D‘
i ¼

1
‘0! � � � ‘s! Dps

i

� �‘s
� � � ðDp

i Þ‘1ðD1
i Þ‘0 , (2.1)

therefore for each i, the family ðD‘
i Þ, ‘ 2 N is determined by the operators D1

i ,D
p
i ,D

p2

i , :::

Definition 6. We will denote by DðhÞ
xi the operator Dph

i :

Definition 7. For two integers m, j we consider their p-adic expansions:

m ¼
X1
�¼0

a�p
� , where 0 � a� < p for all � 2 N

j ¼
X1
�¼0

b�p
� , where 0 � b� < p for all � 2 N

We will write m�pj if and only if

a� � b� for all � 2 N:

If Dj
ia ¼ 0 for some a and j 2 N, then Dm

i ¼ 0 for all m �p j: In particular if Dpl

i ¼ 0,

then Dplþ1
i ðaÞ ¼ � � � ¼ Dplþ1�1

i ðaÞ ¼ 0:
The following result, [13], will be used several times during derivation processes in the

next sections.

Lemma 8. Let x, t we indeterminate and q ¼ ph. If f ðtÞ 2 k½t�, then

D‘
xf ðxqÞ ¼

D‘=q
t ðf ÞðxqÞ if q j ‘

0 if q- ‘
,

(

where Dn
x (resp. D‘

t ) are the Hasse derivatives defined on k½x� (resp. k½t�).
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Remark 9. Note that in multilinear algebra, a system of divided powers on a k-algebra A, is a col-
lection of functions x 7! xðdÞ satisfying a set of axioms given in [6, p. 579]. We observe that the
Hasse derivatives Dn

i form a system of divided powers on the commutative ring of differential
operators k½@=@xi�:

2.2. Semilinear algebra

Since first order Hasse derivatives cannot grasp the structure of p-powers, we have to generalize
the notion of tangent space.

2.2.1. Frobenius actions
We consider the action of the Frobenius map Fp by acting on the coordinates of elements of V that is

(2.2)

The polynomial ring k½x0, :::, xn� is naturally attached to the vector space V since SymðV�Þ ¼
k½x0, :::, xn�:
Remark 10. For an element v 2 V we will denote by vp

i
the element FipðvÞ for i 2 Z: Since k is

assumed to be perfect we can also define v 7! v1=p
h
similarly by tanking the ph roots of the coor-

dinates of v.

Definition 11. An h-hyperplane H is the algebraic set given by an equation of the form:

Xn
i¼0

aix
ph

i ¼ 0, ai 2 k:

Such a hyperplane defines a ph-linear map:

/ : V ! k

Xn
i¼0

xiðvÞei ¼ v 7! /ðvÞ ¼
Xn
i¼0

aixiðvÞp
h

:

The set of ph-linear maps denoted by V�h consists of functions / : V ! k, such that

(1) /ðv1 þ v2Þ ¼ /ðv1Þ þ /ðv2Þ for all v1, v2 2 V
(2) /ðkvÞ ¼ kp

h
/ðvÞ for all k 2 k and v 2 V:

The space V�h becomes naturally a k-vector space, with basis the set fxphi : 0 � i � ng:
Theorem 12. The space ðV�hÞ�h is canonically isomorphic to the initial space V.

Proof. The element v 2 V is sent by the isomorphism F to the space ðV�hÞ�h defined by:

F : V ! V�hð Þ�h

v 7! FðvÞ,
where F(v) is the map defined by:
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FðvÞ : V�h ! k

/ ! FðvÞð/Þ ¼ / v1=p
2h

� �ph
:

Observe first that F(v) is indeed a ph-linear map. Indeed,

FðvÞðk1/1 þ k2/2Þ ¼ k1/1 v1=p
2h

� �
þ k2/2 v1=p

2h
� �� �ph

¼ kp
h

1 /1 v1=p
2h

� �ph þ kp
h

2 /2 v1=p
2h

� �ph
¼ kp

h

1 FðvÞð/1Þ þ kp
h

2 FðvÞð/2Þ:

Now we prove that F is linear:

F k1v1 þ k2v2ð Þ /ð Þ ¼ / k1=p
2h

1 v1=p
2h

1 þ k1=p
2h

2 v1=p
2h

2

� �ph

¼ k1/ v1=p
2h

1

� �ph
þ k2/ v1=p

2h

2

� �ph
¼ k1F v1ð Þ þ k2F v2ð Þ� �

/,

i.e., Fðk1v1 þ k2v2Þ ¼ k1Fðv1Þ þ k2Fðv2Þ, for all k1, k2 2 k and v1, v2 2 V:

We will now prove that F is an isomorphism. Since dimV ¼ dimðV�hÞ ¼ dimðV�hÞ�h it is
enough to prove that ker F ¼ f0g: If for a v 2 V we have F(v) ¼ 0, then for every / 2 V�h we

have FðvÞð/Þ ¼ /ðv1=p2hÞph ¼ 0: By taking as / the elements e�hi of the dual basis of V�h we see
that v¼ 0. w

Let us work with coordinates now. Express an element v 2 V as v ¼Pn
i¼0 xiðvÞei, where

feigi¼0, :::, n is a Frobenius invariant basis as expressed in Sec. 2.2.1, and let / 2 V�h written in

terms of a Frobenius dual basis as / ¼Pn
i¼0 yið/Þe�hi : Set q ¼ ph, we have

/ðvÞ ¼
Xn
i¼0

xiðvÞqyið/Þ, (2.3)

while we have (recall that FðvÞ 2 ðV�hÞ�h)

FðvÞð/Þ ¼ /
Xn
i¼0

xiðvÞ1=2qei
 !q

¼
Xn
i¼0

xiðvÞyið/Þq: (2.4)

This means that

(2.5)

In our generalized point of view duality means that a point ½v� 2 PðVÞ, represented by the vector

v 2 V , can be also seen as a q-hyperplane ½FðvÞ� on PððV�hÞ�hÞ:
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2.3. q-Symplectic forms

Let F be a field of positive characteristic p and let q ¼ ph be a certain power of p. In order to
define a suitable Lagrangian variety in the positive characteristic case, we need its respective sym-
plectic form.

Definition 13. A q-symplectic form X on V is a function:

X : V � V�h ! k

which is additive, i.e. for all v1, v2 2 V ,w1,w2 2 V�h we have

Xðv1 þ v2,w1Þ ¼ Xðv1,w1Þ þ Xðv2,w1Þ, Xðv1,w1 þ w2Þ ¼ Xðv1,w1Þ þ Xðv1,w2Þ,
such that there is a symplectic basis fe1, :::, en, f1, :::, fng so that

Xðei, ejÞ ¼ 0 ¼ Xðfi, fjÞ,Xðei, fjÞ ¼ dij,Xðfi, ejÞ ¼ �dij:

Moreover for arbitrary elements

v ¼
Xn
i¼0

kiei þ
Xn
j¼0

ljfj

and

w ¼
Xn
i¼0

k0iei þ
Xn
j¼0

l0jfj

the symplectic form is computed:

Xðv,wÞ ¼
Xn
i¼0

kp
h

i l
0
i � lik

0
i
ph

� �
:

Remark 14. As in [4, p. 8], the notions of ph-orthogonality, ph-symplectic, ph-isotropic and ph-
Langrangian subvector spaces can be defined. Since these notions are not needed in this note, we
will not develop their theory here.

2.4. Powers of Frobenius as ghost variables

In this section we will add extra ghost variables xðhÞi for 0 � i � n and for h ¼ 1, :::,1: This is an
idea coming from the similarities of the p-power Frobenius map and differential equations [10,
sec. I.1.9] and the ring of differential polynomials see [3, exam. 5.2.5].

Lemma 15. Consider a term xi , where i ¼ ði0, :::inÞ 2 N
nþ1, and the p-adic expansions of each index:

i� ¼
X1
l¼0

i�ðlÞpl, 0 � i�ðlÞ < p:

Therefore, a term xi can be written as

x i ¼
Y1
l0¼0

� � �
Y1
ln¼0

xi0ðl0Þp
l0

0 � � � xinðlnÞplnn : (2.6)

Consider the ring

R :¼ k x0, :::, xn, x
ð1Þ
0 , :::, xð1Þn , :::, xðhÞ0 , :::, xðhÞn , :::,

h i
(2.7)
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and define the degree degxðiÞ� ¼ pi. We also define the homomorphism

/ : R ! k x0, :::, xn½ �
xðjÞi 7! xp

j

i for all 0 � i � n, 0 � j � h:
(2.8)

The map / is onto, and moreover

/ D
xðjÞi
f

� �
¼ DðhÞ

xi /ðf Þ: (2.9)

Proof. Let f 2 k½x0, :::, xn�: If we write every term of f as in Eq. (2.6) and replace x
ijðlÞpl
j by

ðxðlÞj ÞijðlÞ, we get a polynomial ~f 2 R such that /ð~f Þ ¼ f : The relation given in Eq. (2.9) follows

by the property of the Hasse derivative

DðhÞ
xi ðx

p‘

j Þ ¼ dijdh, ‘,

and the differentiation rules. w

In other words, this lemma shows that if we set the quantity xp
h

i which appears in the related

varieties, as a new variable xðhÞi , with the use of suitable expansions, the partial derivation D
xðhÞi

with respect to the variables xðhÞi will coincide with the Hasse derivatives DðhÞ
xi :

Remark 16. The kernel of the map / of Eq. (2.8) is the ideal generated by xp
h

i � xðhÞi , which is a
homogeneous ideal by the definition of the degrees deg�x

ðiÞ: Therefore, we have the following
compatible diagram of vector spaces, rings and derivations:

In the above diagram we have a vector space, the natural ring of polynomial functions on it and
the natural set of derivations. When taking the quotient by the ideal ker/, the set of derivations
is not altered and the derivations corresponding to the dual basis of ~V survive, giving rise to
Hasse derivations on the quotient.

Remark 17. The definition of the ring R in this subsection, could provide an alternative way to
force separability and therefore reflexivity to hold, for a class of weighted projective varieties,
which we may call bihomogeneous.

