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AN OBSTRUCTION TO THE LOCAL LIFTING PROBLEM

ARISTIDES KONTOGEORGIS AND ALEXIOS TEREZAKIS

Abstract. We are investigating the lifting problem for local actions in-
volving semidirect products of a cyclic p-group with a cyclic group prime
to p, where p represents the characteristic of the special fiber. We es-
tablish a criterion based on the Harbater-Katz-Gabber compactification
of local actions, enabling us to determine whether a given local action
can be lifted or not. Specifically, in the case of the dihedral group, we
present an example of a local dihedral action that cannot be lifted. This
instance provides a more potent obstruction than the KGB obstruction.

Nous étudions le problème de relèvement des actions locales des pro-
duits semi-directs d’un groupe cyclique p par un groupe cyclique d’ordre
premier avec p, où p est la caractéristique de la fibre spéciale. Nous
obtenons un critère basé sur la compactification des actions locales de
Harbater-Katz-Gabber, qui nous permet de décider si une action locale
peut être relevée ou non. En particulier, dans le cas du groupe diédral,
nous donnons un exemple d’action locale diédrale qui ne peut pas être
relevée, offrant ainsi une obstruction plus forte que l’obstruction KGB.

1. Introduction

Let G be a finite group, k an algebraically closed field of characteristic
p > 0 and consider the homomorphism

ρ : G →֒ Aut(k[[t]]),

which will be called a local G-action. Let W (k) denote the ring of Witt
vectors of k. The local lifting problem addresses the question: Does there
exist an extension Λ/W (k), that is Λ is an integrally closed domain contained
in a field extension of Frac(W (k)), and a representation

ρ̃ : G →֒ Aut(Λ[[T ]]),

such that if t is the reduction of T , then the action of G on Λ[[T ]] reduces to
the action of G on k[[t]]? If the answer to the above question is affirmative,
then we say that the G-action lifts to characteristic zero. A group G for
which every local G-action on k[[t]] lifts to characteristic zero is called a
local Oort group for k.
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2 A. KONTOGEORGIS AND A. TEREZAKIS

Following an examination of specific obstructions, such as the Bertin ob-
struction, the KGB obstruction, and the Hurwitz tree obstruction, it has
been established that the potential candidates for local Oort groups in char-
acteristic p are limited to the following:

(1) Cyclic groups;
(2) Dihedral groups Dph of order 2ph;
(3) The alternating group A4.

The Oort conjecture states that every cyclic group Cq of order q = ph is a
local Oort group. This conjecture was recently proven by F. Pop [26] using
the work of A. Obus and S. Wewers [24]. A. Obus proved that A4 is a local
Oort group in [21] and this was also known to F. Pop as well as I. Bouw
and S. Wewers [5]. Dihedral groups Dp are known to be local Oort by the
work of I. Bouw and S. Wewers for p odd [5] and by the work of G. Pagot
[25]. Several cases of dihedral groups Dph for small ph have been studied
by A. Obus [22] and H. Dang, S. Das, K. Karagiannis, A. Obus, V. Thatte
[10], while the D4 was studied by B. Weaver [33]. For further details on the
lifting problem, refer to [7], [8], [9], [20].

Perhaps the most significant of the currently known obstructions is the
KGB obstruction [8]. It was conjectured that if the p-Sylow subgroup of
G is cyclic, then this is the sole obstruction for the local lifting problem,
see [20], [22]. In particular, the KGB obstruction for the dihedral group Dq

is known to vanish, and the so called “generalized Oort conjecture” asserts
that the local action of Dq always lifts for q-odd.

In this article, we will provide a new obstruction for the lifting problem
of a Cq ⋊ Cm-action and in particular for the group Dq. We would like to
emphasize that in contrast to the KGB obstruction, which vanishes for the
dihedral groups of order 2ph, our obstruction does not. Using this criterion
we provide in section 5.1 a counterexample to the generalized Oort conjec-
ture, by proving the HKG-cover corresponding to D125, with a selection of
lower jumps 9, 189, 4689 does not lift.

We use the Harbater-Katz-Gabber compactification (referred to as HKG)
as a means to construct complete curves from local actions. This approach
equips us with a diverse set of tools stemming from the theory of complete
curves, thereby allowing us to convert the local action and its deformations
into representations of linear groups that act on the differentials of the HKG-
curve. The foundational tools for this purpose are detailed in our article [16],
where we have compiled various insights into the interrelation between lifting
local actions, lifting curves, and lifting linear representations.

