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Let X be a smooth projective geometrically irreducible curve 
over a perfect field k of positive characteristic p. Suppose G is a 
finite group acting faithfully on X such that G has non-trivial 
cyclic Sylow p-subgroups. We show that the decomposition of 
the space of holomorphic differentials of X into a direct sum of 
indecomposable k[G]-modules is uniquely determined by the 
lower ramification groups and the fundamental characters of 
closed points of X that are ramified in the cover X −→ X/G. 
We apply our method to determine the PSL(2, F�)-module 
structure of the space of holomorphic differentials of the 
reduction of the modular curve X (�) modulo p when p and 
� are distinct odd primes and the action of PSL(2, F�) on 
this reduction is not tamely ramified. This provides some 
non-trivial congruences modulo appropriate maximal ideals 
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containing p between modular forms arising from isotypic 
components with respect to the action of PSL(2, F�) on X (�).

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a perfect field, and let X be a smooth projective geometrically irreducible 
curve over k. Denote the sheaf of relative differentials of X over k by ΩX . The space of 
holomorphic differentials of X is the space of global sections H0(X, ΩX). Suppose G is 
a finite group acting faithfully on the right on X over k. Then G acts on the left on ΩX

and on H0(X, ΩX). In particular, H0(X, ΩX) is a left k[G]-module of k-dimension equal 
to the genus g(X) of X. It is a classical problem, which was first posed by Hecke [20], 
to determine the k[G]-module structure of H0(X, ΩX). In other words, this amounts 
to determining the decomposition of H0(X, ΩX) into its indecomposable direct k[G]-
module summands. In the case when k is algebraically closed and its characteristic does 
not divide #G, this problem was solved by Chevalley and Weil [9] using character theory 
(see also [23]).

For the remainder of the paper, we assume that the characteristic of k is a prime p that 
divides #G. Two main difficulties then arise. One is the appearance of wild ramification 
and the other is that one needs to use positive characteristic representation theory. In 
particular, there are indecomposable k[G]-modules that are not irreducible.

If k is algebraically closed and the ramification of the Galois cover X → X/G is tame, 
then Nakajima [32, Thm. 2] and, independently, Kani [25, Thm. 3] determined the k[G]-
module structure of H0(X, ΩX) for an arbitrary group G. In particular, Nakajima showed 
that if E is any locally free G-sheaf of finite rank then there is an exact sequence of k[G]-
modules

0 −→ H0(X, E) −→ L0 −→ L1 −→ H1(X, E) −→ 0 (1.1)

where L0 and L1 are projective k[G]-modules.
The case when G is a cyclic group and the ramification of X −→ X/G is arbitrary 

was initiated by Valentini and Madan [37, Thm. 1] who considered cyclic p-groups (and 
also revisited cyclic p′-groups [37, Thm. 2]). The case of general cyclic G was treated by 
Karanikolopoulos and the third author [26, Thm. 7]. In these papers, formulas are given 
of the multiplicities of the indecomposable direct k[G]-module summands of H0(X, ΩX)
in terms of invariants introduced by Boseck [7] when constructing bases of holomor-
phic differentials. These Boseck invariants have also been used by Rzedowski-Calderón, 
Villa-Salvador and Madan [34] and Marques and Ward [29] for some other groups under 
additional hypotheses on the cover X −→ X/G. A different, general approach to de-
termining the decomposition of coherent cohomology groups into indecomposable direct 
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summands was developed by Borne in [6], using the notion of rings with several objects. 
Some formulas concerning the case of cyclic groups and curves are given in [6, §7.2].

The goal of this article is to determine the decomposition of H0(X, ΩX) into a direct 
sum of indecomposable k[G]-modules for every group G with non-trivial cyclic Sylow 
p-subgroups. Even though there are only finitely many isomorphism classes of inde-
composable k[G]-modules in this case, G can have quite a complicated structure. For 
example, every finite simple non-abelian group has a non-trivial cyclic Sylow subgroup 
for at least one prime (see, e.g., [21, Prop. 3] for a proof). Our main objective is to prove 
that the k[G]-module structure of H0(X, ΩX) is uniquely determined by the ramification 
data consisting of the lower ramification groups and the associated characters of closed 
points of X that are ramified over X/G.

More precisely, for each closed point x ∈ X, let mX,x be the maximal ideal of the local 
ring OX,x and let k(x) be the residue field of x. For i ≥ 0, the ith lower ramification 
subgroup Gx,i of G at x is the subgroup of all elements σ ∈ G that fix x and that 
act trivially on OX,x/m

i+1
X,x. The fundamental character of the inertia group Gx,0 of x

is the character θx : Gx,0 −→ k(x)∗ = Aut(mX,x/m
2
X,x) giving the action of Gx,0 on 

the cotangent space of x. Here θx factors through the maximal p′-quotient Gx,0/Gx,1 of 
Gx,0. Our main result is as follows.

Theorem 1.1. Suppose G has non-trivial cyclic Sylow p-subgroups. Then the k[G]-module 
structure of H0(X, ΩX) is uniquely determined by the lower ramification groups and the 
fundamental characters of closed points x of X that are ramified in the cover X −→ X/G.

There are two main differences between Theorem 1.1 and previous literature on this 
subject. The first is that we do not require the group G to be solvable or any restric-
tions on the ramification of the G-cover, but we only require the Sylow p-subgroups of 
G to be cyclic. The second difference is that we work mostly locally rather than globally 
and we phrase our results only in terms of ramification groups and fundamental charac-
ters. In particular, our results do not involve invariants constructed from equations for 
successive Artin-Schreier extensions of function fields. In previous work, such equations 
were involved in defining the invariants necessary to calculate the Galois structure of the 
holomorphic differentials. Here we only use Artin-Schreier extensions in our proof, but 
the statement of Theorem 1.1 does not involve invariants associated to solutions of such 
equations.

Our work is relevant to the study of classical modular forms of weight two. Suppose 
N ≥ 3 is an integer prime to p, and let Γ(N) be the principal congruence subgroup 
of SL(2, Z) of level N . Let F be a number field that is unramified over p and that 
contains a primitive Nth root of unity ζN . Suppose A is a Dedekind subring of F that 
has fraction field F and that contains Z[ 1

N , ζN ]. By [27,28] (see also [24]), there is a 
proper smooth canonical model X (N) of the modular curve associated to Γ(N) over A. 
The global sections H0(X (N), ΩX (N)) are naturally identified with the A-lattice S(A) of 
holomorphic weight 2 cusp forms for Γ(N) that have q-expansion coefficients in A at all 
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the cusps, in the sense of [27, §1.6]. See §5 for details. Note that in the classic references, 
such as [35], the action of elements of SL(2, Z) on S(A) is on the right. As usual, one 
can turn any right action of a group on a module into a left action by letting the left 
action of a group element equal the right action of its inverse.

Let V(F, p) be the set of places v of F over p, and let OF,v be the ring of integers of 
the completion Fv of F at v. We now suppose A is contained in OF,v for all v ∈ V(F, p). 
We further suppose that N = � is an odd prime number, and we let G = PSL(2, Z/N) =
PSL(2, F�). By analyzing the action of G on the holomorphic differentials of the reduction 
of X (�) modulo p, we will show the following result on the structure of the holomorphic 
differentials of X (�) as an OF,v[G]-module.

Theorem 1.2. Suppose A ⊂ OF,v for all v ∈ V(F, p), N = � is an odd prime number with 
� �= p and p ≥ 3. For all v ∈ V(F, p), the OF,v[G]-module

OF,v ⊗A H0(X (�),ΩX (�)) = OF,v ⊗A S(A)

is a direct sum over blocks B of OF,v[G] of modules of the form PB ⊕ UB in which PB

is a projective B-module and UB is either the zero module or a single indecomposable 
non-projective B-module. One can determine PB and the reduction UB of UB modulo 
the maximal ideal mF,v of OF,v from the ramification data associated to the action of G
on X (�) modulo p.

The fact that at most one non-projective indecomposable module UB is associated to 
each block B is fortuitous. When p > 3 we show how this follows from work of Nakajima 
[32, Thm. 2], and in particular from (1.1). When p = 3 the result is more difficult because 
the ramification of the action of G on X (�) modulo 3 is wild. We determine the module 
structure of the holomorphic differentials of X (�) modulo 3 in Theorem 1.4 below, and 
this leads to Theorem 1.2 in this case. Note that the Sylow 2-subgroups of G are not 
cyclic, so the methods of this article are not sufficient to treat the case when p = 2.

We now describe one approach to defining congruences modulo p between modular 
forms. This basically follows the approach in [33]. However, we consider weight 2 cusp 
forms for the principal congruence subgroup Γ(N) (rather than for Γ0(N) or Γ1(N)) 
and we allow more general rings T of Hecke operators to act (see below). We then 
show how Theorem 1.2 enables us to characterize when such congruences can arise from 
the decomposition of F ⊗A S(A) into G-isotypic pieces. We refer to [35, Chap. 3] for a 
discussion of Hecke operators and their actions on modular forms.

Define S(F ) = F ⊗A S(A) to be the space of weight two cusp forms that have q-
expansion coefficients in F at all cusps, in the sense of [27, §1.6]. Let T be a ring of 
Hecke operators acting on S(F ). Suppose there is a decomposition

S(F ) = E1 ⊕E2 (1.2)
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into a direct sum of F -subspaces that are stable under the action of T . Let a be an ideal 
of A. Following [33], a non-trivial congruence modulo a linking E1 and E2 is defined to 
be a pair of forms f ∈ S(A) ∩E1 and g ∈ S(A) ∩ E2 such that

f ≡ g mod a · S(A) but f /∈ a · S(A).

Congruences of this kind have played an important role in the development of the theory 
of modular forms, Galois representations and arithmetic geometry. For further discussion 
of them, see for example [15,16].

Our results are relevant to a method for producing congruences of the above kind. 
Letting N = � and G = PSL(2, F�) as before, we can form a decomposition (1.2) in the 
following way. Write 1 in F [G] as the sum e1 +e2 of two orthogonal central idempotents. 
Define

E1 = e1S(F ) and E2 = e2S(F ). (1.3)

We will call a decomposition (1.2) of the form in (1.3) a G-isotypic T -stable decompo-
sition of S(F ).

In an appendix in §7 we show how to construct non-trivial G-isotypic T -stable de-
compositions of S(F ) when T is the ring of Hecke operators that have index prime to �
(see Proposition 7.1). In this case, one can take Ei = eiS(F ) when {e1, e2} is any pair 
of orthogonal central idempotents of F [G] such that 1 = e1 + e2 and each ei is fixed by 
the conjugation action of PGL(2, F�) on G.

We will show the following theorem regarding non-trivial congruences arising from 
G-isotypic T -stable decompositions of S(F ).

Theorem 1.3. With the assumptions of Theorem 1.2, suppose further that F contains a 
root of unity of order equal to the prime to p part of the order of G. Let a be the maximal 
ideal over p in A associated to v ∈ V(F, p). A T -stable decomposition (1.2) that is G-
isotypic, in the sense that it arises from idempotents as in (1.3), results in non-trivial 
congruences modulo a between modular forms if and only if the following is true. There is 
a block B of OF,v[G] such that when PB and UB are as in Theorem 1.2, MB = PB ⊕UB

is not equal to the direct sum (MB ∩e1MB) ⊕ (MB ∩e2MB). For a given B, there will be 
orthogonal idempotents e1 and e2 for which this is true if and only if B has non-trivial 
defect groups, and either PB �= {0} or Fv ⊗OF,v

UB has two non-isomorphic irreducible 
constituents.

To describe the module structure of the holomorphic differentials of X (�) modulo 3, 
let � �= 3 be an odd prime number. Let P3 be a maximal ideal of A containing 3, define 
k(P3) = A/P3 to be the corresponding residue field, and let k be an algebraically closed 
field containing k(P3). Define the reduction of X (�) modulo 3 over k to be

X3(�) = k ⊗k(P3) (k(P3) ⊗A X (�)) .
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If � = 5 then X3(�) has genus 0. For � ≥ 7, we obtain Theorem 1.4 below; for more 
detailed versions of part (i) of this theorem, see Propositions 6.4.1–6.4.4. For a discussion 
of uniserial modules over Artin algebras, see, e.g., [2, §IV.2].

Theorem 1.4. Let � ≥ 7 be a prime number, and define G = PSL(2, F�). Let P3, k(P3)
and k be as above, and define X = X3(�) to be the reduction of X (�) modulo 3 over k.

(i) Let ε = ±1 be such that � ≡ ε mod 3. Write � − ε = 2 · 3n · m where 3 does not 
divide m, and let δn,1 be the Kronecker delta. If T is a simple k[G]-module, then 
U

(G)
T,b denotes a uniserial k[G]-module of length b whose socle is isomorphic to T . 

There exists a projective k[G]-module Q� such that the following is true:
(1) Suppose � ≡ 1 mod 4 and � ≡ −1 mod 3. For 0 ≤ t ≤ (m − 1)/2, let T̃t be 

representatives of simple k[G]-modules of k-dimension � −1 such that T̃0 belongs 
to the principal block of k[G]. As a k[G]-module,

H0(X,ΩX) ∼= Q� ⊕ (1 − δn,1)U (G)
T̃0,(3n−1−1)/2

⊕
(m−1)/2⊕

t=1
U

(G)
T̃t,3n−1 .

(2) Suppose � ≡ −1 mod 4 and � ≡ 1 mod 3. Let T1 be a simple k[G]-module 
of k-dimension �. For 1 ≤ t ≤ (m − 1)/2, let T̃t be representatives of simple 
k[G]-modules of k-dimension � + 1. As a k[G]-module,

H0(X,ΩX) ∼= Q� ⊕ (1 − δn,1)U (G)
T1,2·3n−1+1 ⊕

(m−1)/2⊕
t=1

U
(G)
T̃t,2·3n−1 .

(3) Suppose � ≡ 1 mod 4 and � ≡ 1 mod 3. Let T1,1 be a simple k[G]-module 
of k-dimension �. For 1 ≤ t ≤ (m/2 − 1), let T̃t be representatives of simple 
k[G]-modules of k-dimension � + 1. There exists a simple k[G]-module T0,1 of 
k-dimension (� + 1)/2 such that, as a k[G]-module,

H0(X,ΩX) ∼= Q� ⊕ (1 − δn,1)U (G)
T1,1,2·3n−1+1 ⊕ U

(G)
T0,1,2·3n−1 ⊕

m/2−1⊕
t=1

U
(G)
T̃t,2·3n−1 .

(4) Suppose � ≡ −1 mod 4 and � ≡ −1 mod 3. For 0 ≤ t ≤ (m/2 − 1), let T̃t

be representatives of simple k[G]-modules of k-dimension � − 1 such that T̃0

belongs to the principal block of k[G]. There exists a simple k[G]-module T0,1 of 
k-dimension (� − 1)/2 such that, as a k[G]-module,

H0(X,ΩX) ∼= Q� ⊕ (1 − δn,1)U (G)
T̃0,(3n−1−1)/2

⊕ U
(G)
T0,1,3n−1 ⊕

m/2−1⊕
U

(G)
T̃t,3n−1 .
t=1
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The multiplicities of the projective indecomposable k[G]-modules in Q� are known 
explicitly. The isomorphism classes of the uniserial k[G]-modules occurring in parts 
(1) through (4) are uniquely determined by their socles and their composition series 
lengths. In parts (3) and (4), there are two conjugacy classes of subgroups of G, 
represented by H1 and H2, that are isomorphic to the symmetric group Σ3 such 
that the conjugates of H1 (resp. H2) occur (resp. do not occur) as inertia groups of 
closed points of X. This characterizes the simple k[G]-module T0,1 in parts (3) and 
(4) as follows. The restriction of T0,1 to H1 (resp. H2) is a direct sum of a projective 
module and a non-projective indecomposable module whose socle is the trivial simple 
module (resp. the simple module corresponding to the sign character).

(ii) Let k1 be a perfect field containing k(P3) and let k be an algebraic closure of k1. 
Define X1 = k1 ⊗k(P3) (k(P3) ⊗A X (�)). Then

k ⊗k1 H0(X1,ΩX1) ∼= H0(X,ΩX)

as k[G]-modules, and the decomposition of H0(X1, ΩX1) into indecomposable k1[G]-
modules is uniquely determined by the decomposition of H0(X, ΩX) into indecom-
posable k[G]-modules. Moreover, the k1[G]-module H0(X1, ΩX1) is a direct sum over 
blocks B1 of k1[G] of modules of the form PB1 ⊕UB1 in which PB1 is a projective B1-
module and UB1 is either the zero module or a single indecomposable non-projective 
B1-module. Moreover, one can determine PB1 and UB1 from the ramification data 
associated to the cover X −→ X/G.

The main ingredients in the proof of Theorem 1.4 are Theorem 1.1 together with a 
description of the blocks of k[G] and their Brauer trees in [8].

We now describe the main ideas of the proof of Theorem 1.1.
We first use the Conlon induction theorem [12, Thm. (80.51)] to reduce the problem of 

determining the k[G]-module structure of H0(X, ΩX) to the problem of determining the 
k[H]-module structure of restrictions of H0(X, ΩX) to the so-called p-hypo-elementary 
subgroups H of G. These p-hypo-elementary subgroups are semi-direct products of the 
form H = P �C, where P is a normal cyclic p-subgroup of H and C is a cyclic p′-group.

We then prove Theorem 1.1 in the case when G = H is p-hypo-elementary. The 
proof in this case is constructive and can be used as an algorithm to determine the 
decomposition of H0(X, ΩX) into a direct sum of indecomposable k[H]-modules, see 
Remark 4.4. More precisely, let H = P � C be a p-hypo-elementary group as above, 
and let χ : C −→ F∗

p be the character determining the action of C on P . Let I ≤ P

be the (cyclic, characteristic) subgroup of P generated by all inertia groups of the cover 
X −→ X/P , say I = 〈τ〉. If M is a k[I]-module or a sheaf of k[I]-modules on a scheme, 
we use the notation M (j), for 0 ≤ j ≤ #I − 1, to denote the kernel of the action of 
(τ − 1)j on M . Let π : X −→ X/I be the quotient morphism. For ease of notation, we 
write Ω(j)

X instead of (π∗ΩX)(j). We prove that the quotient sheaves Ω(j+1)
X /Ω(j)

X are line 
bundles for OX/I isomorphic to χ−j ⊗k ΩX/I(Dj) for effective divisors Dj on X/I which 
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may be explicitly determined by the lower ramification groups of the cover X −→ X/I. 
Using a dimension count, we show that there is an isomorphism

H0(X,ΩX)(j+1)/H0(X,ΩX)(j) ∼= H0(X,Ω(j+1)
X /Ω(j)

X ) (1.4)

of k[H/I]-modules for 0 ≤ j ≤ #I − 1. Then we use that X/I −→ X/H is 
tamely ramified, together with (1.1), to prove that the k[H/I]-module structure of 
H0(X, Ω(j+1)

X /Ω(j)
X ), for 0 ≤ j ≤ #I − 1, is uniquely determined by the p′-parts of the 

(non-trivial) inertia groups of the cover X −→ X/H and their fundamental characters. 
Finally, we argue, using (1.4), that this is sufficient to obtain the k[H]-module structure 
of H0(X, ΩX).

The paper is organized as follows. In §2, we recall some well known definitions regard-
ing finite groups acting on schemes and sheaves. In §3, we show how to reduce the proof 
of Theorem 1.1 to the case of p-hypo-elementary subgroups H of G, using the Conlon 
induction theorem (see Lemma 3.2). We also reduce to the case when k is algebraically 
closed. In §4, we first prove Theorem 1.1 when G = H is p-hypo-elementary; see Propo-
sitions 4.1 and 4.3 for the key steps. We then summarize these key steps of the proof 
in Remark 4.4. In §5, we discuss the holomorphic differentials of the reductions of the 
modular curves X (�) modulo p, and we prove Theorems 1.2 and 1.3 when p > 3. In §6, 
we fully determine the k[PSL(2, F�)]-module structure of H0(X3(�), ΩX3(�)) when k is an 
algebraically closed field containing F3; see Propositions 6.4.1–6.4.4 for the precise state-
ments. In particular, this proves Theorem 1.4, which we then use to prove Theorems 1.2
and 1.3 when p = 3.

2. Finite groups acting on schemes and sheaves

In this section, we recall some well known definitions regarding finite groups acting 
on schemes and sheaves. We will also set up some notation which will be used later in 
this paper.

Let X be a Noetherian scheme, locally separated over a field k, and let H be a finite 
group acting on the right on X over k. We view H as a constant group scheme over k, 
and we write m : H ×k H −→ H for the group law and e : k −→ H for the identity 
section of H. Let ϑ : X ×k H −→ X denote the right action of H on X, which on points 
we denote by (x, h) �→ x · h. Let p1 : X ×k H −→ X denote the natural projection.

We recall from [36, §1.2] (see also [31, §1.3]) the notion of a quasi-coherent OX-H-
module F . The concept of an OX -H-module goes back to Grothendieck (see, for example, 
[17, Chap. V]). Such an F is also called a quasi-coherent H-sheaf (or H-equivariant sheaf) 
on X. An F of this kind is defined to be a quasi-coherent sheaf of OX-modules, together 
with an isomorphism of OX×kH -modules

φ : ϑ∗F −→ p∗1F .

This isomorphism φ must be associative, in the sense that it satisfies the cocycle condition
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(p∗12φ) ◦ ((ϑ× 1H)∗φ) = (1X ×m)∗φ (2.1)

on X×kH×kH, where p12 : X×kH×kH −→ X×kH denotes the projection onto the first 
and second components. On the stalk level, the cocycle condition says that the isomor-
phism Fx·hh′ ∼= Fx is the same as the composition F(x·h)·h′ ∼= Fx·h ∼= Fx, i.e., the associa-
tivity of the group action. The unitarity of the group action is also a consequence. Namely, 
applying (1X×e ×e)∗ to both sides of (2.1) we get (1X × e)∗φ ◦ (1X × e)∗φ = (1X × e)∗φ
and so (1X × e)∗φ is the identity.

Equivalently (compare with [10, §1.2.5]), a quasi-coherent OX -H-module can be de-
fined to be a quasi-coherent sheaf F of OX -modules with a compatible action of H in the 
following sense. Suppose x ∈ X and h ∈ H. The action of h ∈ H on X and on F gives 
isomorphisms of stalks OX,x·h −→ OX,x and Fx·h −→ Fx, which we will both denote by 
h. We require h(α · f) = h(α) · h(f) for α ∈ OX,x·h and f ∈ Fx·h.

If F is moreover coherent (resp. locally free coherent) as an OX-module, we will call 
F a coherent (resp. locally free coherent) OX-H-module.

The concept of an OX-H-module can be viewed as the sheafification of the concept 
of modules for skew group algebras. More precisely, if B is a k-algebra and H acts by 
left k-algebra automorphisms on B, we can form the skew group algebra

B � [H] =
{∑

h∈H

bh · h ; bh ∈ B

}
.

Here addition on B � [H] is natural and multiplication is defined distributively using 
h · b = h(b) · h, where h(b) denotes the image of b ∈ B under the action of h ∈ H. If 
U = Spec(B) is an affine open set of X that is taken to itself by the action of H, and F
is an OX -H-module, then F(U) is just a module for the skew group algebra B � [H].

An important example of a coherent OX-H-module, which will be of interest to us, 
is the sheaf ΩX of relative differentials of X over k with the natural action of H on ΩX

resulting from the action of H on OX . If X is a smooth projective curve over k, then 
ΩX is moreover locally free of rank one as an OX -module.