Consider an ideal I of k½x0, :::, xn� generated by elements F1, :::, Ft: Instead of working with the
polynomial ring R, of infinite Krull dimension we restrict ourselves to the ring

RN :¼ k x0, :::, xn, x
ð1Þ
0 , :::, xð1Þn , :::, xðNÞ

0 , :::, xðNÞ
n

h i
,

where N is big enough so that the map /h : RN ! k½x0, :::, xn� is onto I. Essentially this means
that every term of all polynomials Fi is of the form xi00 � � � xinn and the p-adic expansions of ij, 0 �
j � n do not involve p-powers ph with N< h. For example for p¼ 3 and the polynomial x10 þ x21

we have to take N¼ 2 since

x10 þ x21 ¼ x1þ32 þ x3�7 ¼ xx3
2 þ ðx3Þ7 ¼ x/ðxð2ÞÞ þ /ðxð1ÞÞ7:
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Let now ~I be the ideal of RN defined by /�1ðIÞ, then ~I is generated by the polynomials ~Fi 2 RN

defined in the proof of Lemma 15. Since, the procedure of Lemma 15 replaces all powers of the

form xp
h

i by the new coordinates xðhÞi , which still have degree ph, if I is a homogeneous ideal of
k½x0, :::, xn�, then it is generated by homogeneous elements F1, :::, Ft and the corresponding poly-
nomials in new variables are still homogeneous. In other words, if I is a homogeneous ideal of
k½x0, :::, xn�, then ~I is a homogeneous ideal of R.

Recall that a weighted projective space is the quotient Pða0, :::, anÞ ¼ ðAnþ1 � f0gÞ=k� under
the equivalence relation ðx0, :::, xnÞ � ðka0x0, :::, kanxnÞ, for k 2 k�:

In our case, in order to form algebraic sets corresponding to ideals /�1ðIÞ, we have to con-
sider the weighted projective spaces, Pð1, :::, 1, p, :::, p, p2, :::, p2, :::, pN , :::, pNÞ: In a weighted pro-
jective space linear equations of the form

XN
h¼0

Xn
i¼0

ah, ix
ðhÞ
i ¼ 0,

do not give rise to homogeneous ideals unless they are of the form

Xn
i¼0

ah0, ix
ðhÞ
i ¼ 0,

and it is not entirely clear what projective duality will mean for weighted projective varieties. Of
course, it is known that every weighted projective variety M is isomorphic to an ordinary project-

ive variety ~M 2 P
‘ for some big enough element ‘, [18, th. 4.3.9]. The homogeneous ideal ~I cor-

responding to M is generated by polynomials of degree smaller than p, therefore it is reflexive.
We will not pursue here the theory of duality of weighted projective varieties, but we can see

something interesting for some of them; if we consider the polynomial ring

R0,N ¼ k x0, :::, xn, x
ð1Þ
0 , :::, xð1Þn , :::, xðNÞ

0 , :::, xðNÞ
n

h i
,

but now degðx0ÞðiÞ ¼ 1 for all 1 � i � h, the ideal /�1ðIÞ 2 R0,N , of a homogeneous ideal I of
k½x0, :::, xn� does not need to be homogeneous in R0,N with this grading. If it is homogeneous,
then we can define it as bihomogeneous. For example, the hypersurface defined by the polyno-

mial
Pn

i¼0 x
phþ1
i gives rise to the ideal generated by the polynomial xðhÞ0 x0 þ xðhÞ1 x1 þ � � � þ xðhÞn xn,

which is bihomogeneous. On the other hand, the hypersurface defined by the homogeneous poly-

nomial xpþ1
0 � x1x2 � � � xpþ1, is not bihomogeneous, i.e., the polynomial xð1Þ0 x0 � x1x2 � � � xpþ1 is

homogeneous in the graded ring RN but not in the graded ring R0,N : Observe now that the pro-

jective algebraic set Vð/�1ðIÞÞ � P
hðnþ1Þ defined by the bihomogeneous ideal /�1ðIÞ � R0,N does

not have a variable raised to a power of p, therefore it is reflexive.

2.4.1. Example: Generalized quadratic forms
Let x ¼ ðx0, :::, xnÞt and consider the homogeneous polynomial

fA :¼ x tAxq ¼
Xn
i, j¼0

xiaijx
q
j ,

where A ¼ ðai, jÞ is an ðnþ 1Þ � ðnþ 1Þ matrix, and q ¼ ph: If A ¼ Inþ1, then F is the diagonal
Fermat hypersurface also called Hermitian hypersurface. For q¼ 1 the polynomial fA is just a
quadratic form.
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We compute that for a point P ¼ ½a0 : ::: : an� 2 VðfAÞ

Dð0Þ
x‘ fAðPÞ ¼

Xn
j¼0

a‘, ja
ph

j

and

DðhÞ
x‘ fAðPÞ ¼

Xn
i¼0

aiai, ‘:

We write the coordinates of P as a column vector a ¼ ða0, :::, anÞt and we compute both
rfA, rqfA,

rfA ¼ ðDx0 fA, :::,DxnfAÞ ¼ Aaq ¼ ðA1=qaÞq

and

rqfA ¼ ðDðqÞ
x0 fA, :::,D

ðqÞ
xn fAÞ ¼ at � A:

The Gauss map a 7! ðA1=qaÞq is inseparable.

Define n ¼ ðn0, :::, nnÞt and nðqÞ ¼ ðnðqÞ0 , :::, nðqÞn Þt , given by

n ¼ rfA ¼ Aaq and nðqÞ ¼ rqfAð Þt ¼ at � Að Þt ¼ Ata:

We will now introduce ghost variables in order to force reflexivity. Here we consider the varia-
bles xq ¼ ðxq0, :::, xqnÞt ¼ y ¼ ðy0, :::, ynÞt as a set of new variables y and we write the homogeneous
polynomial defining the variety as

FA ¼ xtAy ¼
Xn
i, j¼0

xiaijyj:

The Gauss map in this case is given by:

ða, bÞ 7! rFA ¼ ðA � b,AtaÞ:
If for a point ða, bÞt 2 VðFAÞ satisfying atFAb ¼ 0 we introduce the variables n ¼ A � b, n1 ¼
At � a, then the point ðn, n1Þ satisfies the equation:

nt1A
�1n ¼ 0

since

nt1A
�1n ¼ atAA�1Ab ¼ atAb ¼ 0:

Observe that the value nq1 ¼ Aqt � aq can be explicitly expressed in terms of the variables n by the
equation:

AA�tqnq1 ¼ AA�tq � ðAtqÞaq ¼ Aaq ¼ n:

Notice also that the map / : ðX,YÞ 7! ðAtY ,AXÞ ¼ ðn1, nÞ and similarly the map w :

ðn1, nÞ 7! ðA�1n,A�tn1Þ and w 
 / ¼ / 
 w ¼ Id:
Let M ¼ VðfAÞ � PðVÞ and ~M ¼ VðFAÞ � Pð~V Þ: The conormal variety Conð ~MÞ � Pð~V Þ �

Pð~V �Þ is given by the pairs ða, b; n, n1Þ ¼ ða, b;A � b,At � aÞ: In order to compute the conormal
variety ConðMÞ � PðVÞ � PðV�Þ we pass from ~M to M by imposing the relation b ¼ aq and we
obtain ða, aq;A � aq,At � aÞ: Observe that n, n1 satisfy the equation of the dual

nqtA�1n ¼ 0:
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2.5. Variants of Euler theorem

The Euler identity for homogeneous polynomials implies that for a homogeneous polynomial
Fðx0, :::, xnÞ 2 k½x0, :::, xn�, of degree degF we have

Xn
i¼0

xiD
p0
xi Fðx0, :::, xnÞ ¼ deg F � Fðx0, :::, xnÞ:

If p j degF, a lot of information is lost. In particular the first order partial derivations Dp0
xi F can

be zero. Next proposition allows us to get some information, from the higher derivatives Dpi
xi : We

need the following

Proposition 18. Let q ¼ ph be a power of the characteristic. Let Pjðx0, :::, xnÞ, Qjðx0, :::, xnÞ be poly-
nomials in k½x0, :::, xn�, j ¼ 1, :::, s, where Pj are homogeneous of degree deghðf Þ, and Qj have no
indeterminate raised to a power bigger than or equal to a power of q. If

f ðx0, :::, xnÞ ¼
Xs
j¼1

Pjðxq0, :::, xqnÞQjðx0, :::, xnÞ, (2.10)

then

Xn
i¼0

xqi D
q
xi f ðx0, :::, xnÞ ¼ deghðf Þ � f ðx0, :::, xnÞ:

Proof. [13, prop. 3.10] w

Definition 19. We will call a polynomial h-homogeneous of degree deghðf Þ if it is a linear com-
bination of polynomials given in Eq. (2.10) of the same degree.

Remark 20. A polynomial which is homogeneous and h-homogeneous is bihomogeneous accord-
ing to Remark 17.

2.6. h-Tangent and h-cotangent spaces and bundles

In order to compare our definition of h-tangent space we recall here the classical definition.
Let M be a projective variety defined by h-homogeneous polynomials F1, :::, Ft , as these were

defined in Definition 19, generating the homogeneous ideal I. Let S be the algebra k½x0, :::, xn�=I:

Definition 21. Let P ¼ ½a0 : ::: : an� be a point on M. The tangent space TPM of M at P, is

defined as the zero space of the differentials (we will denote by Dð0Þ
x� the classical derivative

according to definition 6). In other words,

dFi ¼
Xn
�¼0

Dð0Þ
x� FiðPÞx� for all 1 � i � t,

TPM ¼ VðhdF1, :::, dFtiÞ:
(2.11)

Definition 22. For every f 2 R, define the differential form on the tangent space TPM :

df :¼
Xn
�¼1

Dð0Þ
x� f ðPÞx� , (2.12)
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which gives rise to elements in the dual space T�
PM, by sending a solution ðx0 : � � � : xrÞ 2 TPM

of system (2.11) to the value df given in Eq. (2.12).