To elaborate further, let us delve into the specifics. Consider a local
action ρ : G → Aut k[[t]], where the group G is Cq ⋊ Cm. The Harbater-
Katz-Gabber compactification theorem asserts that there is a Galois cover
X → P1 ramified wildly and completely only at one point P ofX with Galois
group G = Gal(X/P1) and tamely on a different point P ′ with ramification
group Cm, so that the action of G on the completed local ring OX,P coincides
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with the original action of G on k[[t]]. Notably, it is established that the local
action lifts if and only if the corresponding HKG-cover undergoes lifting as
well.

In particular, we have proved that in order to lift a subgroupG ⊂ Aut(X),
the representation ρ : G→ GLH0(X,ΩX) should be lifted to characteristic
zero and also the lifting should be compatible with the deformation of the
curve. More precisely, in [16] we have proved the following relative version
of Petri’s theorem.

Proposition 1. Let f1, . . . , fr ∈ S := SymH0(X,ΩX) = k[ω1, . . . , ωg] be
quadratic polynomials which generate the canonical ideal IX of a curve X
defined over an algebraic closed field k. Any deformation XA is given by
quadratic polynomials f̃1, . . . , f̃r ∈ SymH0(XA,ΩXA/A) = A[W1, . . . ,Wg],
which reduce to f1, . . . , fr modulo the maximal ideal mA of A.

Additionally, we have provided the following liftability criterion:

Theorem 2. Consider an epimorphism R → k → 0 of local Artin rings.
Let X be a curve which is is canonically embedded in Pg−1

k and the canon-
ical ideal is generated by quadratic polynomials; and acted on by the group
G. The curve X → Spec(k) can be lifted to a family X → Spec(R) ∈
DGL(R) along with the G-action, if and only if the representation ρk : G→
GLg(k) = GL(H0(X,ΩX)) lifts to a representation ρR : G → GLg(R) =
GL(H0(X ,ΩX /R)) and moreover the lift of the canonical ideal is left in-
variant by the action of ρR(G).

In section 3 we prove that the canonical ideal of the HKG-cover is gener-
ated by quadratic polynomials, therefore theorem 2 can be applied. In order
to decide whether a linear representation of G = Cq ⋊ Cm can be lifted, we
will use the following criterion for the lifting of the linear representation,
based on the decomposition of a k[G]-module into indecomposable sum-
mands. We begin by describing the indecomposable k[G]-modules for the
group G = Cq ⋊ Cm:

Proposition 3. Suppose that the group G = Cq ⋊ Cm is represented in
terms of generators σ, τ and relations as follows:

G = 〈σ, τ |τ q = 1, σm = 1, στσ−1 = τα〉,

for some α ∈ N, 1 ≤ α ≤ ph − 1, (α, p) = 1. Every indecomposable k[G]-
module has dimension 1 ≤ κ ≤ q and is of the form Vα(λ, κ), where the
underlying space of Vα(λ, κ) has the set of elements {(τ−1)νe, ν = 0, . . . , κ−
1} as a basis for some e ∈ Vα(λ, κ), and the action of σ on e is given by
σe = ζλme, for a fixed primitive m-th root of unity.

Proof. A proof can be found in [17, sec. 3]. Notice also that (τ − 1)κe =
0. �

Notice that in section 5 we will give an alternative description of the in-
decomposable k[G]-modules, namely the Uℓ,µ notation, which is compatible
with the results of [3].



4 A. KONTOGEORGIS AND A. TEREZAKIS

Remark 4. In the article [17] of the authors, the Vα(λ, κ) notation is used.
In this article we will need the Galois module structure of the space of
homolomorphic differentials of a curve and we will employ the results of [3],
where the Uℓ,µ notation is used. These modules will be defined in section 5,
notice that Vα(λ, κ) = U(λ+a0(κ−1)) mod m,κ, where α = ζa0m , see lemma 14.

Theorem 5. Consider a k[G]-module M which is decomposed as a direct
sum

M = Vα(ε1, κ1)⊕ · · · ⊕ Vα(εs, κs).