By [18, Exposé V, Prop. 1.8], a necessary and sufficient condition for the existence of 
a quotient scheme Z = X/H is that the H-orbit of every point of X is contained in an 
open affine subset of X. Equivalently, X can be covered by affine open sets of the form 
U = Spec(B) that are taken to themselves by the action of H. This will always be the 
case, for example, if X is quasi-projective.

Suppose now that the quotient scheme Z = X/H exists, and let I be a subgroup 
of H. By [18, Exposé V, Cor. 1.7], the quotient scheme Y = X/I also exists, and 
we let π : X −→ Y = X/I denote the quotient morphism. Let F be a quasi-coherent 
OX -H-module. Then π∗OX is a sheaf of rings on Y , and π∗F is a quasi-coherent sheaf of 
π∗OX -modules with an action of H that is compatible with the action of H on π∗OX over 
OY . We have a natural homomorphism OY −→ π∗OX of sheaves of rings on Y . Therefore, 
we can view π∗F as a quasi-coherent OY -H-module. Note that if F is coherent (resp. 
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locally free coherent) as an OX-module, then so is π∗F as an OY -module. Moreover, if G
is a quasi-coherent OY -H-module then π∗F⊗OY

G is also a quasi-coherent OY -H-module 
by letting H act diagonally.

Suppose finally that I is a normal subgroup of H, and that J is an ideal of k[I] that 
is taken to itself by the conjugation action of H on I. Since I acts trivially on OY , we 
can regard π∗F as a module for the sheaf of group rings OY [I] on Y . We define the 
kernel K = K(F , I, J) of J acting on π∗F to be the sheaf of OY -modules having sections 
over each open set V of Y equal to the kernel of J acting on π∗F(V ). Since J was 
assumed to be taken to itself by the conjugation action of H on k[I], K will in fact be a 
quasi-coherent OY -H-module.

3. Reduction to p-hypo-elementary subgroups and algebraically closed base fields

Let k be a perfect field of positive characteristic p, and suppose G is a finite group 
such that p divides #G. In this section, we show how we can reduce the problem of 
finding the k[G]-module structure of a finitely generated k[G]-module M to determining 
the k[H]-module structure of the restrictions of M to all p-hypo-elementary subgroups 
H of G. We follow [12, §80D] and [4, §5.6]. At the end of this section, we show how we 
can further reduce to the case when k is algebraically closed.

Definition 3.1.

(a) Let a(k[G]) be the representation ring, also called the Green ring, of k[G]. This is the 
ring consisting of Z-linear combinations of symbols [M ], one for each isomorphism 
class of finitely generated k[G]-modules M , with relations

[M ] + [M ′] = [M ⊕M ′].

Multiplication is defined by the tensor product over k

[M ] · [M ′] = [M ⊗k M ′]

where G acts diagonally on M ⊗k M ′. Since the Krull-Schmidt-Azumaya theorem 
holds for finitely generated k[G]-modules, it follows that a(k[G]) has a Z-basis con-
sisting of all [M ] with M finitely generated indecomposable. Moreover, [M ] = [M ′]
if and only if M ∼= M ′ as k[G]-modules. Define

A(k[G]) = Q⊗Z a(k[G])

which is called the representation algebra. Then a(k[G]) is embedded into A(k[G])
as a subring, and both have the same identity element [kG], where kG denotes the 
trivial simple k[G]-module. We also have induction maps
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a(k[H]) −→ a(k[G]) and A(k[H]) −→ A(k[G])

for each subgroup H ≤ G.
(b) A p-hypo-elementary group is a group H such that H = P � C, where P is a 

normal p-subgroup and C is a cyclic p′-group. We denote the set of p-hypo-elementary 
subgroups of G by H′.

The Conlon induction theorem [12, Thm. (80.51)] says that there is a relation

[kG] =
∑

H∈H′

αH [IndG
H(kH)] (3.1)

in A(k[G]), for certain rational numbers αH . Since by [11, Cor. (10.20)],

M ⊗k IndG
H(kH) ∼= IndG

H(MH ⊗k kH) ∼= IndG
H(MH)

for every finitely generated k[G]-module M , (3.1) implies that we have the relation

[M ] =
∑

H∈H′

αH [IndG
H(MH)] (3.2)

in A(k[G]), for the same rational numbers αH as in (3.1). In other words, if M ′ is another 
finitely generated k[G]-module such that [MH ] = [M ′

H ] in a(k[H]) for all H ∈ H′, then 
[M ] = [M ′] in A(k[G]), and hence in a(k[G]). In particular, this proves the following 
result.

Lemma 3.2. Suppose M is a finitely generated k[G]-module. Then the decomposition of 
M into its indecomposable direct k[G]-module summands is uniquely determined by the 
decompositions of the restrictions MH of M into a direct sum of indecomposable k[H]-
modules as H ranges over all elements in H′.

Remark 3.3. Suppose M is as in Lemma 3.2, and suppose we know the explicit decom-
position of MH into a direct sum of indecomposable k[H]-modules for all H ∈ H′. If G
does not have cyclic Sylow p-subgroups, there might be infinitely many non-isomorphic 
indecomposable k[G]-modules of k-dimension less than or equal to dimk M . To deter-
mine explicitly the decomposition of IndG

H(MH) into a direct sum of indecomposable 
k[G]-modules in (3.2), we have to test in principle all of these to see if they could be 
direct summands.

However, if G has cyclic Sylow p-subgroups, then there are only finitely many isomor-
phism classes of indecomposable k[G]-modules, and also only finitely many isomorphism 
classes of indecomposable k[H]-modules, for all H ∈ H′. Moreover, one can use the 
Green correspondence [11, Thm. (20.6)] to obtain a different, more explicit, proof that 
the k[G]-module structure of M is uniquely determined by the k[H]-module structure of 
MH , as H ranges over all elements in H′.
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Namely, if P is a cyclic Sylow p-subgroup of G (not necessarily unique), let P1 be the 
unique subgroup of P of order p, and let N1 be the normalizer of P1 in G. The Green 
correspondence shows that induction and restriction sets up a one-to-one correspondence 
between the isomorphism classes of indecomposable non-projective k[G]-modules and 
the isomorphism classes of indecomposable non-projective k[N1]-modules. By work of 
Dade [13] (and in particular, [13, Thm. 5]), it follows (in the case when k contains 
all (#G)th roots of unity) that the indecomposable k[N1]-modules are all uniserial, 
and hence uniquely determined by their top radical layer and their composition series 
length (see, e.g., [2, §IV.2] for a discussion of uniserial modules). Using a filtration of the 
k[N1]-modules by powers of the augmentation ideal of k[P1], one then proves that the 
k[N1]-module structure of M is uniquely determined by the restrictions MH to elements 
H ∈ H′.

For the remainder of the paper, we assume, as in Theorem 1.1, that G has non-trivial 
cyclic Sylow p-subgroups. Then every p-hypo-elementary subgroup H of G has a unique 
non-trivial cyclic Sylow p-subgroup.

Suppose H = P �ψ C, where P = 〈σ〉 ∼= Z/pn and C = 〈ρ〉 is a cyclic p′-group of 
order c. Then Aut(P ) ∼= F∗

p ×Q for an abelian p-group Q, and ψ : C −→ Aut(P ) factors 
through a character χ : C −→ F∗

p . To emphasize this character, we write H = P �χ C. 
Note that the order of χ divides (p − 1), which means in particular that χp−1 = χ−(p−1)

is the trivial one-dimensional character. For all i ∈ Z, χi defines a simple k[C]-module 
of k-dimension one, which we denote by Tχi . We also view Tχi as a k[H]-module by 
inflation.

Let k be a fixed algebraic closure of k, and let ζ be a primitive cth root of unity in 
k. For 0 ≤ a ≤ c − 1, let Sa be the simple k[C]-module on which ρ acts as ζa. We also 
view Sa as a k[H]-module by inflation. Moreover, for i ∈ Z, define Sχi = k ⊗k Tχi and, 
for 0 ≤ a ≤ c − 1, define χi(a) ∈ {0, 1, . . . , c − 1} to be such that Sχi(a) ∼= Sa ⊗k Sχi .

The following remark describes the indecomposable k[H]-modules (see, e.g., [1, pp. 
35-37 & 42-43]).

Remark 3.4. Let H = P �χ C be a p-hypo-elementary group, where P = 〈σ〉, C = 〈ρ〉
and χ : C −→ F∗

p is a character, and use the notation introduced in the two paragraphs 
preceding the remark. The projective cover of the trivial simple k[H]-module S0 is unis-
erial, in the sense that it has a unique composition series, with pn ascending composition 
factors of the form

S0, Sχ−1 , Sχ−2 , . . . , Sχ−(p−2) , S0, Sχ−1 , . . . , Sχ−(p−2) , S0. (3.3)

More generally, the projective cover of the simple k[H]-module Sa, for 0 ≤ a ≤ c − 1, is 
uniserial with pn ascending composition factors of the form

Sa, Sχ−1(a), Sχ−2(a), . . . , Sχ−(p−2)(a), Sa, Sχ−1(a), . . . , Sχ−(p−2)(a), Sa. (3.4)
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There are precisely #H isomorphism classes of indecomposable k[H]-modules, and they 
are all uniserial. If U is an indecomposable k[H]-module, then it is uniquely determined 
by its socle, which is the kernel of the action of (σ − 1) on U , and its k-dimension. For 
0 ≤ a ≤ c − 1 and 1 ≤ b ≤ pn, let Ua,b be an indecomposable k[H]-module with socle 
Sa and k-dimension b. Then Ua,b is uniserial and its b ascending composition factors are 
equal to the first b ascending composition factors in (3.4).

We next show how we can reduce to the case when k is algebraically closed when 
considering indecomposable k[H]-modules.

Let Z1, . . . , Zd be the distinct orbits of {ζa ; 0 ≤ a ≤ c − 1} under the action of 
Gal(k/k). For 1 ≤ j ≤ d, let SZj

be the direct sum of the Sa for a ∈ Zj .

Proposition 3.5. Let H = P �χ C be a p-hypo-elementary group as in Remark 3.4.

(i) The number of isomorphism classes of simple k[C]-modules is equal to d. Moreover, 
for each 1 ≤ j ≤ d, there exists a simple k[C]-module Tj with k ⊗k Tj

∼= SZj
.

(ii) The number of isomorphism classes of indecomposable k[H]-modules is equal to 
d · pn. Moreover, for each 1 ≤ j ≤ d and each 1 ≤ t ≤ pn, there exists a uniserial 
k[H]-module Vj,t such that k ⊗k soc(Vj,t) ∼= SZj

and such that k ⊗k Vj,t is a direct 
sum of indecomposable k[H]-modules of k-dimension t that all lie in a single orbit 
under the action of Gal(k/k).

(iii) If M is a finitely generated k[H]-module, then its decomposition into a direct sum of 
indecomposable k[H]-modules is uniquely determined by the decomposition of k⊗kM

into a direct sum of indecomposable k[H]-modules

Proof. Let T be a simple k[C]-module. Since c is relatively prime to p, k⊗k T is a direct 
sum of simple k[C]-modules that lie in precisely one Galois orbit under the action of 
Gal(k/k). In other words, there exists a unique j ∈ {1, . . . , d} with k ⊗k T ∼= SZj

. This 
proves part (i).

For part (ii), we use the description of the projective cover Q0 of the trivial sim-
ple k[H]-module S0 in Remark 3.4, and in particular the description of its ascending 
composition factors in (3.3). Since χ is a character with values in F∗

p ⊆ k∗, this means 
that Q0 is realizable over k, i.e., Q0 = k ⊗k P0, where P0 is the projective cover of the 
trivial simple k[H]-module. In particular, if SZ1 = {S0}, then, for all 1 ≤ t ≤ pn, there 
exists an indecomposable k[H]-module V1,t of k-dimension t with k ⊗k soc(V1,t) ∼= SZ1 . 
Let j ∈ {1, . . . , d} be arbitrary. Then, for all 1 ≤ t ≤ pn, Tj ⊗k V1,t is a uniserial 
k[H]-module of k-dimension equal to (dimkTj)t = (#Zj)t, with t ascending composition 
factors Tj , Tχ−1 ⊗k Tj , Tχ−2 ⊗k Tj , . . .. Now suppose V is an arbitrary indecomposable 
k[H]-module. Write k⊗k V as a direct sum of indecomposable k[H]-modules. The socle 
layers W1 and W2 of two of these summands are in the same Galois orbit if and only if 
for all integers i ≥ 0, Sχ−i ⊗k W1 and Sχ−i ⊗k W2 are in the same Galois orbit. Since 
the socle layers of V are k[H]-modules, it follows that k ⊗k V is a sum of Galois orbits 
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of indecomposable k[H]-modules. Since the sum of modules in a Galois orbit is an inde-
composable k[H]-module, we conclude that there can be only one such orbit since V is 
indecomposable. Hence V is isomorphic to Tj ⊗k V1,t for some 1 ≤ j ≤ d and 1 ≤ t ≤ pn. 
This proves part (ii). Part (iii) is an immediate consequence of part (ii). �
4. Filtrations on differentials and ramification data

We assume throughout this section that k is an algebraically closed field of charac-
teristic p > 0, and that H = P �χ C is a p-hypo-elementary group, where P = 〈σ〉 is a 
cyclic p-group of order pn, C = 〈ρ〉 is a cyclic p′-group of order c, and χ : C −→ F∗

p is a 
character, as in the previous section. We again view χ as a character of H by inflation, 
and denote, for all i ∈ Z, the one-dimensional k[H]-module corresponding to χi by Sχi .

Let X be a smooth projective curve over k, and fix a faithful right action of H on X
over k. Then X is a regular scheme of dimension one, and the sheaf ΩX of holomorphic 
differentials of X over k is a coherent OX -H-module, as defined in §2, which is a lo-
cally free rank one OX -module. Throughout this section, we adopt the conventions and 
notation from §2.

Recall that if x is a closed point of X and i ≥ 0, the ith lower ramification subgroup 
Hx,i of H is the group of all elements in H that fix x and act trivially on OX,x/m

i+1
X,x. 

Moreover, the fundamental character of the inertia group Hx = Hx,0 of x is the character 
θx : Hx −→ k∗ = Aut(mX,x/m

2
X,x) giving the action of Hx on the cotangent space of x. 

Since θx factors through the maximal p′-quotient of Hx, θx is trivial if Hx is a p-group. 
We will call the collection of the groups Hx,i together with the characters θx, as x varies 
over the closed points of X and i ranges over all non-negative integers, the ramification 
data associated to the action of H on X.

Let I = 〈τ〉 be the (cyclic) subgroup of P generated by the Sylow p-subgroups of 
the inertia groups of all closed points of X. In particular, I is a normal subgroup of H. 
Let Y be the quotient curve X/I, and let π : X −→ Y denote the quotient morphism. 
In particular, Y is a regular scheme of dimension one, and hence a smooth projective 
curve over k, since k is perfect. Then π∗OX is an OY -H-module, and we identify OY

with the subsheaf of I-invariants of π∗OX . The Jacobson radical of the group ring k[I]
is then J = k[I](τ − 1). For all integers j ≥ 0, let Ω(j)

X denote the kernel of the action of 
J j = k[I](τ −1)j on π∗ΩX . Because J j is taken to itself by the conjugation action of H
on I, it follows as in §2 that Ω(j)

X is a quasi-coherent OY -H-module. Since Y is a regular 
scheme of dimension one and Ω(j)

X is a subsheaf of a locally free coherent OY -module of 
finite rank, Ω(j)

X is also a locally free coherent OY -module. Thus in the terminology of 
§2, Ω(j)

X is a locally free coherent OY -H-module. If D is a divisor on Y , then we will 
denote by ΩY (D) the tensor product ΩY ⊗OY

OY (D).

Proposition 4.1. For 0 ≤ j ≤ #I − 1, the action of OY and of H on π∗ΩX makes the 
quotient sheaf Lj = Ω(j+1)

X /Ω(j)
X into a locally free coherent OY -H-module. There exists 

an H-invariant divisor Dj on Y with the following properties:
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(i) The divisor Dj may be determined from the ramification data associated to the 
action of I on X.

(ii) We have D#I−1 = 0, and Dj is effective of positive degree for 0 ≤ j < #I − 1.
(iii) There is an isomorphism of locally free coherent OY -H-modules between Lj and 

Sχ−j ⊗k ΩY (Dj).

Proof. Let K be the function field of X, and let L = KI be the function field of Y = X/I. 
Let D−1

X/Y be the inverse different of X over Y . In other words, D−1
X/Y is the largest OX

fractional ideal in K such that TrK/L(D−1
X/Y ) ⊆ OY . Note that D−1

X/Y is a coherent 
OX -H-module that is a locally free rank one OX-module. By the projection formula [19, 
Ex. II.5.1], it follows that there are isomorphisms of OY -H-modules

π∗ΩX
∼= π∗(D−1

X/Y ⊗OX
π∗ΩY ) ∼= π∗D−1

X/Y ⊗OY
ΩY . (4.1)

Fix 0 ≤ j ≤ #I − 1, and consider the short exact sequences of coherent OY -H-modules

0 Ω(j)
X Ω(j+1)

X Lj 0 (4.2)

and

0 D−1,(j)
X/Y D−1,(j+1)

X/Y Hj 0 (4.3)

where we again use the notation D−1,(j)
X/Y for the kernel of the action of J j = k[I](τ − 1)j

on π∗D−1
X/Y . In particular, since I acts trivially on OY and ΩY and since − ⊗OY

ΩY is 
right exact, we can identify Lj = Hj ⊗OY

ΩY as coherent OY -H-modules.
We now show that Lj is a line bundle for OY . Let ηX (resp. ηY ) be the generic point 

on X (resp. Y ). Then for all y ∈ Y and all j ≥ 0, there is a canonical homomorphism 
(Ω(j)

X )y −→ (Ω(j)
X )ηY

between stalks. Since (Ω(j)
X )ηY

is a vector space over L = k(Y )
and Ω(j)

X is a locally free coherent OY -module, it follows that this homomorphism is 
injective. On the other hand, we can identify the stalk (π∗ΩX)ηY

= (ΩX)ηX
with the 

relative differentials Ω1
K/k of K/k. We can write Ω1

K/k = K dt for some t ∈ KH . For all 
integers j ≥ 0, we again write (Ω1

K/k)(j) for the kernel of the action of J j . In particular, 
we can identify (Ω(j)

X )ηY
= (Ω1

K/k)(j). We have a canonical injective homomorphism

(Lj)y = (Ω(j+1)
X )y

(Ω(j)
X )y

↪→
(Ω1

K/k)(j+1)

(Ω1
K/k)(j)

whose image generates the right hand side as an L-vector space. Note that the module 
on the right is a one-dimensional vector space over L = KI , since K ∼= L[I] as L[I]-
modules, by the normal basis theorem, which means that Ω1

K/k = K dt is also a free 
rank one L[I]-module. Hence (Lj)y is a non-zero OY,y-submodule of a one-dimensional 
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vector space over L = k(Y ) for all y ∈ Y and it is one-dimensional when y = ηY . This 
implies that Lj is a line bundle for OY since Y is a regular scheme of dimension one.

Since Lj = Hj ⊗OY
ΩY , we have that Hj is also a line bundle for OY . Because 

Hj = D−1,(j+1)
X/Y /D−1,(j)

X/Y , it follows that the map given by (τ − 1)j sends Hj onto an 

OY -line bundle that is a subbundle of the constant sheaf on Y associated to L = KI . 
We claim that there is an H-invariant divisor Dj on Y for which there is an isomorphism

(τ − 1)j : Hj −→ OY (Dj) (4.4)

of OY -modules. To show this, first observe that since H/I stabilizes D−1,(j+1)
X/Y and 

D−1,(j)
X/Y , the class of Hj in Pic(Y ) is fixed by the action of H/I. To show that 

there is an H-invariant divisor Dj on Y as in (4.4), it will be enough to show that 
Div(Y )H/I −→ Pic(Y )H/I is surjective. We have a natural exact sequence

0 −→ k∗ −→ k(Y )∗ −→ Div(Y ) −→ Pic(Y ) −→ 0. (4.5)

On taking the H/I cohomology of the two short exact sequences produced by (4.5) and 
using Hilbert’s theorem 90, we conclude that it is enough to show H2(H/I, k∗) = 0. Here 
k is algebraically closed of characteristic p and H/I is an extension of the cyclic p′-group 
H/P by the normal cyclic p-subgroup P/I. Since Hq(P/I, k∗) = 0 for q > 0, we find, 
using the corresponding Lyndon-Hochschild-Serre spectral sequence, that

H2(H/I, k∗) = H2(H/P,H0(P/I, k∗)) = H2(H/P, k∗) = Ĥ0(H/P, k∗) = 0

where Ĥ0(H/P, k∗) denotes the 0th Tate cohomology group. This establishes that there 
exists an H-invariant divisor Dj on Y as in (4.4).

Let now V be an affine open set of Y that is taken to itself by the action of H and 
let f ∈ D−1,(j+1)

X/Y (V ) ⊂ L. Since τ commutes with σ, we obtain

σ (τ − 1)jf = (τ − 1)j (σ f)

showing that (4.4) is an isomorphism of OY -P -modules. On the other hand, considering 
the generator ρ of C and using that ρ σ ρ−1 = σχ(ρ), we see that

ρ (τ − 1)jf = ρ (τ − 1)j ρ−1 (ρ f)

= (τχ(ρ) − 1)j (ρ f)

= (τ − 1)j (χ(ρ)j ρ f)

since (τ − 1)j+1 D−1,(j+1)
X/Y (V ) = 0. Therefore, we obtain that

(τ − 1)j : Hj −→ Sχ−j ⊗k OY (Dj) (4.6)
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is an isomorphism of OY -H-modules. In particular, (4.6) gives an isomorphism of OY -H-
modules between Lj and Sχ−j ⊗k ΩY (Dj).

It remains to show that, for j ∈ {0, 1, . . . , #I − 1}, Dj may be determined from 
the ramification data associated to the action of I on X, and to establish the state-
ments of part (ii). Using (4.3) and (4.4), we identify OY (Dj) with the quotient sheaf 
D−1,(j+1)

X/Y /D−1,(j)
X/Y . Recall that L = KI is the fixed field of I = 〈τ〉. Write #I = pnI , 

where nI ≤ n, and write

Dj =
∑
y∈Y

dy,j y.

Fix a point y ∈ Y and a point x ∈ X above y. Let Ix ⊆ I be the inertia group of 
x, which is cyclic of order pn(x) ≤ pnI . Let i(x) = nI − n(x) and τx = τp

i(x) , so that 
Ix = 〈τx〉. Define Lx = KIx ⊇ KI = L, define Yx = X/Ix, and let yx ∈ Yx be a point 
above y and below x. Note that x is totally ramified over yx for the action of Ix, and y
splits into pi(x) points in Yx, where yx is one of them. By the tower formula for inverse 
differents, we have

D−1
X/Y = D−1

X/Yx
⊗OX

f∗
x D−1

Yx/Y

where fx : X −→ Yx is the quotient map. Since the quotient map gx : Yx −→ Y is étale 
over y, it follows that the stalk of D−1

Yx/Y
is equal to the stalk of the structure sheaf OYx

at all points of Yx over y. Hence at all points of X over y, the stalks of D−1
X/Y and D−1

X/Yx

are the same. It follows that if we take the inverse image Uy = (gx ◦ fx)−1(Vy) ⊂ X of a 
sufficiently small open neighborhood Vy of y, then we have an equality(

D−1
X/Y

) ∣∣∣
Uy

=
(
D−1

X/Yx

) ∣∣∣
Uy

(4.7)

of the restrictions of the inverse differents D−1
X/Y and D−1

X/Yx
to Uy.

