
FRAMED THOMPSON GROUPS

ARISTIDES KONTOGEORGIS AND SOFIA LAMBROPOULOU

Abstract. We introduce the notion of the framed Thompson group, which can be seen as a categorification
of the ordinary Thompson group, and we show how framed links can be obtained from elements of the framed

Thompson group.

In memory of Vaughan F. R. Jones

1. Introduction

The Thompson group was introduced by R. Thompson in 1965 and is a widely studied group in the
literature, see [4] and references therein. In a series of articles V.F.R. Jones developed a method in order
to produce all knots and links from elements of the Thompson group F , see [7, 8, 9]. (Moreover, Aiello

[1] proved that all oriented knots and links arise from the oriented subgroup
−→
F , which was also introduced

by Jones [7].) The reader is also referred to Figures 8,12. In this article we will follow Jones’ categorical
approach in order to define the notion of the framed Thompson group, GV,k. This group is interesting in itself
and can be seen as a categorification of the ordinary Thompson group. We also show that every framed link
can be obtained by an element of the GV,k.

More precisely, in Section 2 we introduce the category of forests decorated by unitary operators on a
fixed vector space V . Following Jones, the trees in this category are seen as a direct system and the framed
Thompson group is the direct limit of this system. In Section 3 the category of decorated tangles CV ,
together with a functor from the category of decorated forests to CV . Then we define the ring R of formal
linear combinations over Z of isotopy classes of decorated links, with multiplication the disjoint union. We
also define the R-module generated by all (1, 2k + 1) decorated tangles, where the scalar product is again
the disjoint union. This module is equipped with a hermitian inner product with values in R. Jones’ result
is modified and the existence of a special tangle Ω is shown, so that decorated links can be obtained in terms
of the introduced inner product, as ⟨gΩ,Ω⟩ for some element g in the framed Thompson group GV,k. If the
selected vector space V is one-dimensional and the unitary operator is a root of unity, then we can recover
in this way the notion of classical framing. Furthermore unitary operators with eigenvalues n-th roots of
unity correspond to a multitude of framings for the same link component. These are discussed in Section 4.

It is well-known that every closed, connected, oriented (c.c.o.) 3-manifold can be obtained by surgery
along a framed link in S3 and that the framed links of two homeomorphic 3-manifolds are related by isotopy
and the so-called Kirby moves. Now, framing can be represented by the blackboard framing, where in the
equivalence the first Reidemeister move is not permitted. Also by integral or rational framing assigned to
each component of the link, where in the equivalence all three Reidemeister moves are allowed.

Relating now the discussion to the Thompson groups, through our construction, all ambient isotopy classes
of framed link diagrams arise from elements of the framed Thompson groups (in analogy to the connection
of framed links to elements of the framed braid groups). Note that in [15] Raghavan and Sweeney show that
not all regular isotopy classes of link diagrams arise from elements of some Thompson group. Therefore, our
approach has the potential of relating the theory of Thompson groups to the study of 3-manifolds. In fact,
through our construction each component of a given link can be assigned a multitude of framings and, thus,
a multitude of associated 3-manifolds. Then, an interesting question would be the topological connection of
the 3-manifolds assigned to one framed Thompson group element. Another question is the algebraic relation
between different (framed) Thompson group elements that give rise to ambient isotopic (framed) links (the
analogues of the classical Markov theorem), and then to homeomorphic 3-manifolds.
Acknowledgment: We would like to thank the referee for all their remarks, corrections and improvements.

Date: August 13, 2022.

1



2 A. KONTOGEORGIS AND S. LAMBROPOULOU

OO t

V V V V V V V

V

V

V

V

f1 f2 f3

f4

f5

f6 f7

f8 f9

V V V

V

V

f5 f8 f9

s

Figure 1. Two decorated trees; the upward arrow indicates the direction of the maps

2. The framed Thompson group

In a series of articles [7, 8, 9] V.F.R. Jones studied the Thompson group F , which he views as a group
of fractions of an appropriate category, and he developed a method for producing all knots and links from
elements of the group F . Notice that there are other known examples of this construction (besides F ): the
Brown-Thomson group Fk [8, sec. 2.3], the braided Thompson group [8, sec. 2.4], the braid groups [8, p.6],

the oriented Thompson group
−→
F [2]. In this section we will extend the construction of Jones [8] in order to

introduce a framing on the classical Thomson group.

2.1. A categorical approach to the framed Thompson group. Let V be a fixed vector space of
dimension d over C. Select a fixed basis (e1, . . . , ed) of the vector space V .

Definition 1. Define the category of decorated forests, FV,k, which has as objects elements of the form
V ⊗n = V ⊗ · · · ⊗ V (n-factors), where n is a natural number. The morphisms of FV,k from V to V ⊗n are
equivalence classes of decorated trees of the form given in Figure 1. That is each inner vertex is adjacent
to k + 1 edges, one incoming and k outgoing. Each edge is decorated by a unitary linear map f : V → V ,
namely f ∈ U(V ), that is ff∗ = IdV . In this way we have linear maps

V −→ V ⊗k = V ⊗ · · · ⊗ V k factors

ei 7−→ f1(ei)⊗ f2(ei)⊗ · · · ⊗ fk(ei) =

d∑
ν1=1

a
(1)
ν1,i

d∑
ν2=1

a
(2)
ν2,i

· · ·
d∑

νk=1

a
(k)
νk,i

eν1 ⊗ eν2 ⊗ · · · ⊗ eνk
,

where we assume that

fµ(ei) =

d∑
νµ=1

a
(µ)
νµ,i

eνµ
, a

(µ)
νµ,i

∈ C, µ = 1, . . . , k.

