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Cyclic Covers of the Projective Line

par Aristides Kontogeorgis

Résumé. Nous donnons un critère, basé sur le groupe des auto-
morphismes, pour que certains revêtements cycliques de la droite
projective soient définis sur leur corps de modules. Nous donnons
aussi un exemple de revêtement cyclique de la droite projective
complexe de corps de module R qui ne peut pas être défini sur R.

Abstract. We give a criterion, based on the automorphism
group, for certain cyclic covers of the projective line to be de-
fined over their field of moduli. An example of a cyclic cover of
the complex projective line with field of moduli R that can not be
defined over R is also given.

1. Introduction

Let k be a perfect field of characteristic p ≥ 0. Fix an algebraic closure
k̄ of k. A k-curve X is a smooth, geometrically connected proper scheme
X → Speck of dimension one. In this paper we will focus on deciding
whether the field of moduli is a field of definition. Let g denote the genus
of the curve X. It is known that if g ≤ 1 then the fields of moduli and
definition of X coincide. If g ≥ 2 then a field of moduli for the curve X
does not need to be a field of definition. In what follows we will assume
that g ≥ 2.

Hyperelliptic curves, i.e., 2-cyclic covers of the projective line of genus
g ≥ 2, are favoured among other curves since they have a simple form,
which allows us to perform explicit computations. B. Huggins in [6] stud-
ied hyperelliptic curves, for p 6= 2 and using the results of P. Dèbes, M.
Emsalem, J.C. Douai [3],[4] she proved that if X → Speck̄ is a hyperelliptic
curve of genus g ≥ 2 with hyperelliptic involution i, then X → Speck̄ is
defined over its field of moduli, provided that Autk̄(X)/〈i〉 is not a cyclic
group of order prime to p.

The aim of this paper is to extend the result of Huggins to the case of q-
cyclic covers X → P1

k̄
, where q is a prime number. Let Cq := Gal(X/P1

k̄
) ∼=

Z/qZ. It is not true in general that Cq is a normal subgroup of Autk̄(X),
see [9],[8].
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We will treat the following cases of q-cyclic covers X of the projective
line:

(1) Kummer covers ((p, q) = 1) of the form

yq =
∏

1≤i≤s
(x− ρi)di ,

where 2q < s and (di, q) = 1,
(2) Artin-Schreier covers (q = p) of the form:

(a) yp − y = a
xp−x , a ∈ k̄;

(b) p = 3, y3 − y = i
x(x−1) , i2 = 2;

(c) yp − y = 1
xb

, b | p+ 1.
(d) Artin-Schreier covers that are not birational to one of the cases

(2a),(2b),(2c) above.
If the cover X → P1

k̄
is birational to a cover of type (1) or (2d) then Cq

is a normal subgroup of the full automorphism group. In this case we can
form the quotient Autk̄(X)/Cq which is a finite subgroup of PGL(2, k̄). We
show that the analysis carried out in [6] can be used in this more general
case and we are able to prove:

Theorem 1.1. (1) Let X be a q-cyclic cover of P1
k̄

of type (1),(2d). If
Autk̄(X)/Cq is not a cyclic group of order prime to the characteristic
of k, then the curve X can be defined over its field of moduli.

(2) If X → P1
k̄

is of type (2a),(2b),(2c) then X can be defined over its
field of moduli.

(3) If X is an Artin-Schreier cover of P1
k̄

of type (2d) and Autk̄(X)/Cq
is a cyclic group of order prime to the characteristic, then the group
Autk̄(X) is isomorphic to the semidirect product Cp o C`, where C`
acts on Cp in terms of a homomorphism α : C` → Aut(Cp) ∼= Cp−1.
If ker(α) = {1} and (|α(C`)|, (p − 1)/|α(C`)|) = 1 then X can be
defined over its field of moduli.

The paper is organised as follows: In section 2 we fix the notation and
we state some properties of cyclic covers of the projective line. In section 3
we follow the ideas developed in [6] in the the more general setting of prime
degree covers of the projective line. We also consider the three exceptional
Artin-Schreier curves (2a), (2b), (2c) and the case of Artin-Schreier curves
of the form (3) of theorem 1.1. All technical results needed in section 3
are proved in section 4. We prove there, that under certain assumptions,
function fields of cyclic covers of the projective line have a unique rational
subfield. This fact allows us to give the characterisation of maps between
prime order covers of the projective line, which was essential for the proof
of (1) of theorem 1.1. Finally in section 5 we present an example of a
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Riemann surface which is a degree-q cyclic cover of the projective line, has
field of moduli R, but is not defined over R.