We now determine dy,j using the filtration of D−1
X/Yx

coming from the powers of the 
Jacobson radical of the group ring k[Ix], which is given as Jx = k[Ix](τx−1) = k[Ix](τ −
1)pi(x) . For all integers t ≥ 0, let D−1,(t)

X/Yx
be the kernel of the action of J t

x = k[Ix](τx−1)t =
k[Ix](τ−1)pi(x)t on (fx)∗D−1

X/Yx
. In particular, D−1,(t)

X/Yx
is a coherent OYx

-H-module. Using 
the same arguments as in the first part of the proof, it follows that for 0 ≤ t ≤ #Ix − 1, 
there exists an H-invariant divisor D′

t,x on Yx such that

D−1,(t+1)
X/Yx

/D−1,(t)
X/Yx

∼= OYx
(D′

t,x)

as OYx
-modules. Writing

D′
t,x =

∑
′

d′y′,x,t y
′

y ∈Yx
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we claim that

dy,j = d′yx,x,t for all t, j satisfying pi(x)t ≤ j < pi(x)(t + 1). (4.8)

To see this, note that for all y′ ∈ Yx lying over y and for all t ≥ 0, we have d′y′,x,t =
d′yx,x,t. This means that locally, above y, the line bundle OYx

(D′
t,x) for OYx

is the pullback 
of a line bundle for OY . On the other hand, if we consider two consecutive powers J t

x

and J t+1
x of the radical Jx of k[Ix], then they generate in k[I] the two powers J pi(x)t

and J pi(x)(t+1) of the radical J of k[I]. Using (4.7), it follows that the restriction of the 
OY -H-module

D−1,(pi(x)(t+1))
X/Y /D−1,(pi(x)t)

X/Y (4.9)

to a sufficiently small neighborhood Vy of y, is as a module for OY

∣∣
Vy

given by 

(gx)∗OYx
(D′

t,x) restricted to Vy.
Considering the quotient (4.9), there are pi(x) intermediate quotients D−1,(j+1)

X/Y /

D−1,(j)
X/Y , for pi(x)t ≤ j < pi(x)(t +1). Hence, to prove the claim in (4.8), it suffices to prove 

that in each of these intermediate quotients the multiplicity of y in the corresponding 
divisor Dj , given by dy,j , is the same as the multiplicity of yx in the divisor D′

t,x, given 
by d′yx,x,t. To see this, we take a line bundle for OYx

of the form g∗xOY (d′yx,x,t y), where 
gx : Yx −→ Y = (Yx)/(I/Ix) is the quotient map, as above. Recall that gx is étale over 
a sufficiently small neighborhood Vy of y in Y .

We now consider the action of I/Ix on g∗x OY (d′yx,x,t y). By the projection formula 
[19, Ex. II.5.1], we have

(gx)∗
(
g∗x OY (d′yx,x,t y)

) ∼= (gx)∗ OYx
⊗OY

OY (d′yx,x,t y) (4.10)

where the action of I/Ix on OY (d′yx,x,t y) is trivial. We have a local normal basis theorem 
for the action of I/Ix on (gx)∗ OYx

restricted to Vy, since gx : Yx −→ Y is étale over 
Vy. This means that the stalk ((gx)∗ OYx

)y is a free rank one module for OY,y[I/Ix]. 
Using this fact together with the isomorphism (4.10), it follows that for all pi(x)t ≤ j <

pi(x)(t + 1), the quotient of (gx)∗(g∗x OY (d′yx,x,t y)) with respect to the kernels of two 

successive powers J j and J j+1 of the radical J of k[I/Ix] is an OY -line bundle that 
looks like OY (d′yx,x,t y) in the neighborhood Vy of y. Identifying the quotient with respect 
to the kernels of J j and J j+1 with the quotient with respect to the kernels of J j and 
J j+1, for pi(x)t ≤ j < pi(x)(t + 1), the claim in (4.8) follows.

We next show how the integers d′yx,x,t in (4.8), for 0 ≤ t ≤ pn(x) − 1, are determined 
by the ramification data associated to the action of Ix on X. If Ix is the trivial subgroup 
of I, then Yx = X and hence d′yx,x,t = 0 for all t ≥ 0. In particular, this means by (4.8)
that if y ∈ Y does not ramify in X then dy,j = 0 for all j ≥ 0.

Assume now that Ix = 〈τx〉 is not the trivial subgroup of I. Recall that #(Ix) = pn(x)

and Lx = KIx ⊇ KI = L. Consider the unique tower of intermediate fields
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Lx = L0 ⊂ L1 ⊂ · · · ⊂ Ln(x) = K (4.11)

with [Ll : Ll−1] = p for 1 ≤ l ≤ n(x). In particular, each extension Ll/Ll−1 is an Artin-
Schreier extension, meaning there exist zl ∈ Ll and λl ∈ Ll−1 such that Ll = Ll−1(zl)
and zpl − zl = λl. By Artin-Schreier theory, we may, and will, assume that the zl and λl

have been chosen to satisfy:

(a) ordx(λl)/pn(x)−l+1 is a negative integer that is relatively prime to p, and
(b) τp

l−1

x (zl) = zl + 1, meaning (τx − 1)pl−1(zl) = 1.

This provides the following basis for K over Lx. For 0 ≤ t ≤ pn(x) − 1, write

t = a1,t + a2,t p + · · · + an(x),t p
n(x)−1

with 0 ≤ a1,t, . . . , an(x),t ≤ p − 1, and define

wt = z
a1,t
1 z

a2,t
2 · · · zan(x),t

n(x) .

As in [37, Lemma 1], we obtain that for all 0 ≤ t ≤ pn(x) − 1,

(τx − 1)twt = (a1,t)! (a2,t)! · · · (an(x),t)!.

In particular, this implies

(τx − 1)iwt = 0 for t + 1 ≤ i ≤ pn(x) − 1.

For 0 ≤ t ≤ pn(x) − 1, define K(t) to be the kernel of the action of J t
x = k[Ix](τx − 1)t. 

We obtain that

{w0, w1, . . . , wt−1}

is an Lx-basis for K(t). Hence, we obtain an isomorphism

(τx − 1)t : K(t+1)

K(t) −→ Lx

which sends the residue class of wt to the non-zero scalar (a1,t)! (a2,t)! · · · (an(x),t)! in Lx. 
Since the stalk of (fx)∗D−1

X/Yx
at yx is naturally identified with the stalk of D−1

X/Yx
at x, 

we obtain

−d′yx,x,t = min
{

ordyx
(ct) ; c0w0 + · · · + ctwt ∈ (D−1

X/Yx
)x for some c0, . . . , ct ∈ Lx

}
(4.12)

for 0 ≤ t ≤ pn(x) − 1. Note that c0w0 + · · · + ctwt ∈ (D−1 )x if and only if
X/Yx
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ordx(c0w0 + · · · + ctwt) ≥ ordx(D−1
X/Yx

) (4.13)

where

ordx(D−1
X/Yx

) = −
∑
i≥0

(#Ix,i − 1) (4.14)

and, as before, Ix,i denotes the ith lower ramification subgroup of Ix. Since Ix is cyclic of 
order pn(x), there are exactly n(x) jumps b0, b1, . . . , bn(x)−1 in the numbering of the lower 
ramification groups Ix,i. The jumps bl are all congruent modulo p and relatively prime 
to p. Moreover, if 0 ≤ i ≤ b0, then Ix,i = Ix, and if 1 ≤ l ≤ n(x) − 1 and bl−1 < i ≤ bl, 
then #Ix,i = pn(x)−l. Hence

∑
i≥0

(#Ix,i − 1) =
n(x)∑
l=1

(p− 1) pn(x)−l (bl−1 + 1). (4.15)

Because ordx(zl) = −pn(x)−l bl−1 for 1 ≤ l ≤ n(x), we obtain for all 0 ≤ s ≤ t,

ordx(csws) = ordx(cs) + ordx(ws) (4.16)

= pn(x) ordyx
(cs) + ordx

(
z
a1,s
1 z

a2,s
2 · · · zan(x),s

n(x)

)
= pn(x) ordyx

(cs) +
n(x)∑
l=1

al,s ordx(zl)

= pn(x) ordyx
(cs) −

n(x)∑
l=1

al,s p
n(x)−l bl−1.

Since for all 1 ≤ l ≤ n(x), we have al,s ∈ {0, 1, . . . , p − 1} and bl−1 is not divisible 
by p, it follows that the residue classes ordx(csws) mod pn(x) are all different for s ∈
{0, 1, . . . , t}. But this implies

ordx(c0w0 + · · · + ctwt) = min0≤s≤t ordx(csws).

Using (4.13) and (4.14), we obtain that c0w0 + · · · + ctwt ∈ (D−1
X/Yx

)x if and only if

ordx(csws) ≥ −
∑
i≥0

(#Ix,i − 1)

for all 0 ≤ s ≤ t. In particular, this is true for s = t. Therefore, letting s = t in (4.16), 
we obtain

ordyx
(ct) ≥

−
∑

i≥0 (#Ix,i − 1) +
∑n(x)

l=1 al,t p
n(x)−l bl−1

n(x) (4.17)

p
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whenever c0w0 + · · · + ctwt ∈ (D−1
X/Yx

)x. But this means that the ramification data 

associated to the action of Ix on X uniquely determines d′yx,x,t, for 0 ≤ t ≤ pn(x) − 1. 
More precisely, it follows from (4.8), (4.12) and (4.17) that

dy,j = d′yx,x,t =
⌊∑

i≥0 (#Ix,i − 1) −
∑n(x)

l=1 al,t p
n(x)−l bl−1

pn(x)

⌋
(4.18)

for all t, j ≥ 0 satisfying pi(x)t ≤ j < pi(x)(t + 1) when i(x) = nI − n(x) and �r�
denotes the largest integer that is less than or equal to a given rational number r. 
Moreover, the formula in (4.18), together with (4.14) and (4.15), shows that d′yx,x,t ≥ 1
for 0 ≤ t < pn(x) − 1, and d′yx,x,t = 0 for t = pn(x) − 1. Hence

dy,j ≥ 1 for 0 ≤ j < pi(x)(pn(x) − 1), and

dy,j = 0 for pi(x)(pn(x) − 1) ≤ j < pi(x)pn(x) = #I.

Since I is cyclic, there is at least one point x0 in X with Ix0 = I. In particular, n(x0) = nI

and i(x0) = 0. Therefore, it follows that if x0 lies above the point y0 ∈ Y then dy0,j ≥ 1 for 
all 0 ≤ j < #I−1, which means that Dj is effective of positive degree for 0 ≤ j < #I−1. 
On the other hand, the above calculations show that dy,#I−1 = 0 for all y ∈ Y , implying 
D#I−1 = 0. �
Lemma 4.2. For 0 ≤ j ≤ #I − 1, there is an isomorphism

H0(X,ΩX)(j+1)/H0(X,ΩX)(j) ∼= H0(Y,Ω(j+1)
X /Ω(j)

X ) ∼= Sχ−j ⊗k H0(Y,ΩY (Dj))

of k[H/I]-modules, where Dj is the divisor from Proposition 4.1.

Proof. By Proposition 4.1, we know that there is a k[H]-module isomorphism

H0(Y,Ω(j+1)
X /Ω(j)

X ) ∼= H0(Y, Sχ−j ⊗k ΩY (Dj)) ∼= Sχ−j ⊗k H0(Y,ΩY (Dj)).

Since I acts trivially on all modules involved, these are also k[H/I]-module isomorphisms. 
The sequence

0 −→ Ω(j)
X −→ π∗ΩX

(τ−1)j−−−−→ π∗ΩX

of OY -H-modules is exact. Since H0(Y, π∗ΩX) ∼= H0(X, ΩX) as k[H]-modules and 
H0(Y, −) is left exact, the sequence

0 −→ H0(Y,Ω(j)
X ) −→ H0(X,ΩX) (τ−1)j−−−−→ H0(X,ΩX)

is an exact sequence of k[H]-modules. In particular, this shows that we have a commu-
tative diagram
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0 H0(X,ΩX)(j)

βj

H0(X,ΩX)(j+1)

βj+1

H0(X,ΩX)(j+1)/H0(X,ΩX)(j)

γj

0

0 H0(Y,Ω(j)
X ) H0(Y,Ω(j+1)

X ) H0(Y,Lj) H1(Y,Ω(j)
X ) · · ·

where βj and βj+1 are isomorphisms and γj is injective. To show that γj is also an iso-
morphism of k[H]-modules, it suffices to show that the k-dimensions of H0(X, ΩX)(j+1)/

H0(X, ΩX)(j) and H0(Y, Lj) coincide. To do so, we first use the Riemann-Roch theorem 
to describe dimk H0(Y, Lj). By Proposition 4.1, D#I−1 = 0, and hence L#I−1 = ΩY as 
OY -modules, meaning that

dimk H0(Y,L#I−1) = dimk H0(Y,ΩY ) = g(Y ). (4.19)

On the other hand, for 0 ≤ j < #I − 1, by Proposition 4.1, Dj is an effective divisor of 
positive degree, which implies that

deg(Lj) = deg(ΩY (Dj)) = deg(Dj) + deg(ΩY ) > deg(ΩY ) = 2 g(Y ) − 2.

Hence H1(Y, Lj) = 0, and we obtain by the Riemann-Roch theorem:

dimk H0(Y,Lj) = deg(Lj) + 1 − g(Y ) (4.20)

= deg(Dj) + g(Y ) − 1 for 0 ≤ j < #I − 1.

Using the Riemann-Roch theorem for π∗ΩX = π∗D−1
X/Y ⊗OY

ΩY (see (4.1)), we obtain

g(X) − 1 = dimk H0(X,ΩX) − dimk H1(X,ΩX)

= degOY
(π∗ΩX) + rankOY

(π∗ΩX)(1 − g(Y ))

=
#I−1∑
j=0

(deg(Dj) + (2 g(Y ) − 2)) + (#I)(1 − g(Y ))

= (#I)(g(Y ) − 1) +
#I−1∑
j=0

deg(Dj).

In other words, we get

g(X) = 1 + (#I)(g(Y ) − 1) +
#I−1∑
j=0

deg(Dj). (4.21)

On the other hand, using (4.19) and (4.20), we have
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g(X) = dimk H0(X,ΩX)

=
#I−1∑
j=0

dimk

(
H0(X,ΩX)(j+1)/H0(X,ΩX)(j)

)

≤
#I−1∑
j=0

dimk H0(Y,Lj)

=
#I−2∑
j=0

(deg(Dj) + g(Y ) − 1) + g(Y )

=
#I−2∑
j=0

deg(Dj) + (#I)g(Y ) − (#I − 1).

Since D#I−1 = 0, we obtain by (4.20) that the inequality in the third row must be an 
equality. But this means that for all 0 ≤ j < #I − 1, we have

dimk

(
H0(X,ΩX)(j+1)/H0(X,ΩX)(j)

)
= dimk H0(Y,Lj)

finishing the proof of Lemma 4.2. �
Proposition 4.3. For 0 ≤ j ≤ #I − 1, let Dj be the divisor from Proposition 4.1, which 
is determined by the ramification data associated to the action of I on X. The k[H/I]-
module structure of H0(Y, ΩY (Dj)) is uniquely determined by the inertia groups of the 
cover X −→ X/H and their fundamental characters.

Proof. As before, let K be the function field of X, and let L = KI be the function field 
of Y = X/I. Moreover, let Z = X/H. Then Y −→ Z is tamely ramified with Galois 
group H/I.

Let 0 ≤ j ≤ #I−1. By (1.1), there exist finitely generated projective k[H/I]-modules 
P1,j and P0,j together with an exact sequence of k[H/I]-modules

0 −→ H0(Y,ΩY (Dj)) −→ P1,j −→ P0,j −→ H1(Y,ΩY (Dj)) −→ 0. (4.22)

By Serre duality, we obtain

H0(Y,ΩY (Dj)) = Homk(H1(Y,OY (−Dj)), k), (4.23)

H1(Y,ΩY (Dj)) = Homk(H0(Y,OY (−Dj)), k).

In other words, the k[H/I]-module structure of H0(Y, ΩY (Dj)) is uniquely determined 
by the k[H/I]-module structure of H1(Y, OY (−Dj)). So it is enough to show that the 
latter is uniquely determined by the inertia groups of the cover X −→ X/H = Z and 
their fundamental characters.
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For 0 ≤ j < #I − 1, Dj is an effective divisor of positive degree by Proposition 4.1. 
This implies that deg(ΩY (Dj)) > deg(ΩY ) = 2 g(Y ) − 2, and hence H1(Y, ΩY (Dj)) = 0, 
for 0 ≤ j < #I − 1. Since D#I−1 = 0, we obtain, using (4.23),

H0(Y,OY (−Dj)) =
{

0 : 0 ≤ j < #I − 1,
k : j = #I − 1,

(4.24)

where k has trivial action by H/I, meaning k = S0 in the notation of Remark 3.4.
Applying Homk(−, k) to (4.22) and using (4.23), we obtain an exact sequence of 

k[H/I]-modules

0 −→ H0(Y,OY (−Dj)) −→ Q0,j −→ Q1,j −→ H1(Y,OY (−Dj)) −→ 0 (4.25)

for 0 ≤ j ≤ #I − 1, where Qi,j = Homk(Pi,j , k) is a finitely generated projective and 
injective k[H/I]-module for i = 0, 1. By (4.24) and using Remark 3.4, this implies the 
following:

(a) For 0 ≤ j < #I − 1, H1(Y, OY (−Dj)) is a projective k[H/I]-module.
(b) If j = #I − 1 and I = P , then H1(Y, OY (−Dj)) is a projective k[H/I]-module. If 

j = #I − 1 and p divides #(H/I), then H1(Y, OY (−Dj)) ∼= Sχ−1 ⊕Qj , where Qj is 
a projective k[H/I]-module.

This implies that in all cases, the k[H/I]-module structure of H1(Y, OY (−Dj)) is 
uniquely determined by its Brauer character. In other words, the character values of 
H1(Y, OY (−Dj)) on all elements of H/I of p′-order uniquely determine H1(Y, OY (−Dj))
as a k[H/I]-module. We now show that these character values are uniquely determined 
by the (p′-parts of the) inertia groups of the cover X −→ X/H and their fundamental 
characters.

Let H = H/I, so that Y = X/I −→ Z = X/H is tamely ramified with Galois 
group H. Let Zram be the set of points in Z that ramify in Y . For each z ∈ Zram, let 
y(z) ∈ Y and x(z) ∈ X be points above z so that x(z) lies above y(z). Let Hy(z) ≤ H

be the inertia group of y(z) inside H, and let Hx(z) ≤ H be the inertia group of x(z)
inside H. Since Y −→ Z is tamely ramified, it follows that Hy(z) is a cyclic p′-group. 
Moreover, if Ix(z) ≤ I is the inertia group of x(z) inside I, then Hx(z)/Ix(z) ∼= Hy(z). 
The fundamental character of the inertia group Hx(z) is the character θx(z) : Hx(z) −→
k∗ = Aut(mX,x(z)/m

2
X,x(z)) giving the action of Hx(z) on the cotangent space of x(z). 

More precisely, if h ∈ Hx(z) then

θx(z)(h) = h(π)
π

mod (π)

where π = πx(z) denotes the local uniformizer at x(z). Note that θx(z) factors through 
the maximal p′-quotient of Hx(z), which is isomorphic to Hy(z). Similarly, we can define 
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the fundamental character θy(z) : Hy(z) −→ k∗. Since X/I −→ X/P is étale, we can 
identify

θy(z) =
(
θx(z)

)#Ix(z) (4.26)

on the maximal p′-quotient of Hx(z) which we identify with Hy(z). Abusing notation, we 
will use θy(z) to also refer to the corresponding one-dimensional k[Hy(z)]-module and to 
its Brauer character.

For z ∈ Zram, we have that

OY (−Dj)y(z) ⊗OY,y(z) k =
(
θy(z)

)ordy(z)(Dj)
.

Following [32, §3], we define �y(z),j ∈ {0, 1, . . . , #Hy(z) − 1} by

�y(z),j ≡ −ordy(z)(Dj) mod (#Hy(z)). (4.27)

For a k[H]-module M , let β(M) denote the Brauer character of M , and let β0 be the 
Brauer character of the trivial simple k[H]-module. By (4.24) and (4.25), we have

β
(
H1(Y,OY (−Dj))

)
= δj,#I−1 β0 + β (Q1,j) − β (Q0,j) (4.28)

where δj,#I−1 is the usual Kronecker delta. By [32, Thm. 2 and Eq. (*) on p. 120], we 
have

β (Q1,j) − β (Q0,j) =
∑

z∈Zram

#Hy(z)−1∑
t=0

t

#Hy(z)
IndH

Hy(z)

((
θy(z)

)t) (4.29)

−
∑

z∈Zram

�y(z),j∑
t=1

IndH
Hy(z)

((
θy(z)

)−t
)

+ nj β(k[H])

for some integer nj . Since the value of β(k[H]) at any non-trivial element of H of p′-
order is zero, nj is determined by the values of all the involved Brauer characters at the 
identity element eH of H. These values are as follows:

• the value of β(k[H]) at eH is (#H);
• the value of IndH

Hy(z)

((
θy(z)

)±t
)

at eH is (#H)/(#Hy(z)), for any integer t ≥ 0;
• by (4.19), (4.20) and (4.22)–(4.25), the value of β (Q1,j) − β (Q0,j) at eH is 

dimk H0(Y, ΩY (Dj)) − dimk H1(Y, ΩY (Dj)) = deg(Dj) + g(Y ) − 1.
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In particular, this implies

nj = 1
#H

(deg(Dj) + g(Y ) − 1) +
∑

z∈Zram

1
#Hy(z)

(
�y(z),j −

#Hy(z) − 1
2

)
. (4.30)

Therefore, it follows by (4.26)–(4.29) that the Brauer character of the module 
H1(Y, OY (−Dj)) is uniquely determined by the (p′-parts of the) inertia groups of the 
cover X −→ X/H and their fundamental characters. �
Proof of Theorem 1.1. By Lemma 3.2, we can assume G = H is p-hypo-elementary. 
We write H = P �χ C and use the notation introduced at the beginning of §4. By 
Proposition 3.5, we can assume k is algebraically closed. In particular, the above results in 
§4 apply. Let M = H0(X, ΩX). As before, let I = 〈τ〉, and, for all integers 0 ≤ j ≤ #I−1, 
let M (j) be the kernel of the action of J j = k[I](τ −1)j . It follows from Proposition 4.1, 
Lemma 4.2 and Proposition 4.3 that the k[H/I]-module structure of the subquotient 
modules

M (j+1)

M (j) , 0 ≤ j ≤ #I − 1, (4.31)

is uniquely determined by the lower ramification groups and the fundamental characters 
of closed points x of X that are ramified in the cover X −→ X/H. It remains to show 
that the k[H/I]-module structures of the quotients in (4.31) uniquely determine the k[H]-
module structure of M . This follows basically from the description of the indecomposable 
k[H]-modules in Remark 3.4 (recall that we assume k = k).

To be a bit more precise, fix integeres a, b with 0 ≤ a ≤ c − 1 and 1 ≤ b ≤ pn, and 
let n(a, b) be the number of indecomposable direct k[H]-module summands of M that 
are isomorphic to Ua,b, using the notation from Remark 3.4. Let #I = pnI , and write 
b = b′ + b′′ pn−nI where 0 ≤ b′ < pn−nI , 0 ≤ b′′ ≤ pnI . As before, for i ∈ Z, define 
χi(a) ∈ {0, 1, . . . , c − 1} to be such that Sχi(a) ∼= Sa ⊗k Sχi . We obtain:

• If b′ ≥ 1, then n(a, b) equals the number of indecomposable direct k[H/I]-module 
summands of M (b′′+1)/M (b′′) with socle Sχ−b′′ (a) and k-dimension b′.