Two decorated trees t1, t2 will be considered equivalent if:

• The corresponding trees t1, t2, if we forget the decoration, are equal
• At each inner vertex we can change the linear maps as follows

(1)

V V V

V

V

f1g f2g f3g

g−1f4

∼

V V V

V

V

f1 f2 f3

f4

That is, we can compose the functions decorating the bottom edge and the middle edge on top by
a unitary map g and its inverse.
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The set of morphisms of the form V → V ⊗n, n ∈ N, will be denoted by TV,k and elements of TV,k will
be called decorated trees. An arrangement of decorated trees next to each other will be called a forest. A
decorated forest consisting of vertical segments placed next to each other, will be called trivial, even with
non-trivial decorations. A decorated forest gives rise to a morphism V ⊗n → V ⊗m in the category FV,k by
placing n decorated trees of the form (1,mi) next to each other for m1 + · · ·+mn = m, that is we consider
the tensor product of the trees’ morphisms. One can compose two forests V ⊗n → V ⊗m, V ⊗m → V ⊗ℓ by
placing the second forest on top of the first.

Remark 2. Using the above equivalence one can move all (unitary) maps on the leaves of the tree so that
all other edges are decorated by identity maps. The topological interpretation of this definition will be clear,
when we will define the functor from forests to tangles.

Remark 3. Notice that ternary trees, that is k = 3, will lead to (framed) knots and links.

2.2. Direct limit constructions. The set TV,k is a directed set by setting, for s, t ∈ TV,k, s ≤ t, if and
only if there is a morphism f in the category FV,k such that t = fs. For example if s is the element on the
right of Figure 1 and t is the element on the left, then s ≤ t.

Lemma 4. For each two elements s1, s2 ∈ TV,k there is a common element s, such that s1, s2 ≤ s, that is

s = f1s1 = f2s2, for some morphisms f1, f2 in the category FV,k.

Proof. Using [8] we can find forests f ′1, f2, with edges decorated by the identity map so that f ′1s1 = f2s2 as
non-decorated trees. Furthermore, it is clear that using the equivalence relation of decorated trees, given
in Eq. (1), we can move all decorations on the top edges (leaves). We can then compose one of the trees
with a trivial forest f , whose segments are decorated so that ff ′1s1 = f2s2. The desired forest f1 is given by
f1 = ff ′1. □

For a morphism f : V ⊗n → V ⊗m we will denote by t(f) = V ⊗m and o(f) = V ⊗n, the target and origin
of f respectivelly.

Given a functor

(2) Φ : FV,k → C

we define the direct system SΦ indexed by TV,k, associating to each morphism s ∈ TV,k the object Φ(t(s)) =
Φ(V ⊗n), where n is the number of leaves of s, that is the number of terminal edges of the underlying tree.
Then, for s ≤ t, that is t = fs, we associate the direct system morphisms its given by

its := Φ(f) ∈ HomC

(
Φ(t(s)),Φ(t(t))

)
.

Remark 5. The categories denoted by C in this article will have elements of the form V ⊗n as objects, for
a fixed vector space V . The functors the form Φ : FV,k → C will satisfy Φ(V ⊗n) = V ⊗n.

Given now an fixed object, ω ∈ Ob(C ), we define the category C ω, which has as objects the sets
HomC (ω, obj) for every object obj ∈ Ob(C ), while the morphisms f∗ of C ω are given by compositions
with morphisms f : obj1 → obj2 of C with morphisms ϕ ∈ HomC (ω, obj) as follows:

HomC (ω, obj1) ω obj1

HomC (ω, obj2) obj2

f∗

ϕ

f◦ϕ f

Example 6. If C = FV,k and ω = V , then HomFV,k
(V, obj) is the set of s ∈ TV,k with t(s) = obj. That

is an object in the category Fω
V,k = FV

V,k is the set of elements s in TV,k with t(s) = obj for a fixed object

obj = V ⊗n ∈ FV,k. Denote by TV,k(obj) := HomFV,k
(V, obj) such a set. The push-forward construction

above gives rise to a morphism

TV,k(obj1) = {s ∈ TV,k : t(s) = obj1}
f∗−→ {s′ ∈ TV,k : t(s′) = obj2} = TV,k(obj2)

s 7−→ fs

whenever there is a morphism f : obj1 → obj2.
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Given a functor Φ as in eq. (2) we can define a functor

Φω : FV,k −→ C ω

Φω(obj) = HomC (ω,Φ(obj))

Φω(f : obj1 → obj2) = Φ(f)∗ : HomC (ω,Φ(obj1)) → HomC (ω,Φ(obj2))

From the above Φ(f)∗(ϕ) = Φ(f) ◦ ϕ.
As before we define a direct system SΦω , indexed by TV,k, associating to each morphism s ∈ TV,k the

object
Φω(t(s)) = HomC

(
ω,Φ(t(s))

)
.