2. Notation

2.1. Field of moduli and field of definition. Let k be a perfect field
of characteristic p ≥ 0. Fix an algebraic closure k̄ of k. Set Γ = Gal(k̄/k).
Define the group

H = {σ ∈ Γ : X ∼= Xσ the isomorphism is defined over k̄}.
The field of moduli of X, relative to the extension k̄/k is defined to be the
fixed field of H, i.e. k̄H . A field of definition for the curve X is a subfield
E ⊂ k̄ such that there is a curve XE defined over E, with the additional
property XE ×E k̄ ∼= X. If B is a curve defined over the field k, and E is
an extension of k we will denote by BE the curve B ×k E.

Notice that the notions of field of moduli and field of definition can be
defined in many categories with a suitable notion of isomorphism between
the objects of the categories. Let B be a curve defined over k. The action
of Γ on the covers over k̄ with k-base B is defined as follows [4, §2]: An
element σ ∈ G transforms a cover π : X → Bk̄ into a cover πσ : Xσ → Bσ

k̄
.

Attached to the k-model B of Bk̄ there is a canonical isomorphism χσ :
Bσ
k̄
→ Bk̄. In the category of covers with fixed k-base B, the conjugate

cover of π : X → Bk̄ is the cover χσπσ : Xσ → Bk̄.

2.2. Prime degree cyclic covers of the projective line. In this paper
we will consider a curve X which is a cyclic cover X → P1

k̄
for some prime

q. As it is observed in [3, §.2.1] the function field functor allows us to work
with function fields instead. Denote the function field of X by F and the
function field of P1

k̄
by F0. The extension F/F0 is a cyclic Galois extension

which is a Kummer extension if p 6= q and an Artin-Schreier extension if
p = q. We will recall some basic facts about Kummer and Artin-Schreier
extensions. For more details we refer to [12, VI.3,VI.4].

2.2.1. Kummer covers p 6= q. A Kummer extension of F0 = k̄(x) is
birationaly isomorphic to a function field F of the form:

k̄(x, y) : yq =
∏

1≤i≤s
(x− ρi)di ,

where di ∈ Z, (di, q) = 1. The extension F/F0 is a Kummer extension
and the ramification of places in this type of extensions is known [12, prop.
III.7.3]. Namely, the only places of F0 that are ramified are the places Pi
which correspond to the points x = ρi and the corresponding ramification
indices are given by

ei =
q

(q, di)
.



4 Aristides Kontogeorgis

Moreover if (q, di) = 1 then the places Pi are ramified completely and the
Riemann-Hurwitz formula implies that the function field F has genus

(1) g =
(q − 1)(s− 2)

2
.

Notice that the condition g ≥ 2 is equivalent to s ≥ 2 q+1
q−1 . In particular,

s > 2. If δ :=
∑s

i=1 di ≡ 0 modq then the place at infinity does not ramify
in the extension F/F0 [8, p.667].

2.2.2. Artin-Schreier covers. An Artin-Schreier extension F/F0 is a cyclic
extension of F0 = k̄(x) of order p and such an extension admits the following
model:

(2) yp − y = g(x), where g(x) ∈ k̄(x).

If we assume that the place at infinity does not ramify in the above exten-
sion, then g(x) can be chosen so that

g(x) =
f(x)∏r

i=1(x− ai)λi
,

where ai ∈ k̄ are the roots of the denominator, λi > 0, (λi, p) = 1, and f(x)
is relatively prime to the polynomials (x − ai). The only places that are
ramified in the extension F/k̄(x) are the poles of g(x). The contribution
to the different can be computed [12, prop. III.7.8] or [13, §. 2], and the
following formula for the genus holds:

g =
p− 1

2

(
−2 +

r∑
i=1

(λi + 1)

)
.