The element df is well defined, since if f1 � f2 2 hF1, :::, Fti, then the differentials df1, df2 intro-
duce the same linear form on TPM, see [25, chap II. sec. 1]. Let OMðPÞ be the ring of functions
defined at P. The map

d : k x0, :::, xn½ � ! ðTPMÞ�

defines an isomorphism of mP=m2
P to ðTPMÞ�, [25, chap II. th. 2.1]. This fact implies that the

dimension of the tangent space is invariant under isomorphism, see [25, chap II. Cor. 2.1].

2.6.1. h-Tangent bundles
For every F 2 R we define the h-linear form:

LðhÞF : V ! kXn
�¼0

xiðvÞei ¼ v 7!
Xn
�¼0

DðhÞ
x� FðPÞðx�ðvÞÞp

h

:

Definition 23. Let M be defined in terms if the homogeneous ideal hF1, :::, Fti: For h � 0, the h-

tangent space TðhÞ
P M at P 2 M is defined by

TðhÞ
P M ¼ \t

i¼1
ker LðhÞFi 
 V:

It is clear from the definition that TðhÞ
P M is a k-vector space.

Remark 24. The notion of classical tangent space is independent of the isomorphism class of a
variety. If U : M ! Y is a local isomorphism from a Zariski neighborhood U of P to a Zariski

neighborhood V of UðPÞ, then dimkT
ð0Þ
P M ¼ dimkT

ð0Þ
UðPÞY:

This does not hold for the case of the h-tangent spaces, the space TðhÞ
P M depends on the

embedding of M in an ambient space. For example the affine space A
1 ¼ Specðk½x�Þ has one

dimensional tangent space TðhÞ
P A

1 for all h> 1, while its isomorphic image Specðk½x, y�=hxiÞ � A
2

has 2-dimensional h-tangent space for all h> 1.
Of course, in order to correct this, one can strengthen the notion of isomorphism U : X ! Y ,

by requiring that U induces an isomorphism to h-tangent spaces as well.

Remark 25. As R. Vakil observes [28, chap. 12], the quantity
Pn

i¼0 D
ð0Þ
xi F � xi is the linear part of

a given polynomial F 2 k½x0, :::, xn�: In a similar fashion
Pn

i¼0 D
ðhÞ
xi F � xphi is the ph-linear part of

the polynomial F, that is all terms that can be written as ðPn
i¼0 aixiÞp

h

, ai 2 k:

Definition 26. The h-cotangent space Tð�hÞ
P M for h � 0 at P is defined as the vector space gener-

ated by the elements (set q ¼ ph)

dðhÞf ¼
Xn
�¼0

DðhÞ
x� f ðPÞxq� (2.13)

for elements f 2 k½x0, :::, xn�=IðMÞ: Notice that the expression dðhÞf defined for f as above gives

rise to a well defined form on the tangent space. Moreover dðhÞxqi is an element in Tð�hÞ
P M:
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Remark 27. Similar to ordinary differentials, the map given in Eq. (2.13) is well defined, i.e., if
f1 � f2 2 IðMÞ, then dðhÞf1 � dðhÞf2 is the zero map on the tangent space TðhÞM: In this way the
differentials in Eq. (2.13) define functions

/ : TðhÞ
P M ! k:

Let us consider the example M ¼ Speck½x, y�=hxi: In order to compute the h-cotangent space

Tð�hÞ
0 M let us compute dðhÞf ðx, yÞ for f ðx, yÞ 2 k½x, y�: The possible outcomes are all expressions of

the form axq þ byq, a, b 2 k: Notice that for f 2 hxi we have dðhÞx ¼ 0, so the h-cotangent space
is two dimensional.

Let R be a finite presented k-algebra. A Frobenius map on R is a ring homomorphism U :

R ! UðRÞ � R, such that UðkxÞ ¼ kpUðxÞ, for all k 2 k and x 2 R: The image UðRÞ is a subring
of R. In this way we form a sequence of nested subrings of R,

R 	 UðRÞ 	 U2ðRÞ 	 U3ðRÞ 	 � � �

If R is a local ring with maximal ideal m then all rings UhR are local rings as well, with maximal
ideals mðhÞ ¼ UhðmÞ: If f : R1 ! R2 is a ring homomorphism of two rings equipped with
Frobenius maps U1,U2 respectively then we require

f ðUh
1R1Þ � Uh

2ðR2Þ:

If moreover f is a local homomorphism of local rings Ri with corresponding maximal ideals mi,

for i¼ 1, 2 then f ðmðhÞ
1 Þ � mðhÞ

2 : In what follows we will consider the polynomial ring
k½x0, :::, xr�=I, and the localizations at certain maximal ideals of the ring k½x0, :::, xn�=I:

Definition 28. The intrinsic h-cotangent space Hð�hÞ
P M is defined to be the space m

ðhÞ
P =m

ðhÞ2
P and

equals to the cotangent space of the local ring UhðOPÞ:

Lemma 29. The space Hð�hÞ
P M ffi mðhÞ

P =ðmðhÞ
P Þ2 is a subspace of Tð�hÞ

P M:

Proof. Consider the map

dðhÞ :
m

ðhÞ
P

mðhÞ
P

� �2 ! Tð�hÞ
P ðMÞ,

we will prove it is injective.

Let G 2 k½xph0 , :::, xp
h

n � be a polynomial representative of an element in mðhÞ
p so that dðhÞG is the

zero form on TðhÞ
P M: Assume that the homogeneous ideal of M is generated by the polynomials

F1, :::, Fr: Then dðhÞG is a linear combination
Pr

�¼0 k�d
ðhÞF� of the forms dðhÞF� for F� , 1 � � �

r, generating the homogeneous ideal of M. This means that

Gðxph0 , :::, xp
h

n Þ ¼ a0x
ph

0 þ � � � þ anx
ph
n þ

X
0�i, j�n

aijx
ph

i x
ph

j þ higher order terms

for certain elements ai, aij 2 k: The linear combination
Pr

�¼0 k�d
ðhÞF� cancels out by assumption

the
Pn

i¼0 aix
ph

i part, so the difference G�Pt
�¼0 k�d

ðhÞF� 2 ðmðhÞ
P Þ2, and the result follows. w
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Definition 30. Define HðhÞ
P ðMÞ to be the dual space of Hð�hÞ

P M, that is

HðhÞ
P ðMÞ ¼ HomkðHð�hÞ

P ðMÞÞ, kÞ:

Remark 31. By Eq. (2.13) we have that dðhÞðxphi Þ on the tangent space acts like the q-
form xi 7! xqi :

Corollary 32. The dimension of Hð�hÞ
P M is an invariant of the isomorphism class of a variety, i.e. if

U : M ! Y is a local isomorphism from a Zariski neighborhood U of P to a Zariski neighborhood

V of UðPÞ, then dimkH
ðhÞ
P M ¼ dimkH

ðhÞ
UðPÞY:

Let M � V be an irreducible variety. Consider the algebraic set H � V �M consisting of pairs
ða, PÞ 2 V �M such that a is h-tangent at P. The second projection p : H ! M is onto and has

fibers the spaces HðhÞ
P M: By [25, Chap. I.63 th.7] we have that dimkH

ðhÞ
P M � s for all P 2 M and

equality is attained at a non-empty open subset of M.

Definition 33. We will say that a point P 2 M is h-nonsingular if

dimkH
ðhÞ
P ¼ dimkT

ð�hÞ
P M ¼ dimM:

2.6.2. Differential between tangent spaces
Consider the projective varieties V � P

n, W � P
m defined in terms of the homogeneous ideals

hf1, :::, fri 2 k½x0, :::, xn� and hg1, :::, gsi 2 k½y0, :::, ym� respectively. A map F : V ! W is given by
polynomials F0, :::, Fm 2 k½x0, :::, xn� such that yi ¼ Fiðx0, :::, xnÞ for i ¼ 0, :::,m: Set

J0, hðf1, :::, frÞ ¼
Dð0Þ

x0 f1 � � � Dð0Þ
xn f1 DðhÞ

x0 f1 � � � DðhÞ
xn f1

..

. ..
. ..

. ..
.

Dð0Þ
x0 fr � � � Dð0Þ

xn fr DðhÞ
x0 fr � � � DðhÞ

xn fr

0
BBBBB@

1
CCCCCA ¼ ðAjA0Þ

and similarly

J0, hðg1, :::, gsÞ ¼
Dð0Þ

y0 g1 � � � Dð0Þ
ym g1 DðhÞ

y0 g1 � � � DðhÞ
ym g1

..

. ..
. ..

. ..
.

Dð0Þ
y0 gs � � � Dð0Þ

ym gs DðhÞ
y0 gs � � � DðhÞ

ym gs

0
BBBBB@

1
CCCCCA ¼ ðBjB0Þ:

The kernel of the matrix A at P (resp. B at F(P)) corresponds to the ordinary tangent space of V
(resp. W) while the kernel of A0 (resp. B0) corresponds to the h-tangent space.

By substitution of yi ¼ Fðx0, :::, xnÞ for 0 � i � m in g1, :::, gs we write each g1, :::, gs as an

element in the ideal hf1, :::, fri: Therefore elements in TPV, resp. TðhÞ
P V, given as elements in the

kernel of A (resp. A0) are sent to elements in TPW, resp. T
ðhÞ
P W:
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Consider now the matrix (observe that yp
h

i ¼ Fiðx0, :::, xnÞp
h

)

J0, hðF1, :::, Fn, Fq1, :::, FqnÞ ¼

Dð0Þ
x0 F0 � � � Dð0Þ

xn F0 DðhÞ
x0 F0 � � � DðhÞ

xn F0

..

. ..
. ..

. ..
.

Dð0Þ
x0 Fm � � � Dð0Þ

xn Fm DðhÞ
x0 Fm � � � DðhÞ

xn Fm

Dð0Þ
x0 F

ph

0 � � � Dð0Þ
xn F

ph

0 DðhÞ
x0 F

ph

0 � � � DðhÞ
xn F

ph

0

..

