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Field of Moduli versus field of Definition for

Cyclic Covers of the Projective Line

par ARISTIDES KONTOGEORGIS

RESUME. Nous donnons un critére, basé sur le groupe des auto-
morphismes, pour que certains revétements cycliques de la droite
projective soient définis sur leur corps de modules. Nous donnons
aussi un exemple de revétement cyclique de la droite projective
complexe de corps de module R qui ne peut pas étre défini sur R.

ABSTRACT. We give a criterion, based on the automorphism
group, for certain cyclic covers of the projective line to be de-
fined over their field of moduli. An example of a cyclic cover of
the complex projective line with field of moduli R that can not be
defined over R is also given.

1. Introduction

Let k be a perfect field of characteristic p > 0. Fix an algebraic closure
k of k. A k-curve X is a smooth, geometrically connected proper scheme
X — Speck of dimension one. In this paper we will focus on deciding
whether the field of moduli is a field of definition. Let g denote the genus
of the curve X. It is known that if g < 1 then the fields of moduli and
definition of X coincide. If g > 2 then a field of moduli for the curve X
does not need to be a field of definition. In what follows we will assume
that g > 2.

Hyperelliptic curves, i.e., 2-cyclic covers of the projective line of genus
g > 2, are favoured among other curves since they have a simple form,
which allows us to perform explicit computations. B. Huggins in [6] stud-
ied hyperelliptic curves, for p # 2 and using the results of P. Débes, M.
Emsalem, J.C. Douai [3],[4] she proved that if X — Speck is a hyperelliptic
curve of genus g > 2 with hyperelliptic involution i, then X — Speck is
defined over its field of moduli, provided that Autz(X)/(i) is not a cyclic
group of order prime to p.

The aim of this paper is to extend the result of Huggins to the case of ¢-
cyclic covers X — IP,%, where ¢ is a prime number. Let C;, := Gal(X/ IP’]%) =
Z/qZ. 1t is not true in general that Cj is a normal subgroup of Autj(X),
see [9],[8].
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We will treat the following cases of g-cyclic covers X of the projective
line:

(1) Kummer covers ((p,q) = 1) of the form

v = [ @—p)%,

1<i<s

where 2¢ < s and (d;,q) =1,
(2) Artin-Schreier covers (¢ = p) of the form:

(a) y» —y = 32—, a € k;

(b) p=34"—y= 57, > =%

() y*—y=25blp+1

(d) Artin-Schreier covers that are not birational to one of the cases
(2a),(2b),(2¢) above.

If the cover X — IP’/,lC is birational to a cover of type (1) or (2d) then Cj
is a normal subgroup of the full automorphism group. In this case we can
form the quotient Auty(X)/C, which is a finite subgroup of PGL(2, k). We
show that the analysis carried out in [6] can be used in this more general
case and we are able to prove:

Theorem 1.1. (1) Let X be a g-cyclic cover of ]P’/,lc of type (1),(2d). If
Aut(X)/Cy is not a cyclic group of order prime to the characteristic
of k, then the curve X can be defined over its field of moduli.

(2) If X — ]P’]lf is of type (2a),(2b),(2¢c) then X can be defined over its
field of moduli.

(3) If X is an Artin-Schreier cover of Py of type (2d) and Autz(X)/C,
1 a cyclic group of order prime to the characteristic, then the group
Auty(X) is isomorphic to the semidirect product C, x Cy, where C;
acts on Cp in terms of a homomorphism a : Cp — Aut(Cp) = Cp_1.
If ker(a) = {1} and (|a(Cy)|,(p — 1)/]|a(Cy)|) = 1 then X can be
defined over its field of moduli.

The paper is organised as follows: In section 2 we fix the notation and
we state some properties of cyclic covers of the projective line. In section 3
we follow the ideas developed in [6] in the the more general setting of prime
degree covers of the projective line. We also consider the three exceptional
Artin-Schreier curves (2a), (2b), (2c) and the case of Artin-Schreier curves
of the form (3) of theorem 1.1. All technical results needed in section 3
are proved in section 4. We prove there, that under certain assumptions,
function fields of cyclic covers of the projective line have a unique rational
subfield. This fact allows us to give the characterisation of maps between
prime order covers of the projective line, which was essential for the proof
of (1) of theorem 1.1. Finally in section 5 we present an example of a
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Riemann surface which is a degree-q cyclic cover of the projective line, has
field of moduli R, but is not defined over R.