The module lifts to an R[G]-module if and only if the set {1, . . . , s} can be
written as a disjoint union of sets Iν , 1 ≤ ν ≤ t so that

a.
∑

µ∈Iν
κµ ≤ q, for all 1 ≤ ν ≤ t.

b.
∑

µ∈Iν
κµ ≡ a mod m for all 1 ≤ ν ≤ t, where a ∈ {0, 1}.

c. For each ν, 1 ≤ ν ≤ t there is an enumeration σ : {1, . . . ,#Iν} →
Iν ⊂ {1, .., s}, such that

εσ(2) = εσ(1)α
κσ(1) , εσ(3) = εσ(2)α

κσ(2) , . . . , εσ(s) = εσ(s−1)α
κσ(s−1) .

Condition b., with a = 1 happens only if the lifted Cq-action in the generic
fibre has an eigenvalue equal to 1 for the generator τ of Cq.

Proof. See [17]. �

The idea of the above theorem is that indecomposable k[G]-modules in
the decomposition of H0(X,ΩX) of the special fibre, should be combined
together in order to give indecomposable modules in the decomposition of
holomorphic differentials of the relative curve. Keep in mind that the lifting
of the cyclic group acting on a curve of characteristic zero in the generic
fibre, has the additional property that every eigenvalue of a generator of Cq

is different than one, see proposition 13.
Notice that whenm = 2, that is for the case of dihedral groupsDq of order

2q, there is no need to pair two indecomposable k[Dq]-modules together in
order to lift them into an indecomposable R[Dq]-module. The sets Iν can
be singletons and the conditions of theorem 5 are trivially satisfied. For
example, condition 5.b. does not give any information since every integer is
either odd or even. This means that the linear representations always lift.

In our geometric setting on the other hand, we know that in the generic
fibre cyclic actions do not have identity eigenvalues, see proposition 13. This
means that we have to consider lifts that satisfy 5.b. with a = 0. Therefore,
indecomposable modules for G = Cq ⋊C2 = Dq of odd dimension d1 should
find another indecomposable module of odd dimension d2 in order to lift to
an R[G]-indecomposable module of even dimension d1 + d2. Moreover, this
dimension should satisfy d1 + d2 ≤ q. If we also take care of the condition
5.c. we arrive at the following

Criterion 6. If the HKG-curve acted on by Dq lifts in characteristic zero,
then all indecomposable summands Vα(ε, d), where ε ∈ {0, 1} and 1 ≤ d ≤ q
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with d odd have a pair Vα(ε
′, d′), with ε′ ∈ {0, 1} − {ε} and d′ odd and

d+ d′ ≤ q. Notice that since, d, d′ are both odd we have

Vα(ε, d) = Uε+d−1 mod 2,d = Uε,d, Vα(ε
′, d′) = Uε′+d′−1 mod 2,d′ = Uε′,d′ .

The indecomposable modules given above will be called complementary. We
will apply this criterion for complementary modules in the Uε,d-notation.

In order to apply this idea we need a detailed study of the direct k[G]-
summands of H0(X,ΩX), for G = Cq ⋊ Cm. This is considered in section
5, where we employ the joint work of the first author with F. Bleher and
T. Chinburg [3], in order to compute the decomposition of H0(X,ΩX) into
indecomposable kG-modules, in terms of the ramification filtration of the
local action. Then the lifting criterion of theorem 5 is applied. Our method
gives rise to an algorithm which takes as input a group Cq ⋊ Cm, with a
given sequence of lower jumps and decides whether the representation can
be lifted or not. This algorithm is implemented in sage 9.8 [30] and our code
is freely available [31].

In section 5.1 we give an example of a C125 ⋊ C4 HKG-curve which does
not lift and then we restrict ourselves to the case of dihedral groups. The
possible ramification filtrations for local actions of the group Cq ⋊Cm were
computed in the work of A. Obus and R. Pries in [23]. We focus on the case
of dihedral groups Dq with lower jumps

(1) bℓ = w0
p2ℓ + 1

p+ 1
, 0 ≤ ℓ ≤ h− 1.

For the value w0 = 9 we will show that the local action of the dihedral group
D125 does not lift, providing a counterexample to the conjecture that the
KGB-obstruction is the only obstruction to the local lifting problem.
Acknowledgements. We would like to thank A. Obus for his remarks and
comments on an earlier version of this article.

2. Notation

In this article we will study metacyclic groups G = Cq⋊Cm, where q = ph

is a power of the characteristic and m ∈ N, (m, p) = 1. Let τ be a generator
of the cyclic group Cq and σ be a generator of the cyclic group Cm.