• If b′ = 0, then b′′ ≥ 1. In this case, define n1(a, b) to be the number of indecom-
posable direct k[H/I]-module summands of M (b′′)/M (b′′−1) with socle Sχ−(b′′−1)(a)
and k-dimension pn−nI . Also, define n2(a, b) to be the number of indecomposable 
direct k[H/I]-module summands of M (b′′+1)/M (b′′) with socle Sχ−b′′ (a), where we 
set n2(a, b) = 0 if b′′ = pnI . Then n(a, b) = n1(a, b) − n2(a, b).

This completes the proof of Theorem 1.1. �
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The following remark provides a summary of the key steps in the proof of Theorem 1.1
and can be used as an algorithm to determine the decomposition of H0(X, ΩX) into a 
direct sum of indecomposable k[H]-modules.

Remark 4.4. We keep the notation introduced at the beginning of §4. Let M =
H0(X, ΩX), and let #I = pnI .

(1) For 0 ≤ j ≤ #I−1, let Dj =
∑

y∈Y dy,j y be the divisor from Proposition 4.1. For y ∈
Y , let x ∈ X be a point above it, and let Ix ≤ I be its inertia group inside I of order 
pn(x). Let b0, b1, . . . , bn(x)−1 be the jumps in the numbering of the lower ramification 
subgroups of Ix. For 0 ≤ t ≤ pn(x) − 1, write t = a1,t + a2,t p + · · · + an(x),t p

n(x)−1

with 0 ≤ al,t ≤ p − 1. By the proof of Proposition 4.3, we have

dy,j =
⌊∑n(x)

l=1 pn(x)−l (p− 1 + (p− 1 − al,t) bl−1)
pn(x)

⌋

for all j ≥ 0 satisfying pi(x)t ≤ j < pi(x)(t + 1) when i(x) = nI − n(x) and �r�
denotes the largest integer that is less than or equal to a given rational number 
r. By Lemma 4.2, there is a k[H/I]-module isomorphism M (j+1)/M (j) ∼= Sχ−j ⊗k

H0(Y, ΩY (Dj)) for all 0 ≤ j ≤ #I − 1.
(2) Let Z = X/H and let Zram be the set of points in Z that ramify in the cover 

Y = X/I −→ Z = X/H. Let H = H/I. For each z ∈ Zram, choose a point y(z) ∈ Y

above z and a point x(z) ∈ X above y(z). Let Hy(z) be the inertia group of y(z)
inside H, and identify Hy(z) with the maximal p′-quotient of the inertia group Hx(z). 
Define θx(z) : Hx(z) −→ k∗ by

θx(z)(h) =
h(πx(z))
πx(z)

mod (πx(z))

for h ∈ Hx(z). Then θx(z) factors through Hy(z). Define

θy(z) =
(
θx(z)

)#Ix(z) .

By abuse of notation, we let θy(z) refer to the character Hy(z) −→ k∗ and also to the 
corresponding Brauer character. Moreover, define �y(z),j ∈ {0, 1, . . . , #Hy(z) − 1} by

�y(z),j ≡ −ordy(z)(Dj) mod (#Hy(z)).

Let 0 ≤ j ≤ #I − 1. By Lemma 4.2 and the proof of Proposition 4.3, the Brauer 
character of the k-dual of Sχj ⊗k (M (j+1)/M (j)) is equal to

δj,#I−1 β0 +
∑ #Hy(z)−1∑ t

#Hy(z)
IndH

Hy(z)

((
θy(z)

)t)

z∈Zram t=0
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−
∑

z∈Zram

�y(z),j∑
t=1

IndH
Hy(z)

((
θy(z)

)−t
)

+ nj β(k[H ])

where

nj = 1
#H

(deg(Dj) + g(Y ) − 1) +
∑

z∈Zram

1
#Hy(z)

(
�y(z),j −

#Hy(z) − 1
2

)
.

Hence this can be used to determine the Brauer character of M (j+1)/M (j). Re-
call that M (j+1)/M (j) is a projective k[H]-module for 0 ≤ j < #I − 1. If I = P

then M (#I)/M (#I−1) is also a projective k[H]-module. If p divides #H then 
M (#I)/M (#I−1) is isomorphic to a direct sum of the simple k[H]-module Sχ and 
a projective k[H]-module. Thus, this provides the decomposition of M (j+1)/M (j)

into a direct sum of indecomposable k[H]-modules.
(3) Use the notation from Remark 3.4. Fix integeres a, b with 0 ≤ a ≤ c − 1 and 

1 ≤ b ≤ pn. Write b = b′ + b′′ pn−nI where 0 ≤ b′ < pn−nI , 0 ≤ b′′ ≤ pnI . Then, by 
the proof of Theorem 1.1, the number n(a, b) of indecomposable direct k[H]-module 
summands of M that are isomorphic to Ua,b is given as follows:
(a) If b′ ≥ 1, then n(a, b) equals the number of indecomposable direct k[H]-module 

summands of M (b′′+1)/M (b′′) with socle Sχ−b′′ (a) and k-dimension b′.
(b) If b′ = 0, then b′′ ≥ 1. In this case, define n1(a, b) to be the number of indecom-

posable direct k[H]-module summands of M (b′′)/M (b′′−1) with socle Sχ−(b′′−1)(a)
and k-dimension pn−nI . Also, define n2(a, b) to be the number of indecomposable 
direct k[H]-module summands of M (b′′+1)/M (b′′) with socle Sχ−b′′ (a), where we 
set n2(a, b) = 0 if b′′ = pnI . Then n(a, b) = n1(a, b) − n2(a, b).

5. Holomorphic differentials of the modular curves X (�) modulo p

The geometric theory of modular forms and the associated arithmetic theory of moduli 
spaces of elliptic curves were studied by Deligne-Rapoport [14], Katz [27] and Katz-Mazur 
[28] (see also [24]).

Let N ≥ 3 be an integer, and let Γ(N) be the principal congruence subgroup of 
SL(2, Z) of level N . The moduli problem associated to Γ(N) described in [28, §3.1]
coincides with the “naive” level N moduli problem discussed in [27, Chap. 1] when 
working over the ground ring Z[ 1

N ] (see [28, §3.7 and §4.6]). By [27, §1.4] (see also [28, 
Cor. 4.7.2]), the naive level N moduli problem is representable by a smooth affine curve 
M(N) over Z[ 1

N ]. Moreover, M(N) is finite and flat over the affine j-line Spec(Z[ 1
N , j]), 

and étale over the open set of the affine j-line where j and j − 1728 are invertible 
(see also [28, Thm. 8.6.8]). The normalization of the projective j-line P 1

Z[ 1
N ] in M(N)

is a proper and smooth curve M(N) over Z[ 1
N ] and the ring of global sections of the 

structure sheaf of M(N) is isomorphic to Z[ 1
N , ζN ], where ζN is a primitive Nth root 

of unity. Since the inclusion map Z[ 1 ] ↪→ Z[ 1 , ζN ] is étale, this makes M(N) into a 
N N
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proper smooth curve over Z[ 1
N , ζN ]. Moreover, we obtain as in [28, (9.1.4.5)] that M(N)

is a scheme over the j-line Spec(Z[ 1
N , ζN , j]). By [28, Prop. 9.1.7], the canonical level N

moduli problem over Z[ 1
N , ζN ] defined in [28, §9.1 and §9.4] is representable by a scheme 

M(N)can that is isomorphic to M(N) as Z[ 1
N , ζN , j]-schemes. Moreover, by [28, Prop. 

9.3.1], we obtain that the normalization M(N)can of the projective j-line P 1
Z[ 1

N ,ζN ] in 

M(N)can is isomorphic to M(N) as proper smooth Z[ 1
N , ζN ]-schemes over P 1

Z[ 1
N ,ζN ]. By 

[27, §1.4], the curve M(N) ⊗Z[ 1
N ] Z[ 1

N , ζN ] (resp. M(N) ⊗Z[ 1
N ] Z[ 1

N , ζN ]) is a disjoint 
union of ϕ(N) affine (resp. proper) smooth geometrically connected curves over Z[ 1

N , ζN ]
(see also [28, (9.4.3.1)]). In particular, this identifies M(N)can (resp. M(N)can) with 
any one of these geometrically connected components of M(N) ⊗Z[ 1

N ] Z[ 1
N , ζN ] (resp. 

M(N) ⊗Z[ 1
N ] Z[ 1

N , ζN ]). Note that by [28, (9.4.1) and (9.4.3.1)], we have a natural right 
action of SL(2, Z/N) on the canonical level N moduli problem over Z[ 1

N , ζN ], and hence 
on M(N)can.

It follows from the extension of the Kodaira-Spencer isomorphism to M(N) in [27, 
§1.5] (see also [28, Thm. 10.13.11]) that H0(M(N), ΩM(N)) equals the space of holomor-
phic weight 2 cusp forms of level N defined over Z[ 1

N ]. By [27, §1.2], each holomorphic 
weight 2 cusp form of level N defined over Z[ 1

N ] has q-expansion coefficients in Z[ 1
N , ζN ]

at all cusps. Since Z[ 1
N ] ↪→ Z[ 1

N , ζN ] is étale, the q-expansion principle [28, Cor. 1.6.2]
shows that the global sections H0(M(N)can, ΩM(N)can) are naturally identified with the 
Z[ 1

N , ζN ]-lattice S(Z[ 1
N , ζN ]) of holomorphic weight 2 cusp forms for Γ(N) that have 

q-expansion coefficients in Z[ 1
N , ζN ] at all the cusps. By [28, Cor. 10.13.12] (take Γ to 

be trivial), it follows that M(N)can has geometrically connected fibers that all have the 
same genus.

If A is a Dedekind domain that contains Z[ 1
N , ζN ], then M(N)can⊗Z[ 1

N ,ζN ]A defines a 
smooth projective canonical model X (N) over A of the modular curve associated to Γ(N). 
By flat base change and using [27, §1.6], we see that the global sections H0(X (N), ΩX (N))
are naturally identified with the A-lattice S(A) of holomorphic weight 2 cusp forms for 
Γ(N) that have q-expansion coefficients in A at all the cusps. Using flat base change 
on the residue fields, we moreover obtain that X (N) has geometrically connected fibers 
that all have the same genus.

Let now � �= p be prime numbers and assume � ≥ 3. Let F be a number field that 
is unramified over p and that contains a primitive �th root of unity ζ�. Suppose A is a 
Dedekind subring of F that has fraction field F and that contains Z[ 1� , ζ�]. Let V(F, p) be 
the set of places v of F over p, and let OF,v be the ring of integers of the completion Fv

of F at v. We assume A is contained in OF,v for all v ∈ V(F, p). Let X (�) be the smooth 
projective canonical model over A of the modular curve associated to Γ(�) constructed 
above.

For v ∈ V(F, p), let mF,v be the maximal ideal of OF,v. Define Pv = A ∩ mF,v which 
is a maximal ideal over p in A, and define k(v) = A/Pv to be the corresponding residue 
field. Then

Xv(�) = k(v) ⊗A X (�) (5.1)
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is a smooth projective curve over k(v), and

(A/pA) ⊗A X (�) =
∐

v∈V(F,p)

Xv(�).

Since k(v) is a finite field for all v ∈ V(F, p), we can identify its algebraic closure k(v)
with Fp. Let k be an algebraically closed field containing Fp, and hence containing k(v)
for all v ∈ V(F, p). Then the reduction of X (�) modulo p over k, which is denoted by 
Xp(�) in [3], is defined as

Xp(�) = k ⊗k(v) Xv(�) (5.2)

for all v ∈ V(F, p). Since X (�) has geometrically connected fibers that all have the same 
genus, it follows that the injective maps

H0(X (�),ΩX (�))
Pv · H0(X (�),ΩX (�))

−→ H0(Xv(�),ΩXv(�))

and

H0(X (�),ΩX (�))
p · H0(X (�),ΩX (�))

−→
⊕

v∈V(F,p)

H0(Xv(�),ΩXv(�))

are isomorphisms. When k = Fp in (5.2) then this last isomorphism gives an isomorphism

Fp ⊗Z H0(X (�),ΩX (�)) = H0(Xp(�),ΩXp(�))[F :Q]

which is equivariant with respect to the action of SL(2, Z/�) on X (�).
Let G = PSL(2, Z/�) = PSL(2, F�), let k be an algebraically closed field containing 

Fp, and let Xp(�) be the reduction of X (�) modulo p over k. By [3, Thm. 1.1], if � ≥ 7
then Aut(Xp(�)) = G unless p = 3 and � ∈ {7, 11}. Moreover, Aut(X3(7)) ∼= PGU(3, F3)
and Aut(X3(11)) ∼= M11. If � < 7 then Xp(�) has genus 0.

The genus g(Xp(�)) is given as (see, for example, [3, Cor. 3.2])

g(Xp(�)) − 1 = (�− 1)(� + 1)(�− 6)/24. (5.3)

Remark 5.1. Suppose � ≥ 7, and define X = Xp(�). By [30, Prop. 5.5], the genus of 
X/G is zero, and the lower ramification groups associated to the cover X → X/G are as 
follows:

(i) If p > 3, then X → X/G is branched at 3 points with inertia groups of order 2, 3
and �.
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(ii) If p = 3, then X → X/G is branched at 2 points with inertia groups Σ3 and Z/�, 
where Σ3 denotes the symmetric group on three letters. Moreover, in the first case 
the second ramification group is trivial.

(iii) If p = 2, then X → X/G is branched at 2 points with inertia groups A4 and Z/�, 
where A4 denotes the alternating group on four letters. Moreover, in the first case 
the second ramification group is trivial.

If p > 3, the ramification of X −→ X/G is tame and the k[G]-module structure of 
the holomorphic differentials H0(X, ΩX) can be determined using [32, Thm. 2] or [25, 
Thm. 3]. If p = 3, we will determine in §6.4 the k[G]-module structure of H0(X, ΩX)
using Theorem 1.1. Since the Sylow 2-subgroups of G are not cyclic, the methods of this 
article are not sufficient to treat the case when p = 2.

When the ramification of X −→ X/G is tame, we obtain the following result.

Lemma 5.2. Suppose p > 3 and p �= � ≥ 7. Let X = Xp(�), and let k be an algebraically 
closed field containing Fp.

(i) The k[G]-module H0(X, ΩX) is a direct sum of the form P ⊕ U in which P is a 
projective k[G]-module and U is either the zero module or a single uniserial non-
projective k[G]-module that belongs to the principal block of k[G].

(ii) Let v ∈ V(F, p), let k1 be a perfect field containing k(v), and let k be an algebraic 
closure of k1. Define X1 = k1 ⊗k(v) Xv(�) where Xv(�) is as in (5.1). The k1[G]-
module H0(X1, ΩX1) is a direct sum of the form P 1⊕U1 in which P 1 is a projective 
k1[G]-module and U1 is either the zero module or a single indecomposable non-
projective k1[G]-module that belongs to the principal block of k1[G]. Moreover, the 
k[G]-module U from part (i) is isomorphic to k ⊗k1 U1.

The decompositions of H0(X, ΩX) as in (i) and of H0(X1, ΩX1) as in (ii) are both de-
termined by the ramification data associated to the cover X −→ X/G.

Proof. By (1.1), there exist finitely generated projective k[G]-modules P1 and P0 together 
with an exact sequence of k[G]-modules

0 −→ H0(X,ΩX) −→ P1 −→ P0 −→ H1(X,ΩX) −→ 0. (5.4)

If p does not divide #G then (5.4) splits and H0(X, ΩX) is a projective k[G]-module, 
which means U = {0}. Suppose now that p divides #G. Since H1(X, ΩX) is the trivial 
simple k[G]-module k, it follows that, as a k[G]-module, H0(X, ΩX) is isomorphic to the 
direct sum of a projective k[G]-module and the second syzygy U of the trivial simple 
k[G]-module k. Recall that U is defined as follows (see, e.g., [2, §IV.3]). Let P (k) be 
the projective k[G]-module cover of k, let R(k) be the Jacobson radical of P (k), and let 
P (R(k)) be the projective k[G]-module cover of R(k). Then the kernel of the natural 
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projection from P (R(k)) −→ R(k) is the second syzygy U of the trivial simple k[G]-
module k. Since syzygy modules of indecomposable non-projective k[G]-modules are 
always indecomposable non-projective (see, e.g., [2, Prop. IV.3.6]), U is indecomposable 
non-projective. The explicit description of the blocks of k[G] in [8] shows moreover that 
U is uniserial. Therefore, U is a uniserial non-projective k[G]-module belonging to the 
principal block of k[G]. The definition of U determines its Brauer character. Since pro-
jective k[G]-modules are uniquely determined by their Brauer characters, it now follows 
from [32, Thm. 2 and Eq. (*) on p. 120] that, for all p, the decomposition of H0(X, ΩX)
into a direct sum of indecomposable k[G]-modules is determined by the ramification data 
associated to the cover X −→ X/G. This proves part (i) in addition to the last sentence 
of the statement of Lemma 5.2 about the decomposition in part (i).

For part (ii), we note that tensoring with k over k1 sends a projective k1[G]-module 
cover of a k1[G]-module V1 to a projective k[G]-module cover of k ⊗k1 V1. If p does not 
divide #G, let U1 = {0}. Suppose now that p divides #G. If P (k1) is the projective k1[G]-
module cover of the trivial simple k1[G]-module k1 then P (k) = k⊗k1 P (k1), where P (k)
is as above. Therefore, if R(k1) is the Jacobson radical of P (k1) then R(k) = k⊗k1 R(k1). 
Additionally, if P (R(k1)) is the projective k1[G]-module cover of R(k1) then this implies 
that the kernel of the natural projection P (R(k1)) −→ R(k1) is a k1[G]-module U1 that 
satisfies

U ∼= k ⊗k1 U1 (5.5)

as k[G]-modules. In other words, U is realizable over k1. Since U is an indecomposable 
k[G]-module, it follows that U1 is an indecomposable k1[G]-module. Note that U1 belongs 
to the principal block of k1[G].

For all p, let now k2 be a finite field extension of k1 such that k2 ⊆ k and such that 
all the indecomposable k[G]-modules occurring in the decomposition of H0(X, ΩX) are 
realizable over k2. Letting X2 = k2 ⊗k1 X1, and using (5.5) if p divides #G, we obtain 
that the k2[G]-module H0(X2, ΩX2) is a direct sum of a projective k2[G]-module and 
the indecomposable k2[G]-module k2 ⊗k1 U1 (which is zero if p does not divide #G). 
Moreover, the decomposition of H0(X2, ΩX2) into a direct sum of indecomposable k2[G]-
modules is determined by the ramification data associated to the cover X −→ X/G. We 
have

k2 ⊗k1 H0(X1,ΩX1) ∼= H0(X2,ΩX2)

as k2[G]-modules, and

H0(X2,ΩX2) ∼= H0(X1,ΩX1)[k2:k1]

as k1[G]-modules. Note that the restriction of each projective indecomposable k2[G]-
module to a k1[G]-module is a projective k1[G]-module. We can therefore use the Krull-
Schmidt-Azumaya theorem to obtain part (ii).
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To prove the last sentence of the statement of Lemma 5.2 about the decomposition 
in part (ii), we note that tensoring with k2 over k1 sends a projective indecomposable 
k1[G]-module cover of a simple k1[G]-module S1 to a projective k2[G]-module cover of 
k2 ⊗k1 S1. Therefore, it follows that the decomposition of H0(X1, ΩX1) into indecom-
posable k1[G]-modules is uniquely determined by the decomposition of H0(X2, ΩX2)
into indecomposable k2[G]-modules. As noted above, the latter is determined by the 
ramification data associated to the cover X −→ X/G. This completes the proof of 
Lemma 5.2. �
Proof of Theorems 1.2 and 1.3 when p > 3. Suppose p > 3, and fix v ∈ V(F, p). Define 
MOF,v

to be the OF,v[G]-module

MOF,v
= OF,v ⊗A H0(X (�),ΩX (�))

which is flat over OF,v. Note that the residue fields k(v) = A/Pv and OF,v/mF,v coincide. 
Define

Xv = Xv(�) = k(v) ⊗A X (�).

Then MOF,v
is a lift of the k(v)[G]-module H0(Xv, ΩXv

) over OF,v. Let k = k(v) = Fp, 
and let X = Xp(�) be the reduction of X (�) modulo p over k, as in (5.2). In other 
words, X = k ⊗k(v) Xv and H0(X, ΩX) = k ⊗kv

H0(Xv, ΩXv
) as k[G]-modules. Since 

H0(X, ΩX) = {0} for � < 7, we can assume that � ≥ 7.
By Lemma 5.2(ii), H0(Xv, ΩXv

) is a direct sum of a projective k(v)[G]-module and 
a k(v)[G]-module Uv, where Uv is either the zero module or a single indecomposable 
non-projective k(v)[G]-module that belongs to the principal block of k(v)[G]. By the 
Theorem on Lifting Idempotents (see [11, Thm. (6.7)] and [12, Prop. (56.7)]) and by [5, 
Prop. 2.6], it follows that MOF,v

is isomorphic to a direct sum of a projective OF,v[G]-
module and an OF,v[G]-module U that is a lift of Uv over OF,v. Moreover, if Uv is not 
zero then U is a single indecomposable non-projective OF,v[G]-module that belongs to 
the principal block of OF,v[G]. Since, by Lemma 5.2, the decomposition of H0(Xv, ΩXv

)
is determined by the ramification data associated to the cover X −→ X/G, this implies 
Theorem 1.2 for p > 3.

We now turn to the proof of Theorem 1.3 when p > 3. In particular, we assume now 
that F contains a root of unity of order equal to the prime to p part of the order of 
G. By the discussion in the previous paragraph, MOF,v

is a direct sum over blocks B of 
OF,v[G] of modules of the form PB ⊕UB in which PB is projective and UB is either the 
zero module or a single indecomposable non-projective B-module. Moreover, we know 
that UB is non-zero if and only if B is the principal block. Define MB = PB ⊕ UB .

Let a be the maximal ideal over p in A associated to v. In other words, a corresponds 
to the maximal ideal mF,v of OF,v. Consider a T -stable decomposition (1.2) that is G-
isotypic, in the sense that it arises from idempotents as in (1.3). Since MOF,v

is the direct 
sum over blocks B of OF,v[G] of the modules MB and since for different blocks B and B′
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there are no non-trivial congruences modulo mF,v between MB and MB′ , it follows that 
a G-isotypic T -stable decomposition (1.2) results in non-trivial congruences modulo a if 
and only if there is a block B of OF,v[G] such that

MB �= (MB ∩ e1MB) ⊕ (MB ∩ e2MB). (5.6)

Now fix a block B of OF,v[G]. Since there are no non-trivial congruences modulo mF,v

between PB and UB, there will be orthogonal idempotents e1 and e2 for which (5.6)
holds if and only if this holds when MB is replaced by either PB or UB . If B has trivial 
defect groups, then UB = {0} and Fv ⊗OF,v

PB involves only one G-isotypic component, 
which means that there are no orthogonal idempotents e1 and e2 for which (5.6) holds 
for B. Assume now that B has non-trivial defect groups. If PB �= {0} then PB is a direct 
sum of non-zero projective indecomposable B-modules. When we tensor any non-zero 
projective indecomposable B-module QB with Fv over OF,v, then the resulting Fv[G]-
module Fv⊗OF,v

QB has at least two non-isomorphic irreducible constituents. This means 
that QB cannot be equal to the direct sum of the intersections of QB with the G-isotypic 
components of Fv ⊗OF,v

QB . Therefore, there exist orthogonal idempotents e1 and e2
for which (5.6) holds when MB is replaced by PB. Now suppose UB �= {0}. Then there 
exist orthogonal idempotents e1 and e2 for which (5.6) holds when MB is replaced by 
UB if and only if UB is not equal to the direct sum of the intersections of UB with the G-
isotypic components of Fv⊗OF,v

UB . But the latter occurs if and only if Fv⊗OF,v
UB has 

two non-isomorphic irreducible constituents. This completes the proof of Theorem 1.3
for p > 3. �
6. Holomorphic differentials of the modular curves X(�) modulo 3

Assume the notation of §5 for p = 3. In particular, � �= 3 is an odd prime number, 
k is an algebraically closed field containing F3, and X = X3(�) is the reduction of 
X (�) modulo 3 over k, as in (5.2). Since X3(5) has genus zero, we assume � ≥ 7. Let 
G = PSL(2, F�).