In the Φω setting the maps its of the direct system SΦω indexed by TV,k, are given by mapping ϕ ∈
Hom

(
ω,Φ(t(s))

)
∈ Ob(C ω) to

its(ϕ) = Φω(f)(ϕ) = Φ(f)∗(ϕ) = Φ(f) ◦ ϕ ∈ HomC

(
ω,Φ(t(t))).

In the above formula recall that f is selected by the equality t = fs. We can now define the direct limit

(3) lim
→

SΦω = {(t, x) with t ∈ TV,k, x ∈ Φω(t(t))} / ∼

where (t, x) ∼ (s, y) if there is an r such that t, s ≤ r with

r = ft = gs and Φω(f)(x) = Φω(g)(y) = z

for some z ∈ Φω(t(r)). In particular,

(t, x) ∼ (ft,Φω(f)x) = (ft,Φ(f)∗(x)) = (ft,Φ(f) ◦ x).
We will denote the equivalence class of (t, x) by t/x.

2.3. Definition of the framed Thompson group. Suppose now that Φ is the identity functor from
FV,k → FV,k and ω̄ is the tree with one leaf with V both at the top and bottom and the identity map
V → V at the edge. Set ω = V = Φ(t(ω̄)).

In this case, i.e. when Φ is the identity functor, an equivalence class t/x in the limit is given by

t ∈ TV,k and x ∈ Φω(t(t)) = HomFV,k

(
V, t(t)

)
= HomFV,k

(
V, V ⊗n

)
.

This means that x : V → t(t) = V ⊗n, therefore x ∈ TV,k. Therefore, t/x is the equivalence class of (t, x) in
the direct limit lim

→
SΦω , for Φ the identity functor and ω = V . Denote this direct limit in this case by

GV,k = {(t, s), t, s ∈ TV,k}/ ∼
Two classes (t1, x1), (t2, x2) ∈ GV,k can by multiplied in the following way: We can select elements f1, f2 in
the morphisms of the category FV,k such that

f1x1 = f2t2.

We have that (t1, x1) ∼ (f1t1, f1x1) and (t2, x2) ∼ (f2t2, f2x2). We define

(4)
t1
x1

· t2
x2

=
f1t1
f1x1

· f2t2
f2x2

:=
f1t1
f2x2

.

The geometric interpretation of the above cancellation can be explained in terms of elementary cobordisms.
Here we generalize the multiplication algorithm of Belk-Guba-Sapir [3], [5] to the framed Thompson group.
Suppose that we would like to multiply the elements α, β in GV,k. We place β on top of α. In the resulting
diagram, each local region of the form shown in the left hand-side of Figure 2, is replaced by three parallel
lines, each one decorated by f1g

∗
1 , f2g

∗
2 , f3g

∗
3 . In order to see why this procedure gives the same result as the

one obtained in Eq. (4) we argue as follows. The branch shown in left hand-side of Figure 2 is decorated by
f1, f2, f3 is in the denominator of β while the branch bellow, decorated by g1, g2, g3, is in the numerator of
α. We change the decorations f1, f2, f3 by f1g

∗
1g1, f2g

∗
2g2, f3g

∗
3g3 so that we can cancel the denominator by

the numerator using the definition of the direct limit. The resulting element is the one with three parallel
lines as shown in the right part of Figure 2.

In this way the set GV,k becomes a group. The identity element is the equivalence class of (ω̄, ω̄) ∼ (s, s),
for any s ∈ TV,k, while the inverse element of the equivalence class of (x, t) is given by the equivalence class
of (t, x), that is:

(x, t)−1 = (t, x).
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f3

f2

f1

g3
g2

g1
β

α

f3

f2
f1

g3
g2

g1

f1g
∗
1

f2g
∗
2

f3g
∗
3

β

α

Figure 2. Multiplying the Thompson group elements α, β

Figure 3. A series of simplifications in the group multiplication

Definition 7. The group GV,k is called the framed Thompson group.

Remark 8. If V = C and if we consider the subcategory of FC,k. where all edge maps are the identity,
then we recover the classical Thompson group [9].

3. The category of decorated tangles

Definition 9. Let n,m ∈ Z, n,m ≥ 0. A decorated (n,m)-tangle is an isotopy class of rectangles with
m “top” and n “bottom” boundary points, containing immersions of circles and intervals with only double
points, the crossings, which are assigned with ‘over’ or ‘under’ information, and which meet the boundary
transverally in the m+n boundary points, see Fig. 4. The special case of (0, 2)-tangle comprising a (possibly
knotted) arc that connects two top boundary points, as illustrated on the left-hand side of Fig. 5, will be
called a cup, while a (2, 0)-tangle comprising a (possibly knotted) arc connecting two bottom boundary
points, as illustrated on the right-hand side of Fig. 5, will be called a cap. Furthermore, to each boundary
point we attach a fixed vector space V . The tangle arcs, whether connecting boundary points or forming
closed loops in the interior of the framed tangle, have the following extra decoration information:

• To each arc connecting a bottom to a top boundary point we attach a unitary map f : V → V between
the two boundary vector spaces V .