. ..
. ..

. ..
.

Dð0Þ
x0 F

ph
m � � � Dð0Þ

xn F
ph
m DðhÞ

x0 F
ph
m � � � DðhÞ

xn F
ph
m

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

Dð0Þ
x0 F0 � � � Dð0Þ

xn F0 DðhÞ
x0 F0 � � � DðhÞ

xn F0

..

. ..
. ..

. ..
.

Dð0Þ
x0 Fm � � � Dð0Þ

xn Fm DðhÞ
x0 Fm � � � DðhÞ

xn Fm

0 � � � 0 DðhÞ
x0 F

ph

0 � � � DðhÞ
xn F

ph

0

..

. ..
. ..

. ..
.

0 � � � 0 DðhÞ
x0 F

ph
m � � � DðhÞ

xn F
ph
m

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼
J J0

0 Jp
h

 !
:

The chain rule implies

Dð0Þ
x0 g1 � � � Dð0Þ

xm g1 DðhÞ
x0 g1 � � � DðhÞ

xm g1

..

. ..
. ..

. ..
.

Dð0Þ
x0 gs � � � Dð0Þ

xm gs DðhÞ
x0 gs � � � DðhÞ

xm gs

0
BBBBB@

1
CCCCCA ¼ ðBjB0Þ

J J0

0 Jp
h

 !

¼ ðBJjBJ0 þ B0Jp
hÞ:

An element �a ¼ ða0, :::, anÞt 2 TFðPÞW, �b ¼ ðb0, :::, bnÞt 2 TðhÞ
FðPÞW by definition of the tangent

spaces satisfies

BJ�a ¼ 0 ðBJ0 þ B0Jp
hÞ�b ¼ 0:

On the other hand we have

J J0

0 Jp
h

 !
�a
�b

 !
¼ J�a þ J0�b

Jp
h�b

 !

therefore BðJ�a þ J0�bÞ ¼ 0 and B0Jp
h�b ¼ 0: This allows us to write the differentials:

dF : TPðVÞ ! TFðPÞW and dFðhÞ : TðhÞ
P ðVÞ ! TðhÞ

FðPÞW

as follows

dFð�aÞ ¼ J�a þ J0�b and dFðhÞð�bÞ ¼ Jp
h�b:
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When �b ¼ 0 is the zero h-tangent vector then dF is the classical map. The differential in the h-

tangent space is independent on the choice of �a 2 Tð0Þ
P V:

We have proved the following:

Proposition 34. Let F : V ! W be a map between polynomial varieties, expressed in terms of poly-

nomials F0, :::, Fs. Then the ph-power of the ordinary differential Tð0Þ
P V ! Tð0Þ

FðPÞW is the natural

map TðhÞ
P V ! TðhÞ

FðPÞV:

2.7. Vector fields and differential forms

We will now define vector fields as differential operators in terms of Hasse-derivatives. The iden-
tification

mP

m2
P
!d T�

PM

proves that dx0, :::, dxn give a basis of the cotangent space, since mP=m2
P is generated as vector

space by the classes of x0, :::, xn modulo m2
P: Also in the classical case the partial derivatives @=@xi

give rise to naturally dual elements, i.e. elements in TPM:
Let us assume that the variety M has a non-empty open set of h-nonsingular points. On this

open set we will employ the identification mðhÞ
P

ðmðhÞ
P Þ2 !

dðhÞ
Tð�hÞ
P M of Lemma 29, which sends

m
ðhÞ
P

m
ðhÞ
P

� �2 �m ¼
Xn
i¼0

aix
ph

i 7! dðhÞm ¼
Xn
i¼0

aid
ðhÞxqi 2 Tð�hÞ

P M:

Definition 35. A vector field X is a sum

X ¼
X1
h¼0

Xn
i¼0

ah, iðXÞDðhÞ
xi , (2.14)

where all but finite coefficients ah, iðXÞ are zero. The elements ah, iðXÞ are coefficients in OM,
depending linearly on X. Vector fields form OM-modules.

Definition 36. For every i 2 f0, :::, ng we define the differential form dðhÞxqi , seen as a formal
symbol. This definition can be given a functorial interpretation, by considering the module of p-
graded K€ahler differentials as a universal object representing the functor of Hasse derivations, see
[6, chap. 16].

For a function f 2 OMðUÞ we define the differentials dðhÞf (with respect to Hasse derivatives,
see also Eq. (2.13)):

dðhÞðf Þ ¼
Xn
i¼0

DðhÞ
xi ðf ÞdðhÞx

ph

i : (2.15)

Recall the notation q ¼ ph and note that from Eq. (2.15) we see that dðxqi Þ ¼ dðhÞxqi which can be

seen as an element in Tð�hÞ
P M: Without the Hasse derivatives, the differential dðxqÞ, when com-

puted in terms of Eq. (2.15) is zero, but here it is a generator of the alternating algebra of differ-
ential forms.

Definition 37. For qi ¼ pi define the formal monomials dðh1Þxq1i1 � dðh2Þxq2i2 � � � � � dðhjÞx
qij
ij of

degree j, where for monomials m, n of degrees k and l we have
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m � n ¼ ð�1Þkln � m:

A differential form of degree i is a formal linear combination of monomials of degree p, with
coefficients from OXðUÞ:

We also require that for a function f we have

fdxi � dðhÞxp
h

j ¼ dxi � f p
h
dðhÞxp

h

j : (2.16)

The above requirement is natural since that alternating algebras are defined as quotients of the
tensor algebra, see [6, Appendix 2] of an ordinary form by a ph-form. We will use this definition
in Lemma 46 in order to prove that the h-conormal space is Lagrangian.

A derivation of degree s 2 Z on OMðUÞ is a k-linear operator sending a form of degree j to a
form of degree jþ s such that

Dðx � sÞ ¼ Dx � sþ ð�1Þsjx � Ds:

We will need the following derivations.

(1) The derivations dðhÞ of degree þ 1, such that dðhÞf is given by Eq. (2.15) and dðh
0ÞdðhÞ ¼ 0

for all h, h0 2 N:
(2) The derivation iX of degree �1 corresponding to vector field X, given by iXðOXÞ ¼ 0 while

for X given by Eq. (2.14) and x given by

x ¼
X1
h¼0

Xr
i¼0

bh, iðxÞdðhÞxqi , for bh, iðxÞ 2 OXðUÞ we have

iXðxÞ ¼
X1
h¼0

Xr
i¼0

ah, iðXÞp
h

bp
h

h, iðxÞ
� �

: (2.17)

Remark 38. A vector field is a section of the tangent bundle, i.e. for every P 2 X if the functions
ah, i are in OXðUÞ for an open set U containing P, then the evaluation of ah, i at P gives us a tan-
gent vector in TPM,

XðPÞ ¼
X1
h¼0

Xr
i¼0

ah, iðXÞðPÞDðhÞ
xi : (2.18)

Indeed, using the iX derivation we see that the vector field DðhÞ
xi is the dual basis element to the

differential form dðhÞxqi : Thus, the evaluated vector field gives rise to an element in the dual space
of T�

PM:

Assume now that the maximal ideal at P 2 M is generated by t1, :::, ts, and consider the differ-
entials dt1, :::, dts:

The classical cotangent vector bundle (see [26, p. 60]) is the vector bundle

T�M ¼�
r

i¼1
OMdti:

A classical differential form n is given by

n ¼
Xr
i¼0

nidti, ni 2 OM:

Keep in mind that a vector bundle in algebraic geometry over an open set U � M is described in
terms of Ar

U ¼ SpecOMðUÞ½n1, :::, nr�, see [11, ex. 5.18, p. 128].
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In analogy to the classical case, an h-differential form is given by

nh ¼
Xr
i¼0

nidt
ðhÞ
i , ni 2 OM:

3. The case of hypersurfaces

In this section we focus on the hypersurface case. When the variety is given as the zero set of a
single polynomial we can use a form of implicit-inverse function theorem which allows us to
express the coordinates xi as functions of the dual coordinates. This method works if the h-
Hessian is generically invertible. In characteristic zero we consider the hypersurface Vðf Þ � P

n

given by a polynomial f, if we set Ni ¼ Dxi f 2 k½x�, we can find the ideal in k½N� by eliminating
the variables x: Let us illustrate this method in characteristic zero by the following

Example 39. Consider the Fermat curve given as the zero locus of

x50 þ x51 þ x52 ¼ 0:

This in magma [2] can be done as follows: If yi ¼ Dxi f , we fist define the ideal

I ¼ hx50 þ x51 þ x52, � 5x40 þ y0, � 5x41 þ y1, � 5x42 þ y2i / k x0, :::, x2, y0, :::, y2½ �,
and then we eliminate the variables x0, x1, x2 using the EliminationIdeal function:

J ¼ y200 � 4y150 y51 � 4y150 y52 þ 6y100 y101 � 124y100 y51y
5
2 þ 6y100 y102 � 4y50y

15
1 � 124y50y

10
1 y52

�124y50y
5
1y

10
2 � 4y50y

15
2 þ y201 � 4y151 y52 þ 6y101 y102 � 4y51y

15
2 þ y202

* +
:

We can now consider the same elimination process, arriving at the ideal J generated by the ele-
ments

g1 ¼ y200 � 4y150 y51 � 4y150 y52 þ 6y100 y101 � 124y100 y51y
5
2 þ 6y100 y102 � 4y50y

15
1 � 124y50y

10
1 y52

� 124y50y
5
1y

10
2 � 4y50y

15
2 þ y201 � 4y151 y52 þ 6y101 y102 � 4y51y

15
2 þ y202

g2 ¼ x0 � 20y190 þ 60y140 y51 þ 60y140 y52 � 60y90y
10
1 þ 1240y90y

5
1y

5
2

� 60y90y
10
2 þ 20y40y

15
1 þ 620y40y

10
1 y52 þ 620y40y

5
1y

10
2 þ 20y40y

15
2

g3 ¼ x1 þ 20y150 y41 � 60y100 y91 þ 620y100 y41y
5
2 þ 60y50y

14
1 þ 1240y50y

9
1y

5
2 þ 620y50y

4
1y

10
2

� 20y191 þ 60y141 y52 � 60y91y
10
2 þ 20y41y

15
2

g4 ¼ x2 þ 20y150 y42 þ 620y100 y51y
4
2 � 60y100 y92 þ 620y50y

10
1 y42 þ 1240y50y

5
1y

9
2 þ 60y50y

14
2

þ 20y151 y42 � 60y101 y92 þ 60y51y
14
2 � 20y192 :