3. Proof of the main result

Let X be a k̄-curve of genus g ≥ 2, of type (1),(2a),(2b),(2c),(2d) and
with field of moduli k. If X is of type (1) or (2d), let X → P1

k̄
be the

degree q-cyclic cover corresponding to the unique rational subfield F0 of
the function field F of X.

As in [6], our main tool is the idea introduced in [3] and which consists in
comparing the field of moduli X and of the Galois cover X → X/Autk̄(X).
By assumption, for any σ ∈ Γ there exists a k̄-isomorphism φσ : X ∼→ σX
inducing a k̄-isomorphism φ̃σ : X/Autk̄(X) ∼→ σX/Autk̄(

σX). Composing
φ̃σ with the canonical k̄-isomorphism iσ : σX/Autk̄(

σX) ∼→ σ(X/Autk̄(X)),
one gets a k̄-isomorphism φ̄σ : X/Autk̄

∼→ σ(X/Autk̄(X)). In [3, thm. 3.1],
it is shown that the φ̄σ, σ ∈ Γ satisfy Weil’s cocycle conditions:

φ̄στ = φ̄στ φ̄σ, σ, τ ∈ Γ,
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hence there exists a unique k-curve B → k and a k̄-isomorphism c : Bk̄
∼→

X/Autk̄(X) such that:
φ̄σ = σcc−1, σ ∈ Γ.

We will call this model B the canonical model of the cover. Notice, as
observed in [6], that assumption p - |Aut(X)| posed in [4, th. 3.1] is not
needed.

In addition, one has [3, Cor. 4.3]:
• X → Bk̄ has field of moduli k;
• X is defined over k if and only if X → Bk̄ is defined over k as a
B-cover;
• X → Bk̄ is defined over k in the following cases:

(1) k is of cohomological dimension ≤ 1
(2) G := Autk̄(X) has trivial center and the short exact sequence

1→ G→ Aut(G)→ Out(G)→ 1

splits.
(3) B(k) 6= ∅.

We will use criterion (3) to prove (1) of theorem 1.1 and criterion (2) to
prove (3) of theorem 1.1. Part (2) will be proved using directly Weil’s cocy-
cle criterion

(
(2a)

)
or by showing that we are in situation (1)

(
(2b),(2c)

)
.

We now complete the techinical details of the proof of theorem 1.1.

3.1. Proof of (1) of theorem 1.1. The possible subgroups B of the
group PGL(2, k̄) and their normalisers N(B) are known, see [13],[6]. One
exceptional group in the list of those groups is the group which is isomorphic
to the semidirect product of a cyclic group Cµ of order µ prime to the
characteristic and of an elementary Abelian group of the form Crp . We can
select the parameter x of the rational function field k̄(x) such that this

group is given by Bβ,A :=
{(

βk a
0 1

)
a ∈ A

}
, where A is a finite additive

subgroup of k̄ containing 1 and β is an µ-th root of unity such that βA = A.
Let F = k̄(t) be the function field of Bk̄. For any τ ∈ Γ suppose that

φ̄τ : Bk̄
∼−→ Bk̄ is given by φ̄(t) = aτ t+bτ

cτ t+dτ
and define τ∗ : F → F by

τ∗(t) =
aτ t+ bτ
cτ t+ dτ

, τ∗(α) = τ(α), for α ∈ k̄.

The canonical k-model of B is the quotient corresponding to the fixed field
FΓ∗ of Γ∗ = {τ∗}τ∈Γ.

For an element τ ∈ Γ let φτ be the isomorphism φτ : X → τX. This
isomorphism reduces by propositions 4.2, 4.3 to an element M ∈ PGL(2, k̄).
Let B be the reduced automorphism group of X. According to [6, lemma
4.2] if B 6= Bβ,A then M is an element in N(B).

We distinguish two cases:
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Case 1. In this case we assume N(B) = B. By [6, lemma 3.3] we
have that B is isomorphic to one of the groups S4, A5,PGL(2,Fpr). We
consider a generator x for the rational function field corresponding to the
curve P1 = X/Cq. The group B acts on x and there is an invariant element
t which is a rational function of x. The field k̄(t) is the function field of the
quotient X/Autk̄(X) = Bk̄. Since we have seen that M ∈ N(B) = B we
have that M(t) = t. Therefore, Γ∗ acts on Bk̄ by action of Γ on k̄, and Bk
corresponds to the function field k(t), that has many rational places.