• To each closed arc we attach a complex number.
• To each cup and to each cap we attach functions η(f1, f2) and ϵ(f1, f2) respectively, as explained in Eqs.
(5), (6), where f1, f2 : V → V are given unitary maps, see also Fig. 5. More precisely cups and caps give
rise to linear maps: C → V ⊗ V and V ⊗ V → C respectively, defined as follows: For given unitary maps
f1, f2 : V → V , the “cup” tangle gives rise to the linear form:

η(f1, f2) : C −→ V ⊗ V(5)

1 7−→
d∑

i=1

f1(ei)⊗ f∗2 (ei)
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while the “cap” tangle gives rise to the map

ϵ(f1, f2) : V ⊗ V −→ C(6)

ei ⊗ ej 7−→ ϵ(f1(ei)⊗ f∗2 (ej)),

where ϵ is the linear map defined by ϵ(ei⊗ej) = δij . In particular, if A(i) = (a
(i)
ν,µ) is the matrix describing

fi, then we can compute the matrices of η(f1, f2) and ϵ(f1, f2) as follows:

η(f1, f2)
(
1
)
=

d∑
i=1

d∑
ν1=1

d∑
ν2=1

a
(1)
ν1,i

ā
(2)
i,ν2

eν1
⊗ eν2

Similarly

ϵ(f1, f2)
(
ei ⊗ ej

)
= ϵ

(
d∑

ν1=1

d∑
ν2=1

a
(1)
ν1,i

ā
(2)
j,ν2

eν1 ⊗ eν2

)
=

d∑
ν=1

ā
(2)
j,νa

(1)
ν,i .

f1 f2

zf3 f4

Figure 4. A decorated (n,m)-tangle

f1 f2 f1 f∗2 f∗1 f2

f1 f2 f1 f∗2 f∗1 f2

C C

C C

V V

V V

V V

V V

V V

V V

ϵ

η

ϵ∗

η∗

Figure 5. The cup and cap maps

Remark 10. The definitions of the maps η(f1, f2) and ϵ(f1, f2) induce “orientations” on the cup and cap
respectively, in the sence that we introduce a convention on how to compose the decorating functions on
each arc. Indeed, taking the ∗ on the second function of the definition can be considered as inverting
the orientation of the corresponding arc. Therefore the cup connecting two top boundary points has an
orientation from right to left, while the cap connecting two bottom boundary points has an orientation
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from left to the right, see Fig. 5. We can also consider the maps η∗(f1, f2) and ϵ∗(f1, f2) with the inverse
orientation defined as

η∗(f1, f2) := η(f∗1 , f
∗
2 ) ϵ∗(f1, f2) := ϵ(f∗1 , f

∗
2 ).

Definition 11. We will call the orientations defined by the maps η and ϵ on the cup and cap the standard
orientations.

Remark 12. The notion of a decorated tangle is well-defined, since any isotopy between two tangles does
not affect the decorations.

3.1. Composition of tangles. Topologically, if we have an (n,m)-tangle and an (m, ℓ)-tangle we can
compose them by placing the second on top of the first and concatenating the corresponding endpoints,
resulting in an (n, ℓ)-tangle. Regarding decorations, observe that the convention of the direction of the
decorating maps from bottom to top, induces an upwards orientation on all tangle arcs with respect to the
height function. So for the composition we distinguish the following cases:
• Arcs in the composed tangle connecting a bottom point to a top point have an orientation from bottom
to top. We realize this by composing the decorating maps along the arc consecutively, changing, if needed,
intermediate maps f to f∗, for achieving compatible orientations. For example in Fig. 6 the arc on the left
is decorated by the map f6f3f

∗
2 f
∗
5 f4f1 while the arc on the right is decorated by the map f4f1f

∗
2 f
∗
5 f6f3.

f4 f5 f6

C

C

f1 f2 f3

f4 f5 f6

C

C

f1 f2 f3

Figure 6. Composition of maps in a bottom-to-top arc

We can arrive at the same result as a composition of maps η and ϵ by following the path from bottom
to top and inverting the maps η and ϵ to η∗ and ϵ∗, whenever the cups and caps are travelled by the
non-standard orientation. For example for the left hand side of Fig. 6 we consider the composition of the
functions

V ∼= V ⊗ C
f1⊗η(f∗

2 ,f
∗
3 ) // V ⊗ V ⊗ V

ϵ(f4,f5)⊗f6 // C× V ∼= V .

The basis element ei ⊗ 1 of V ⊗ C goes by f1 ⊗ η(f∗2 , f
∗
3 ) to

d∑
ν=1

f1(e1)⊗ f∗2 (eν)⊗ f3(eν) =

d∑
ν,µ,λ,κ=1

a
(1)
µ,iā

(2)
ν,λa

(3)
κ,ν eµ ⊗ eλ ⊗ eκ,

which in turn goes by the function ϵ(f4, f5)⊗ f6 to

d∑
ν,µ,λ,κ,s,t=1

a
(6)
sk a

(3)
ν,κā

(2)
λ,ν ā

(5)
λ,ta

(4)
t,µa

(1)
µ,ies,

which is the matrix corresponding to the composition f6f3f
∗
2 f
∗
5 f4f1.