Observe that the generators g2, g3, g4 express x0, x1, x2 as a function of y, which follows by differ-

entiating the defining equation g1 of the dual hypersurface with respect to y0, y1, y2, i.e., xi ¼
Dyig1 for i¼ 0, 1, 2. After elimination in the ideal J of the variables y we arrive at the original

equation as expected.
Similarly, the implicit-inverse function method will allow us to solve “locally” and express Ni

as functions of k½x0, :::, xn�: The problem with this method is that Zariski topology does not have
fine enough open sets for the implicit (or the equivalent inverse) function theorem to hold.
Actually this was one of the reasons for inventing etal�e topology [23, p. 11]. The approach of
Wallace is based on defining algebraic functions in order for the implicit function theorem to
work. We will follow the ideas of Wallace [29, sec. 4.1]. Let X1, :::,Xn be a set of indeterminates
of the field k. A separable algebraic function / over kðX1, :::,XnÞ will be called a k-function of
X1, :::,Xn: If x1, :::, xn is any set of elements of k and y is a specialization of / over the
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specialization ðX1, :::,XnÞ 7! ðx1, :::, xnÞ, then y will be called a value of / at ðx1, :::, xnÞ, and will
be written y ¼ /ðx1, :::, xnÞ: The partial derivative @/=@Xi for each i, is a rational function of
X1, :::,Xn and /: If this rational function is defined at ðx1, :::, xn, yÞ (i.e. has non zero denomin-
ator), then the k-function / will be called differentiable at ðx1, :::, xn, yÞ:
Remark 40. If we allow k-functions then the duality theorems have a simpler form. For example
for ða, pÞ ¼ 1 the dual curve of the Fermat curve xa0 þ xa1 þ xa2 ¼ 0 is the dual curve xb0 þ xb1 þ
xb2 ¼ 0 such that 1

a þ 1
b ¼ 1, see [9, Example 2.3, p. 20].

Theorem 41 (Implicit function theorem). If x1, :::, x2n satisfy the k-functions /iðx1, :::, x2nÞ ¼ 0 for
i ¼ 1, :::, n, differentiable at ðx1, :::, x2n, 0Þ and the Jacobian n� n-matrix ð@/i=@xjÞ is invertible,
then there are k-functions f1, :::, fn of y1, :::, yn such that xi ¼ fiðxnþ1, :::, x2nÞ for all 1 � i � n:

Proof. Theorem 6 in [29]. w

The above theorem in practice allows us to work with hypersurfaces as follows: Let V(f) be a
projective hypersurface. We put coordinates ðx0, :::, xnÞ on the space P

n and y0, :::, yn on P
�n: We

have the equations:

yi ¼ @f =@xi ¼ /iðx0, :::, xnÞ: (3.1)

If the Hessian matrix ð@/j=@xiÞ ¼ ð@2=f@xi@xjÞ is not singular, then the implicit function the-
orem allows us to express xi as k-functions of y0, :::, yn:

For example, in characteristic zero (or if p- a� 1, the hypersurface defined by f ¼Pn
i¼0 x

a
i

has yi ¼ @f =@xi ¼ axa�1
i , therefore xi ¼ ðyi=aÞ

1
a�1: The last expression is in accordance to

Theorem 41, since the Hessian matrix equals aða� 1Þ � diagðxa�2
0 , :::, xa�2

n Þ, which is generically
invertible. We can arrive to the dual hypersurface by replacing xi in the defining equation of f,
i.e.

Xn
i¼0

xiðy0, :::, ynÞa ¼ aða� 1Þ
Xn
i¼0

y
a

a�1
i :

Notice that b ¼ a
a�1 satisfies the symmetric equation 1=aþ 1=b ¼ 1:

If p j a� 1, then the equation yi ¼ axa�1
i does not allow us to express xi in terms of yi. Keep

in mind that the rational function field is not perfect, and we are not allowed to take p-roots of
polynomials.

Let V(f) be a hypersurface corresponding to the irreducible homogeneous and h-homogeneous
polynomial f of degree prime to the characteristic. By Eq. (2.10) we have that if the Gauss map is

not separable then yi ¼ @f =@xi ¼ gp
h

i ðxÞ: Moreover by Euler’s theorem we have

f ¼ degðf Þ �
Xn
i¼0

xigiðxÞp
h

:

In our approach we propose to consider instead of Eq. (3.1) the equations

yi ¼ DðhÞ
xi ðf Þ:

Then under the assumption that the “Hessian” Dð0Þ
xj D

ðhÞ
xi f is invertible we can express

xi ¼ giðy0, :::, ynÞ,
where gi is a k-function.
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Remark 42. Even in characteristic zero, the Hessian might be singular. Consider for example a
hyperplane VðP aixiÞ: The first derivatives are constants and the Hessian is zero. This situation
is related to the case of singular Gauss map. For a detailed study of this case in terms of classical
differential geometry see [1].

A similar example can be given in positive characteristic, for example for h � 1 the polynomial

f ¼ xp
h

0 has DðhÞ
xi f ¼ 1, which has degree 0, and the Hessian Dð0Þ

xj D
ðhÞ
xi ðf Þ is zero.

These two cases will be excluded in next lemma where we will assume that the degree of the
derivatives are prime to the characteristic.

In some cases we can prove that the Hessian is invertible.

Lemma 43. Let f be a homogeneous polynomial so that so that one at least of its derivatives

DðhÞ
xi f , 0 � i � n is not zero, and all non-zero DðhÞ

xi f derivatives have degree di prime to the charac-

teristic p. Then the ðnþ 1Þ � ðnþ 1Þ matrix Dð0Þ
xj D

ðhÞ
xi ðf Þ is generically invertible.

Proof. Assume that the above mentioned map is not invertible, then one column, say the first
one, is a linear combination of the other columns, that is

Dð0Þ
x0 D

ðhÞ
x0 ðf Þ
..
.

Dð0Þ
xn D

ðhÞ
x0 ðf Þ

0
BB@

1
CCA ¼

Xn
l¼1

kl

Dð0Þ
x0 D

ðhÞ
xl ðf Þ
..
.

Dð0Þ
xn D

ðhÞ
xl ðf Þ

0
BB@

1
CCA (3.2)

Notice that if k1 ¼ � � � ¼ kn ¼ 0, then Dð0Þ
xi D

ðhÞ
x0 ðf Þ ¼ 0 for all 0 � i � n, this means that

DðhÞ
x0 2 k xq0, :::, x

q
n

	 

,

and so it has degree divisible by the characteristic. Summing along each column of Eq. (3.2) after

multiplying by x� and using Euler’s theorem we have (set dl ¼ degDðhÞ
xl f )

d0D
ðhÞ
x0 ðf Þ ¼

Xn
l¼1

kldlD
ðhÞ
xl ðf Þ: (3.3)

Let d0 be the degree of the polynomial f in the variable xq0, q ¼ ph: The above Eq. (3.3) is impos-
sible for d0 > 0 by considering the degrees of both sides in the variable xq0, since the degree of xq0
on the left hand side of Eq. (3.3) is less than the degree of xq0 of the right hand side. This forces

d¼ 0 and in this case DðhÞ
x0 f ¼ 0: This forces the right hand side of Eq. (3.3) to be zero, which

allows us to repeat the above argument (recall that in Eq. (3.3) there is at least one more ki 6¼ 0)

for another variable xi, until we prove inductively that all derivatives DðhÞ
xi are zero, a contradic-

tion. w

Lemma 44. Consider a function f as given in Eq. (2.10) in proposition 18. Then this function satis-
fies the invertible Hessian criterion of Lemma 43 and the dual variety given by equation

Gðy0, :::, ynÞ ¼ f ðx0ðy0, :::, ynÞ, :::, xnðy0, :::, ynÞÞ ¼ 0:

Let us now consider the Hasse derivatives DðhÞ
y� for q ¼ ph of Gð�yÞ ¼Pn

i¼0 x
q
i yi, where xi are

considered as functions of yi

z� :¼ DðhÞ
y�

Xn
i¼0

xqi yi

 !
¼
Xn
i¼0

Dð0Þ
y� xi

� �q
yi:
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We compute

Xn
�¼0

z�y
q
� ¼

Xn
�¼0

Xn
i¼0

Dð0Þ
y� xi

� �q
yiy

q
�: (3.4)

Since xiðy0, :::, ynÞ is homogenous in the variables y0, :::, yn as well the classical Euler identity gives
us that

Xn
�¼0

y�D
ð0Þ
y� xi ¼ cxi for some c 2 k,

so Eq. (3.4) gives us

Xn
�¼0

z�y
q
� ¼ c

Xn
i¼0

xqi yi ¼ 0:

This means that the point �x ¼ ðx0, :::, xnÞ 2 Vðf Þ � P
n has the q-hyperplane

ðX0 : � � � : XnÞ 2 P
n
k such that

Xn
�¼0

yiX
q
i ¼ 0

with coordinates ðy0, :::, ynÞ as h-tangent and the point ðy0, :::, ynÞ 2 VðGÞ � P
h� has the q-hyper-

plane

ðY0 : � � � : YnÞ 2 P
n
k such that

Xn
�¼0

z�Y
q
� ¼ 0

with coordinates ðz0, :::, znÞ as h-tangent. Reflexivity essentially means that the map

V � V�h ! V�h � V�hð Þ�h

ðx, yÞ 7! ðy, FðxÞÞ
induces an isomorphism from ConðhÞðXÞ to ConðhÞðYÞ, where F is the isomorphism F : V !
ðV�hÞ�h introduced in Theorem 12. For proving this we will require the notion of Lagrangian var-
iety for algebraic sets defined over the field of complex numbers.