Case 2. In this case N(B) 6= B. All these cases were studied in [6,
proof of th. 5.3]. It turns out that the canonical model Bk has a rational
point.

3.2. Proof of (2) of theorem 1.1. According to lemma 3.1 two curves
Xai : (yp − y)(xp − y) = ai with a1, a2 ∈ k̄ are isomorphic if an only if
a1 = a2λ for some λ ∈ Fp. Moreover an isomorphism ψ between Xa and
Xλa is given by ψ(x) = λx, ψ(y) = y. Every element τ in Γ transfers
the curve Xa to Xaτ and these two curves are isomorphic if and only if
a = aτλτ , for some element λτ ∈ Fp.

A curve X is defined over its field of moduli k if and only if for all
σ ∈ Γ = Gal(k̄/k) there are k̄-isomorphisms fσ : X → Xσ, such that

(3) fστ fσ = fστ for all σ, τ ∈ Γ.

This criterion is known in the literature as the Weil cocycle condition [14,
th. 1].

The function Γ→ Fp sending τ 7→ λτ is a homomorphism and the cocycle
criterion of Weil implies that X can be defined over k.

The curve y3 − y = ix−1(x − 1)−1, i2 = 2 appears in Case (4) in the
paper of Valentini-Madan [13], is hyperelliptic and has as automorphism
group an extension of a cyclic group of order 2 by S4. By [6, th. 5.3] it can
be defined over k.

The curves yp − y = 1/xb, b | p + 1 are allready defined over the field
of moduli k since they are allready defined over Fp. It is nice to point out
that if b < n then these curves are birational to the curves xn + yb + 1 = 0
b | n, n = p+ 1 [9, p. 125] and the curve defined by yp − y = 1/xp+1 is the
Hermitian curve (which is isomorphic to the Fermat curve xp+1 + yp+1 + 1
[10]).

Lemma 3.1. The two curves Xai : (xp − x)(yp − y) = ai, i = 1, 2 ai ∈ k̄
are isomorphic if and only if a1/a2 ∈ Fp. Let λ ∈ Fp. An isomorphism ψ
between Xa and Xλa is given by ψ(x) = λx, ψ(y) = y.

Proof. The group Aut(Xa) of the curveXa : (xp−x)(yp−y) = a is generated
by the following elements: τa,b(x, y) = (x + a, y + b) where a, b ∈ Fp,
σ1(x, y) = (y, x), σ2(x, y) = (εx, ε−1y), where ε is a primitive (p − 1)-th
root of 1 [13, th.7].
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Let Fa be the function field of the curve Xa. All possible rational
subfields Fi of Fa such that Fa/Fi is cyclic extension of degree p and
Gal(F/Fi) is a subgroup of Aut(Xa), correspond to the set Σ of subgroups
A of 〈τa,b〉(a,b)∈F2

p
∼= F2

p which are isomorphic to Fp. We compute that
σ−1

1 τa,bσ1 = τb,a and σ−1
2 τa,bσ2 = τεa,ε−1b.

We distinguish the following two cases:
• If p 6= 2, 3 then the only subgroups of order p of Aut(X), that are

invariant under the conjugation action of 〈σ2〉 are 〈τa,0〉 and 〈τ0,b〉.
• If p = 2 then also the subgroup generated by τ1,1 is fixed by conjuga-

tion action of 〈σ2〉 and by the conjugation action of 〈σ1〉. If p = 3 then
the subgroups generated by τ1,1 and τ1,2 respectivelly, are fixed by the con-
jugation action of 〈σ1, σ2〉. In this case the only subgroups of order p of
Aut(X), that are invariant under the conjugation action of 〈σ2〉 and are
not invariant by the conjugation action of 〈σ1〉 are 〈τa,0〉 and 〈τ0,b〉.

In both of the above cases the subgroups 〈τa,0〉 and 〈τ0,b〉 are uniquelly
determined in group theoretic means as subgroups of Aut(X). We will
call good subgroups of Aut(X), the unique subgroups of order p of Aut(X)
which are fixed by the conjugation action of 〈σ2〉 if p 6= 2, 3 and the unique
subgroups of order p of Aut(X) which are fixed by the conjugation action of
〈σ2〉 and are not fixed by the conjugation action of 〈σ1〉. The rational fields
that are stabilized by the action of the groups 〈τa,0〉, 〈τ0,b〉 are k(y), k(x),
respectivelly.