• Arcs in the composed tangle connecting two bottom or two top points are given the standard orientation.
In terms of the decoration maps this means that we traverse the arcs, composing the consecutive decorating
maps and switching, if needed, maps f to f∗. Also we can obtain the same result by composing maps ϵ and
η, taking care of the consistency of their orientations, as explained in the previous case.
• For composing a cup to a cap as shown, in Figure 7 we proceed as follows:
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f1 f∗2

f3 f∗4

f1 f2

f3 f4

C

C

η

ϵ

Figure 7. Composing cup to cap

After glueing together the cup with the cup we have a map

C V ⊗ V C

1

d∑
i=1

f1(ei)⊗ f∗2 (ei) ϵ

(
d∑

i=1

f3f1(ei)⊗ f∗4 f
∗
2 (ei)

)
η(f1,f2) ϵ(f3,f4)

If fi is represented by the matrix A(i) = (a
(i)
ν,µ) then this composition is given by

ϵ(f3, f4)

 d∑
i,ν1,ν2=1

a
(1)
ν1,i

ā
(2)
i,ν2

eν1
⊗ eν2

 =

d∑
i,ν1,ν2=1

a
(1)
ν1,i

ā
(2)
i,ν2

d∑
µ=1

ā(4)ν2,µa
(3)
µ,ν1

= tr(A1 ·A∗2 ·A∗4 ·A3) = tr(A∗2 ·A∗4 ·A3 ·A1).

Note that the above given expression can be also derived as follows: we start from a given point on the closed
arc. Then, we move along the closed arc clockwise (according to the standard orrientation) and we compose
the linear maps, switching from f to f∗, if needed. The expression tr(A∗2 ·A∗4 ·A3 ·A1) = tr(f∗2 · f∗4 · f3 · f1)
Notice also that since tr(AB) = tr(BA), the starting point does not matter.

Definition 13. We define the decorated tangle category CV to be the category with objects V ⊗n, n ∈ Z, n ≥ 0
and morphisms the decorated tangles as defined above. By convention V ⊗0 = C.

Remark 14. The category of classical tangles can be seen as a subcategory of the category CV , if we assign
on any classical tangle the identity operator on open arcs and the dimension of V on closed arcs.

3.2. A functor from the forest to the tangle category. We will now define a functor

Φ : FV,3 −→ CV

as follows: The object V ⊗n of FV,3 goes to the same object of CV . A morphism f goes to Φ(f) which is
the tangle obtained by isotoping the forest to be in a rectangle with roots on the bottom edge and leaves
on the top edge. Each vertex of the forest is replaced with a crossing, where the middle leaf at each vertex
connects with the root coming in and passes under the crossing, see Figure 8.

We can also define the set C̃V .

Definition 15. The elements of the set C̃V are given by equivalence classes of pairs (t, T ), where t ∈ TV,3

with t(t) = V ⊗n and T is an (1, n) tangle in C, where (t1, T1) ∼ (t2, T2) if there are elements g1, g2 ∈ FV,3,
such that g1t1 = g2t2 and Φ(g1)T1 = Φ(g2)T2. In particular (gt,Φ(g)T ) ∼ (t, T ). This is the direct limit for
the functor Φ : FV,k → C as defined in Eq. (3).

3.3. The inner product. If S, T are two (1, 2k + 1) tangles in CV , then we can take the horizontal mirror
image of the second one and we change all maps fi on arcs to f∗i . The complex number attached to each
closed arc is changed to its complex conjugate.



FRAMED THOMPSON GROUPS 9

f1 f1

f2 f2f3 f3f4 f4

f5 f5f6 f6f7 f7

Φ−→

Figure 8. Relating a forest to a tangle via the functor Φ

We then place the altered tangle on top of the first one and we compose them as morphisms in the tangle
category CV obtaining a decorated (1, 1)-tangle, as shown in Figure 9. This (1, 1)-tangle contains an arc
connecting the bottom to the top boundary point. We will now explain how we can close this open arc in
order to arrive at a closed link.

f∗2

f2

f∗1

f1

S T ⟨S, T ⟩

Figure 9. The inner product of two decorated tangles

Closing the bottom-top arc
The open arc is decorated by a linear map f : V → V . In order to close the arc we draw an arc decorated

by the identity map parallel to the arc carrying f and we close the bottom and top by the maps η : C → V ⊗V
and ϵ : V ⊗ V → C. We finally arrive to a map C → C given as follows:

1 7→ ϵη(1) = ϵ

(
d∑

i=1

f(ei)⊗ ei

)
= ϵ

(
d∑

i=1

d∑
ν=1

aν,ieν ⊗ ϵi

)
= tr(f).

Definition 16. The decorated link resulting by the above described procedure is the inner product of S, T
and it will be denoted by ⟨S, T ⟩.

We expand the above definition in the following sense:
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f IdV tr(f)

η

ϵ

Figure 10. Closing the bottom-top arc

Definition 17. Let R be the ring of formal linear combinations over Z of isotopy classes of decorated
unoriented links, where multiplication is the distant union. Let RC1,k denote the free R-module having the
set of all (1, 2k + 1) decorated tangles as a basis. The above construction gives rise to an inner product:

RC1,k ×RC1,k −→ R

(A,B) 7−→ ⟨A,B⟩.

This inner product is Hermitian, that is ⟨A,B⟩ = ⟨B,A⟩, where for a decorated link L, the L is the mirror
image of L with complex conjugates applied to all decorations of L.

3.4. Normalising the inner product. This inner product is not compatible with the connecting maps
defining the direct limit C̃, as given in Definition 15. This means that for a forest f ∈ FV,3 we might have
⟨S, T ⟩ ≠ ⟨Φ(f)S,Φ(f)T ⟩. The composition with the tangles Φ(f) on both entries of the inner product will
produce several extra compositions of unknotted cups and caps as shown in Figure 11.