3.1. Example: A class of Fermat hypersurfaces

Let p 6¼ 2 be a prime. Consider the hypersurface

Xn
i¼0

x2pþ1
i ¼ 0:

We set also yi ¼ DðhÞ
xi f ¼ 2xpþ1

i : We can express xi in terms of yi, that is

xi ¼ 1
2
yi

� � 1
pþ1

:

The dual variety is then described as the zero set of the k-function

Gðy0, :::, ynÞ ¼
Xn
i¼0

y
2pþ1
pþ1

i ¼ 0:

We now compute the derivatives zi ¼ DðhÞ
yi G ¼ cxp�p2þ1

i for some c 2 k: We now expand
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0 ¼
Xn
i¼0

x2pþ1
i

 !1þp�p2

¼
Xn
i¼0

x2pþ1
i

 ! Xn
j¼0

xpð2pþ1Þ
j

 ! Xn
k¼0

x�p2ð2pþ1Þ
k

 !

¼
Xn
i¼0

xð2pþ1Þð1þp�p2Þ
i þ

Xn
i¼0

x2pþ1
i

Xn
j 6¼i
j¼0

xpð2pþ1Þ
j

Xn
k6¼i
k¼0

x�p2ð2pþ1Þ
k

¼
Xn
i¼0

xð2pþ1Þð1þp�p2Þ
i ¼ c�1

Xn
i¼0

z2pþ1
i :

This proves that ðz0, :::, znÞ are in V(f).

4. Lagrangian varieties

4.1. h-Cotangent bundle and h-Lagrangian subvarieties

The space V � V�h can be identified to the h-cotangent bundle Tð�hÞðVÞ of V. Let x0, :::, xn be a
set of coordinates on V and n0, :::, nn be a set of coordinates on V�h: Notice that a vector field
(here we use vector fields which have non-zero coefficients only at a certain value of h)

X ¼
X

j2f0, hg

Xn
�¼0

a�ðXÞDðjÞ
x� þ

X
j2f0, hg

Xn
�¼0

b�ðXÞDðjÞ
n�

(4.1)

by Eq. (2.17) acts on differential forms in terms of the derivation iX by the rule:

iX dðhÞxqi
� �

¼ aiðXÞp
h

, iXðdð0ÞniÞ ¼ biðXÞ,
iX dð0Þxi
� �

¼ aiðXÞ, iXðdðhÞnqi Þ ¼ biðXÞp
h

:

Consider M � PðVÞ a projective variety and consider the cone M0 � V seen as an affine var-
iety in V. Assume that the homogeneous ideal of M0 is generated by the homogeneous polyno-
mials f1, :::, fr, and the set of h-nonsingular points of M is non-empty. Consider the nþ 1-upple

rðhÞfi ¼ DðhÞ
0 fiðPÞ,DðhÞ

1 fiðPÞ, :::,DðhÞ
n fiðPÞ

� �
:

Each fi defines an h-linear form given by

LðhÞi :¼
Xn
�¼0

DðhÞ
� fiðPÞxph� : (4.2)

The h-tangent space at P is the variety defined by the equations LðhÞi ¼ 0: Recall the definition
of LagðhÞðMÞ � V � V�h,

LagðhÞðMÞ ¼ ðP,HÞ : P 2 ConeðMh
smÞ,H is a ph � linear form which vanishes on TðhÞ

P M
n o

:

Let p1 : V � V�h ! V be the first projection. We have seen in the introduction, that for every
P 2 Mh

sm the set p�1
1 \ LagðhÞðMÞ can be identified to the space of ph-linear forms on the h-nor-

mal space NðhÞ
P ðMÞ defined as

NðhÞ
P ðMÞ ¼ TðhÞ

P V=TðhÞ
P ðMÞ ffi V=TðhÞ

P ðMÞ:
Also by the definition of TðhÞ

P M the fiber of the h-conormal space at the point P for a projective var-

iety defined by the elements f1, :::, fr is the vector subspace of V�h spanned by LðhÞi given in Eq. (4.2):

LagðhÞP ðMÞ ¼ hLðhÞi : 1 � i � rik:
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4.2. The symplectic structure on V3V�h

Definition 45. Let xi, ni be coordinates on the vector spaces V,V�h respectively.
A subvariety K of V � V�h with non empty h-nonsingular locus will be called conical h-

Lagrangian if

(1) The form x ¼Pn
j¼0 d

ðhÞxqj � dnj þ
Pn

j¼0 d
ðhÞnqj � dxj is zero on K.

(2) dimK ¼ n
(3) If ðP,HÞ ¼ ðx0, :::, xn, n0, :::, nnÞ 2 K then ðlP, kHÞ ¼ ðlx0, :::,lxn, kn0, :::, knnÞ 2 K for

every, l, k 2 k�:
Notice that if

X ¼
X

i2f0, hg

Xn
�¼0

ai, �ðXÞDðiÞ
x� þ

X
i2f0, hg

Xn
�¼0

bi, �ðXÞDðiÞ
n�
,

then

xðX,YÞ :¼ iY iXx ¼
¼
Xn
�¼0

ah, �ðXÞp
h

b0, �ðYÞ � ah, �ðYÞp
h

b0, �ðXÞ � a0, �ðXÞbh, �ðYÞp
h þ a0, �ðYÞbh, �ðXÞp

h
� �

:
(4.3)

If one restricts on ðh, 0Þ-tangent vectors, i.e. a0, iðXÞ ¼ a0, iðYÞ ¼ bh, iðXÞ ¼ bh, iðYÞ ¼ 0 for all i,
then the above computation is compatible with the definition given in Sec. 2.3 since in this case

xðX,YÞ :¼
Xn
�¼0

ah, �ðXÞp
h

b0, �ðYÞ � ah, �ðYÞp
h

b0, �ðXÞ
� �

:

Lemma 46. Assume that h is selected such that p2 : LagðhÞM ! Imp2 ¼ Z is separable. If Mh
sm 6¼ ;,

then the conormal bundle LagðhÞðMÞ is a Lagrangian manifold of V � V�h:

Proof. Assume that M is the zero locus of the homogeneous polynomials F1, :::, Fr: When we
restrict ourselves to LagðhÞðMÞ we have that

nj ¼
Xr
i¼1

ki DðhÞ
j PFij Þ ki 2 k,

�

and

dnj ¼
Xr
i¼1

kidD
ðhÞ
j

���
P
Fi ¼

Xr
i¼1

ki
Xn
�¼0

Dð0Þ
�

���
P
DðhÞ

j

���
P
Fidx�:

This means that the first summand of x restricted to LagðhÞðXÞ has the form

Xn
j¼0

dðhÞxqj � dnj ¼
Xr
i¼1

ki
Xn
j¼0

Xn
�¼0

Dð0Þ
�

���
P
DðhÞ

j

���
P
Fi d

ðhÞxqj � dx�:

In a similar way we have, using Eq. (2.16)

Xn
j¼0

dxj � dðhÞnqj ¼
Xn
j¼0

dxj �
Xr
i¼1

ki
Xn
�¼0

Dð0Þ
�

���
P
DðhÞ

j

���
P
Fi

 !q

dðhÞxq�

¼
Xn
j¼0

Xr
i¼1

ki
Xn
�¼0

Dð0Þ
�

���
P
DðhÞ

j

���
P
Fi dxj � dðhÞxq�
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Therefore the form

x ¼
Xn
j¼0

dðhÞxqj � dnj þ
Xn
j¼0

dðhÞnqj � dxj

is zero on K.
We now compute the dimension of LagðhÞðMÞ: If P is an h-nonsingular point, then the dimen-

sion of the h-tangent space equals dimM, therefore the dimension of the conormal space is n �
r and the dimension of LagðhÞðMÞ ¼ dimðMÞ þ n� r ¼ n:

Finally, if ðx0, :::, xn, n0, :::, nnÞ 2 LagðhÞðMÞ then it is obvious that for l, k 2 k� the element
ðlx0, :::,lxn, kn0, :::, knnÞ is an element of LagðhÞðMÞ as well. w

Definition 47. A map f : X ! Y between varieties will be called generically smooth if the

induced map f� : T
ð0Þ
P X ! Tð0Þ

f ðPÞY is surjective for an open dense subset U � X:

Similarly we will call a map f : X ! Y h-generically smooth if the induced map f� : T
ðhÞ
P X !

TðhÞ
f ðPÞY is surjective for an open dense subset U � X such that f(U) is an open dense subset of Y.

Remark 48. Proposition 34 implies that if f is generically smooth then it is h-generically smooth.
Also if the function field extension kðXÞ=kðYÞ is separable, then there is an open set U so that f�
is smooth for all points in U [22, p. 169], [15, p. 68].

Remark 49. We consider the identification F : V ! ðV�hÞ�h given in Theorem 12. Define the

map W : V � V�h ! V�h � ðV�hÞ�h given by sending W : ðv,wÞ 7! ðw, FðvÞÞ: Notice that if �c, �b

are the coordinates of V�h, ðV�hÞ�h, then the coordinates in V � V�h are given by ð�b,�cÞ, see also
the diagram in Eq. (2.5).

The following is essential for proving reflexivity.