2. Notation

2.1. Field of moduli and field of definition. Let k be a perfect field
of characteristic p > 0. Fix an algebraic closure k of k. Set I' = Gal(k/k).
Define the group

H = {0 €T :X = X’ the isomorphism is defined over k}.

The field of moduli of X, relative to the extension k/k is defined to be the
fixed field of H, i.e. k. A field of definition for the curve X is a subfield
E C k such that there is a curve X defined over E, with the additional
property Xg xg k = X. If B is a curve defined over the field k, and F is
an extension of k we will denote by Bg the curve B X E.

Notice that the notions of field of moduli and field of definition can be
defined in many categories with a suitable notion of isomorphism between
the objects of the categories. Let B be a curve defined over k. The action
of T on the covers over k with k-base B is defined as follows [4, §2]: An
element o € G transforms a cover 7 : X — By into a cover 77 : X7 — By.
Attached to the k-model B of Bj there is a canonical isomorphism Y, :
B — Byj. In the category of covers with fixed k-base B, the conjugate
cover of m: X — By, is the cover x,m7 : X7 — Bj.

2.2. Prime degree cyclic covers of the projective line. In this paper
we will consider a curve X which is a cyclic cover X — IP’}C for some prime
g. As it is observed in [3, §.2.1] the function field functor allows us to work
with function fields instead. Denote the function field of X by F' and the
function field of IP’]% by Fp. The extension F'/Fy is a cyclic Galois extension
which is a Kummer extension if p # ¢ and an Artin-Schreier extension if
p = q. We will recall some basic facts about Kummer and Artin-Schreier
extensions. For more details we refer to [12, VI.3,VI.4].

2.2.1. Kummer covers p # q. A Kummer extension of Fy = k(x) is
birationaly isomorphic to a function field F' of the form:

Fy) oyt = ] (@—p)%,
1<i<s
where d; € Z, (d;,q) = 1. The extension F/Fj is a Kummer extension
and the ramification of places in this type of extensions is known [12, prop.
I11.7.3]. Namely, the only places of Fj that are ramified are the places P;
which correspond to the points x = p; and the corresponding ramification
indices are given by
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Moreover if (q,d;) = 1 then the places P; are ramified completely and the
Riemann-Hurwitz formula implies that the function field F' has genus
(g—1)(s—2)

1) g="1=E

Notice that the condition g > 2 is equivalent to s > 2%. In particular,
s>2. If§:=37 | d; = 0 modq then the place at infinity does not ramify

in the extension F/Fy [8, p.667].

2.2.2. Artin-Schreier covers. An Artin-Schreier extension F)/Fp is a cyclic
extension of Fy = k(z) of order p and such an extension admits the following
model:

(2) Yy’ —y = g(x), where g(z) € k(z).

If we assume that the place at infinity does not ramify in the above exten-
sion, then g(z) can be chosen so that

W)
M= oG- an

where a; € k are the roots of the denominator, \; > 0, (A;, p) = 1, and f(z)
is relatively prime to the polynomials (z — a;). The only places that are
ramified in the extension F/k(x) are the poles of g(z). The contribution
to the different can be computed [12, prop. IIL.7.8] or [13, §. 2], and the
following formula for the genus holds:

g:p%l (—2+i(/\i+1)> .
i=1

3. Proof of the main result

Let X be a k-curve of genus g > 2, of type (1),(2a),(2b),(2c),(2d) and
with field of moduli k. If X is of type (1) or (2d), let X — IP’I% be the
degree g-cyclic cover corresponding to the unique rational subfield Fy of
the function field F' of X.

As in [6], our main tool is the idea introduced in [3] and which consists in
comparing the field of moduli X and of the Galois cover X — X/Autz(X).
By assumption, for any o € I' there exists a k-isomorphism ¢, : X = 7X
inducing a k-isomorphism ¢, : X/Autz(X) = “X/Autz(°X). Composing
¢» with the canonical k-isomorphism i, : 7X/Autz (7X) = 7(X/Autz (X)),
one gets a k-isomorphism ¢, : X/Aut; = 7(X/Autg(X)). In [3, thm. 3.1],
it is shown that the ¢, o € I' satisfy Weil’s cocycle conditions:

(50"7' = é?—éoa o, T € F,
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hence there exists a unique k-curve B — k and a k-isomorphism c : By =
X/Autg(X) such that:
bo =%c !, oel.
We will call this model B the canonical model of the cover. Notice, as
observed in [6], that assumption p { |[Aut(X)| posed in [4, th. 3.1] is not
needed.
In addition, one has [3, Cor. 4.3]:
e X — Dy, has field of moduli k;
e X is defined over k if and only if X — Bj is defined over k as a
B-cover;
e X — DBy is defined over k in the following cases:
(1) k is of cohomological dimension < 1
(2) G := Autg(X) has trivial center and the short exact sequence

1 — G — Aut(G) — Out(G) — 1

splits.
(3) B(k) #0.
We will use criterion (3) to prove (1) of theorem 1.1 and criterion (2) to
prove (3) of theorem 1.1. Part (2) will be proved using directly Weil’s cocy-
cle criterion ((2a)) or by showing that we are in situation (1) ( (2b),(2c)).
We now complete the techinical details of the proof of theorem 1.1.

3.1. Proof of (1) of theorem 1.1. The possible subgroups B of the
group PGL(2, k) and their normalisers N (8B) are known, see [13],[6]. One
exceptional group in the list of those groups is the group which is isomorphic
to the semidirect product of a cyclic group C,, of order p prime to the
characteristic and of an elementary Abelian group of the form Cj. We can
select the parameter z of the rational function field k(x) such that this
k
group is given by Bg 4 1= { (50 ?) a € A} , where A is a finite additive
subgroup of k containing 1 and 3 is an u-th root of unity such that SA = A.
Let F = k(t) be the function field of B;. For any 7 € T' suppose that
¢, : By — By is given by ¢(t) = %ttbe and define 7 : F — F by

crt+dr
. art+ b
i (t) N CTt+dT’
The canonical k-model of B is the quotient corresponding to the fixed field
FU" of T* = {7*},er.

For an element 7 € I" let ¢, be the isomorphism ¢, : X — 7X. This
isomorphism reduces by propositions 4.2, 4.3 to an element M € PGL(2, k).
Let B be the reduced automorphism group of X. According to [6, lemma
4.2] if B # B 4 then M is an element in N (B).

We distinguish two cases:

™(a) = 1(a), for a € k.
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Case 1. In this case we assume N(B) = B. By [6, lemma 3.3] we
have that B is isomorphic to one of the groups Sy, As, PGL(2,F,). We
consider a generator x for the rational function field corresponding to the
curve P! = X/ Cq. The group B acts on x and there is an invariant element
t which is a rational function of z. The field k(t) is the function field of the
quotient X/Autz(X) = Bj. Since we have seen that M € N(B) = B we
have that M (t) = t. Therefore, I'* acts on By by action of I on k, and By,
corresponds to the function field k(t¢), that has many rational places.

Case 2. In this case N(B) # 9B. All these cases were studied in [6,
proof of th. 5.3]. It turns out that the canonical model By has a rational
point.

3.2. Proof of (2) of theorem 1.1. According to lemma 3.1 two curves
X, : (yP — y)(aP — y) = a; with aj,az € k are isomorphic if an only if
a1 = az for some A € [F,. Moreover an isomorphism 1) between X, and
X)q is given by ¥(z) = Az, ¥(y) = y. Every element 7 in I' transfers
the curve X, to X, and these two curves are isomorphic if and only if
a = a” \;, for some element \; € IF,,.

A curve X is defined over its field of moduli & if and only if for all
o € I = Gal(k/k) there are k-isomorphisms f, : X — X7, such that

(3) f2fe = for for all o, 7 € T.

This criterion is known in the literature as the Weil cocycle condition [14,
th. 1].

The function I' — I, sending 7 — A, is a homomorphism and the cocycle
criterion of Weil implies that X can be defined over k.

The curve 3° —y = iz~ !(z — 1)71, i> = 2 appears in Case (4) in the
paper of Valentini-Madan [13], is hyperelliptic and has as automorphism
group an extension of a cyclic group of order 2 by S4. By [6, th. 5.3] it can
be defined over k.

The curves y? —y = 1/2% b | p + 1 are allready defined over the field
of moduli % since they are allready defined over F,. It is nice to point out
that if b < n then these curves are birational to the curves z* +y? +1 =0
b|ln,n=p+1]9, p. 125] and the curve defined by y? — y = 1/2PT! is the
Hermitian curve (which is isomorphic to the Fermat curve 2P+ 4+ yP+1 41
[10]).