Consider the two curves Xai : (xp − x)(yp − y) = ai, i = 1, 2 ai ∈ k̄ with
corresponding function fields Fai and let ψ : Fa1 → Fa2 be an isomorphism.
The map

(4) Aut(Fa1)→ Aut(Fa2),

σ 7→ ψσψ−1,

is an isomorphism of the corresponding automorphism groups. Consider the
Galois group Gal(Fa1/k(x)) = 〈τ0,b〉. The element ψ(x) generates a rational
function field of the function field Fa2 of the curve Xa2 and k(ψ(x)) =

F
ψ〈τ0,b〉ψ−1

a2 . The action given in eq. (4) is an isomorphism of groups and
transfers good subgroups to good subgroups. Thus, the subfield k(ψ(x)) of
Fa2 is either k(x) of k(y). There is an automorphism σ ∈ Aut(Fa2) such
that ψ′ := ψσ is an isomorphism Fa1 → Fa2 with the additional property
k(ψ′(x)) = k(x), and this implies that ψ′(x) = ax+b

cx+d . By taking ψ′ in both
sides of the defining equation of Xa1 we obtain that(

ψ′(y)p − ψ′(y)
)((ax+ b

cx+ d

)p
−
(
ax+ b

cx+ d

))
= a1

Thus ψ′(y) is a generator of the Artin-Schreier extension Fa2/k(x) and
according to Hasse [5, eq. 3’] it is related to the genarator y by a relation
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of the form

(5) ψ′(y) = λy +B0,where
a2

xp − x
= λ

a1(
ax+b
cx+d

)p
−
(
ax+b
cx+d

) +Bp
0 −B0.

On the other hand ψ′(y) is a generator of a p-degree rational subfield of
the function field Fa2 of Xa2 such that Gal(Fa2/k(ψ′(y)) is the other good
subgroup, hence of the form

(6) ψ′(y) = (a1y + b1)/(c1y + d1).

Comparing equations (5),(6) we obtain that ψ′(y) = λy + b, with λ ∈ F∗p,
b ∈ k̄ and putting this into the defining equation of Xa2 we obtain that
ψ′(x) = λ′x+ b′, λ′ ∈ F∗p and b, b′ ∈ Fp. Thus a1/a2 ∈ F∗p.

Conversely, if a1/a2 = λ ∈ F∗p then the transformation ψ(x) = λx,
ψ(y) = y makes the function fields Fai , i = 1, 2 isomorphic. �

Remark: This theorem is a special case of a theorem determining iso-
morphism classes of the curves (xp

n −x)(yp
n − y) = a that can be found in

[2].

3.3. Proof of (3) of theorem 1.1. Since (`, p) = 1 by Zassenhaus the-
orem we obtain that Autk̄(X) is isomorphic to the semidirect product
Cp o C`. Since Cp is normal in Autk̄(X), we can consider the conjuga-
tion action of C` on Cp given by a map α : C` → Aut(Cp) ∼= Cp−1.

Lemma 3.2. The center Z(Cp o C`) equals:

Z(Cp o C`) =
{

ker(α) if ker(α) < C`
Cp o C` if ker(α) = C`

.

In particular if α : C` → Aut(Cp) ∼= Cp−1 is a monomorphism then the
group Cp o C` has trivial center.

Proof. If ker(α) = C` then the group is Abelian and everything is in the
center. If ker(α) < C` then a generator σ ∈ C` is not in ker(α). Thus
α(σ) is not a trivial automorphism of Cp. Let τ be a generator of Cp. We
have that α(σ)(τ) = τ ` where ` 6≡ 1 modp and α(σ)(τk) = τk`. Therefore
no element in Cp is in the center. The only elements which can be in the
center are the elements in the kernel of α. �

Consider the group G := Autk̄(X) = Cp o C`. We will assume that α is
a monomorphism therefore G has trivial center. According to proposition
3.1 in [3], if the sequence