Proposition 50. Let p2 : V � V�h ! V�h be the second projection. A conical Lagrangian variety
K � V � V�h has projection Z ¼ p2ðKÞ � V�h. If the set of h-smooth points of Z forms an non-
empty dense open subset of Z and the map p2 : K ! Z � V�h is h-generically smooth, then the
conormal variety LagðhÞðZÞ � V�h � V coincides with K under the natural identification W :

V � V�h ! V�h� V:

Proof. This proof follows [9, prop. 3.1], see also [27]. The set of h-smooth points of K is non
empty by definition 45, so it is an open dense set of the irreducible variety K. The projection
p2ðKÞ ¼ Z is irreducible since K is irreducible. By assumption the map p2 : K ! Z is h-generic-
ally smooth, so we can find an open dense set K0 � K, consisted of h-smooth points with the
additional property that p2ðK0Þ ¼ Z0 consists also of h-smooth points and moreover the induced
map p2, � forms a surjective map

TðhÞ
P K ! TðhÞ

p2ðPÞZ:

Since p2 is h-generically smooth we can see every element v 2 TðhÞ
P Z written as

v ¼
Xn
i¼0

aiD
ðhÞ
ni
,

as the image of an element v0 2 TðhÞ
Q K which can be written as
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v0 ¼
Xn
i¼0

0 � Dð0Þ
xi þ

Xn
i¼0

ai
0 � DðhÞ

xi þ
Xn
i¼0

0 � Dð0Þ
ni

þ
Xn
i¼0

aiD
ðhÞ
ni

(4.4)

for a selection of values a0i 2 k: In selecting K0 and Z0 it is essential that open non-empty sets in
irreducible varieties are dense. We have the following diagram:

The map W is the map sending ðx, yÞ 2 V � V�h to ðy, xÞ 2 V�h � V:
In what follows we consider V�h � V ! V�h as a (trivial) vector bundle, which is identified,

using Theorem 12, to the h-cotangent bundle Tð�hÞðVÞ of V and to the h-cotangent bundle of
V�h,

Tð�hÞðV�hÞ ¼ V�h � ðV�hÞ�h ffi V�h � V!p V�h: (4.5)

Keep in mind that the h-cotangent bundle of a vector space V is V � V�h: The h-cotangent bun-

dle of V�h is V�h � ðV�hÞ�h:
The space V�h ffi V�h � f0g is considered as the zero section of the bundle T�hðV�hÞ ¼

V�h � V: Each point z 2 V�h has the vector space V as fiber.

We will prove first that for any h-smooth point P 2 Z0 6¼ ;, Wðp�1
2 ðPÞ \ KÞ � LagðhÞðZÞ: Let

�b ¼ ðb0, b1, :::, bnÞ be the coordinates of P 2 Z0 � V�h: A point Q ¼ p�1ðPÞ \ K has coordinates
ð�b,�cÞ: The second part of coordinates of Q given by �c ¼ ðc0, :::, cnÞ corresponds to an element in

V ffi ðV�hÞ�h seen as the vertical fiber p�1ðPÞ of the vector bundle in Eq. (4.5). Since the fiber
p�1ðPÞ is the vector space V, we can identify V with its tangent space and write

�c ¼
Xn
i¼0

ciD
ð0Þ
xi :

This element is considered as an element in the tangent space Tð0Þ
ð�b , 0ÞT

ð�hÞðV�hÞ of the point ð�b, 0Þ
of the zero section of p. Since K is conical the element �c can be also considered as a tangent vec-
tor of K at Q ¼ ð�b,�cÞ:
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Since x is zero on K, for v0 defined in Eq. (4.4) and �c given as follows

�c ¼
Xn
i¼0

ci � Dð0Þ
xi þ

Xn
i¼0

0 � DðhÞ
xi þ

Xn
i¼0

0 � Dð0Þ
ni

þ
Xn
i¼0

0DðhÞ
ni

we have by Eq. (4.3)

0 ¼ xð�c, v0Þ ¼
Xn
i¼0

aqi ci,

that is the q-linear form

ðx0, :::, xnÞ 7!
Xn
i¼0

xqi ci,

vanishes on the element of the tangent space with coordinates �a: The last equation implies that
we can see WðnÞ ¼ ð�bðPÞ,�cðPÞÞ 2 V�h � V as an element in LagðhÞZ0 � V�h � V, so Wðp�1ðPÞ \
KÞ � LagðhÞðZÞ, notice that the coordinates �b of P satisfy the defining equations of Z, while the
coordinates of �c, satisfy the defining equations of p1ðKÞ:

We thus arrive to the desired inclusion Wðp�1ðPÞ \ K0Þ � ConðhÞðZÞ and WðK0Þ is a dense
subset of the same dimension of the irreducible variety LagðhÞðZÞ, therefore WðKÞ ¼ LagðhÞðZÞ: w

Theorem 51 (Reflexivity). Let M 2 PðVÞ be an irreducible, reduced projective variety generated by
h-homogeneous elements, which also has a non-empty h-nonsingular locus. Assume that Z :¼
p2ðLagðhÞðMÞÞ has a nonempty open set of h-nonsingular points and that the map

p2 : V � V�h 	 LagðhÞðMÞ ! p2ðLagðhÞðMÞÞ :¼ Z � V�h

is generically smooth. Then

WðLagðhÞðMÞÞ ¼ ConðhÞðZÞ � V�h � ðV�hÞ�h ¼ V�h � V:

Proof. The conormal variety LagðhÞðMÞ which is originally defined as a subset of V � V�h can be

also seen through W as a subset of V�h � V ffi V�h � ðV�hÞ�h and by symmetry it is still
Lagrangian of dimension n.

Let us now prove that the map p2 is h-generically smooth. Let f : X ! Y be a map and
suppose that P is a smooth point of X and f(P) is a smooth point of Y and f�TPX ! Tf ðPÞY is
surjective. If X, Y are irreducible then such a point P exists since the space of smooth points is a
non-empty open dense subset and f is generically smooth.

Set K ¼ LagðhÞðMÞ: The map p2 : V � V�h 	 LagðhÞðMÞ ! p2ðMÞ :¼ Z � V�h is assumed to be

generically smooth and by proposition 34 the natural map TðhÞ
P K ! TðhÞ

p2ðPÞZ is the ph-power of

the classical differential dp2 : T
ð0Þ
P K ! Tð0Þ

p2ðPÞZ:

There is an open dense set U of K such that for every P 2 U we have n ¼ dimK ¼ Tð0Þ
P K (is a

classical nonsingular point) and dim Imðdp2Þ ¼ dimTp2ðPÞZ ¼ dimZ (surjective differential and
p2ðPÞ is classical nonsingular) and moreover that p2ðPÞ is h-nonsingular point of Z. Notice that
non-empty sets of irreducible varieties are dense and hence have nonempty intersection. But

dim kerðdp2ðPÞÞ ¼ dimkerðdpph2 ðPÞÞ hence we obtain

n ¼ dimkerðdp2ðPÞÞ þ dim Imðdp2ðPÞÞ
¼ dimkerðdp2ðPÞÞp

h þ dim Imðdp2ðPÞÞp
h

:
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The assumption that p2ðPÞ is h-nonsingular gives us that dimTðhÞ
p2ðPÞZ ¼ dimZ: On the other

hand dim Imðdp2ðPÞÞp
h ¼ dimZ and since Imðdp2ðPÞp

hÞ � TðhÞ
p2ðPÞZ if p2ðPÞ is h-nonsingular, that

is dimTðhÞ
p2ðPÞZ ¼ dimZ we finally have that dp2ðPÞp

h

is surjective. Since we proved that p2 is gen-

erically smooth reflexivity follows by Theorem 50. w

Let M � PðVÞ be an irreducible, reduced projective variety. We can form the connical h-
Lagrangian LagðhÞM � V � V�h which has a nonempty open set of h-nonsingular points and also
form the h-dual variety Z ¼ p2ðKÞ, where p2 : V � V�h ! V�h is the second projection. The set
Z is irreducible but determining whether the set of h-nonsingular points is non-empty is a subtle
problem. Irreducible algebraic sets are known to have open dense sets of classical nonsingular
points. For proving a reflexivity theorem we need the set of h-nonsingular points of Z to be non-
empty, hence dense subset of Z. When M is a hypersurface we have given conditions in Lemma
43 so that Z has non-empty set of h-nonsingular points. The condition of h-nonsingular points
requires a computation of the dimension of the algebraic set. Understanding the dimension of
the dual variety Z is a subtle task, see [1, 5, 8, 17, 21, sec. 2.5]. Let us treat here the follow-
ing case

Proposition 52. Let M be a complete intersection described as the zero locus of r polynomials

F1, :::, Fr and dimM ¼ n� r, such that all Hasse derivatives DðhÞ
xj Fi have degree prime to the char-

acteristic. Then the dual variety is a hypersurface. If moreover all Hasse derivatives DðhÞ
xj Fi have

zero h-derivatives for all i ¼ 0, :::, n and 1 � j � r then the dual hypersurface has non-empty h-sin-
gular locus.

Proof. In this case we can prove that Z has dimension n� 1 since the coordinates ðn0, :::, nnÞ are
given by

n0

..

.

nn

0
BB@

1
CCA ¼

Xr
i¼1

ki

DðhÞ
x0 Fi

..

.

DðhÞ
xn Fi

0
BBB@

1
CCCA: (4.6)

We now compute the ðnþ 1Þ � ðnþ 1Þ-matrix

Dð0Þ
x0 n0 � � � Dð0Þ

x0 nn
..
. ..

.

Dð0Þ
xn n0 � � � Dð0Þ

xn nn

0
BB@

1
CCA ¼

Xr
i¼1

ki

Dð0Þ
x0 D

ðhÞ
x0 Fi � � � Dð0Þ

x0 D
ðhÞ
xn Fi

..

. ..
.