Our goal is to determine explicitly the k[G]-module structure of H0(X, ΩX). In par-
ticular, this will prove part (i) of Theorem 1.4. At the end of this section, we will prove 
part (ii) of Theorem 1.4 in §6.5, and we will then use this in §6.6 to prove Theorems 1.2
and 1.3 when p = 3.

We use that there is precise knowledge about the subgroup structure of G = PSL(2, F�)
(see, for example, [22, §II.8]). Define ε ∈ {±1} such that

� ≡ ε mod 3. (6.1)

Write

�− ε = 3n · 2 ·m such that 3 does not divide m. (6.2)
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Let P be a Sylow 3-subgroup of G, so P is cyclic of order 3n, and let P1 be the unique 
subgroup of P of order 3. Let N1 be the normalizer of P1 in G. Then N1 is a dihedral 
group of order � − ε. It follows from the Green correspondence (see Remark 3.3) that 
the k[G]-module structure of H0(X, ΩX) is uniquely determined by its k[N1]-module 
structure together with its Brauer character. The k[N1]-module structure of H0(X, ΩX)
can be determined from its k[H]-module structure for the 3-hypo-elementary subgroups 
H of N1 that are isomorphic to dihedral groups of order 2 · 3n, respectively to cyclic 
groups of order (� − ε)/2. Note that in all cases N1 has a unique cyclic subgroup of order 
(� − ε)/2. If � ≡ −ε mod 4 then N1 has a unique conjugacy class of dihedral subgroups 
of order 2 · 3n, whereas if � ≡ ε mod 4 then N1 has precisely two conjugacy classes of 
dihedral subgroups of order 2 · 3n.

We determine the k[G]-module structure of H0(X, ΩX) following four key steps:

(1) Determine the lower ramification groups associated to X −→ X/Γ for Γ ≤ G such 
that either Γ is a cyclic group of order (� − ε)/2 or a dihedral group of order 2 · 3n, 
or Γ is a maximal cyclic group of order prime to 3.

(2) Determine the k[H]-module structure of H0(X, ΩX) when H is a subgroup of N1 that 
is either dihedral of order 2 · 3n or cyclic of order (� − ε)/2. Use this to determine 
the k[N1]-module structure of H0(X, ΩX).

(3) Determine the Brauer character of H0(X, ΩX) as a k[G]-module.
(4) Use (2) and (3), together with the Green correspondence to determine the k[G]-

module structure of H0(X, ΩX).

Step (1) is accomplished in §6.1 and is a computation based on Remark 5.1(ii) and 
the subgroup structure of G = PSL(2, F�) as given in [22, §II.8]. Steps 2 and 3 are 
accomplished in §6.2 and §6.3 using the key steps in the proof of Theorem 1.1, which 
are summarized in Remark 4.4. For Step (4), which is accomplished in §6.4, we use [8]. 
Note that we have to distinguish four different cases according to the congruence classes 
of � modulo 3 and 4. The precise k[G]-module structure of H0(X, ΩX) in all four cases 
can be found in Propositions 6.4.1–6.4.4.

6.1. The lower ramification groups associated to X −→ X/Γ for certain Γ ≤ G

We first determine the ramification of X −→ X/Γ for certain 3-hypo-elementary 
subgroups Γ of G. We need to consider two cases.

6.1.1. The ramification groups when � ≡ −ε mod 4
In this case there is a unique conjugacy class in G of dihedral groups of order 2 · 3n. 

We fix subgroups of G as follows:

(a) a cyclic subgroup V = 〈v〉 of order (� − ε)/2 = 3n ·m, where m is odd;
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(b) a dihedral group Δ = 〈v′, s〉 of order 2 · 3n, where v′ = vm ∈ V is an element of 
order 3n and s ∈ NG(V ) − V is an element of order 2;

(c) a cyclic subgroup W = 〈w〉 of order (� + ε)/2;
(d) a cyclic subgroup R of order �.

Note that NG(V ) is a dihedral group of order � − ε, NG(W ) is a dihedral group of order 
� + ε, and NG(R) is a semidirect product with normal subgroup R and cyclic quotient 
group of order (� − 1)/2. We now use Remark 5.1(ii) to determine the lower ramification 
groups associated to X −→ X/Γ for Γ ∈ {V, Δ, W, R}.

(1) Let x ∈ X be a closed point such that Gx
∼= Σ3. Let I be the unique subgroup 

of order 3 in V . Since all subgroups of G isomorphic to Σ3 are conjugate in G, 
we can choose a closed point x ∈ X such that Gx = 〈I, s〉 ∼= Σ3. If g ∈ G then 
Γgx = gGxg

−1 ∩ Γ can only be non-trivial if Γ ∈ {V, Δ, W}.
Suppose first that Γ contains a subgroup of order 3. Then Γ ∈ {V, Δ} and I ≤ Γ is 
the unique subgroup of order 3 in Γ. Let g ∈ G. Then Γgx = gGxg

−1 ∩ Γ contains I
if and only if Gx ≥ g−1Ig, which happens if and only if I = g−1Ig. In other words, 
this happens if and only if g ∈ NG(I) = NG(V ). Therefore,

#{gGx ; g ∈ G, I ≤ Γgx} = #(NG(V )/Gx) = (�− ε)/6.

If Γ = Δ, we also need to analyze the case when Γgx
∼= Σ3. This happens if and only 

if g ∈ NG(V ) and gGxg
−1 ∩Δ contains an element of order 2. Since each element of 

order 2 in Gx is conjugate to s by a unique element of I, this happens if and only if 
there exists a unique element τ ∈ I such that gτ−1sτg−1 ∈ Δ. Since each element of 
order 2 in Δ is conjugate to s by a unique element in 〈v′〉, this happens if and only if 
there exists a unique g̃ ∈ 〈v′〉 with g̃−1gτ−1 ∈ CG(s). Since g̃−1gτ−1 ∈ NG(V ) and 
NG(V ) ∩ CG(s) = {e, s} ≤ Δ, it follows that g ∈ NG(V ) satisfies g̃−1gτ−1 ∈ CG(s)
if and only if g ∈ Δ. Thus

#{gGx ; g ∈ G,Δgx
∼= Σ3} = #{gGx ; g ∈ Δ} = #(Δ/Gx) = 3n−1.

We obtain

#{x′ ∈ X closed ; Vx′ ∼= Z/3} = (�− ε)/6 = 3n−1 ·m,

#{x′ ∈ X closed ; Δx′ ∼= Z/3} = (�− ε)/6 − 3n−1 = 3n−1 · (m− 1),

#{x′ ∈ X closed ; Δx′ ∼= Σ3} = 3n−1.

If Γ = Δ, it can also happen that Γgx
∼= Z/2 for some g ∈ G. This happens if and 

only if g ∈ G −NG(V ) and gGxg
−1 ∩ Δ has order 2. Since each element of order 2 

in Gx is conjugate to s by a unique element of I, this happens if and only if there 
exists a unique element τ ∈ I such that gτ−1sτg−1 ∈ Δ. Since each element of order 
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2 in Δ is conjugate to s by a unique element in 〈v′〉, this happens if and only if 
there exists a unique g̃ ∈ 〈v′〉 with g̃−1gτ−1 ∈ CG(s). We have CG(s) = NG(s) is a 
dihedral group of order � + ε. Moreover, CG(s) ∩NG(V ) = {e, s}, which means that 
the number of g ∈ G −NG(V ) such that g̃−1gτ−1 ∈ CG(s) for unique g̃ ∈ 〈v′〉 and 
τ ∈ I is equal to (#〈v′〉)(#CG(s) − 2)(#I). Hence

#{gGx ; g ∈ G,Δgx
∼= Z/2} = (#〈v′〉)(#CG(s) − 2)(#I)/6

meaning

#{x′ ∈ X closed ; Δx′ ∼= Z/2} = 3n
(
� + ε

2 − 1
)
.

Suppose finally that Γ = W . Then it can only happen that Γgx
∼= Z/2 for some 

g ∈ G. This happens if and only if g ∈ G and gGxg
−1 ∩ W has order 2. Since W

has a unique element of order 2 given by w′ = w(�+ε)/4 and each element of order 2 
in Gx is conjugate to s by a unique element of I, this happens if and only if there 
exists a unique element τ ∈ I such that gτ−1sτg−1 = w′. Let g0 ∈ G be a fixed 
element with g0w

′g−1
0 = s, then this happens if and only if g0gτ

−1 ∈ CG(s). Since 
CG(s) = NG(s) is a dihedral group of order � + ε and 3 does not divide � + ε, it 
follows that the number of g ∈ G such that g0gτ

−1 ∈ CG(s) is equal to (� + ε)(#I). 
Hence

#{gGx ; g ∈ G,Wgx
∼= Z/2} = (� + ε)(#I)/6

meaning

#{x′ ∈ X closed ; Wx′ ∼= Z/2} = � + ε

2 .

(2) Let x ∈ X be a closed point such that Gx
∼= Z/�. Since all subgroups of G of order �

are conjugate, we can choose a closed point x ∈ X such that Gx = R. If g ∈ G then 
Γgx = gGxg

−1 ∩ Γ can only be non-trivial if Γ = R. Moreover, Rgx is non-trivial if 
and only if it is equal to R, which happens if and only if g ∈ NG(R). Thus

#{gGx ; g ∈ G,Rgx
∼= Z/�} = #(NG(R)/Gx)

meaning

#{x′ ∈ X closed ; Rx′ ∼= Z/�} = (�− 1)/2.
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6.1.2. The ramification groups when � ≡ ε mod 4
In this case � − ε is divisible by 12, and m is even. There are precisely two conjugacy 

classes in G of dihedral groups of order 2 · 3n. We fix subgroups of G as follows:

(a) a cyclic subgroup V = 〈v〉 of order (� − ε)/2 = 3n ·m, where m is even;
(b) two non-conjugate dihedral groups Δ1 = 〈v′, s〉 and Δ2 = 〈v′, vs〉 of order 2 · 3n, 

where v′ = vm and s ∈ NG(V ) − V is an element of order 2;
(c) a cyclic subgroup W = 〈w〉 of order (� + ε)/2;
(d) a cyclic subgroup R of order �.

Similarly to §6.1.1, NG(V ) is a dihedral group of order � − ε, NG(W ) is a dihedral group 
of order � + ε, and NG(R) is a semidirect product with normal subgroup R and cyclic 
quotient group of order (� − 1)/2. We now use Remark 5.1(ii) to determine the lower 
ramification groups associated to X −→ X/Γ for Γ ∈ {V, Δ1, Δ2, W, R}.

(1) Let x ∈ X be a closed point such that Gx
∼= Σ3. Let I be the unique subgroup of 

order 3 in V . There are two conjugacy classes of subgroups of G isomorphic to Σ3, 
which are represented by 〈I, s〉 and 〈I, vs〉. Since there is exactly one branch point in 
X/G such that the ramification points in X above it have inertia groups isomorphic 
to Σ3, only one of these two conjugacy classes occurs as inertia groups. Without loss 
of generality, assume there exists a closed point x ∈ X such that Gx = 〈I, s〉 ∼= Σ3. 
If g ∈ G then Γgx = gGxg

−1 ∩ Γ can only be non-trivial if Γ ∈ {V, Δ1, Δ2, W}.
Suppose first that Γ contains a subgroup of order 3. Then Γ ∈ {V, Δ1, Δ2} and I ≤ Γ
is the unique subgroup of order 3 in Γ. We argue as in §6.1.1 to see that

#{gGx ; g ∈ G, I ≤ Γgx} = #(NG(V )/Gx) = (�− ε)/6.

If Γ = Δ1, we also need to analyze the case when Γgx
∼= Σ3. Arguing as in §6.1.1, 

we see this happens if and only if there exist unique elements τ ∈ I and g̃ ∈ 〈v′〉
with g̃−1gτ−1 ∈ CG(s). If z = v(�−ε)/4 is the unique non-trivial central element of 
NG(V ), then CG(s) ∩NG(V ) = {e, s, z, zs}. Since g̃−1gτ−1 ∈ NG(V ), it follows that 
g ∈ NG(V ) satisfies g̃−1gτ−1 ∈ CG(s) if and only if g ∈ Δ1 or g ∈ zΔ1. Thus

#{gGx ; g ∈ G, (Δ1)gx ∼= Σ3} = #{gGx ; g ∈ Δ1 or g ∈ zΔ1}
= 2 · #(Δ1/Gx) = 2 · 3n−1.

We obtain

#{x′ ∈ X closed ; Vx′ ∼= Z/3} = (�− ε)/6 = 3n−1 ·m,

#{x′ ∈ X closed ; (Δ1)x′ ∼= Z/3} = (�− ε)/6 − 2 · 3n−1 = 3n−1 · (m− 2),

#{x′ ∈ X closed ; (Δ2)x′ ∼= Z/3} = (�− ε)/6 = 3n−1 ·m,

#{x′ ∈ X closed ; (Δ1)x′ ∼= Σ3} = 2 · 3n−1.
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In all three cases Γ ∈ {V, Δ1, Δ2}, it can also happen that Γgx
∼= Z/2 for some 

g ∈ G. Arguing similarly as in §6.1.1, we obtain

#{x′ ∈ X closed ; Vx′ ∼= Z/2} = �− ε

2 = 3n ·m,

#{x′ ∈ X closed ; (Δ1)x′ ∼= Z/2} = 3n
(
�− ε

2 − 2
)
,

#{x′ ∈ X closed ; (Δ2)x′ ∼= Z/2} = 3n
(
�− ε

2

)
.

Since #W is not divisible by any divisor of 6�, it follows that Wx′ = {e} for all 
closed points x′ ∈ X.

(2) Let x ∈ X be a closed point such that Gx
∼= Z/�. As in §6.1.1, we have that 

Γgx = gGxg
−1 ∩ Γ can only be non-trivial if Γ = R. Moreover,

#{x′ ∈ X closed ; Rx′ ∼= Z/�} = (�− 1)/2.

6.2. The k[N1]-module structure of H0(X, ΩX)

Recall that P is a Sylow 3-subgroup of G, P1 is the unique subgroup of P of order 
3, and N1 = NG(P1), so N1 is a dihedral group of order � − ε. In this section, we first 
determine the k[H]-module structure of H0(X, ΩX) for the 3-hypo-elementary subgroups 
H of N1 that are isomorphic to dihedral groups of order 2 · 3n, respectively to cyclic 
groups of order (� − ε)/2. We then use this to determine the k[N1]-module structure of 
H0(X, ΩX). Again, we need to consider two cases.

6.2.1. The k[N1]-module structure when � ≡ −ε mod 4
We use the notation from §6.1.1. In particular, V = 〈v〉 is a cyclic group of order 

(� − ε)/2 = 3n ·m, where m is odd, and Δ = 〈v′, s〉 is a dihedral group of order 2 · 3n, 
where v′ = vm and s ∈ NG(V ) − V is an element of order 2. Moreover, let I be the 
unique subgroup of V of order 3. We use the key steps in the proof of Theorem 1.1, as 
summarized in Remark 4.4, to determine the k[H]-module structure of H0(X, ΩX) for 
H ∈ {V, Δ}.

In both cases, it follows from §6.1.1 that the subgroup of the Sylow 3-subgroup PH =
〈v′〉 of H generated by the Sylow 3-subgroups of the inertia groups of all closed points in 
X is equal to I = 〈τ〉, where τ = (v′)3n−1 . Moreover, there are precisely 3n−1 ·m closed 
points x in X with Hx ≥ I. In particular, the non-trivial lower ramification groups for 
any closed point x ∈ X with I ≤ Hx are Hx,1 = I and Hx,2 = {e}. Let Y = X/I. 
For 1 ≤ t ≤ m, let yt,1, . . . , yt,3n−1 ∈ Y be points that ramify in X. For 0 ≤ j ≤ 2, we 
obtain that Lj from Proposition 4.1 is given as Lj = ΩY (Dj), where, by the proof of 
Proposition 4.1 or by step (1) of Remark 4.4,
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Dj =

⎧⎪⎨⎪⎩
m∑
t=1

3n−1∑
i=1

yt,i , j = 0, 1,

0 , j = 2.
(6.3)

Since 3n−1 · m points in Y = X/I ramify in X, the Riemann-Hurwitz theorem shows 
that

g(Y ) − 1 = 3n−1m · (� + ε)(�− 6) − 8
12 . (6.4)

(a) We first consider the case H = V , so H ∼= (Z/3n) × (Z/m), where 3 does not divide 
m. By §6.1.1, we have either Vx = I or Vx = {e} for all closed points x ∈ X. If 
Z = X/V , then Y = X/I −→ X/V = Z is unramified with Galois group V = V/I.
Hence Proposition 4.3, or step (2) of Remark 4.4, gives the following in this situ-
ation for M = ResGV H0(X, ΩX). Let γ(j) be the Brauer character of the k-dual of 
(M (j+1)/M (j)) for j ∈ {0, 1, 2}. Then

γ(j) = δj,2 β0 + nj(V )β(k[V ])

where

n0(V ) = n1(V ) = 1
#V

(
3n−1m + g(Y ) − 1

)
= 1 + (� + ε)(�− 6) − 8

12

and

n2(V ) = 1
#V

(g(Y ) − 1) = (� + ε)(�− 6) − 8
12 . (6.5)

In particular, n1(V ) = n2(V ) +1. Since β0 and β(k[V ]) are self-dual, we obtain that 
the Brauer character of M (j+1)/M (j), for j ∈ {0, 1, 2}, is equal to

β(M (1)/M (0)) = β(M (2)/M (1)) = (n2(V ) + 1)β(k[V ]),

β(M (3)/M (2)) = β0 + n2(V )β(k[V ]).

Using the notation of Remark 3.4, there are m isomorphism classes of simple k[V ]-
modules, represented by S(V )

0 , S(V )
1 , . . . , S(V )

m−1, where we use the superscript (V ) to 
indicate these are simple k[V ]-modules.
Using the proof of Theorem 1.1, or step (3) of Remark 4.4, it follows that 
ResGV H0(X, ΩX) = ResGV M is a direct sum of n2 copies of k[V ] together with an 
indecomposable k[V ]-module of k-dimension 2 · 3n−1 + 1 with socle S(V )

0 and m − 1
indecomposable k[V ]-modules of k-dimension 2 ·3n−1 with respective socles given by 
S

(V )
1 , . . . , S(V )

m−1. Writing U (V )
a,b for an indecomposable k[V ]-module of k-dimension b

with socle isomorphic to S(V )
a , we have
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ResGV H0(X,ΩX) ∼= n2(V ) k[V ] ⊕ U
(V )
0,2·3n−1+1 ⊕

m−1⊕
t=1

U
(V )
t,2·3n−1

where n2(V ) is as in (6.5).
(b) We next consider the case H = Δ, so H ∼= (Z/3n) �χ (Z/2). In particular, there 

are precisely two isomorphism classes of simple k[Δ]-modules, represented by S(Δ)
0

and S(Δ)
1 , and Sχ

∼= S
(Δ)
1 . By §6.1.1, the possible isomorphism types for non-trivial 

inertia groups Δx for closed points x ∈ X are either Σ3 or Z/3 or Z/2. Moreover, 
there are precisely 3n−1 (resp. 3n−1(m − 1), resp. 3n((� + ε)/2 − 1)) closed points 
x in X with Δx

∼= Σ3 (resp. Δx
∼= Z/3, resp. Δx

∼= Z/2). Using the notation 
introduced above, suppose that the inertia groups of the points in X above the 
points y1,1, . . . , y1,3n−1 ∈ Y are isomorphic to Σ3, whereas the inertia groups of the 
points in X above the remaining yt,1, . . . , yt,3n−1 ∈ Y , for 2 ≤ t ≤ m, are isomorphic 
to Z/3. If Z = X/Δ, then Y = X/I −→ X/Δ = Z is tamely ramified with Galois 
group Δ = Δ/I.
The ramification data of the tame cover Y = X/I −→ Z = X/Δ is as follows. There 
are precisely (� + ε)/2 points in Z that ramify in Y . Moreover, the inertia group of 
each of the 3n−1(� + ε)/2 points in Y lying above these points in Z is isomorphic to 
Z/2. Let z1 ∈ Z be the unique point that ramifies in X with inertia group isomorphic 
to Σ3, and let z2, . . . , z(�+ε)/2 be the points in Z that ramify in X with inertia group 
isomorphic to Z/2. Define y1 = y1,1 ∈ Y and let y2, . . . , y(�+ε)/2 ∈ Y be points 
lying above z2, . . . , z(�+ε)/2, respectively. For all i ∈ {1, 2, . . . , (� + ε)/2}, it follows 
that Δyi

is a subgroup of order 2 in Δ and the fundamental character θyi
is the 

unique non-trivial character of Δyi
. In particular, the Brauer characters IndΔ

Δyi
(θyi

), 
for i ∈ {1, 2, . . . , (� + ε)/2}, are all equal to the Brauer character of the projective 
indecomposable k[Δ]-module whose socle is non-trivial. Moreover, for j ∈ {0, 1, 2}, 
we have that �yi,j ∈ {0, 1} such that �yi,j ≡ −ordyi

(Dj) mod (#Δyi
) is only non-

zero for (i, j) ∈ {(1, 0), (1, 1)}. Let M = ResGΔ H0(X, ΩX), and fix j ∈ {0, 1, 2}. 
Following Proposition 4.3, or step (2) of Remark 4.4, we obtain that the Brauer 
character of the k-dual of Sχj ⊗k (M (j+1)/M (j)) is equal to

γ(j) = δj,2 β0 +
(
� + ε

4

)
IndΔ

Δy1
(θy1) − (1 − δj,2) IndΔ

Δy1
(θy1) + nj(Δ)β(k[Δ])

where

n0(Δ) = n1(Δ) = 1
#Δ

(
3n−1m + g(Y ) − 1

)
+ 1

2

(
1 − 1

2

)
+ 1

2

(
� + ε

2 − 1
)(

−1
2

)
= m + 1

2 + m((� + ε)(�− 6) − 8)
24 − � + ε

8

and
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n2(Δ) = 1
#Δ

(g(Y ) − 1)+1
2

(
� + ε

2

)(
−1

2

)
= m((� + ε)(�− 6) − 8)

24 − � + ε

8 . (6.6)

In particular,

n1(Δ) = n2(Δ) + (m + 1)/2.