Lemma 3.1. The two curves Xgq, : (2P —2)(y? —y) = a;, i = 1,2 a; € k
are isomorphic if and only if ai/az € Fp. Let X € F,. An isomorphism 1)
between X, and Xy, is given by ¥(z) = Az, ¥(y) = y.

Proof. The group Aut(X,) of the curve X, : (2P—z)(y?—y) = a is generated
by the following elements: 7,4(z,y) = (¢ + a,y + b) where a,b € Fp,
o1(z,y) = (y,2), oo(x,y) = (ex,e 'y), where € is a primitive (p — 1)-th
root of 1 [13, th.7].
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Let F, be the function field of the curve X,. All possible rational
subfields F; of Fj, such that Fj/F; is cyclic extension of degree p and
Gal(F'/F;) is a subgroup of Aut(X,), correspond to the set ¥ of subgroups
A of <Ta7b>(a’b)€F12) = IFI% which are isomorphic to F,. We compute that
0'1_17'@,50'1 = Tp,q and 02_17'%;,02 = Teq e 1b-

We distinguish the following two cases:

o If p # 2,3 then the only subgroups of order p of Aut(X), that are
invariant under the conjugation action of (o2) are (740) and (7pp).

e If p = 2 then also the subgroup generated by 71 is fixed by conjuga-
tion action of (o9) and by the conjugation action of (o1). If p = 3 then
the subgroups generated by 711 and 7y 2 respectivelly, are fixed by the con-
jugation action of (01,02). In this case the only subgroups of order p of
Aut(X), that are invariant under the conjugation action of (o2) and are
not invariant by the conjugation action of (o1) are (7,0) and (79 4).

In both of the above cases the subgroups (7,,) and (1) are uniquelly
determined in group theoretic means as subgroups of Aut(X). We will
call good subgroups of Aut(X), the unique subgroups of order p of Aut(X)
which are fixed by the conjugation action of (o9) if p # 2,3 and the unique
subgroups of order p of Aut(X) which are fixed by the conjugation action of
(02) and are not fixed by the conjugation action of (7). The rational fields
that are stabilized by the action of the groups (74,0), (7o) are k(y), k(x),
respectivelly.

Consider the two curves X,, : (2P — z)(y? —y) = a;, i = 1,2 a; € k with
corresponding function fields F,,, and let ¢ : F,;, — F,, be an isomorphism.
The map

(4) Aut(Fy,) — Aut(Fa,),
o= o,

is an isomorphism of the corresponding automorphism groups. Consider the
Galois group Gal(Fy, /k(x)) = (10p). The element ¢)(x) generates a rational

function field of the function field Fy, of the curve X,, and k(¢ (z)) =

-1
F(i(TO’bW . The action given in eq. (4) is an isomorphism of groups and

transfers good subgroups to good subgroups. Thus, the subfield k(¢ (x)) of
F,, is either k(x) of k(y). There is an automorphism o € Aut(F,,) such
that ¢’ := 1o is an isomorphism F,, — F,, with the additional property
k(¢/(x)) = k(z), and this implies that ¢/(z) = %£5. By taking ¢/ in both
sides of the defining equation of X,, we obtain that

wor-vo) ((£23) - (229) -a

Thus ¢'(y) is a generator of the Artin-Schreier extension Fy,/k(z) and
according to Hasse [5, eq. 3'] it is related to the genarator y by a relation
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of the form

(5)  Y'(y) = \y + Bo, where 2 _ A a1 + B — By,

P —x (ax+b)p _ (a:erb)
cx+d cx+d

On the other hand v¢’(y) is a generator of a p-degree rational subfield of
the function field Fy, of X,, such that Gal(F,,/k(¢'(y)) is the other good
subgroup, hence of the form
(6) ¥ (y) = (a1y + b1)/(cry + da).
Comparing equations (5),(6) we obtain that ¢'(y) = Ay + b, with A € T},
b € k and putting this into the defining equation of X,, we obtain that
Y'(x) = Ne+V, N € F) and b,0" € F. Thus ay/az € F}.