The group G is given in terms of generators and relations as follows:

(2) G = 〈σ, τ |τ q = 1, σm = 1, στσ−1 = τα〉,

for some α ∈ N, 1 ≤ α ≤ ph − 1, (α, p) = 1. The integer α satisfies the
following congruence:

(3) αm ≡ 1 mod q

as one sees by computing τ = σmτσ−m = τα
m
. Also the integer α can be

seen as an element in the finite field Fp, and it is a (p− 1)-th root of unity,
not necessarily primitive. In particular the following holds:
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Lemma 7. Let ζm be a fixed primitive m-th root of unity. There is a natural
number a0, 0 ≤ a0 < m− 1 such that α = ζa0m .

Proof. The integer α, if we see it as an element in the field k of characteristic
p > 0, is an element in the finite field Fp ⊂ k, therefore αp−1 = 1 as an
element in Fp. Let ordp(α) be the order of α in F∗

p. By eq. 3 we have that
ordp(α) | p− 1 and ordp(α) | m, that is ordp(α) | (p − 1,m).

The primitive m-th root of unity ζm generates a finite field Fp(ζm) = Fpν

for some integer ν, which has cyclic multiplicative group Fpν\{0} containing
both the cyclic groups 〈ζm〉 and 〈α〉. Since for every divisor δ of the order
of a cyclic group C there is a unique subgroup C ′ < C of order δ we have
that α ∈ 〈ζm〉, and the result follows. �

Remark 8. It is known [20, prop. 5.9] that for the case of Cq ⋊ Cm the
KGB-obstruction vanishes if and only if the first lower jump h satisfies h ≡
−1 mod m. For this to happen, the conjugation action of Cm on Cq has
to be faithful, see [20, prop. 5.9]. Also notice that by [23, th. 1.1], that
if u0, u1, . . . , uh−1 is the sequence of upper ramification jumps for the Cq

subgroup, then the condition h ≡ −1 mod m implies that all upper jumps
ui are congruent to −1 modulo m, that is ui ≡ −1 mod m.

3. HKG-covers and their canonical ideal

Lemma 9. Consider the Harbater-Katz-Gabber curve corresponding to the
local group action of Cq ⋊Cm, where q = ph is a power of the characteristic
p. If one of the following conditions holds:

• h ≥ 3 or h = 2, p > 3
• h = 1 and the first jump i0 in the ramification filtration for the cyclic
group satisfies i0 6= 1 and q ≥ 12

i0−1 + 1,

then the curve X has canonical ideal generated by quadratic polynomials.

Remark 10. Notice that in [18] the canonical ideal for HKG-covers is ex-
plicitly described.

Remark 11. Notice, that the missing cases in the above lemma which
satisfy the KGB obstruction, are all either cyclic, D3 or D9, which are all
known local Oort groups.

Proof. Using Petri’s theorem [28] we will need to prove that the curve X
has genus g ≥ 6 provided that p or h are as in the statement of lemma 9.
We will also prove that the curve X is not hyperelliptic nor trigonal.

Remark 12. Let us first recall that a cyclic group of order q = ph for h ≥ 2
cannot act on the rational curve, see [32, thm 1]. Also let us recall that a
cyclic group of order p can act on a rational curve and in this case the first
and only break in the ramification filtration is i0 = 1. This latter case is
excluded.
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Consider first the case ph = p and i0 6= 1. In this case we compute the
genus g of the HKG-curve X using Riemann-Hurwitz formula:

2g = 2− 2mq + q(m− 1) + qm− 1 + i0(q − 1),

where the contribution q(m− 1) is from the q-points above the unique tame
ramified point, while qm−1+i0(q−1) is the contribution of the wild ramified
point. This implies that

2g = (i0 − 1)(q − 1),

therefore if i0 ≥ 2, it suffices to have q = ph ≥ 13 and more generally it is
enough to have q ≥ 12

i0−1 + 1 in order to ensure that g ≥ 6.
For the case h ≥ 2, we can write a stronger inequality based on Riemann-

Hurwitz theorem as (recall that i0 ≡ i1 mod p so i0 − i1 ≥ p)

(4) 2g ≥ (i0 − 1)(ph − 1) + (i0 − i1)(p
h−1 − 1) ≥ ph − p,

which implies that g ≥ 6 for p > 3 or h ≥ 3.
In order to prove that the curve is not hyperelliptic we observe that the

automorphism group of a hyperelliptic curve contains a normal subgroup
generated by the hyperelliptic involution j, so that X → X/〈j〉 = P1. It
is known that the automorphism group of a hyperelliptic curve fits in the
short exact sequence