Let P (Δ, 0) (resp. P (Δ, 1)) be a projective indecomposable k[Δ]-module with trivial 
(resp. non-trivial) socle. Then IndΔ

Δy1
(θy1) = β(P (Δ, 1)) and β(k[Δ]) = β(P (Δ, 0)) +

β(P (Δ, 1)). Since β0, β(P (Δ, 0)) and β(P (Δ, 1)) are self-dual, we obtain that the 
Brauer character of M (j+1)/M (j) is equal to

β(M (1)/M (0)) =
(
n2(Δ) + m + 1

2

)
β(P (Δ, 0))

+
(
n2(Δ) + � + ε

4 − 1 + m + 1
2

)
β(P (Δ, 1)),

β(M (2)/M (1)) =
(
n2(Δ) + m + 1

2

)
β(P (Δ, 1))

+
(
n2(Δ) + � + ε

4 − 1 + m + 1
2

)
β(P (Δ, 0)),

β(M (3)/M (2)) = β0 + n2(Δ)β(P (Δ, 0)) +
(
n2(Δ) + � + ε

4

)
β(P (Δ, 1))

= (n2(Δ) + 1)β(P (Δ, 0))

+
(
n2(Δ) + � + ε

4 − 1
)

β(P (Δ, 1)) + β(Sχ),

where we rewrote the Brauer character of M (3)/M (2) to reflect the fact that, by 
step (2) of Remark 4.4, the quotient M (3)/M (2) is isomorphic to a direct sum of 
the simple k[Δ]-module Sχ and a projective k[Δ]-module. As above, let S(Δ)

0 , S(Δ)
1

be representatives of the 2 isomorphism classes of simple k[Δ]-modules, such that 
Sχ

∼= S
(Δ)
1 .

Using the proof of Theorem 1.1, or step (3) of Remark 4.4, it follows that 
ResGΔ H0(X, ΩX) = ResGΔ M is a direct sum of n2(Δ) +1 copies of the projective k[Δ]-
module with socle S(Δ)

0 and n2(Δ) + �+ε
4 −1 copies of the projective k[Δ]-module with 

socle S(Δ)
1 together with an indecomposable k[Δ]-module of k-dimension 2 · 3n−1 +1

with socle S(Δ)
1 and (m − 1)/2 indecomposable k[Δ]-modules of k-dimension 2 · 3n−1

with socle S(Δ)
0 and (m − 1)/2 indecomposable k[Δ]-modules of k-dimension 2 · 3n−1

with socle S(Δ)
1 . Writing U (Δ)

a,b for an indecomposable k[Δ]-module of k-dimension b

with socle isomorphic to S(Δ)
a , we have

ResGΔ H0(X,ΩX) ∼= (n2(Δ) + 1)U (Δ)
0,3n ⊕

(
n2(Δ) + � + ε − 1

)
U

(Δ)
1,3n ⊕
4
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U
(Δ)
1,2·3n−1+1 ⊕

(
m− 1

2

)
U

(Δ)
0,2·3n−1 ⊕

(
m− 1

2

)
U

(Δ)
1,2·3n−1

where n2(Δ) is as in (6.6).

We now want to use (a) and (b) above to determine the k[N1]-module structure of 
H0(X, ΩX). Using the notation introduced in §6.1.1, P = 〈v′〉 is a Sylow 3-subgroup of 
G and P1 = I is the unique subgroup of P of order 3. Hence N1 = NG(P ) = 〈v, s〉 is a 
dihedral group of order � − ε = 2 · 3n ·m. There are 2 + (m − 1)/2 isomorphism classes 
of simple k[N1]-modules. These are represented by 2 one-dimensional k[N1]-modules 
S

(N1)
0 and S(N1)

1 , which are the inflations of the two simple k[Δ]-modules S(Δ)
0 and 

S
(Δ)
1 , together with (m −1)/2 two-dimensional simple k[N1]-modules S̃(N1)

1 , . . . , S̃(N1)
(m−1)/2, 

where S̃(N1)
t = IndN1

V S
(V )
t for 1 ≤ t ≤ (m − 1)/2. The indecomposable k[N1]-modules 

are uniserial, where the projective modules all have length 3n. For {i, j} = {0, 1}, the 
projective cover of S(N1)

i has ascending composition factors

S
(N1)
i , S

(N1)
j , S

(N1)
i , . . . , S

(N1)
j , S

(N1)
i .

For t ∈ {1, . . . , (m −1)/2}, the composition factors of the projective cover of S̃(N1)
t are all 

isomorphic to S̃(N1)
t . For i ∈ {0, 1}, we write U (N1)

i,b for an indecomposable k[N1]-module 

of k-dimension b whose socle is isomorphic to S(N1)
i . For t ∈ {1, . . . , (m −1)/2}, we write 

Ũ
(N1)
t,b for an indecomposable k[N1]-module of k-dimension 2b whose socle is isomorphic 

to S̃(N1)
t . By (a) and (b) above, we obtain

ResGN1
H0(X,ΩX) ∼=

(
(� + ε)(�− 9) + 16

24

)
U

(N1)
0,3n ⊕

(
(� + ε)(�− 3) − 32

24

)
U

(N1)
1,3n ⊕

(m−1)/2⊕
t=1

(
(� + ε)(�− 6) − 8

12

)
Ũ

(N1)
t,3n ⊕ (6.7)

U
(N1)
1,2·3n−1+1 ⊕

(m−1)/2⊕
t=1

Ũ
(N1)
t,2·3n−1 .

6.2.2. The k[N1]-module structure when � ≡ ε mod 4
We use the notation from §6.1.2. In particular, V = 〈v〉 is a cyclic group of order 

(� − ε)/2 = 3n · m, where m is even, and Δ1 = 〈v′, s〉 and Δ2 = 〈v′, vs〉 are two non-
conjugate dihedral groups of order 2 · 3n, where v′ = vm and s ∈ NG(V ) − V is an 
element of order 2. Moreover, let I be the unique subgroup of V of order 3. Similarly to 
§6.2.1, we use the key steps in the proof of Theorem 1.1, as summarized in Remark 4.4, 
to determine the k[H]-module structure of H0(X, ΩX) for H ∈ {V, Δ1, Δ2}.

In all cases, it follows from §6.1.2 that the subgroup of the Sylow 3-subgroup PH = 〈v′〉
of H generated by the Sylow 3-subgroups of the inertia groups of all closed points in X
is equal to I = 〈τ〉, where τ = (v′)3n−1 . Moreover, there are precisely 3n−1 · m closed 
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points x in X with Hx ≥ I. Let Y = X/I. For 1 ≤ t ≤ m, let yt,1, . . . , yt,3n−1 ∈ Y

be points that ramify in X. For 0 ≤ j ≤ 2, we obtain that Lj from Proposition 4.1 is 
given as Lj = ΩY (Dj), where Dj has the same form as in (6.3). Since 3n−1 ·m points 
in Y = X/I ramify in X, the Riemann-Hurwitz theorem shows that g(Y ) satisfies the 
same equation as in (6.4).

The ramification data is slightly more difficult than in §6.2.1, but the arguments are 
very similar. We therefore just list the final answers for each H ∈ {V, Δ1, Δ2}.

(a) We first consider the case H = V , so H ∼= (Z/3n) × (Z/m), where 3 does not divide 
m. Using the notation of Remark 3.4, there are m isomorphism classes of simple k[V ]-
modules, represented by S(V )

0 , S(V )
1 , . . . , S(V )

m−1, where we use the superscript (V ) to 
indicate these are simple k[V ]-modules. Moreover, the projective indecomposable 
k[V ]-modules all have length 3n. Writing U (V )

a,b for an indecomposable k[V ]-module 

of k-dimension b with socle isomorphic to S(V )
a , we have

ResGV H0(X,ΩX) ∼= n2(V ) k[V ] ⊕
m/2⊕
t=1

U
(V )
2t−1,3n ⊕ U

(V )
0,2·3n−1+1 ⊕

m−1⊕
t=1

U
(V )
t,2·3n−1

where

n2(V ) = (� + ε)(�− 6) − 14
12 .

(b) We next consider the case H = Δ1, so H ∼= (Z/3n) �χ (Z/2). In particular, there are 
precisely two isomorphism classes of simple k[Δ1]-modules, represented by S(Δ1)

0 and 
S

(Δ1)
1 , and Sχ

∼= S
(Δ1)
1 . Moreover, the projective indecomposable k[Δ1]-modules all 

have length 3n. Writing U (Δ1)
a,b for an indecomposable k[Δ1]-module of k-dimension 

b with socle isomorphic to S(Δ1)
a , we have

ResGΔ1
H0(X,ΩX) ∼= (n2(Δ1) + 1)U (Δ1)

0,3n ⊕
(
n2(Δ1) + �− ε

4 − 1
)
U

(Δ1)
1,3n ⊕

U
(Δ1)
1,2·3n−1+1 ⊕

(m
2

)
U

(Δ1)
0,2·3n−1 ⊕

(m
2 − 1

)
U

(Δ1)
1,2·3n−1

where

n2(Δ1) = m((� + ε)(�− 6) − 8)
24 − �− ε

8 .

(c) Finally, we consider the case H = Δ2, so H ∼= (Z/3n) �χ (Z/2). Again, there are 
precisely two isomorphism classes of simple k[Δ2]-modules, represented by S(Δ2)

0 and 
S

(Δ2)
1 , and Sχ

∼= S
(Δ2)
1 . Moreover, the projective indecomposable k[Δ2]-modules all 

have length 3n. Writing U (Δ2)
a,b for an indecomposable k[Δ2]-module of k-dimension 

b with socle isomorphic to S(Δ2)
a , we have
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ResGΔ2
H0(X,ΩX) ∼= (n2(Δ2) + 1)U (Δ2)

0,3n ⊕
(
n2(Δ2) + �− ε

4 − 1
)
U

(Δ2)
1,3n ⊕

U
(Δ2)
1,2·3n−1+1 ⊕

(m
2 − 1

)
U

(Δ2)
0,2·3n−1 ⊕

(m
2

)
U

(Δ2)
1,2·3n−1

where

n2(Δ2) = m((� + ε)(�− 6) − 8)
24 − �− ε

8 .

We now want to use (a), (b) and (c) above to determine the k[N1]-module structure 
of H0(X, ΩX). Using the notation introduced in §6.1.2, P = 〈v′〉 is a Sylow 3-subgroup 
of G and P1 = I is the unique subgroup of P of order 3. Hence N1 = NG(P ) =
〈v, s〉 is a dihedral group of order � − ε = 2 · 3n · m, where m is even. There are 4 +
(m/2 −1) isomorphism classes of simple k[N1]-modules. These are represented by 4 one-
dimensional k[N1]-modules S(N1)

0,0 , S(N1)
0,1 , S(N1)

1,0 and S(N1)
1,1 such that S(N1)

i1,i2
restricts to 

S
(Δ1)
i1

and to S(Δ2)
i2

for i1, i2 ∈ {0, 1}, together with (m/2 − 1) two-dimensional simple 

k[N1]-modules S̃(N1)
1 , . . . , S̃(N1)

(m/2−1), where S̃(N1)
t = IndN1

V S
(V )
t for 1 ≤ t ≤ (m/2 − 1). 

The indecomposable k[N1]-modules are uniserial, where the projective modules all have 
length 3n. If {i, j} = {0, 1} then the projective cover of S(N1)

i,i has ascending composition 
factors

S
(N1)
i,i , S

(N1)
j,j , S

(N1)
i,i , . . . , S

(N1)
j,j , S

(N1)
i,i

and the projective cover of S(N1)
i,j has ascending composition factors

S
(N1)
i,j , S

(N1)
j,i , S

(N1)
i,j , . . . , S

(N1)
j,i , S

(N1)
i,j .

For t ∈ {1, . . . , (m/2 − 1)}, the composition factors of the projective cover of S̃(N1)
t are 

all isomorphic to S̃(N1)
t . For i1, i2 ∈ {0, 1}, we write U (N1)

i1,i2,b
for an indecomposable k[N1]-

module of k-dimension b whose socle is isomorphic to S(N1)
i1,i2

. For t ∈ {1, . . . , (m/2 − 1)}, 
we write Ũ (N1)

t,b for an indecomposable k[N1]-module of k-dimension 2b whose socle is 
isomorphic to S̃(N1)

t . By (a), (b) and (c) above, we obtain

ResGN1
H0(X,ΩX)

∼=
(

(� + ε)(�− 6) − 14
24 − �− ε

8 + 1
)
U

(N1)
0,0,3n ⊕

⌊
(� + ε)(�− 6) − 2

24

⌋
U

(N1)
0,1,3n ⊕⌊

(� + ε)(�− 6) − 2
24

⌋
U

(N1)
1,0,3n ⊕

(
(� + ε)(�− 6) − 14

24 + �− ε

8 − 1
)
U

(N1)
1,1,3n ⊕

�(m−2)/4�⊕ (
(� + ε)(�− 6) − 14

12

)
Ũ

(N1)
2t,3n ⊕

�m/4�⊕ (
(� + ε)(�− 6) − 2

12

)
Ũ

(N1)
2t−1,3n ⊕
t=1 t=1
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U
(N1)
1,1,2·3n−1+1 ⊕ U

(N1)
0,1,2·3n−1 ⊕

m/2−1⊕
t=1

Ũ
(N1)
t,2·3n−1 (6.8)

where, as before, �r� denotes the largest integer that is less than or equal to a given 
rational number r.

6.3. The Brauer character of H0(X, ΩX) as a k[G]-module

In this section, we compute the values of the Brauer character of H0(X, ΩX) as a 
k[G]-module. We use the notation from the previous two sections, §6.1 and §6.2. We 
determine the values of the Brauer character β(H0(X, ΩX)) for all elements g ∈ G

that are 3-regular, i.e. whose order is not divisible by 3. By [22, §II.8], the elements of 
order � fall into 2 conjugacy classes. Let r1 and r2 be representatives of these conjugacy 
classes. Since all subgroups of G of order � are conjugate, we can assume, without loss of 
generality, that R = 〈r1〉 = 〈r2〉. In fact, if 1 ≤ μ ≤ � − 1 is such that F∗

� = 〈μ〉 then we 
can choose r2 = rμ1 . Moreover, for i ∈ {1, 2} and 1 ≤ a ≤ (� − 1)/2, we have that (ri)a

2

is conjugate to ri. All elements g ∈ G of a given order �= � lie in a single conjugacy class. 
We first determine the value of the Brauer character β(H0(X, ΩX)) at r1 and r2.

6.3.1. The Brauer character of H0(X, ΩX) at elements of order �
By §6.1.1 and §6.1.2, we have either Rx = R or Rx = {e} for all closed points x ∈ X, 

and there are precisely (� − 1)/2 closed points x in X with Rx = R. In particular, this 
means that X −→ X/R is tamely ramified. Letting Y = X and Z = X/R, we have 
g(Y ) − 1 = g(X) − 1 as in (5.3).

There are precisely (� − 1)/2 points in Z that ramify in Y = X. Moreover, the inertia 
group of each of the (� − 1)/2 points in Y = X lying above these points in Z is equal 
to R. Let z1, . . . , z(�−1)/2 ∈ Z be the points in Z that ramify in Y = X with inertia 
group equal to R. Let y1, . . . , y(�−1)/2 be points lying above z1, . . . , z(�−1)/2, respectively. 
Following Proposition 4.3, or step (2) of Remark 4.4, we obtain that the Brauer character 
of the k-dual of ResGR H0(X, ΩX) is equal to

β0 +
(�−1)/2∑

i=1

�−1∑
t=0

t

�
(θyi

)t + n0(R)β(k[R])

where

n0(R) = 1
#R

(g(X) − 1) + �− 1
2�

(
−�− 1

2

)
= (�− 1)(�− 11)

24 .

Suppose θy1(r1) = ξ� is a primitive �th root of unity. Then it follows that

{θyi
(r1) ; 1 ≤ i ≤ (�− 1)/2} = {(ξ�)a

2
; 1 ≤ a ≤ (�− 1)/2}.
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Hence

(�−1)/2∑
i=1

�−1∑
t=0

t

�
(θyi

)t(r1) =
(�−1)/2∑
a=1

1
�

�−1∑
t=0

t (ξ�)a
2t =

(�−1)/2∑
a=1

1
(ξ�)a2 − 1

. (6.9)

(a) If � ≡ 1 mod 4 then −1 is a square mod �. Since

1
(ξ�)a2 − 1

+ 1
(ξ�)−a2 − 1

= (ξ�)−a2 − 1 + (ξ�)a
2 − 1

((ξ�)a2 − 1)((ξ�)−a2 − 1)
= −1

(6.9) becomes

(�−1)/2∑
i=1

�−1∑
t=0

t

�
(θyi

)t(r1) = − �− 1
4 .

Therefore, since θyi
(r2) = θyi

(rμ1 ), we get

β(H0(X,ΩX))(r1) = 1 − �− 1
4 = β(H0(X,ΩX))(r2). (6.10)

(b) Next suppose � ≡ −1 mod 4. Using Gauss sums, we see that there exists a choice 
of square root of −�, say 

√
−�, such that

(�−1)/2∑
a=1

(ξ�)a
2

= −1 +
√
−�

2 and
(�−1)/2∑
a=1

(ξ�)μa
2

= −1 −
√
−�

2 . (6.11)

Letting �� ⊂ {1, . . . , � −1} be the set of squares in F∗
� , it follows that {� − t ; t ∈ ��}

is the set of non-squares in F∗
� , since −1 is not a square mod �. Then (6.9) can be 

rewritten as

1
�

�−1∑
t=0

(�−1)/2∑
a=1

t (ξ�)a
2t = 1

�

∑
t∈��

t

(
−1 +

√
−�

2

)
+ 1

�

∑
t∈��

(�− t)
(
−1 −

√
−�

2

)

=
√
−�

�

∑
t∈��

t − �− 1
4

(
1 +

√
−�
)
.

Let h� = hQ(
√
−�) be the class number of Q(

√
−�), and let χ be the quadratic 

character mod �. By [38, Ex. 4.5], we have

� h� = −2
(�−1)/2∑
a=1

χ(a) a + �

(�−1)/2∑
a=1

χ(a) = −
�−1∑
a=1

χ(a) a

which implies
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1
�

∑
t∈��

t = �− 1
4 − h�

2 .

Therefore, (6.9) becomes

1
�

�−1∑
t=0

(�−1)/2∑
a=1

t (ξ�)a
2t = − �− 1

4 − h�

2
√
−�.

Using θyi
(r2) = θyi

(rμ1 ) and (6.11), we get

β(H0(X,ΩX))(r1) = 1 − �− 1
4 − h�

2
√
−�; (6.12)

β(H0(X,ΩX))(r2) = 1 − �− 1
4 + h�

2
√
−�. (6.13)

6.3.2. The Brauer character of H0(X, ΩX) when � ≡ −ε mod 4
We use the notation from §6.1.1. In particular, v is an element of order (� − ε)/2 =

3n ·m, where m is odd, s is an element of order 2, and w is an element of order (� + ε)/2. 
Let v′′ = v3n be of order m. Then a full set of representatives for the conjugacy classes 
of 3-regular elements of G is given by

{e, r1, r2, s, (v′′)i, wj}

where 1 ≤ i ≤ (m − 1)/2 and 1 ≤ j < (� + ε)/4.
From §6.3.1, we know the values of β(H0(X, ΩX)) at r1 and r2. The other values of 

β(H0(X, ΩX)) are as follows:

β(H0(X,ΩX))(e) = 1 + (�2 − 1)(�− 6)
24 , (6.14)

β(H0(X,ΩX))(s) = 1 − � + ε

4 , (6.15)

β(H0(X,ΩX))((v′′)i) = 1, (6.16)

β(H0(X,ΩX))(wj) = 1, (6.17)

when (v′′)i �= e and wj /∈ {e, s}. Note that we obtain the values in (6.14)–(6.16) from 
§6.2.1.

We next consider the case W = 〈w〉. By §6.1.1, we have either Wx
∼= Z/2 or Wx = {e}

for all closed points x ∈ X, and there are precisely (� + ε)/2 closed points x in X with 
Wx

∼= Z/2. In particular, this means that X −→ X/W is tamely ramified. Letting 
Y = X and Z = X/W , we have g(Y ) − 1 = g(X) − 1 as in (5.3).

There are precisely 2 points in Z that ramify in Y = X. Moreover, the inertia group of 
each of the (� + ε)/2 points in Y = X lying above these points in Z is isomorphic to Z/2. 
Let z1, z2 ∈ Z be the points in Z that ramify in Y = X with inertia group isomorphic to 
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Z/2. Let y1, y2 be points lying above z1, z2, respectively. Since W has a unique subgroup 
of order 2, it follows that Wy1 = Wy2 and the fundamental character θy1 = θy2 is the 
unique non-trivial character of Wy1 = Wy2 . Following Proposition 4.3, or step (2) of 
Remark 4.4, we obtain that the Brauer character of the k-dual of ResGW H0(X, ΩX) is 
equal to

β0 + IndW
Wy1

(θy1) + n0(W )β(k[W ])

where

n0(W ) = 1
#W

(g(Y ) − 1) − 1
2 = (�− ε)(�− 6) − 6

12 .

Note that β0, IndW
Wy1

(θy1) and β(k[W ]) are self-dual. Since (� + ε)/2 is not divisible by 
3, k[W ] is semisimple. There are (� + ε)/2 isomorphism classes of simple k[W ]-modules, 
represented by S(W )

0 , S(W )
1 , . . . , S(W )

(�+ε)/2−1, where we use the superscript (W ) to indicate 
these are simple k[W ]-modules. We obtain

β(ResGW H0(X,ΩX)) = β(S(W )
0 ) +

(�+ε)/4∑
t=1

β(S(W )
2t−1) + n0(W )β(k[W ]).

This gives the values of β(H0(X, ΩX)) in (6.17).

6.3.3. The Brauer character of H0(X, ΩX) when � ≡ ε mod 4
We use the notation from §6.1.2. In particular, v is an element of order (� − ε)/2 =

3n ·m, where m is even, s is an element of order 2, and w is an element of order (� +ε)/2. 
Let v′′ = v3n be of order m. Then a full set of representatives for the conjugacy classes 
of 3-regular elements of G is given by

{e, r1, r2, s, (v′′)i, wj}

where 1 ≤ i < m/2 and 1 ≤ j ≤ �(� + ε)/4�.
From §6.3.1, we know the values of β(H0(X, ΩX)) at r1 and r2. The other values of 

β(H0(X, ΩX)) are as follows:

β(H0(X,ΩX))(e) = 1 + (�2 − 1)(�− 6)
24 , (6.18)

β(H0(X,ΩX))(s) = 1 − �− ε

4 , (6.19)

β(H0(X,ΩX))((v′′)i) = 1, (6.20)

β(H0(X,ΩX))(wj) = 1, (6.21)
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when (v′′)i /∈ {e, s} and wj �= e. Note that we obtain the values in (6.18)–(6.20) from 
§6.2.2. Since the order of W is not divisible by any divisor of 6�, we also obtain the 
values of β(H0(X, ΩX)) in (6.21).

6.4. The k[G]-module structure of H0(X, ΩX)

In this section, we determine the k[G]-module structure of H0(X, ΩX), using §6.1–§6.3
together with [8]. We have to consider 4 cases.