Φ(f)∗

Φ(f)

Figure 11. Canceling carets after composing by the image Φ(f) of a forest f with 5 nodes

This will lead to several unknotted circles, corresponding to cancelling carets (as many as the number of
vertices of the forest f ∈ FV,3), with framing the dimension dimV of the fixed vector space V , which is
independent of the decoration of Φ(f). Indeed,
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f∗1 f∗2

C

C

f1 f2

We have the map

C V ⊗ V C

1

d∑
i=1

f1(ei)⊗ f2(ei) ϵ

(
d∑

i=1

f∗1 f1(ei)⊗ f∗2 f2(ei)

)
= ϵ

(
d∑

i=1

ei ⊗ ei

)
= d.

η(f1,f2) ϵ(f∗
1 ,f

∗
2 )

We will denote by δ the element of R, which topologically is the unknotted circle and is decorated by
the complex number d = dimV . We consider the extension of R, given by R[

√
δ, 1/

√
δ]. We define the

normalization Φ̄ of the functor Φ, which is given by multiplying the R[
√
δ, 1/

√
δ]-linear map induced by Φ

by
(

1√
δ

)p
, where p is the number of vertices of the forest in FV,3. Notice that we don’t count the leaves

and root as vertices. Thus

(7) Φ̄(s) =
1

√
δ
pΦ(s).

Notice, that when we move from (s, r), s, r ∈ TV,3, to the equivalent (fs, fr), by multiplying both s, r by
some forest f ∈ FV,3 with o(f) = t(r) = t(s), then

(8) ⟨Φ̄(fs), Φ̄(fr)⟩ = ⟨Φ̄(s), Φ̄(r)⟩.
Indeed, each extra vertex introduced by f gives rise to an extra δ. Let p be the number of such vertices. On

the other hand fs and fr each gives rise to 1/
√
d
p
so

⟨Φ̄(fs), Φ̄(fr)⟩ = d−pdp⟨Φ̄(s), Φ̄(r)⟩ = ⟨Φ̄(s), Φ̄(r)⟩.
Therefore the normalization of Φ̄ given in Eq. (7) induces an inner product compatible with the connecting

maps of the direct limit C̃.

Example 18. In Figure 12 the three branches at position A are labelled by f5, f6, f7, at position B they are
labelled by f8, f9, f10, at position C they are labelled by g5, g6, g7, and at position D by g8, g9, g10. Hence,
the framing on the resulting trefoil knot is given by

tr(g∗5 g7 f6 f2 f4 g
∗
4 g
∗
2 g
∗
9 f
∗
10 g3 g

∗
1 f
∗
5 f∗7 g∗8 g10 f

∗
5 f∗3 f1).

3.5. An action of the framed Thompson group GV,k. Let Φ : FV,k → C be a functor, and let α =
s/t ∈ GV,k and m = t′/x ∈ lim

→
SΦω , that is s/t is the class of the pair (s, t) ∈ TV,k × TV,k, while t′/x is the

class of (t′, x), t′ ∈ TV,k and x ∈ Φω(t(t′)) = HomC (ω,Φ(t(t′))).
The interesting case in this article is when C stands for C. We have

α =
s

t
=

f1s

f1t
and m =

t′

x
=

f2t
′

Φ(f2)x

and after selecting f1, f2 ∈ FV,k, such that f1t = f2t
′, we can multiply

α ·m =
f1s

f1t
· f2t

′

Φ(f2)x
=

f1s

Φ(f2)x
∈ lim
→

SΦω .

In this way the R-module M = lim
→

SΦω is acted on by the group GV,k. Checking that this is a group action

is left to the reader.

Definition 19. For two elements m1 = [(t, T )] = t
T , m2 = [(s, S)] = s

S in M , we consider elements
f1, f2 ∈ FV,3 such that f1t = f2s. We then define

⟨m1,m2⟩ =
〈

f1t

Φ̄(f1)T
,

f2s

Φ̄(f2)S

〉
M

:=
〈
Φ̄(f1)T, Φ̄(f2)S

〉
.

By construction of Φ̄ given in Eq. (7), the inner product on classes is well-defined.
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f1 f2 f3 g1 g2 g3

f4 g4

A B C D

Figure 12. Computing the inner product of tangles coming from trees.

Consider the tangle ω̄, consisting of a single straight line connecting two boundary points of a rectangle,
and set for any t′ ∈ TV,k

Ω = [(t′,Φ(t′)ω̄)] = [(1, ω̄)] =
1

ω̄
∈ M.

Let us now consider for every g ∈ GV,3 the element

⟨gΩ,Ω⟩ ∈ R,

which is called the “vacuum expectation of the element g”. Let g = s
t ∈ GV,3. Then since

1

ω̄
=

t

Φ̄(t)ω̄
=

s

Φ̄(s)ω̄

we have 〈s
t
Ω,Ω

〉
=

〈
s

t

t

Φ̄(t)ω̄
,
1

ω̄

〉
=

〈
s

Φ̄(t)ω̄
,
1

ω̄

〉
=

〈
s

Φ̄(t)ω̄
,

s

Φ̄(s)ω̄

〉
=
〈
Φ̄(t), Φ̄(s)

〉
.

Jones proved [7, 9] that topologically every link L can be obtained as
〈
Φ̄(t), Φ̄(s)

〉
, that is as ⟨gΩ,Ω⟩ for

some g in the ordinary Thompson group.