Conversely, if a;/az = A\ € Fj then the transformation i (z) = Az,
Y (y) = y makes the function fields Fy,, i = 1,2 isomorphic. O

Remark: This theorem is a special case of a theorem determining iso-
morphism classes of the curves (27" — 2)(y?" —y) = a that can be found in

[2].
3.3. Proof of (3) of theorem 1.1. Since (¢,p) = 1 by Zassenhaus the-
orem we obtain that Autz(X) is isomorphic to the semidirect product

Cp x Cy. Since Cp is normal in Autz(X), we can consider the conjuga-
tion action of Cy on C), given by a map a : Cy — Aut(C)) = Cp_1.

Lemma 3.2. The center Z(C, x Cy) equals:

[ ker(a) if ker(a) < C
Z(Cpx Cy) = { Cp % Cp if ker(a) = Cﬁ

In particular if o : Cp — Aut(Cp) = Cp_1 is a monomorphism then the
group Cy, x Cy has trivial center.

Proof. If ker(a) = Cy then the group is Abelian and everything is in the
center. If ker(a) < Cp then a generator ¢ € Cy is not in ker(a). Thus
a(o) is not a trivial automorphism of C). Let 7 be a generator of Cp. We
have that a(o)(7) = 7¢ where £ # 1 modp and a(c)(7*) = 7#*. Therefore
no element in C, is in the center. The only elements which can be in the
center are the elements in the kernel of a. 0

Consider the group G := Autj(X) = C, x Cy. We will assume that « is
a monomorphism therefore G has trivial center. According to proposition
3.1 in [3], if the sequence
1 — Inn(G) — Aut(G) — Out(G) — 1

splits, then the curve X is defined over its field of moduli. The desired
result will follow using the group theoretic lemma 3.3 which characterises
the splitting property of the above short exact sequence.
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Lemma 3.3. Consider the group G = (1,0 : 77 = ot = 1,010~ = 7°).
The group G is isomorphic to the semidirect product C, x Cy. Assume
that the map o : C; — Aut(Cp) = Cp—1 sending ™ to o(7%) = {* is a
monomorphism. Then the group G has trivial center and the group Aut(G)
of automorphisms of G is isomorphic to C, x C,_1. The inner automor-

phisms Inn(G) is isomorphic to Cp X a(Cy). The short exact sequence
(7) 1 — Inn(G) — Aut(G) — Out(G) — 1
splits if and only if (t,(p —1)/t) = 1.

Proof. Since « is a monomorphism, lemma 3.2 implies that G has trivial
center. We compute that

oirigTt = szi.
The map « is assumed to be a monomorphism, therefore ¢! = 1 if and only
if i = 0.
Let now ¢ be an arbitrary automorphism of G. We observe first that ¢

should preserve the normal subgroup generated by 7, i.e., ¢(r) = 7# for
some 0 < pu < p—1. Set ¢(0) = 7"10"2. We have

ploro™ ) = ¢(r) = 77 = 71t

This implies that pf”? = ¢ modp and since (p, p) = 1 we have that 27! =
1 modp. We have assumed that « is a monomorphism, therefore v = 1.
Thus the automorphism ¢ depends on the two parameters (i, ;). Denote
by ¢(v, p) the automorphism corresponding to (v, ). The composition of
(v, 1), ¢(v2, p2) is given by ¢(vapr +v1, p1p2), and it is easy to see that
Aut(G) = Cp x Cp_1, where Cp,_1 acts on Cp, by multiplication by .

We will compute now the group of inner automorphisms Inn(G). An
arbitrary element in G can be written as o’77 for some 0 < i < t — 1,
0 < j < p—1. The corresponding inner automorphism ¢;; sends the
generators o, 7 of G to

¢ij(t) = oIt (aiTj)_l =7t

$ij(0) = o'tlo (UiTj)_l = I,
We identify Aut(Cp) with Zy = Cp—1. If 4 € Im(a), then there is an ig
such that ¢°© = y modp. Moreover the equation

—j(£ = 1)0" = v modp,

has always a unique solution jp since ((5 — 1)¢, p) = 1. In this case
d(v, 1) = ¢iy,jo- The short exact sequence given in eq. (7) can be written
as

1— Cp X Ct — Cp X Cp_l — C(p—l)/t — 1,
and this sequence splits if and only if (¢, (p — 1)/t) = 1. O
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4. Properties of g-covers of the projective line

4.1. Rational subfields. It is known that for hyperelliptic curves the hy-
perelliptic involution is always normal in the whole automorphism group,
and that the corresponding hyperelliptic function field F' has a unique ra-
tional subfield Fy such that [F' : Fy] = 2. This result is not true for the
general case of g-covers for the projective line [9],[8]. However the following
holds:

Proposition 4.1. Consider a q-cyclic extension F/Fy of the rational func-
tion field Fy = k(x), such that the genus g of F is g > 2. If I is birational
to one of the curves given in (1),(2d) then Fy is the unique rational subfield
E of F such that F/E is Galois with cyclic Galois group of order q.