6.4.1. The k[G]-module structure of H0(X, ΩX) when � ≡ 1 mod 4 and � ≡ −1 mod 3
This is the case when ε = −1 and � ≡ −ε mod 4. By (6.7), the non-projective 

indecomposable direct summands of ResGN1
H0(X, ΩX) are given by

U
(N1)
1,2·3n−1+1 ⊕

(m−1)/2⊕
t=1

Ũ
(N1)
t,2·3n−1 . (6.22)

We first determine the Green correspondents of these summands, using the informa-
tion in [8, §IV]. There are 1 +(m −1)/2 blocks of k[G] of maximal defect n, consisting of 
the principal block B0 and (m −1)/2 blocks B1, . . . , B(m−1)/2, and there are 1 +(� −1)/4
blocks of k[G] of defect 0. There are precisely two isomorphism classes of simple k[G]-
modules that belong to B0, represented by the trivial simple k[G]-module T0 and a 
simple k[G]-module T̃0 of k-dimension � − 1. For each t ∈ {1, . . . , (m − 1)/2}, there is 
precisely one isomorphism class of simple k[G]-modules belonging to Bt, represented by 
a simple k[G]-module T̃t of k-dimension � − 1. Note that the Brauer character of T̃t, 
0 ≤ t ≤ (m − 1)/2, is the restriction to the 3-regular classes of the ordinary irreducible 
character δ̃∗t , 0 ≤ t ≤ (m − 1)/2, with the following values:

δ̃∗t (e) = �− 1; δ̃∗t (r1) = −1 = δ̃∗t (r2); δ̃∗t (s) = 0 = δ̃∗t (wj);

δ̃∗t ((v′′)i) = −((ξm)ti + (ξm)−ti) (6.23)

where ξm is a fixed primitive mth root of unity.
To determine the Green correspondents of the non-projective indecomposable direct 

summands of ResGN1
H0(X, ΩX), we use that there is a stable equivalence between the 

module categories of k[G] and k[N1]. This allows us to use the results from [2, §X.1]
on almost split sequences to be able to detect the Green correspondents. If n = 1 then 
U

(N1)
1,2·3n−1+1 = U

(N1)
1,3n is a projective k[N1]-module. If n > 1 then the Green correspondent 

of U (N1)
1,2·3n−1+1 belongs to B0. Since the Green correspondent of S(N1)

0 is T0, it follows that 
the Green correspondent of S(N1)

1 is a uniserial k[G]-module of length (3n − 1)/2 whose 
composition factors are all isomorphic to T̃0. We now follow the irreducible homomor-
phisms in the stable Auslander-Reiten quiver of B0 starting with the Green correspondent 
of S(N1)

1 to arrive, after 2 · 3n−1 such morphisms, at a uniserial k[G]-module of length 
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(3n−1−1)/2 whose composition factors are all isomorphic to T̃0. This must be the Green 
correspondent of U (N1)

1,2·3n−1+1. For n ≥ 1 and 1 ≤ t ≤ (m −1)/2, the Green correspondent 
of Ũ (N1)

t,2·3n−1 belongs to the block Bt. Since � − 1 ≡ −2 mod 3n, it follows that the Green 

correspondent of Ũ (N1)
t,2·3n−1 is a uniserial k[G]-module of length 3n−1 whose composition 

factors are all isomorphic to T̃t.
Next, we determine the Brauer character β̃ of the largest projective direct summand 

of H0(X, ΩX). Since (3n−1−1)/2 = 0 when n = 1, we do not need to distinguish between 
the cases n = 1 and n > 1. Using (6.10), (6.14)–(6.17) and (6.23), we obtain

β̃(e) = 1 + (�− 1)(�2 − 7� + 4)
24 ;

β̃(ri) = 1 − � + 1
6 (i = 1, 2);

β̃(s) = 1 − �− 1
4 ;

β̃(wj) = 1 (wj /∈ {e, s});
β̃((v′′)i) = 0 ((v′′)i �= e).

Let Ψ0 be the Brauer character of the projective k[G]-module cover P (G, T0) of T0, 
and let Ψ̃t be the Brauer character of the projective k[G]-module cover P (G, T̃t) of T̃t, 
0 ≤ t ≤ (m − 1)/2. We have 1 + (� − 1)/4 additional Brauer characters of projective 
indecomposable k[G]-modules that are also irreducible: γ1, γ2 and (� − 5)/4 characters 
ηG that are constructed from characters η of W with values

e r1 r2 s wj (v′′)i
(wj /∈ {e, s}) ((v′′)i �= e)

γ1
�+1
2

1+
√
�

2
1−

√
�

2 (−1)(�−1)/4 (−1)j 0
γ2

�+1
2

1−
√
�

2
1+

√
�

2 (−1)(�−1)/4 (−1)j 0
ηG � + 1 1 1 η(s) + η(s) η(wj) + η(wj) 0

where η ranges over the characters of W that are not equal to their conjugate η. Denote 
the corresponding projective indecomposable k[G]-modules by P (G, γ1), P (G, γ2) and 
P (G, ηG), respectively.

If ΦE is the Brauer character of the projective k[G]-module cover of the simple k[G]-
module E and φE′ is the Brauer character of the simple k[G]-module E′, then

〈ΦE , φE′〉 = 1
#G

∑
x∈G′

3

ΦE(x−1)φE′(x)

is the Kronecker symbol δE,E′ , where G′
3 denotes the 3-regular elements of G. Since

ΦE =
∑

CE′,E φE′
E′
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where CE′,E denotes the (E′, E)th entry of the Cartan matrix and E′ ranges over the 
simple k[G]-modules, we can find the multiplicities of ΦE in β̃ by computing 〈ΦE , β̃〉 for 
all simple k[G]-modules E. For ΦE belonging to blocks of maximal defect, we obtain:

〈Ψ0, β̃〉 = �− 5
12 ;

〈Ψ̃0, β̃〉 = (�− 5)(3n + 1)
24 ;

〈Ψ̃t, β̃〉 = (�− 5)3n

12 (1 ≤ t ≤ (m− 1)/2).

For ΦE belonging to blocks of defect 0, we get:

〈γi, β̃〉 =
{

�−17
24 : � ≡ 1 mod 8
�−5
24 : � ≡ 5 mod 8

(i = 1, 2); (6.24)

〈ηG, β̃〉 =
{

�−5
12 : η(s) = −1

�−17
12 : η(s) = 1.

(6.25)

The Cartan matrix has the following form (see [8, §IV]):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1
1 3n+1

2
3n

. . .
3n

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the 2 × 2 block in the top left corner corresponds to the principal block B0, 
the diagonal entries 3n correspond to the blocks B1, . . . , B(m−1)/2, and the remaining 
diagonal entries 1 correspond to the 1 + (� − 1)/4 additional blocks of defect 0. This 
implies that

β̃ =
(m−1)/2∑

t=0

�− 5
12 Ψ̃t + 〈γ1, β̃〉 γ1 + 〈γ2, β̃〉 γ2 +

∑
η

〈ηG, β̃〉 ηG.

Therefore, we have proved the following result:

Proposition 6.4.1. When � ≡ 1 mod 4 and � ≡ −1 mod 3, let U (G)
T̃0,(3n−1−1)/2

(resp. 

U
(G)

n−1) denote the uniserial k[G]-module of length (3n−1 − 1)/2 (resp. 3n−1) with 

T̃t,3
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composition factors all isomorphic to T̃0 (resp. T̃t). In particular, if n = 1 then 
U

(G)
T̃0,(3n−1−1)/2

= 0. As a k[G]-module,

H0(X,ΩX) ∼=
(m−1)/2⊕

t=0

�− 5
12 P (G, T̃t) ⊕ 〈γ1, β̃〉P (G, γ1) ⊕ 〈γ2, β̃〉P (G, γ2) ⊕

⊕
η

〈ηG, β̃〉P (G, ηG) ⊕ U
(G)
T̃0,(3n−1−1)/2

⊕
(m−1)/2⊕

t=1
U

(G)
T̃t,3n−1

where 〈γi, β̃〉 and 〈ηG, β̃〉 are as in (6.24) and (6.25).

6.4.2. The k[G]-module structure of H0(X, ΩX) when � ≡ −1 mod 4 and � ≡ 1 mod 3
This is the case when ε = 1 and � ≡ −ε mod 4. By (6.7), the non-projective inde-

composable direct summands of ResGN1
H0(X, ΩX) are again given as in (6.22).

We first determine the Green correspondents of these summands, using the informa-
tion in [8, §V]. There are 1 +(m − 1)/2 blocks of k[G] of maximal defect n, consisting of 
the principal block B0 and (m −1)/2 blocks B1, . . . , B(m−1)/2, and there are 1 +(� +1)/4
blocks of k[G] of defect 0. There are precisely two isomorphism classes of simple k[G]-
modules that belong to B0, represented by the trivial simple k[G]-module T0 and a simple 
k[G]-module T1 of k-dimension �. For each t ∈ {1, . . . , (m − 1)/2}, there is precisely one 
isomorphism class of simple k[G]-modules belonging to Bt, represented by a simple k[G]-
module T̃t of k-dimension � + 1. Let T̃0 = T0 ⊕ T1. Note that the Brauer character of T̃t, 
0 ≤ t ≤ (m − 1)/2, is the restriction to the 3-regular classes of the ordinary irreducible 
character δ̃∗t , 0 ≤ t ≤ (m − 1)/2, with the following values:

δ̃∗t (e) = �+1; δ̃∗t (r1) = 1 = δ̃∗t (r2); δ̃∗t (s) = 0 = δ̃∗t (wj); δ̃∗t ((v′′)i) = (ξm)ti+(ξm)−ti

(6.26)
where ξm is a fixed primitive mth root of unity.

As in §6.4.1, we determine the Green correspondents of the non-projective indecom-
posable direct summands of ResGN1

H0(X, ΩX), by using that there is a stable equivalence 

between the module categories of k[G] and k[N1]. If n = 1 then U (N1)
1,2·3n−1+1 = U

(N1)
1,3n is a 

projective k[N1]-module. If n > 1 then the Green correspondent of U (N1)
1,2·3n−1+1 belongs 

to B0. Note that the Green correspondent of S(N1)
0 (resp. S(N1)

1 ) is T0 (resp T1). This 
means that the Green correspondent of U (N1)

1,2·3n−1+1 is the uniserial k[G]-module of length 
2 · 3n−1 + 1 whose socle is isomorphic to T1. For 1 ≤ t ≤ (m − 1)/2, the Green corre-
spondent of Ũ (N1)

t,2·3n−1 belongs to the block Bt. Since � + 1 ≡ 2 mod 3n, it follows that 
the Green correspondent of Ũ (N1)

t,2·3n−1 is a uniserial k[G]-module of length 2 · 3n−1 whose 

composition factors are all isomorphic to T̃t.
Next, we determine the Brauer character β̃ of the largest projective direct summand 

of H0(X, ΩX). For i = 0, 1, let Ψi be the Brauer character of the projective k[G]-module 
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cover P (G, Ti) of Ti. Define β̃′ to be the function on the 3-regular conjugacy classes of 
G such that

β̃ = δn,1 Ψ1 + β̃′.

Using (6.12) and (6.13), (6.14)–(6.17) and (6.26), we obtain

β̃′(e) = (�− 1)
(

(� + 1)(�− 10)
24 − 1

)
;

β̃′(r1) = 1 − 5(�− 1)
12 − h�

2
√
−�;

β̃′(r2) = 1 − 5(�− 1)
12 + h�

2
√
−�;

β̃′(s) = 2 − � + 1
4 ;

β̃′(wj) = 2 (wj /∈ {e, s});

β̃′((v′′)i) = 0 ((v′′)i �= e).

Let Ψ̃t be the Brauer character of the projective k[G]-module cover P (G, T̃t) of T̃t, 
1 ≤ t ≤ (m − 1)/2. We have 1 + (� + 1)/4 additional Brauer characters of projective 
indecomposable k[G]-modules that are also irreducible: γ1, γ2 and (� − 3)/4 characters 
ηG that are constructed from characters η of W with values

e r1 r2 s wj (v′′)i
(wj /∈ {e, s}) ((v′′)i �= e)

γ1
�−1
2

−1+
√
−�

2
−1−

√
−�

2 −(−1)(�+1)/4 −(−1)j 0
γ2

�−1
2

−1−
√
−�

2
−1+

√
−�

2 −(−1)(�+1)/4 −(−1)j 0
ηG �− 1 −1 −1 −(η(s) + η(s)) −(η(wj) + η(wj)) 0

where η ranges over the characters of W that are not equal to their conjugate η. Denote 
the corresponding projective indecomposable k[G]-modules by P (G, γ1), P (G, γ2) and 
P (G, ηG), respectively.

Similarly to §6.4.1, using the Cartan matrix given in [8, §V], we get

β̃′ = �− 19
12 Ψ1 +

(m−1)/2∑
t=1

�− 19
12 Ψ̃t + 〈γ1, β̃

′〉 γ1 + 〈γ2, β̃
′〉 γ2 +

∑
η

〈ηG, β̃′〉 ηG

where

〈γ1, β̃
′〉 =

{
�−7
24 − h�

2 : � ≡ 3 mod 8
�+5 − h� : � ≡ 7 mod 8;

(6.27)

24 2
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〈γ2, β̃
′〉 =

{
�−7
24 + h�

2 : � ≡ 3 mod 8
�+5
24 + h�

2 : � ≡ 7 mod 8;
(6.28)

〈ηG, β̃′〉 =
{

�−7
12 : η(s) = −1,
�+5
12 : η(s) = 1.

(6.29)

Therefore, we have proved the following result:

Proposition 6.4.2. When � ≡ −1 mod 4 and � ≡ 1 mod 3, let U (G)
T1,2·3n−1+1 (resp. 

U
(G)
T̃t,2·3n−1) denote the uniserial k[G]-module of length 2 · 3n−1 + 1 (resp. 2 · 3n−1) whose 

socle is isomorphic to T1 (resp. whose composition factors are all isomorphic to T̃t). In 
particular, if n = 1 then U (G)

T1,2·3n−1+1 = P (G, T1) is a projective indecomposable k[G]-
module. As a k[G]-module,

H0(X,ΩX) ∼=
(
�− 19

12 + δn,1

)
P (G,T1) ⊕

(m−1)/2⊕
t=1

�− 19
12 P (G, T̃t) ⊕

〈γ1, β̃
′〉P (G, γ1) ⊕ 〈γ2, β̃

′〉P (G, γ2) ⊕
⊕
η

〈ηG, β̃′〉P (G, ηG) ⊕

(1 − δn,1) U
(G)
T1,2·3n−1+1 ⊕

(m−1)/2⊕
t=1

U
(G)
T̃t,2·3n−1

where 〈γ1, β̃′〉, 〈γ2, β̃′〉 and 〈ηG, β̃′〉 are as in (6.27), (6.28) and (6.29).

6.4.3. The k[G]-module structure of H0(X, ΩX) when � ≡ 1 mod 4 and � ≡ 1 mod 3
This is the case when ε = 1 and � ≡ ε mod 4. By (6.8), the non-projective indecom-

posable direct summands of ResGN1
H0(X, ΩX) are given by

U
(N1)
1,1,2·3n−1+1 ⊕ U

(N1)
0,1,2·3n−1 ⊕

m/2−1⊕
t=1

Ũ
(N1)
t,2·3n−1 . (6.30)

We first determine the Green correspondents of these summands, using the informa-
tion in [8, §III]. There are 1 + (m/2) blocks of k[G] of maximal defect n, consisting 
of the principal block B00, another block B01 and (m/2 − 1) blocks B1, . . . , B(m/2−1). 
Moreover, there are (� − 1)/4 blocks of k[G] of defect 0. There are precisely two iso-
morphism classes of simple k[G]-modules that belong to B00 (resp. B01), represented 
by the trivial simple k[G]-module T0,0 and a simple k[G]-module T1,1 of k-dimension 
� (resp. by two simple k[G]-modules T0,1 and T1,0 of k-dimension (� + 1)/2). For each 
t ∈ {1, . . . , (m/2 − 1)}, there is precisely one isomorphism class of simple k[G]-modules 
belonging to Bt, represented by a simple k[G]-module T̃t of k-dimension � +1. Note that 
the Brauer character of T̃t, 1 ≤ t ≤ (m/2 − 1), is the restriction to the 3-regular classes 
of the ordinary irreducible character δ̃∗t , 1 ≤ t ≤ (m/2 − 1), with the following values:
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δ̃∗t (e) = �+1; δ̃∗t (r1) = 1 = δ̃∗t (r2); δ̃∗t ((v′′)i) = (ξm)ti+(ξm)−ti; δ̃∗t (wj) = 0 (6.31)

where ξm is a fixed primitive mth root of unity and we allow i = m/2, which gives us 
δ̃∗t (s) = 2 (−1)t.

As in the previous subsections, we determine the Green correspondents of the non-
projective indecomposable direct summands of ResGN1

H0(X, ΩX), by using that there is 
a stable equivalence between the module categories of k[G] and k[N1]. If n = 1 then 
U

(N1)
1,1,2·3n−1+1 = U

(N1)
1,1,3n is a projective k[N1]-module. If n > 1 then the Green correspon-

dent of U (N1)
1,1,2·3n−1+1 belongs to B00. Note that the Green correspondent of S(N1)

0,0 (resp. 
S

(N1)
1,1 ) is T0,0 (resp T1,1). This means that the Green correspondent of U (N1)

1,1,2·3n−1+1 is 
the uniserial k[G]-module of length 2 · 3n−1 + 1 whose socle is isomorphic to T1,1. On 
the other hand, the Green correspondent of S(N1)

0,1 is one of T0,1 or T1,0. We relabel the 
simple k[G]-modules, if necessary, to be able to assume that the Green correspondent 
of S(N1)

0,1 (resp. S(N1)
1,0 ) is T0,1 (resp T1,0). This means that the Green correspondent of 

U
(N1)
0,1,2·3n−1 is the uniserial k[G]-module of length 2 · 3n−1 whose socle is isomorphic to 

T0,1. For 1 ≤ t ≤ (m/2 − 1), the Green correspondent of Ũ (N1)
t,2·3n−1 belongs to the block 

Bt. Since � + 1 ≡ 2 mod 3n, it follows that the Green correspondent of Ũ (N1)
t,2·3n−1 is a 

uniserial k[G]-module of length 2 · 3n−1 whose composition factors are all isomorphic to 
T̃t.

Next, we determine the Brauer character β̃ of the largest projective direct summand 
of H0(X, ΩX). For i, j ∈ {0, 1}, let Ψi,j be the Brauer character of the projective k[G]-
module cover P (G, Ti,j) of Ti,j . Define β̃′ to be the function on the 3-regular conjugacy 
classes of G such that

β̃ = δn,1 Ψ1,1 + β̃′.

Using (6.10), (6.18)–(6.21) and (6.31), we obtain

β̃′(e) = (�− 1)
(

(� + 1)(�− 10)
24 − 1

)
;

β̃′(ri) = 1 − 5(�− 1)
12 (i = 1, 2);

β̃′(s) = −�− 1
4 ;

β̃′((v′′)i) = 0 ((v′′)i /∈ {e, s});

β̃′(wj) = 2 (wj �= e).

Let Ψ̃t be the Brauer character of the projective k[G]-module cover P (G, T̃t) of T̃t, 
1 ≤ t ≤ (m/2 − 1). We have (� − 1)/4 additional Brauer characters ηG of projective 
indecomposable k[G]-modules that are constructed from characters η of W with values
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ηG(e) = �− 1; ηG(r1) = −1 = ηG(r2); ηG(s) = 0 = ηG((v′′)i);

ηG(wj) = −(η(wj) + η(wj))

where η ranges over the characters of W that are not equal to their conjugate η. Denote 
the corresponding projective indecomposable k[G]-modules by P (G, ηG).

Similarly to the previous subsections, using the Cartan matrix given in [8, §III], we 
get

β̃′ = �− 25
12 Ψ1,1 + �− 19 − 6(−1)m/2

24 (Ψ0,1 + Ψ1,0)

+
m/2−1∑
t=1

�− 19 − 6(−1)t

12 Ψ̃t +
∑
η

�− 1
12 ηG.

Therefore, we have proved the following result:

Proposition 6.4.3. When � ≡ 1 mod 4 and � ≡ 1 mod 3, let U (G)
T1,1,2·3n−1+1 (resp. 

U
(G)
T0,1,2·3n−1) denote the uniserial k[G]-module of length 2 ·3n−1 +1 (resp. 2 ·3n−1) whose 

socle is isomorphic to T1,1 (resp. T0,1). In particular, if n = 1 then U (G)
T1,1,2·3n−1+1 =

P (G, T1,1) is a projective indecomposable k[G]-module. Let U (G)
T̃t,2·3n−1 denote the unise-

rial k[G]-module of length 2 · 3n−1 whose composition factors all isomorphic to T̃t. As a 
k[G]-module,

H0(X,ΩX) ∼=
(
�− 25

12 + δn,1

)
P (G,T1,1) ⊕

�− 19 − 6(−1)m/2

24 (P (G,T0,1) ⊕ P (G,T1,0)) ⊕

m/2−1⊕
t=1

�− 19 − 6(−1)t

12 P (G, T̃t) ⊕
⊕
η

�− 1
12 P (G, ηG) ⊕

(1 − δn,1) U
(G)
T1,1,2·3n−1+1 ⊕ U

(G)
T0,1,2·3n−1 ⊕

m/2−1⊕
t=1

U
(G)
T̃t,2·3n−1 .

6.4.4. The k[G]-module structure of H0(X, ΩX) when � ≡ −1 mod 4 and � ≡ −1
mod 3

This is the case when ε = −1 and � ≡ ε mod 4. By (6.8), the non-projective inde-
composable direct summands of ResGN1

H0(X, ΩX) are again given as in (6.30).
We first determine the Green correspondents of the non-projective indecomposable 

direct summands of ResGN1
H0(X, ΩX), using the information in [8, §VI]. There are 1 +

(m/2) blocks of k[G] of maximal defect n, consisting of the principal block B00, another 
block B01 and (m/2 − 1) blocks B1, . . . , B(m/2−1). Moreover, there are (� − 3)/4 blocks 
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of k[G] of defect 0. There are precisely two isomorphism classes of simple k[G]-modules 
that belong to B00 (resp. B01), represented by the trivial simple k[G]-module T0 and 
a simple k[G]-module T̃0 of k-dimension � − 1 (resp. by two simple k[G]-modules T0,1
and T1,0 of k-dimension (� − 1)/2). For each t ∈ {1, . . . , (m/2 − 1)}, there is precisely 
one isomorphism class of simple k[G]-modules belonging to Bt, represented by a simple 
k[G]-module T̃t of k-dimension � − 1. Note that the Brauer character of T̃t, 0 ≤ t ≤
(m/2 − 1), is the restriction to the 3-regular classes of the ordinary irreducible character 
δ̃∗t , 0 ≤ t ≤ (m/2 − 1), with the following values:

δ̃∗t (e) = �− 1; δ̃∗t (r1) = −1 = δ̃∗t (r2); δ̃∗t ((v′′)i) = −((ξm)ti + (ξm)−ti); δ̃∗t (wj) = 0
(6.32)

where ξm is a fixed primitive mth root of unity and we allow i = m/2, which gives us 
δ̃∗t (s) = −2 (−1)t.