Proposition 20. Every decorated link, where each component is decorated by a complex number, which is
the trace of a unitary operator on V , can arise as ⟨gΩ,Ω⟩ for some g ∈ GV,3.

Proof. By Jones’ theorem [7, 9] each non-decorated link L can arise as ⟨gΩ,Ω⟩. Write this g as g = s/t,
where s, t are non decorated ternary trees. Take now a component of L decorated by tr(f). We decorate a
leaf of t contributing to this component by f and all other edges of s and t contributing to this component
are decorated by the identity map. □

4. Framed links

4.1. Obtaining classical framings. Assume now that the fixed vector space V is C. The set of unitary
operators C → C is identified with complex numbers z, such that |z| = 1. If we consider the category FC,3,n,
where we consider only unitary maps which are n-th roots of unity, then we end up with links L having
knot components, each of them is decorated by an n-th root of unity. This is equivalent to the notion of
a Z/nZ-framing. We can interpret a knot component decorated by an n-th root of unity, as a twist of the

thickened knot along its core curve. Indeed, let ζn = e
2iπ
n , every n-th root of unity is expressed by ζan, where

a mod n is a class in Z/nZ. Multiplication by ζan gives rise to rotation in D = {z ∈ C, |z| < 1}. Subdivide
the core curve of a link component into n-segments and suppose that in D× [0, 1], the elements in D×{k/n}
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for 0 ≤ k ≤ n are multiplied by ζakn , then we obtain a twisting of the thickened knot component, which is
rotated a times.

The continuous version of this can be given in the following way: each rational number α = a/n gives rise
to the function

D × I −→ D × I

(z, t) 7−→ (e2πiαz, t) = (e
2πia
n z, t).

We can obtain an integer framing, by considering an infinite number of compatible framings, one for each
n ∈ N and then form Ẑ = lim

←
Z/nZ, which contains Z as a dense subgroup. Instead of Ẑ we can also restrict

ourselves to framings in pℓ-roots unity, with ℓ ∈ N and forming the Zp rings. For a topological interpretation
of p-adic integers as infinite cablings in the case of the Braid groups, see the articles of J. Juyumaya and the
second author in [10], [11].

The interpretation of a twist by an element z of |z| = 1 which is not a root of unity is still interesting.
Such rotations lead to non-closed orbits which are dense in the boundary torus of the thickened knot.

4.2. Obtaining multiple framings. We will now return to the general case where d = dimC V > 1.
Suppose that we have a unitary operators with eigenvalues n-th roots of unity. The conjugation class of such
an operator U can be described by the exponents (a1, . . . , ad) ∈ (Z/nZ)d, that is there exist Q ∈ GLd(C)
such that QUQ−1 = diag(ζa1

n , . . . , ζad
n ). Closed components lead to taking the trace of U as decoration, i.e.

we get the quantity ζa1
n + · · · + ζad

n . Next lemma shows that under some mild assumptions the exponents
a1, . . . , ad can be recovered from the trace of the operator.

Lemma 21. Let n = pλ1
1 · · · pλr

r be the decomposition of the integer into prime factors p1, . . . , pr, such that
d < p1 < p2 < · · · < pr. Assume that 2 ≤ d ≤ n− 2. If

(9) ζa1
n + · · ·+ ζad

n = ζb1n + · · ·+ ζbdn

and 0 ≤ ai, bi < n then there is a permutation σ ∈ Sd, such that ai = bσ(i) for all 1 ≤ i ≤ d.

Proof. We will modify the proof of [6] given in Mathoverflow in order to include the case of having the same
exponents.

Notice first the case n = p is easy. Indeed, if we consider an equality as given in Eq. (9), then we can
form the polynomial

f(x) =

d∑
i=1

(
xai − xbi

)
∈ Z[x],

which has ζp as a root and degree deg f(x) ≤ p − 1. So for the polynomial Φp(x) = 1 + x + · · · + xp−1 we
should have Φp(x) | f(x), and if f(x) is not identically zero then f(x) = cΦp(x), for some c ∈ Z and in this
case d = p− 1 contradicting the assumption d ≤ n− 2 = p− 2.

For the next step we will use Theorem 4.1 in [12], which we now describe. Let G = ⟨g⟩ be a cyclic group
of order n = p1p2 · · · pr, where p1 < p2 < · · · < pr are the primes in the decomposition of n and r ≥ 2. Let
ϕ be the natural map

ϕ : Z[G] −→ Z[ζn] ⊂ C
n−1∑
i=0

cig
i 7−→

n−1∑
i=0

ciζ
i
n

and ϵ0 : Z[G] → Z be the augmentation map, namely ϵ0(
∑n−1

i=0 ciζ
i
n) =

∑n−1
i=0 ci. An expression of the form

ζa1
1 + · · ·+ ζad

d ∈ Z[ζn], is obtained as image of an element
∑n−1

i=0 cig
i ∈ Z[G], where ci is the multiplicity of

the root ζaν
n for i = aν . That is if we have equal exponents ai, then we write

ζa1
n + · · ·+ ζad

n = caj1
ζ
aj1
n + · · ·+ cajt

ζ
ajt
n = ϕ

(
caj1

gaj1 + · · ·+ cajt
gajt

)
,

where all exponents ajs are different and cajν
are positive integers. We also have e0(caj1

gaj1 +· · ·+cajt
gajt ) =

d.
Theorem 4.1 in [12] implies that if x, y ∈ N[G] with ϕ(x) = ϕ(y) and ϵ0(x) ≤ ϵ0(y), then x ≤ y, meaning

that the coefficient of x corresponding to gi is less than or equal to the coefficient of y corresponding to
the same gi. But in our case if x, y are selected so that ϕ(x), ϕ(y) are the left and right hand of Eq. (9)
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respectively, then e0(x) = e0(y) = d, forcing x ≤ y. The same argument shows that y ≤ x and the equality
of the coefficients follows.