1→ Inn(G)→ Aut(G)→ Out(G)→ 1

splits, then the curve X is defined over its field of moduli. The desired
result will follow using the group theoretic lemma 3.3 which characterises
the splitting property of the above short exact sequence.
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Lemma 3.3. Consider the group G = 〈τ, σ : τp = σt = 1, στσ−1 = τ `〉.
The group G is isomorphic to the semidirect product Cp o Ct. Assume
that the map α : Ct → Aut(Cp) ∼= Cp−1 sending τx to α(τx) = `x is a
monomorphism. Then the group G has trivial center and the group Aut(G)
of automorphisms of G is isomorphic to Cp o Cp−1. The inner automor-
phisms Inn(G) is isomorphic to Cp o α(Ct). The short exact sequence

(7) 1→ Inn(G)→ Aut(G)→ Out(G)→ 1

splits if and only if (t, (p− 1)/t) = 1.

Proof. Since α is a monomorphism, lemma 3.2 implies that G has trivial
center. We compute that

σiτ jσ−i = τ j`
i
.

The map α is assumed to be a monomorphism, therefore `i = 1 if and only
if i = 0.

Let now φ be an arbitrary automorphism of G. We observe first that φ
should preserve the normal subgroup generated by τ , i.e., φ(τ) = τµ for
some 0 < µ < p− 1. Set φ(σ) = τν1σν2 . We have

φ(στσ−1) = φ(τ `)⇒ τµ`
ν2 = τµ`.

This implies that µ`ν2 ≡ `µ modp and since (µ, p) = 1 we have that `ν2−1 ≡
1 modp. We have assumed that α is a monomorphism, therefore ν2 = 1.
Thus the automorphism φ depends on the two parameters (µ, ν1). Denote
by φ(ν, µ) the automorphism corresponding to (ν, µ). The composition of
φ(ν1, µ1), φ(ν2, µ2) is given by φ(ν2µ1 + ν1, µ1µ2), and it is easy to see that
Aut(G) ∼= Cp o Cp−1, where Cp−1 acts on Cp by multiplication by µ.

We will compute now the group of inner automorphisms Inn(G). An
arbitrary element in G can be written as σiτ j for some 0 ≤ i ≤ t − 1,
0 ≤ j ≤ p − 1. The corresponding inner automorphism φi,j sends the
generators σ, τ of G to

φi,j(τ) = σiτ jτ
(
σiτ j

)−1 = τ `
i

φi,j(σ) = σiτ jσ
(
σiτ j

)−1 = τ−j(`−1)`iσ.

We identify Aut(Cp) with Z∗p ∼= Cp−1. If µ ∈ Im(α), then there is an i0
such that `i0 ≡ µ modp. Moreover the equation

−j(`− 1)`i0 = ν modp,

has always a unique solution j0 since
(
(` − 1)`i0 , p

)
= 1. In this case

φ(ν, µ) = φi0,j0 . The short exact sequence given in eq. (7) can be written
as

1→ Cp o Ct → Cp o Cp−1 → C(p−1)/t → 1,
and this sequence splits if and only if (t, (p− 1)/t) = 1. �
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4. Properties of q-covers of the projective line

4.1. Rational subfields. It is known that for hyperelliptic curves the hy-
perelliptic involution is always normal in the whole automorphism group,
and that the corresponding hyperelliptic function field F has a unique ra-
tional subfield F0 such that [F : F0] = 2. This result is not true for the
general case of q-covers for the projective line [9],[8]. However the following
holds:

Proposition 4.1. Consider a q-cyclic extension F/F0 of the rational func-
tion field F0 = k̄(x), such that the genus g of F is g ≥ 2. If F is birational
to one of the curves given in (1),(2d) then F0 is the unique rational subfield
E of F such that F/E is Galois with cyclic Galois group of order q.

Proof. For the case p = q the result is proved by Valentini-Madan [13, th.
6].

We will treat now the case q 6= p. It is known that the condition 2q < s
implies that Cq is a normal subgroup of the whole automorphism group
[8, prop. 1]. Suppose that there is one more rational subfield F1 such
that the extension F/F1 is Galois and C ′q = Gal(F/F1) is cyclic of order
q. Since q is prime we have either Cq ∩ C ′q = {1} or Cq = C ′q. But since
FCq = F0 6= F1 = FC

′
q we have Cq ∩ C ′q = {1}.