(5) 1 → 〈j〉 → Aut(X) → H → 1,

whereH is a subgroup of PGL(2, k), see [6]. Ifm is odd then the hyperelliptic
involution is not an element in Cm. If m is even, let σ be a generator of the
cyclic group of order m and τ a generator of the group Cq. The involution

σm/2 again can’t be the hyperelliptic involution. Indeed, the hyperelliptic
involution is central, while the conjugation action of σ on τ is faithful that
is σm/2τσ−m/2 6= τ . In this case G = Cq ⋊ Cm is a subgroup of H which
should act on the rational function field. By the classification of such groups
in [32, Th. 1] this is not possible, for m > 2, while the case m = 2, i.e. the
case of the dihedral group Dq can also be ruled out using Remark 12. Thus
X can’t be hyperelliptic.

We will prove now that the curve is not trigonal. Using Clifford’s theorem
we can show [1, B-3 p.137] that a non-hyperelliptic curve of genus g ≥
5 cannot have two distinct g13 . Notice that we have already required the
stronger condition g ≥ 6. So if there is a g13 , then this is unique. Moreover,
the g13 gives rise to a map π : X → P1 and every automorphism of the curve
X fixes this map. Therefore, we obtain a morphism φ : Cq⋊Cm → PGL2(k)
and we arrive at the short exact sequence

1 → kerφ→ Cq ⋊ Cm → H → 1,

for some finite subgroup H of PGL(2, k). If kerφ = {1}, then we have the

tower of curves X
π

−→ P1 π′

−→ P1, where π′ is a Galois cover with group
Cq ⋊Cm. This implies that X is a rational curve contradicting Remark 12.
If kerφ is a cyclic group of order 3, then we have that 3 | m and the tower
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X
π

−→ P1 π′

−→ P1, where π is a cyclic Galois cover of order 3 and π′ is a
Galois cover with group Cq ⋊ Cm/3. As before this contradicts Remark 12
and is not possible. �

4. Invariant subspaces of vector spaces

The g×g symmetric matrices A1, . . . , Ar defining the quadratic canonical
ideal of the curve X, define a vector subspace of the vector space V of
g × g symmetric matrices. By the Oort conjecture, we know that there is
a lifted relative curve X̃ and by proposition 1 to the lift of X̃ correspond
symmetric matrices Ã1, . . . , Ãr with entries in a local principal ideal domain
R, which reduce to the initial matrices A1, . . . , Ar. Moreover, by theorem
2 the submodule Ṽ = 〈Ã1, . . . , Ãr〉 is left invariant under the action of a
lifting ρ̃ of the representation ρ : Cq → GLg(k).

Proposition 13. Let g̃ be the genus of the quotient curve X/H for a sub-
group H of the automorphism group of a curve X in characteristic zero. We
have

dimH0(X,Ω⊗d
X )H =

{

g̃ if d = 1

(2d− 1)(g̃ − 1) +
∑

P∈X/G

⌊

d
(

1− 1
e(P̃ )

)⌋

if d > 1

Proof. See [11, eq. 2.2.3,2.2.4 p. 254]. �

Therefore, a generator of H = Cq acting on H0(X,ΩX) has no identity
eigenvalues, Thus m should divide g. This means that we have to consider
liftings of indecomposable summands of the Cq-module H0(X,ΩX), which
satisfy condition 5.b. with a = 0. We now assume that condition 5.b. of
theorem 5 can be fulfilled, so there is a lifting of the representation

GLg(R)

mod mR

��
Cq ⋊ Cm

ρ
//

ρ̃
99
r
r
r
r
r
r
r
r
r
r

GLg(k)

The canonical ideal of the special fibre X corresponds to a vector space

V ⊂ kN , N = g(g+1)
2 , of dimension r =

(g−2
2

)

, see [16, remark 8]. This space
is acted on by G = Cq ⋊ Cm in terms of the action given by

ρ(1)(γ)(e) = ρ(γ)teρ(γ), for γ ∈ G and e ∈ V.