The above argument holds only for squarefree integers n. We will now use theorem 1 of [14] in order to
reduce the problem to the squarefree case. This theorem states that whenever we have a selection ζ1, . . . , ζr
of roots of unity such that

r∑
i=1

αiζi = 0, αi ∈ Z, αi ̸= 0

but there is no nonempty proper subset S ⊂ {1, 2, . . . , r} for which∑
i∈S

αiζi = 0,

then for each i, j we have (ζi/ζj)
m = 1, where m is the product of primes which are less than r. We rewrite

Eq. (9) as follows:

(10) ν1ζ
a1
n + · · ·+ νtζ

at
n = µ1ζ

b1
n + · · ·+ µt′ζ

bt′
n ,

where 1 ≤ νi, µi ≤ d are the multiplicities of ζai
n , ζbin in case of multiple eigenvalues. We subtract the left

from the right hand side in order to obtain a relation

(11)

r∑
i=1

αiζi = 0,

where r ≤ 2d and each −d ≤ αi ≤ d, and ζi are distinct n-th roots of unity. If there exist a nonempty proper
subset S ⊂ {1, 2, . . . , r} for which ∑

i∈S
αiζi = 0

then the smallest such S has size at most r/2 ≤ d. Indeed, for every S with the zero sum property the
complement has also the zero sum property. Mann’s theorem for S gives us that (ζi/ζj)

m = 1 where m is
the product of primes ≤ d. For the prime factors pi of n we have assumed that d < pi therefore we have
that (n,m) = 1 and the equation (ζi/ζj)

n = 1 we finally arrive to ζi = ζj , which is a contradiction. So no
such set exists. We multiply now Eq. (11) by a reciprocal of an existing root of unity in order to obtain that
some ζi = 1. Again we use Mann’s theorem in order to obtain a squarefree positive integer m such that for
all 1 ≤ i, j ≤ r we have (ζi/ζj)

m = 1 and since some ζj = 1 we finally arrive to ζmi = 1, for all 1 ≤ i ≤ r.

Therefore in Eq. (10) we have that all roots ζai
n , ζbin have squarefree order, meaning that N = pλ1−1

1 · · · pλr−1
r

divides all exponents ai, bi, that is ai = a′iN , bi = b′iN . But then setting ζn/N = ζNn we have that

ζ
a′
1

n/N + · · ·+ ζ
a′
d

n/N = ζ
b′1
n/N + · · ·+ ζ

b′d
n/N

and since n/N is square free we have the desired equality for a′i, b
′
i, which in turn implies the truth of the

lemma for ai, bi.
□

We can restrict ourselves to the category FV,3,n, where V is a vector
space of small dimension d, according to the previous lemma and the
maps are forests decorated by unitary operators with eigenvalues n-th
roots of unity. Then lemma 21 shows that the trace of U holds the
information of d-exponents and gives rise to a (Z/nZ)d-framing of each
link component. Using the previous interpretation of framing as twisting
along the core curve we can model this way d-cables rotating along the
core curve.
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5. Relating to the construction of 3-manifolds

By classical results of Lickorish and Wallace [13], [16] it is well-known that every closed, connected,
oriented (c.c.o.) 3-manifold can be obtained by the surgery technique along a framed link in S3. Then
two framed links give rise to homeomorphic 3-manifolds if and only if they are equivalent via isotopy and
the so-called Kirby moves. There are various ways of representing framing. One of them is to use the
blackboard framing, so in this case the isotopy part of the equivalence is restricted to regular isotopy (the
first Reidemeister move is not allowed). Another one is to consider the framing as a decoration (integral
or rational) assigned to each component of the link. In this approach, the isotopy part of the equivalence
is ambient isotopy (all three Reidemeister moves). Relating now the discussion to the Thompson group,
Jones showed in [7] that every link diagram is equivalent to a link diagram representing a Thompson group
element. (Moreover, Aiello [1] proved an analogous result for oriented links). However, in [15] Raghavan
and Sweeney show that not all regular isotopy classes of link diagrams arise from elements of the Thompson
group. Through our construction, all ambient isotopy classes of framed link diagrams arise from elements
of the framed Thompson groups (in analogy to the connection of framed links to elements of the framed
braid groups). Therefore, our approach has the potential of relating the theory of Thompson groups to
3-manifolds.

In fact, from our construction in Section 4.2, each component of a given link can be assigned in a natural
manner a multitude of framings and, thus, a multidute of associated 3-manifolds. The above constructions
lead to several interesting questions, as for example the topological connection of the 3-manifolds assigned to
one framed Thompson group element. Another question is the algebraic relation between different (framed)
Thompson group elements that give rise to ambient isotopic (framed) links (the analogues of the classical
Markov theorem), and then to homeomorphic 3-manifolds.
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