Let G be the subgroup of Autk̄(F ) generated by Cq, C
′
q. Since Cq is

normal in the whole automorphism group it is normal in G as well. The
group G is of order q2 and is Abelian since q is prime. The group G is not
cyclic. Indeed, it is known that for a cyclic group G1 and for every divisor
δ of the order of G1 there is a unique subgroup G0 of G1 of order δ. This
is not the case for G. Therefore the group G is isomorphic to the product
Cq × C ′q.

We have the following picture of subfields of F :

Q1,1 · · ·Q1,q Q2,1 · · ·Q2,q F

Cq′
Cq

BB
BB

BB
BB

P1 P2 F1

Cq

F0

C′q||
||

||
||

P̄1 P̄2 FG

The cyclic group Cq acts on the rational function field F1 and we can choose
a parameter t on F1 such that the action is given by t 7→ ζt, where ζ is a
primitive q-th root of unity. There are exactly two places P1 = Pt=0, P2 =
P∞ of F1 which are ramified in F1/F

Cq
1 . Consider a place Q of F above

Pi for i = 1 or i = 2. Either Q/Pi is ramified completely or Q/Pi is
decomposed. If Q/Pi is ramified completely then it is ramified completely
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in the extension F/FG. In this case the decomposition group G(Q) is the
whole group G and this is not possible since decomposition groups of order
prime to the characteristic are cyclic [12, III.8.6].

Hence, there are q places Q1,ν , ν = 1, . . . , q of F above P1 and q places
Q2,ν , ν = 1, . . . , q of F above P2. Let P̄1, P̄2 be the restrictions of P1, P2 in
FG. We know that e(Qi,ν/P̄i) = q and every place Qi,ν is fixed by Cq. But
then at least 2q places of F0 are ramified in F/F0, a contradiction since
2q < s. �

4.2. Automorphisms. From now on we will assume that the conditions
of proposition 4.1 are fulfilled, in particular Cq = Gal(F/F0) is a normal
subgroup of the automorphism group Autk̄(X). This allows us to consider
the reduced automorphism group B = Autk̄(X)/Cq. This is a finite sub-
group of PGL(2, k̄) which permutes the ramification points of the extension
F/F0.

Assume first that we are in the p 6= q case. Let X : yq = f(x) and
X ′ : wq = g(z) be two isomorphic curves, and let φ : F → F ′ be an
isomorphism of the corresponding function fields. Obviously, φ(k(x)) is a
Galois subfield of F ′ with cyclic Galois group of order q. Proposition 4.1
implies that k̄(φ(x)) = k̄(z), and this gives us that φ(x) = az+b

cz+d , where(
a b
c d

)
is a representative of an element in PGL(2, k̄).

We apply the automorphism φ on the defining equation yq = f(x) and
we obtain:

(8) φ(y)q = f(φ(x)) = f

(
az + b

cz + d

)
.

Let us write

f(x) =
s∏
i=1

(x− ρi)di ,

and set δ =
∑s

i=1 di. We can choose a parameter x such that the place
at infinity is not ramified. The choice of such a parameter implies that
δ ≡ 0 modq. The element φ(y) is a generating radicant of the extension
F ′/k̄(z), therefore it is of the form wia(z) with 1 ≤ i < q , where a(z) ∈
k̄(z). On the other hand a simple computation shows that:

f

(
az + b

cz + d

)
=
(

c

cz + d

)δ
f(a/c)

s∏
i=1

(
z − ρid− b
−ρic+ a

)di
.

Therefore, (8) implies that

g(z)ia(z)q =
(

c

cz + d

)δ
f(a/c)

s∏
i=1

(
z − ρid− b
−ρic+ a

)di
,
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and since g(z), f(z) are not q powers we have that a(z) =
(

1
cz+d

)δ/q
mul-

tiplied by a constant. The above ideas allows us to prove:

Proposition 4.2. Let F ′ be another function field given by an equation
yq = f ′(x), where f ′(x) ∈ k̄[x] is a polynomial which is not a q-power.
Every isomorphism φ : F → F ′, is given by an expression of the form:

φ(x) =
ax+ b

cx+ d
, φ(y) =

eyi

(cx+ d)δ/q
, for some 1 ≤ i < q, e ∈ k̄∗.