As in the previous subsections, we determine the Green correspondents of the non-
projective indecomposable direct summands of ResGN1

H0(X, ΩX), by using that there is 
a stable equivalence between the module categories of k[G] and k[N1]. If n = 1 then 
U

(N1)
1,1,2·3n−1+1 = U

(N1)
1,1,3n is a projective k[N1]-module. If n > 1 then the Green corre-

spondent of U (N1)
1,1,2·3n−1+1 belongs to B00. Since the Green correspondent of S(N1)

0 is T0, 
it follows that the Green correspondent of S(N1)

1 is a uniserial k[G]-module of length 
(3n − 1)/2 whose composition factors are all isomorphic to T̃0. We now follow the irre-
ducible homomorphisms in the stable Auslander-Reiten quiver of B00 starting with the 
Green correspondent of S(N1)

1 to arrive, after 2 · 3n−1 such morphisms, at a uniserial 
k[G]-module of length (3n−1 − 1)/2 whose composition factors are all isomorphic to T̃0. 
This must be the Green correspondent of U (N1)

1,1,2·3n−1+1. On the other hand, the Green 

correspondent of U (N1)
0,1,2·3n−1 belongs to the block B01. Since (� − 1)/2 ≡ −1 mod 3n, it 

follows that the Green correspondent of U (N1)
0,1,2·3n−1 is a uniserial k[G]-module of length 

3n−1 whose socle is isomorphic to either T0,1 or T1,0. By relabeling the simple k[G]-
modules, if necessary, we are able to assume that the socle of the Green correspondent 
of U (N1)

0,1,2·3n−1 is isomorphic to T0,1. Note that the Brauer characters of T0,1 and T1,0 only 
differ with respect to their values at the elements of order � in G. Since we have already 
chosen a square root of −� to obtain (6.12) and (6.13), we let s01 ∈ {±1} be such that 
the Brauer character β(T0,1) satisfies

β(T0,1)(r1) = −1 + s01
√
−�

2 . (6.33)

For 1 ≤ t ≤ (m/2 − 1), the Green correspondent of Ũ (N1)
t,2·3n−1 belongs to the block Bt. 

Since � − 1 ≡ −2 mod 3n, it follows that the Green correspondent of Ũ (N1)
t,2·3n−1 is a 

uniserial k[G]-module of length 3n−1 whose composition factors are all isomorphic to T̃t.
Next, we determine the Brauer character β̃ of the largest projective direct summand 

of H0(X, ΩX). Since (3n−1−1)/2 = 0 when n = 1, we do not need to distinguish between 
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the cases n = 1 and n > 1. Using (6.12) and (6.13), (6.18)–(6.21), (6.32) and (6.33), we 
obtain

β̃(e) = 1 + (�− 1)(�2 − 7� + 4)
24 ;

β̃(r1) = − �− 5
6 − h� + s01

2
√
−�;

β̃(r2) = − �− 5
6 + h� + s01

2
√
−�;

β̃(s) = −� + 1
4 ;

β̃((v′′)i) = 0 ((v′′)i /∈ {e, s});
β̃(wj) = 1 (wj �= e).

Let Ψ0 be the Brauer character of the projective k[G]-module cover P (G, T0) of T0. For 
{i, j} = {0, 1}, let Ψi,j be the Brauer character of the projective k[G]-module cover 
P (G, Ti,j) of Ti,j . Let Ψ̃t be the Brauer character of the projective k[G]-module cover 
P (G, T̃t) of T̃t, 0 ≤ t ≤ (m/2 − 1). We have (� − 3)/4 additional Brauer characters 
ηG of projective indecomposable k[G]-modules that are also irreducible and that are 
constructed from characters η of W with values

ηG(e) = � + 1; ηG(r1) = 1 = ηG(r2); ηG(s) = 0 = ηG((v′′)i);

ηG(wj) = η(wj) + η(wj)

where η ranges over the characters of W that are not equal to their conjugate η. Denote 
the corresponding projective indecomposable k[G]-modules by P (G, ηG).

Similarly to the previous subsections, using the Cartan matrix given in [8, §VI], we 
get

β̃ = � + 1
12 Ψ̃0 +

(
(�− 5 + 6(−1)m/2)

24 − s01h� + 1
2

)
Ψ0,1 +(

(�− 5 + 6(−1)m/2)
24 + s01h� + 1

2

)
Ψ1,0 +

m/2−1∑
t=1

(�− 5 + 6(−1)t)
12 Ψ̃t +

∑
η

�− 11
12 ηG.

Therefore, we have proved the following result:

Proposition 6.4.4. When � ≡ −1 mod 4 and � ≡ −1 mod 3, let U (G)
T̃0,(3n−1−1)/2

(resp. 

U
(G)
T̃t,3n−1) denote the uniserial k[G]-module of length (3n−1 − 1)/2 (resp. 3n−1) whose 

composition factors are all isomorphic to T̃0 (resp. T̃t). In particular, if n = 1 then 
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U
(G)
T̃0,(3n−1−1)/2

= 0. Let U (G)
T0,1,3n−1 denote the uniserial k[G]-module of length 3n−1 whose 

socle is isomorphic to T0,1. As a k[G]-module,

H0(X,ΩX) ∼= � + 1
12 P (G, T̃0) ⊕

(
(�− 5 + 6(−1)m/2)

24 − s01h� + 1
2

)
P (G,T0,1) ⊕(

(�− 5 + 6(−1)m/2)
24 + s01h� + 1

2

)
P (G,T1,0)) ⊕

m/2−1⊕
t=1

(�− 5 + 6(−1)t)
12 P (G, T̃t) ⊕

⊕
η

�− 11
12 P (G, ηG) ⊕

U
(G)
T̃0,(3n−1−1)/2

⊕ U
(G)
T0,1,3n−1 ⊕

m/2−1⊕
t=1

U
(G)
T̃t,3n−1 .

Remark 6.4.5. The sign s01 from (6.33) depends on the relationship between the socle 
of the Green correspondent of T0,1 and the values of the Brauer character of T0,1 on 
elements of order �. As in Theorem 1.4, let H1 and H2 be representatives of the two 
conjugacy classes of subgroups of G that are isomorphic to Σ3. By our definition of 
Δ1 and Δ2 in §6.1.2, we can choose H1 ≤ Δ1 and H2 ≤ Δ2. Recalling our definition 
of S(N1)

0,1 , we see that the restriction of T0,1 to H1 (resp. H2) is the direct sum of a 2-
dimensional uniserial module whose socle is the trivial simple module (resp. the simple 
module corresponding to the sign character) and a projective module.

Since the Brauer character of a 2-dimensional uniserial module for Σ3 in characteristic 
3 does not determine its isomorphism class, it is not so easy to connect the two possibil-
ities of square roots of −� going into the values of the Brauer characters of H0(X, ΩX)
and of T0,1 at elements of order �.

We do not have a formula in general for s01 when � ≡ −1 mod 12. But, for example, 
if � = 11 then h� = 1 and m = 2, which means that the multiplicity of P (G, T0,1) in 
H0(X, ΩX) is equal to −(s01 + 1)/2. Since this number must be non-negative, it follows 
that s01 = −1 when � = 11.

6.5. Proof of Theorem 1.4

Part (i) of Theorem 1.4 follows directly from Propositions 6.4.1–6.4.4. For part (ii), 
we notice that the maximal ideal P3 of A containing 3 corresponds uniquely to a place 
v of F over 3. In other words, k(P3) = k(v). Let k1 be a perfect field containing k(v)
and let k be an algebraic closure of k1. Define X1 = k1 ⊗k(v) Xv(�) where Xv(�) is as in
(5.1). In particular, X = X3(�) = k ⊗k1 X1.

Note that there exists a finite Galois extension k′1 of k1 such that k′1 ⊆ k and such 
that the primitive central idempotents of k[G] lie in k′1[G]. This can be seen as follows. 
By the Theorem on Lifting Idempotents (see [12, Thm. (6.7) and Prop. (56.7)]), each 
primitive central idempotent e of k[G] can be lifted to a primitive central idempotent ê
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of W (k)[G] when W (k) is the ring of infinite Witt vectors over k. If F (k) is the fraction 
field of W (k) and F (k) is an algebraic closure of F (k), then we can use the formula for 
the primitive central idempotents of F (k)[G] (see [12, Prop. (9.21)]) to see that ê has 
coefficients in a cyclotomic extension of Q3. This implies that ê has coefficients in the 
intersection of the maximal cyclotomic extension of Q3 in F (k) and W (k). Therefore, ê
has coefficients in Z3[ξ̂] for some root of unity ξ̂ whose order is relatively prime to 3. But 
this means that there exists a root ξ of unity in k whose order is relatively prime to 3
such that e lies in k1(ξ)[G]. Since k1(ξ) is finite Galois over k1, we can take k′1 = k1(ξ).

Let now k2 be a finite field extension of k′1 such that k2 ⊆ k and such that all the 
indecomposable k[G]-modules occurring in the decomposition of H0(X, ΩX) are realiz-
able over k2. Letting X2 = k2 ⊗k1 X1, we obtain from Propositions 6.4.1–6.4.4 that the 
k2[G]-module H0(X2, ΩX2) is a direct sum over blocks B2 of k2[G] of modules of the form 
PB2 ⊕ UB2 in which PB2 is a projective B2-module and UB2 is either the zero module 
or a single indecomposable non-projective B2-module. Moreover, one can determine PB2

and UB2 from the ramification data associated to the cover X −→ X/G. We have

k2 ⊗k1 H0(X1,ΩX1) ∼= H0(X2,ΩX2)

as k2[G]-modules, and

H0(X2,ΩX2) ∼= H0(X1,ΩX1)[k2:k1]

as k1[G]-modules. Therefore, it follows from the Krull-Schmidt-Azumaya theorem that 
the decomposition of H0(X1, ΩX1) into indecomposable k1[G]-modules is uniquely deter-
mined by the decomposition of H0(X2, ΩX2) into indecomposable k2[G]-modules.

Consider next a block B1 of k1[G] corresponding to a primitive central idempotent 
ε1. Then ε1 is a sum of primitive central idempotents in k2[G]

ε1 = ε2,1 + · · · + ε2,l

corresponding to blocks B2,1, . . . , B2,l of k2[G]. Moreover, we have seen above that 
ε2,1, . . . , ε2,l lie in k′1[G] where k′1 is a finite Galois extension of k1. In particular, 
this means that Gal(k′1/k1) acts transitively on {ε2,1, . . . , ε2,l}. Since every element in 
Gal(k′1/k1) can be extended to an automorphism in Aut(k2/k1), this means in particular 
that Aut(k2/k1) acts transitively on {ε2,1, . . . , ε2,l}.

Suppose the B1-module ε1 H0(X1, ΩX1) is a direct sum of a projective B1-module 
together with a direct sum of non-zero indecomposable B1-modules UB1,1, . . . , UB1,t. We 
need to show that t ≤ 1. Suppose t > 1. For all 1 ≤ j ≤ t, we have

k2 ⊗k1 UB1,j =
l⊕

ε2,i (k2 ⊗k1 UB1,j) .

i=1
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Since this k2[G]-module is non-zero and since Aut(k2/k1) acts transitively on {ε2,1, . . . ,
ε2,l}, it follows that the k2[G]-module ε2,i (k2 ⊗k1 UB1,j) is a non-zero B2,i-module for all 
1 ≤ i ≤ l. Since we have already seen above that ε2,i H0(X2, ΩX2) is a direct sum of a pro-
jective B2,i-module with at most one other non-projective indecomposable B2,i-module, 
it follows that t ≤ 1. Note moreover, that the restriction of each projective indecom-
posable B2,i-module to a k1[G]-module is a projective B1-module. In other words, the 
k1[G]-module H0(X1, ΩX1) is a direct sum over blocks B1 of k1[G] of modules of the 
form PB1 ⊕UB1 in which PB1 is a projective B1-module and UB1 is either the zero mod-
ule or a single indecomposable non-projective B1-module. Moreover, PB1 and UB1 are 
determined by the decomposition of

k2 ⊗k1 ε1 H0(X1,ΩX1) =
l⊕

i=1
ε2,i H0(X2,ΩX2)

and we know from our discussion above that for all 1 ≤ i ≤ l,

ε2,i H0(X2,ΩX2) = PB2,i ⊕ UB2,i .

It follows that one can determine PB1 and UB1 from the modules PB2,i and UB2,i for 1 ≤
i ≤ l. Therefore, one can determine PB1 and UB1 from the ramification data associated 
to the cover X −→ X/G. This completes the proof of Theorem 1.4. �
6.6. Proof of Theorems 1.2 and 1.3 when p = 3

Fix a place v of F over 3, and define MOF,v
to be the OF,v[G]-module

MOF,v
= OF,v ⊗A H0(X (�),ΩX (�))

which is flat over OF,v. Note that the residue fields k(v) = A/Pv and OF,v/mF,v coincide. 
Define

Xv = Xv(�) = k(v) ⊗A X (�).

Then MOF,v
is a lift of the k(v)[G]-module H0(Xv, ΩXv

) over OF,v. As in (5.2), let 
X = X3(�) be the reduction of X (�) modulo 3 over k = k(v) = F3. In other words, X =
k⊗k(v)Xv and H0(X, ΩX) = k⊗kv

H0(Xv, ΩXv
) as k[G]-modules. Since H0(X, ΩX) = {0}

for � < 7, we can assume that � ≥ 7.
To prove Theorem 1.2 when p = 3, we follow the same argumentation as in the case 

when p > 3, where we use Propositions 6.4.1–6.4.4 and part (ii) of Theorem 1.4 instead of 
Lemma 5.2. In particular, we obtain that MOF,v

is a direct sum over blocks B of OF,v[G]
of modules of the form PB ⊕ UB in which PB is projective and UB is either the zero 
module or a single indecomposable non-projective B-module. Define MB = PB ⊕ UB .
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To prove Theorem 1.3 when p = 3, we assume now that F contains a root of unity of 
order equal to the prime to 3 part of the order of G. Let a be the maximal ideal over 3
in A associated to v, so that a corresponds to the maximal ideal mF,v of OF,v. Since for 
different blocks B and B′ of OF,v[G], there are no non-trivial congruences modulo mF,v

between MB and MB′ and since for a fixed block B of OF,v[G], there are no non-trivial 
congruences modulo mF,v between PB and UB , we prove Theorem 1.3 when p = 3 by 
following the same argumentation as in the case when p > 3. �
7. Appendix: Isotypic Hecke stable decompositions of the space of weight two cusp 
forms

In this appendix we assume only that N ≥ 3 is an integer and that F is a number field. 
Following Shimura’s notation in [35, Chap. 3], we let Γ = SL(2, Z), and we denote the 
principal congruence subgroup of Γ by ΓN (rather than Γ(N), as in the introduction). 
We let S(F ) be the space of all weight two cusp forms for ΓN that have q-expansion 
coefficients in F at all cusps, in the sense of [27, §1.6]. By [35, §6.1-6.2], together with 
flat base change, it follows that S(F ) coincides with the space of all weight two cusp 
forms for ΓN whose Fourier expansions with respect to e2πiz/N have coefficients in F .

The group Γ = SL(2, Z/N) = Γ/ΓN then acts F -linearly on S(F ). This action factors 
through an F -linear action by G = PSL(2, Z/N) = Γ/〈ΓN , ± I 〉, where I denotes the 
2 × 2 identity matrix. In this appendix, we follow the convention of Shimura in [35] by 
letting Γ act on S(F ) on the right. As noted in the introduction, right actions of groups 
can be converted into left actions by letting the left action of a group element coincide 
with the right action of its inverse.

Let T denote the ring of Hecke operators of index prime to N (see (7.2) below for 
the precise definition). As in the introduction, but using right actions, we call a T -stable 
decomposition into F -subspaces

S(F ) = E1 ⊕E2

G-isotypic if there are two orthogonal central idempotents e1, e2 of F [G] such that 1 =
e1 + e2 in F [G] and Ei = S(F )ei for i = 1, 2. The goal of this section is to prove the 
following result.

Proposition 7.1. Suppose e1, e2 are orthogonal central idempotents of F [G] such that 
1 = e1 + e2 and each ei is fixed by the conjugation action of PGL(2, Z/N) on G. Then 
setting Ei = S(F )ei for i = 1, 2 gives a G-isotypic T -stable decomposition of S(F ).

We discuss in Remark 7.3 the problem of constructing such decompositions for larger 
rings of Hecke operators.

To define T , we follow Shimura [35, §3.3] and first define

ΔN = {α ∈ Mat(2,Z) ; det(α) > 0 and gcd(det(α), N) = 1} ,
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Δ′
N =

{
α ∈ ΔN ; α ≡

(
1 0
0 x

)
mod N for some x ∈ (Z/N)∗

}
.

In Shimura’s notation, we let R(Γ, ΔN ) (resp. R(ΓN , Δ′
N )) be the ring that is generated 

as a free Z-module by the double cosets

ΓαΓ for α ∈ ΔN (resp. ΓNαΓN for α ∈ Δ′
N ).

We refer the reader to [35, §3.1] for the definition of the (commutative) ring multiplication 
in R(Γ, ΔN ) (resp. R(ΓN , Δ′

N )); we will not need this in what follows. By [35, Prop. 3.31], 
the correspondence

ΓNαΓN �→ ΓαΓ

for α ∈ Δ′
N , defines an isomorphism between R(ΓN , Δ′

N ) and R(Γ, ΔN ).
For each positive integer n with gcd(n, N) = 1, we define ρ′N (n) to be a set of repre-

sentatives α ∈ Δ′
N of all distinct double cosets in ΓN\Δ′

N/ΓN such that det(α) = n. We 
define

T ′(n) =
∑

α∈ρ′
N (n)

ΓNαΓN . (7.1)

By [35, Thm. 3.34],

T = R(ΓN ,Δ′
N ) ⊗Z Q (7.2)

is the Q-algebra generated by all T ′(n) when n ranges over all positive integers with 
gcd(n, N) = 1. A right action of R(ΓN , Δ′

N ), and hence of T , on f ∈ S(F ) is defined in 
the following way. For α ∈ Δ′

N , write

ΓNαΓN =
⋃
i

ΓNαi

as a finite disjoint union of right cosets. Define

f
∣∣ΓNαΓN =

∑
i

f |αi

where for a matrix γ =
(
a b

c d

)
∈ GL(2, Q) and z in the complex upper half plane H we 

let

(f |γ)(z) = det(γ) (cz + d)−2 f

(
az + b

cz + d

)
. (7.3)

In particular, for all r ∈ Q, we have
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(f | r I )(z) = r2 (r−2) f(z) = f(z). (7.4)

Note that, for α ∈ Δ′
N , the right action on S(F ) by the double coset ΓNαΓN defines an F -

linear transformation on S(F ), which we denote by [ΓNαΓN ]. By [35, Thm. 3.41], the F -
linear transformations [ΓNαΓN ] on S(F ), with α ∈ Δ′

N , are mutually commutative, and 
normal with respect to the Petersson inner product on S(F ). In particular, there exists 
an F -basis of S(F ) consisting of common eigenfunctions of the linear transformations 
[ΓNαΓN ] for all α ∈ Δ′

N .
A well-defined right action by Γ = SL(2, Z/N) = Γ/ΓN on S(F ) is defined by

f � γ = f |γ (7.5)

if γ ∈ Γ has image γ ∈ Γ. Since G = PSL(2, Z/N) = Γ/〈ΓN , ± I 〉, it follows by (7.4)
that this right action factors through a well-defined right action by G = PSL(2, Z/N)
on S(F ), which is defined by

f � γ = f |γ (7.6)

if γ ∈ Γ has image γ ∈ PSL(2, Z/N). These right actions can be made into left actions 
in the usual way via

γ � f = f � (γ)−1 (resp. γ � f = f � (γ)−1).

We can combine the actions by R(ΓN , Δ′
N ), T and Γ using the larger Hecke ring 

R = R(ΓN , Δ), where

Δ = {α ∈ Mat(2,Z) ; det(α) > 0}.

In other words, R is the ring that is generated as a free Z-module by the double cosets

ΓNαΓN for α ∈ Δ.

As before, we refer the reader to [35, §3.1] for the definition of the (commutative) ring 
multiplication in R = R(ΓN , Δ). We have a natural injection of Q-algebras

T = R(ΓN ,Δ′
N ) ⊗Z Q ↪→ R⊗Z Q. (7.7)

Define left and right actions of Γ = SL(2, Z/N) on R as follows. If γ is the image of 
γ ∈ Γ and α ∈ Δ, then

ΓNαΓN · γ = ΓN (αγ)ΓN and γ · ΓNαΓN = ΓN (γα)ΓN . (7.8)

We extend these actions by linearity to define left and right actions of Z[Γ] on R and 
of Q[Γ] on R ⊗Z Q. We have natural right actions of R⊗Z Q and of Q[Γ] on S(F ) via 
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(7.3) and (7.5). Moreover, the right action of Q[Γ] factors through a well-defined right 
action of Q[G] on S(F ) via (7.6).

Since for any element γ ∈ Γ, the PGL(2, Z/N) conjugates of the image γ in G are 
the images of the GL(2, Z/N) conjugates of the image γ in Γ and because of (7.7), the 
following result implies Proposition 7.1.

Lemma 7.2. For each double coset ΓNαΓN with α ∈ Δ′
N and each γ ∈ Γ with image 

γ ∈ Γ the following is true. Let s be the element of Z[Γ] ⊂ Q[Γ] that is the sum of the 
GL(2, Z/N) conjugates of γ. Then in R⊗Z Q one has

(ΓNαΓN ) · s = s · (ΓNαΓN ) (7.9)

where the products on the left and right sides of (7.9) denote the right and left actions 
of Q[Γ] on R⊗Z Q, respectively.

Proof. Let C be the conjugacy class of γ in GL(2, Z/N), say

C = {βi γ β
−1
i }nγ

i=1

for appropriate βi ∈ GL(2, Z/N). For 1 ≤ i ≤ nγ , let βi ∈ ΔN be a preimage of βi. Since 
each α ∈ Δ′

N lies in ΔN , it defines an element α of GL(2, Z/N). Thus we obtain

C = {(αβi) γ (αβi)−1}nγ

i=1

for all α ∈ Δ′
N . This implies that for all α ∈ Δ′

N and for s =
∑

c∈C c we have

(ΓNαΓN ) · s =
nγ∑
i=1

ΓN (αβiγβ
−1
i )ΓN

=
nγ∑
i=1

ΓN

(
(αβi)γ(αβi)−1)αΓN

= s · (ΓNαΓN ). �
Remark 7.3. We now discuss an issue that arises if we replace R(ΓN , Δ′

N ) by the bigger 
Hecke algebra R(ΓN , Δ′) when

Δ′ =
{
α ∈ Δ ; α ≡

(
1 0
0 x

)
mod N for some x ∈ (Z/N)

}
.

For each integer n ≥ 1, we define ρ′(n) to be a set of representatives α ∈ Δ′ of all distinct 
double cosets in ΓN\Δ′/ΓN such that det(α) = n. We define

T ′(n) =
∑

′

ΓN αΓN . (7.10)

α∈ρ (n)
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Note that for integers n ≥ 1 with gcd(n, N) = 1, the definition of T ′(n) in (7.10) coincides 
with the definition of T ′(n) in (7.1). By [35, Thm. 3.34], R(ΓN , Δ′) ⊗Z Q is generated 
by T ′(n) when n ranges over all positive integers. We can then define the bigger Hecke 
algebra T ′ to be the Q-algebra generated by all T ′(n) when n ranges over all positive 
integers. We again obtain an injection of Q-algebras

T ′ = R(ΓN ,Δ′) ⊗Z Q ↪→ R⊗Z Q.

However, for α ∈ Δ′ for which det(α) is not relatively prime to N , we do not obtain the 

identity (7.9) in general. To be concrete, let αN =
(

1 0
0 N

)
and let γ =

(
1 0
1 1

)
∈ Γ. 

Then all elements in ΓN (γαN )ΓN are congruent to 

(
1 0
1 0

)
mod N . On the other hand, 

for any element β ∈ GL(2, Z/N) with preimage β ∈ ΔN , we have that all elements 

in ΓN (αN (βγβ−1))ΓN are congruent modulo N to a matrix of the form 

(
a1 a2
0 0

)
for 

certain elements a1, a2 ∈ Z/N . In other words, there are elements γ ∈ Γ for which the 
identity (7.9) is not valid when α = αN . Since we have T ′(N) = ΓNαNΓN by [35, Prop. 
3.33], it follows that the right and left actions of s on T ′(N) do also not coincide for the 
above γ, when s is as in Lemma 7.2.
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