Proof. For the case p = ¢ the result is proved by Valentini-Madan [13, th.
6.
We will treat now the case ¢ # p. It is known that the condition 2¢ < s
implies that C, is a normal subgroup of the whole automorphism group
[8, prop. 1]. Suppose that there is one more rational subfield Fj such
that the extension F'/F} is Galois and C, = Gal(F/F}) is cyclic of order
q. Since ¢ is prime we have either C; N C, = {1} or C, = C;. But since
FC = Fy # Fy = F% we have C;n C! = {1}.

Let G be the subgroup of Auty(F) generated by C,, Cy. Since Cy is
normal in the whole automorphism group it is normal in G as well. The
group G is of order ¢ and is Abelian since ¢ is prime. The group G is not
cyclic. Indeed, it is known that for a cyclic group G and for every divisor
0 of the order of G; there is a unique subgroup G of GGy of order §. This
is not the case for G. Therefore the group G is isomorphic to the product
Cq x Cy.

We have the following picture of subfields of F"

Qi1 Qg Q2,1 Q24 F

Cy

Cq

Py P, F¢
The cyclic group Cj acts on the rational function field 7 and we can choose
a parameter ¢t on F) such that the action is given by ¢ + (t, where ( is a
primitive g-th root of unity. There are exactly two places P, = P;—g, P, =
P, of Fy which are ramified in Fy/ Flc ?. Consider a place @ of F' above
P; for i = 1 or ¢ = 2. Either Q/P; is ramified completely or @Q/F; is
decomposed. If Q/P; is ramified completely then it is ramified completely
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in the extension F//FC. In this case the decomposition group G(Q) is the
whole group G and this is not possible since decomposition groups of order
prime to the characteristic are cyclic [12, I11.8.6].

Hence, there are g places Q1,, v =1,...,q of F' above P; and ¢ places
Q2.,v=1,...,qof F above P5. Let Py, P, be the restrictions of P;, P, in
F&. We know that e(Q;,/P;) = q and every place Q;, is fixed by C,,. But
then at least 2¢q places of Fyy are ramified in F/Fy, a contradiction since
2q < s. O

4.2. Automorphisms. From now on we will assume that the conditions
of proposition 4.1 are fulfilled, in particular C; = Gal(F/Fp) is a normal
subgroup of the automorphism group Autz(X). This allows us to consider
the reduced automorphism group B = Autz(X)/C,. This is a finite sub-
group of PGL(2, k) which permutes the ramification points of the extension
F/Fy.

Assume first that we are in the p # ¢ case. Let X : y? = f(x) and
X' 1 w? = g(z) be two isomorphic curves, and let ¢ : F — F’ be an
isomorphism of the corresponding function fields. Obviously, ¢(k(x)) is a
Galois subfield of F’ with cyclic Galois group of order q. Proposition 4.1

implies that k(¢(x)) = k(z), and this gives us that ¢(x) = gjj_rg, where

(Z Z) is a representative of an element in PGL(2, k).

We apply the automorphism ¢ on the defining equation y? = f(x) and
we obtain:

©) o) = o) = £ (£57).

Let us write

f@) =TTt = o),
i=1
and set § = >, d;. We can choose a parameter = such that the place
at infinity is not ramified. The choice of such a parameter implies that
9 = 0 modg. The element ¢(y) is a generating radicant of the extension
F'/k(z), therefore it is of the form w'a(z) with 1 < i < ¢ , where a(z) €
k(z). On the other hand a simple computation shows that:

az+b c 0 u pid —b \ %
/ <cz+d> - <cz+d> f(a/c)H (Z_ —pic—i-a) ’

i=1

Therefore, (8) implies that

c

oeratey = () stafe) 1 (- pd oy




12 Aristides Kontogeorgis

d/a
and since g(z), f(z) are not ¢ powers we have that a(z) = (ﬁ) mul-

tiplied by a constant. The above ideas allows us to prove:

Proposition 4.2. Let ' be another function field given by an equation
y? = f'(z), where f'(x) € kl[z] is a polynomial which is not a g-power.
Every isomorphism ¢ : F — F', is given by an expression of the form.:

_ar+b B ey’ ) =
(;S(Cl?)—m, ¢(y)—m, f0T50m€1§Z<q,€€k .
The pair M = ¢ Z € GLa(k) and e € k* is unique up to replacement

by (AM,eX9/) If ¢ : F' — F" is another isomorphism given by (M',e')
then the composition ¢'¢ is given by (M'M,€'e).

We will now focus on the case of Artin-Schreier extensions of the pro-
jective line. Assume that I, F’ are two Artin-Schreier extensions of the
fields Fy = k(x), F{, = k(z) which do not fall to one of the excluded cases
(2a),(2b),(2c), in particular Fy (resp. F{) is the unique rational function
field of F' (resp. F’) of degree p. Assume also that F, F’ are given by the
equations:

(9) F=k(y,x):y" —y=flx), F:u’—w=g(2).

Since Fjj is the unique rational subfield of F’ of degree p we have that

az+b for some invertible matrix

o(Fy) = F} and in particular o(z) = azt

<Z Z>? a,b,c,d € k. On the other hand, o(y) is a generating element

of the Artin-Schreier extension F’/Fj, therefore it is of the form o(y) =
AoW + gy (2), for some A, € Fy and a,(z) € k(z). By applying o to the
defining equation (9) we obtain that

(10) Nog(2) - f (

Thus we have the following:

az+b
cz+d

) = 0y (2)? — ag ()

Proposition 4.3. Let F, F' be two Artin-Schreier extensions of the fields
Fo = k(x),Fy = k(z) which do not fall to one of the excluded cases
(2a),(2b),(2c), defined in terms of equation (9). Every isomorphism F —
F' is given by

o) = 5L o) = dow + s (2P — a2
where A, € F3 and a,(2) € k(z) satisfies equation (10). On the coordinate x
of the function field Fyy the isomorphism o acts as a Mdébius transformation.
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Remark: The exact value of a,(z) corresponds to the solution of the
first order “Frobenious Differential Equation” (10) in the sense of [7, 1.9].

5. Example of curves not defined over their field of moduli.

In this section, &k = R. We provide an example of degree g-cyclic cover
of the projective line with field of moduli R but not defined over R, which
generalizes the one of [6, §6].

Consider a cyclic cover X of the projective line of the form y? = f(x)
with function field F' such that the cyclic group C, = Gal(F'/k(z)) is a
normal subgroup of the whole automorphism group. The reduced group
B = Aut(X)/Cy is determined by the relative position of the roots of the
polynomial f(z) [8] [1], and does not depend on the value of q.

Let n,m € Z~1 with m odd. Let ¢ denote complex conjugation and set

@)= I @ - (a7 + 1) |

where a; ;= (i+1)¢},, i =1,...,m and (,, is a primitive m-th root of unity.
Then the maximal subgroup of PGLy(C) permuting the roots of f is the
order n-cyclic group generated by

T — (px.

Assume furthermore that 2¢ < 2mn and that ¢ | 2m Then the curve X
defined by

yl = f(z)

has automorphism group C; x Cj, where C, is generated by v(z,y) =
(x,(qy) and Cy, is generated by v(z,y) = ((nz,y).

Proposition 5.1. The curve X has field of moduli R, but is not defined
over R.

Proof. Consider the conjugate curve X given by
y'= J[ " —a)"+1/a).
1<i<m

The curves X, X¢ are isomorphic by the isomorphism

(1 Wy
,U,(l',y) - E? x?mn/q ’
where w"™ = —1 and w7 = —1.

Since the automorphism group of X is C; x (), any isomorphism wu, :
X — X¢is given by u, := py't?, where 0 < ¢ < gand 0 < j < n.
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Straightforward computations show that:

wy = au
woo= v
pép = vyl for some lo, Iy with ¢ f1;.

Hence,

Ucle = Z/QjHOPyl1 # 1d.
Therefore Weil’s cocycle condition (3) does not hold and X cannot be
defined over R. g

Acknowledgments. The author would like to thank the referee for his
corrections and valuable remarks.
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