The pair M =
(
a b
c d

)
∈ GL2(k̄) and e ∈ k̄∗ is unique up to replacement

by (λM, eλδ/q) If φ′ : F ′ → F ′′ is another isomorphism given by (M ′, e′)
then the composition φ′φ is given by (M ′M, e′e).

We will now focus on the case of Artin-Schreier extensions of the pro-
jective line. Assume that F, F ′ are two Artin-Schreier extensions of the
fields F0 = k̄(x), F ′0 = k̄(z) which do not fall to one of the excluded cases
(2a),(2b),(2c), in particular F0 (resp. F ′0) is the unique rational function
field of F (resp. F ′) of degree p. Assume also that F, F ′ are given by the
equations:

(9) F = k̄(y, x) : yp − y = f(x), F ′ : wp − w = g(z).

Since F ′0 is the unique rational subfield of F ′ of degree p we have that
σ(F0) = F ′0 and in particular σ(x) = az+b

cz+d for some invertible matrix(
a b
c d

)
, a, b, c, d ∈ k̄. On the other hand, σ(y) is a generating element

of the Artin-Schreier extension F ′/F ′0, therefore it is of the form σ(y) =
λσw + ασ(z), for some λσ ∈ F∗p and ασ(z) ∈ k̄(z). By applying σ to the
defining equation (9) we obtain that

(10) λσg(z)− f
(
az + b

cz + d

)
= ασ(z)p − ασ(z).

Thus we have the following:

Proposition 4.3. Let F, F ′ be two Artin-Schreier extensions of the fields
F0 = k̄(x), F ′0 = k̄(z) which do not fall to one of the excluded cases
(2a),(2b),(2c), defined in terms of equation (9). Every isomorphism F →
F ′ is given by

σ(x) =
az + b

cz + d
, σ(y) = λσw + ασ(z)p − ασ(z)

where λσ ∈ F∗p and ασ(z) ∈ k̄(z) satisfies equation (10). On the coordinate x
of the function field F0 the isomorphism σ acts as a Möbius transformation.
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Remark: The exact value of ασ(z) corresponds to the solution of the
first order “Frobenious Differential Equation” (10) in the sense of [7, 1.9].

5. Example of curves not defined over their field of moduli.

In this section, k = R. We provide an example of degree q-cyclic cover
of the projective line with field of moduli R but not defined over R, which
generalizes the one of [6, §6].

Consider a cyclic cover X of the projective line of the form yq = f(x)
with function field F such that the cyclic group Cq = Gal(F/k(x)) is a
normal subgroup of the whole automorphism group. The reduced group
B = Aut(X)/Cq is determined by the relative position of the roots of the
polynomial f(x) [8] [1], and does not depend on the value of q.

Let n,m ∈ Z>1 with m odd. Let c denote complex conjugation and set

f(x) :=
∏

1≤i≤m
(xn − ai)

(
xn +

1
aci

)
,

where ai := (i+1)ζim, i = 1, . . . ,m and ζm is a primitive m-th root of unity.
Then the maximal subgroup of PGL2(C) permuting the roots of f is the
order n-cyclic group generated by

x 7→ ζnx.

Assume furthermore that 2q < 2mn and that q | 2m Then the curve X
defined by

yq = f(x)

has automorphism group Cq × Cn, where Cq is generated by γ(x, y) =
(x, ζqy) and Cn is generated by ν(x, y) = (ζnx, y).

Proposition 5.1. The curve X has field of moduli R, but is not defined
over R.

Proof. Consider the conjugate curve cX given by

yq =
∏

1≤i≤m
(xn − aci )(xn + 1/ai).

The curves X,Xc are isomorphic by the isomorphism

µ(x, y) =
(

1
ωx

,
ω′y

x2mn/q

)
,

where ωn = −1 and ω′q = −1.
Since the automorphism group of X is Cq × Cn any isomorphism uc :

X → Xc is given by uc := µγiνj , where 0 ≤ i < q and 0 ≤ j < n.



14 Aristides Kontogeorgis

Straightforward computations show that:

µγ = γµ

µν = νcµ

µcµ = νl0γl1 for some l0, l1 with q - l1.
Hence,

uccuc = ν2j+l0γl1 6= Id.
Therefore Weil’s cocycle condition (3) does not hold and X cannot be
defined over R. �
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