Dð0Þ
xn D

ðhÞ
x0 Fi � � � Dð0Þ

xn D
ðhÞ
xn Fi

0
BB@

1
CCA: (4.7)

If the elements Fi have at least a derivative DðhÞ
xl ðFiÞ which is not zero, and degrees dl, i which are

prime to p, then by Lemma 43 we obtain that each matrix summand in the right hand side of
Eq. (4.7) is generically invertible. Without loss of generality we can assume that for k1 ¼ 1, k2 ¼
� � � ¼ kr ¼ 0 the matrix in Eq. (4.7) is invertible (change projective coordinates in the projective
space P

r if not.) In this case the subvariety Zk of the projection Z cut out by equations k2 ¼
� � � ¼ kr is locally isomorphic to our original variety M by using Wallace inverse function con-
struction, which allows as to express ðx0, :::, xnÞ in terms of ðn0, :::, nnÞ: The dual variety is then
ruled in projective spaces with base Zk and has dimension equal to

dimZk þ r � 1 ¼ dimM þ r � 1 ¼ n� r þ r � 1 ¼ n� 1:

This means that Z is a hypersurface defined as the zero locus of the polynomial Gðn0, :::, nnÞ:
If Z has empty set of h-nonsingular points, then all Hasse derivatives DðhÞ

n�
G ¼ 0 for 0 � � � n
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and this means that G has degree smaller than q. Using Eq. (4.6) we can write G as a function of
x0, :::, xn, depending on k1, :::, kr: Then G is zero on M and this means that
Gðn0ðx0, :::, xnÞ, :::, nnðx0, :::, xnÞÞ is in the ideal generated by F1, :::, Fr: Let us write

Gðn0ð�xÞ, :::, nnð�xÞÞ ¼
Xr
i¼1

gið�xÞFið�xÞ: (4.8)

The chain rule gives us that (recall we assumed that DðhÞ
n�
G ¼ 0 for 0 � � � n)

Dð0Þ
x0 G, :::,D

ð0Þ
xn G,D

ðhÞ
x0 G, :::,D

ðhÞ
xn G

� �
¼ Dð0Þ

n0
G, :::,Dð0Þ

nn
G, 0, :::, 0

� � J J0

0 Jp
h

 !

where

J ¼
Dð0Þ

x0 n0 � � � Dð0Þ
xn n0

..

. ..
.

Dð0Þ
x0 nn � � � Dð0Þ

xn nn

0
BB@

1
CCA and J0 ¼

DðhÞ
x0 n0 � � � DðhÞ

xn n0
..
. ..

.

DðhÞ
x0 nn � � � DðhÞ

xn nn

0
BB@

1
CCA

Therefore if DðhÞ
xi nj ¼ 0 for all 0 � i, j � n then

ðDðhÞ
x0 G, :::,D

ðhÞ
xn GÞ ¼ ð0, :::, 0Þ:

In this case we have by Eq. (4.8)

DðhÞ
x0 GðPÞ, :::,DðhÞ

xn GðPÞ
� �

¼
Xr
i¼1

giðPÞ DðhÞ
x0 FiðPÞ, :::,DðhÞ

xn FiðPÞ
� �

:

But the vectors

rðhÞFi ¼ DðhÞ
x0 FiðPÞ, :::,DðhÞ

xn FiðPÞ
� �

are linear independent for every point P in the non-empty set U containing all h-nonsingular
points. This means that for all P 2 U giðPÞ ¼ 0 for 1 � i � r, which in turn implies that gi are
zero polynomials and G is also zero, a contradiction. w

4.3. Examples

Consider the complete intersection in P
n
k given by (�k ¼ ðk1, :::, kn�2Þ)

Ckð�kÞ :¼

xk0 þ xk1 þ xk2 ¼ 0

k1xk0 þ xk1 þ xk3 ¼ 0

..

. ..
. ..

.

kn�2xk0 þ xk1 þ xkn ¼ 0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

� P
n
k : (4.9)

These curves are called “generalized Fermat curves,” see [16]. We consider the matrix of rfi writ-
ten as rows,

kxk�1
0 kxk�1

1 kxk�1
2 0 ::: 0

k1kxk�1
0 kxk�1

1 0 kxk�1
3 ::: 0

..

. ..
. ..

. ..
. ..

.

kn�2kxk�1
0 kxk�1

1 0 ::: 0 kxk�1
n

0
BBBBB@

1
CCCCCA: (4.10)
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The conormal space is the subspace in V� of linear forms spanned by the linear forms

Li ¼
Xn
�¼0

Dð0Þ
xi fiXi:

Consider an arbitrary element in the span of Li, l0, :::,ln�2 2 k:

y0

y1

y2

..

.

yn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ k

Pn�2
�¼0 l�k�x

k�1
0Pn�2

�¼0 l�x
k�1
1

l0x
k�1
2

..

.

ln�2x
k�1
n

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (4.11)

The ordinary Lagrangian space is given by

LagðCkð�kÞÞ ¼ ðx0, :::, xn, y0, :::, ynÞ :
where x0, :::, xn satisfy eq: ð4:9Þ
and y0, :::, yn eq: ð4:11Þ

( )
:

The image of the projection p2 is a codimensional 1 subvariety, hence a hypersurface given by a
single polynomial Fðy0, :::, ynÞ ¼ 0: Finding this polynomial F explicitly is a complicated task in
this case. If pjk� 1 it is clear by Eq. (4.11) that yi are given as polynomials of xpi and the map p2
cannot be separable, hence reflexivity fails.

Let us study the conormal space of the dual variety Z ¼ p2ðConðCk�kÞÞ: We see equations
(4.11) as parametric equations with parameters l0, :::,ln�2: In this case we have that the tangent
space is generated by the vectors

Vi :¼ @yi
@l0

,
@yi
@l1

, :::,
@yi

@ln�2

� �
¼ kix

k�1
0 , xk�1

1 , 0, :::, 0, xk�1
i , 0, :::, 0

� �
for 0 � i � n� 2,

which are subject to the additional condition

rF?Vii:e:hrF, Vii ¼ 0: (4.12)

In order to study further Eq. (4.12) we consider the following cases:

� If ðk� 1, pÞ ¼ 1 then we obtain:

x0 ¼ y0

k
Xn�2

�¼0
l�k�

 ! 1
k�1

x1 ¼ y1

k
Xn�2

�¼0
l�

 ! 1
k�1

xi ¼ yi
kli�2

� � 1
k�1

for 2 � i � n� 2:

(4.13)

This way we obtain a relative curve X ! P
n�1
k , where ½l0 : � � � : ln�2� serve as projective coordi-

nates of Pn�1
k : The precise equations in terms of algebraic functions are given by:
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Gi ¼ ki
y0

k
Pn�2

�¼0l�k�

 ! k
k�1 þ y1

k
Pn�2

�¼0l�

 ! k
k�1 þ yiþ2

kli

� � k
k�1 ¼ 0 for 0 � i � n� 2:

The polynomial F can be computed by eliminating l0, :::, ln�2 from the system of the Gi. We
compute (over the open set l0l1 � � � ln�2 6¼ 0)

rGi ¼ k
k� 1

ki
y0

k
Xn�2

�¼0
l�k�

 ! 1
k�1
,

y1

k
Xn�2

�¼0
l�

 ! 1
k�1
, :::,

yiþ2

kli

� � 1
k�1

, :::, 0

0
@

1
A

¼ k
k� 1

ðkix0, x1, 0:::, 0, xi, 0, :::, 0Þ:

Therefore, the compatibility condition given in Eq. (4.12) can be replaced by the conditions:

Vi?rGj i:e: hVi,rGji ¼ 0 for all 0 � i, j � n� 2: (4.14)

We can now confirm that the conditions given in (4.14) are equivalent to the original defining
equations for our curve. It is clear now that the vector ðx0, x1, :::, xnÞ is normal to every generator
of the tangent space of the dual variety Z hence

ConðZÞ ¼ fðy0, :::, yn, x0, :::, xnÞ : Fðy0, :::, ynÞ ¼ 0g ¼ ConðCkð�kÞÞ:
In our computation it was essential that we were able to express xi for 0 � i � n� 2 in terms of
yi for 0 � i � n� 2 in Eq. (4.13). This could not be done if p j k� 1: We now proceed to the
extreme case k� 1 is a power of p.

� Assume that k ¼ qþ 1 for q ¼ ph: Then instead of the matrix given in Eq. (4.10) we consider
the matrix of rðhÞfi given as

x0 x1 x2 0 ::: 0

k1x0 x1 0 x3 ::: 0

..

. ..
. ..

. ..
. ..

.

kn�2x0 x1 0 ::: 0 xn

0
BBBBB@

1
CCCCCA: (4.15)

And now

yðhÞ0

yðhÞ1

yðhÞ2

..

.

yðhÞn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ k

Pn�2
�¼0 l�k�x0Pn�2
�¼0 l�x1

l0x2

..

.

ln�2xn

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (4.16)

The relations among elements yðhÞ0 , :::, yðhÞn are given by:

GðhÞ
i ¼ ki

yðhÞ0Pn�2
�¼0l�k�

0
@

1
A

qþ1

þ yðhÞ1Pn�2
�¼0l�

0
@

1
A

qþ1

þ yðhÞiþ2

li

 !qþ1

¼ 0 for 0 � i � n� 2:

The h-conormal space is given by
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LagðhÞðCkð�kÞÞ ¼ ðx0, :::, xn, yðhÞ0 , :::, yðhÞn Þ : where
x0, :::, xn satisfy eq: ð4:9Þ
and yðhÞ0 , :::, yðhÞn eq: ð4:15Þ

( )
:

The variety ZðhÞ ¼ p2ðLagðhÞðCkð�kÞÞÞ is given by a hypersurface FðhÞðyðhÞ0 , :::, yðhÞn Þ ¼ 0, which can

be computed by eliminating l0, :::, ln�2 from the system of GðhÞ
i : Similarly we can compute

rðhÞGðhÞ
i ¼ ki

yðhÞ0

k
Xn�2

�¼0
l�k�

,
yðhÞ1

k
Xn�2

�¼0
l�

, :::,
yðhÞiþ2

kli
, :::, 0

0
B@

1
CA

¼ ðkix0, x1, 0:::, 0, xi, 0, :::, 0Þ:
Again we see Eq. (4.16) as parametric equations with parameters l0, :::, ln�2: The tangent space is
generated by the vectors

VðhÞ
i :¼ @yi

@l0
,
@yi
@l1

, :::,
@yi

@ln�2

� �
¼ kix

k�1
0 , xk�1

1 , 0, :::, 0, xk�1
i , 0, :::, 0

� �
for 0 � i � n� 2,

which are subject to the additional condition

VðhÞ
i ?rGðhÞ

j i:e: hVðhÞ
i ,rGðhÞ

j i ¼ 0 for all 0 � i, j � n� 2: (4.17)

As in the zero characteristic case the last conditions are equivalent to the defining equations of
the curve.
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