We select a lifting of this curve together with the action of the cyclic group
action Cq = 〈τ〉 which exists by the statement of the Oort conjecture for

cyclic groups. We therefore arrive at a free submodule Ṽ ⊂ RN . If moreover
e1, . . . , er is a basis of V then there are elements E1, . . . , Er, which are g× g
matrices with entries in R so that Ei ≡ ei mod mR and forming a free
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submodule of the module of symmetric g × g matrices with entries in R,
together with an action of Cq given by

ρ̃(1)(τ j)(Ei) = ρ̃(τ j)tEiρ̃(τ
j). for all 1 ≤ j ≤ q.

If we can show for every E ∈ Ṽ we have ρ̃c(σj)(E) ∈ Ṽ , then the curve can
be lifted together with the G action.

One might try to deform the matrices E1, . . . , Er to matrices Ẽ1, . . . , Ẽr

so that Ẽi = ei mod mR so that the free R-module 〈Ẽ1, . . . , Ẽr〉, equipped
with the ρ̃(1) action is G-invariant. It seems that this is not always possible.
For instance, we can take as

V = Vα(1, 2) ⊂ Vα(1, 2)
⊕

Vα(3, 2) =W.

as in the example [17, p. 777]. The G-module W lifts in characteristic zero
by theorem 2, while there is no way to modify the basis of V in order to
obtain a G-module Ṽ of rank 2 as the original module.

Writing a sufficient condition on whether the module 〈e1, . . . , er〉 can
be lifted requires the knowledge of G-module structure of 〈e1, . . . , er〉 =
Tor1(k, IX), see eq.(3) in [16]. This G-module structure is still unkwown.

5. Galois module structure of holomorphic differentials,

special fibre

Consider the group Cq⋊Cm. Let τ be a generator of Cq and σ a generator
of Cm. It is known that Aut(Cq) ∼= F∗

p ×Q, for some abelian group Q. The
representation ψ : Cm → Aut(Cq) given by the action of Cm on Cq is known
to factor through a character χ : Cm → F∗

p. The order of χ divides p − 1

and χp−1 = χ−(p−1) is the trivial one-dimensional character. In our setting,
using the definition of G given in eq. (2) and lemma 7 we have that the
character χ is defined by

(6) χ(σ) = α = ζa0m ∈ Fp.

For all i ∈ Z, χi defines a simple k[Cm]-module of k dimension one, which
we will denote by Sχi . For 0 ≤ ℓ ≤ m−1 denote by Sℓ the simple module on

which σ acts as ζℓm. Both Sχi , Sℓ can be seen as k[Cq ⋊ Cm]-modules using

inflation. Finally, for 0 ≤ ℓ ≤ m− 1 we define χi(ℓ) ∈ {0, 1, . . . ,m− 1} such
that Sχi(ℓ)

∼= Sℓ ⊗k Sχi . Using eq. (6) we arrive at

(7) Sχi(ℓ) = Sℓ+ia0 .

There are q·m isomorphism classes of indecomposable k[Cq⋊Cm]-modules
and are all uniserial, i.e. the set of submodules are totally ordered by inclu-
sion. An indecomposable k[Cq ⋊ Cm]-module U is uniquely determined by
its socle, which is the kernel of the action of τ−1 on U , and its k-dimension.
For 0 ≤ ℓ ≤ m−1 and 1 ≤ µ ≤ q, let Uℓ,µ be the indecomposable k[Cq⋊Cm]-
module with socle Sℓ and k-dimension µ. Then Uℓ,µ is uniserial, [3, rem. 3.4]
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and its µ ascending composition factors are the first µ composition factors
of the sequence

Sℓ, Sχ−1(ℓ), Sχ−2(ℓ), . . . , Sχ−(p−2)(ℓ), Sℓ, Sχ−1(ℓ), Sχ−2(ℓ), . . . , Sχ−(p−2)(ℓ).

Lemma 14. There is the following relation between indecomposable mod-
ules:

Vα(λ, κ) = U(λ+a0(κ−1) mod m,κ)

In particular, for the case of dihedral groups Dq we have the relation, a0 = 1,

Vα(λ, κ) = U(λ+κ−1 mod 2,κ).

Proof. Indeed, in the Vα(λ, κ) notation we describe the action of σ on the
generator e, by assuming that σe = ζλme. We can then describe the action
on every basis element ei = (τ − 1)i−1e, using the group relations

σei = σ(τ − 1)i−1e = (τα − 1)i−1σe = ζλm(τα − 1)i−1e

This allows us to prove, see [17, lemma 10] that

σei = αi−1ζλmei +
κ
∑

ν=i+1

aνeν

for some elements aν ∈ k and in particular

σeκ = ακ−1ζλmeκ.

Recall that the number α = ζa0m for some natural number a0, 0 ≤ a0 < m−1,
see also [17, lemma 2]. In the Uµ,κ notation, µ is the action on the one-
dimensional socle which is the τ -invariant element eκ = (τ − 1)κ−1e, i.e.
σ(eκ) = ζµm. Putting all this together we have

µ = λ+ (κ− 1)a0 mod m.

In the case of dihedral group Dq, m = 2 and α = −1a0 , i.e. a0 = 1, we have
Vα(λ, κ) = Uλ+κ−1 mod 2,κ. �

Assume that X → P1 is an HKG-cover with Galois group Cq ⋊ Cm. The
subgroup I generated by the Sylow p-subgroups of the inertia groups of all
closed points of X is equal to Cq, and the notation of section 4 in [3] is
simplified.

Definition 15. In [3] for each 0 ≤ j ≤ q − 1 the divisor

Dj =
∑

y∈P1

dy,jy,

is defined, where the integers dy,j are given as follows. Let x be a point of
X above y and consider the i-th ramification group Ix,i at x. The order of

the inertia group at x is assumed to be pn(x) and i(x) = h−n(x) is defined.
In this article we will have HKG-covers, where n(x) = h, so i(x) = 0. We
will use this in order to simplify the notation in what follows.
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Let b0, b1, . . . , bh−1 be the jumps in the numbering of the lower ramifica-
tion filtration subgroups of Ix. We define

dy,j =

⌊

1

ph

h
∑

l=1

ph−l
(

p− 1 + (p− 1− al,t)bl−1

)

⌋

for all j ≥ 0 with p-adic expansion

j = a1,j + a2,jp+ · · · + ah,jp
h−1.

In particular Dq−1 = 0. Observe that dy,j 6= 0 only for wildly ramified
branch points.

Remark 16. For a divisor D on a curve Y define ΩY (D) = ΩY ⊗ OY (D).
In particular for Y = P1, and for D = Dj = dP∞,jP∞, where Dj is a divisor
supported at the infinity point P∞ we have

H0(P1,ΩP1(Dj)) = {f(x)dx : 0 ≤ deg f(x) ≤ dP∞,j − 2}.

For the sake of simplicity, we will denote dP∞,j by dj . The spaceH
0(P1,ΩP1(Dj))

has a basis given by B = {dx, xdx, . . . , xdj−2dx}. Therefore, the number nj,ℓ
of simple modules appearing in the decomposition ΩP1(Dj) isomorphic to
Sℓ for 0 ≤ ℓ < m, is equal to the number of monomials xν with

ν ≡ ℓ− 1 mod m, 0 ≤ ν ≤ dj − 2.

If dj ≤ 1 then B = ∅ and nj,ℓ = 0 for all 0 ≤ ℓ < m. If dj > 1, then we

know that in the dj − 1 elements of the basis B, the first m
⌊

dj−1
m

⌋

elements

contribute to every representative modulo m. Thus, we have at least
⌊

dj−1
m

⌋

elements in isomorphic to Sℓ for every 0 ≤ ℓ < m. We will now count the
rest elements, of the form {xνdx}, where

m

⌊

dj − 1

m

⌋

≤ ν ≤ dj − 2 and ν ≡ ℓ− 1 mod m,

where ℓ− 1 is the unique integer in {0, 1, . . . ,m − 1} equivalent to ℓ − 1
modulo m. We observe that the number yj(ℓ) of such elements ν is given by

yj(ℓ) =

{

1 if ℓ− 1 ≤ dj − 2−m
⌊

dj−1
m

⌋

0 otherwise

Therefore

nj,ℓ =

{

⌊

dj−1
m

⌋

+ yj(ℓ) if dj ≥ 2

0 if dj ≤ 1

For example if dj = 9 and m = 3, then a basis for H0(P1,ΩP1(9P∞)) is
given by {dx, xdx, x2dx, . . . x7dx}. This basis has 8 elements, and each triple
{dx, xdx, x2dx}, {x3dx, x4dx, x5dx} contributes one to each class S0, S1, S2,
while there are two remaining basis elements {x6dx, x7dx}, which contribute
one to S1, S2. Notice that

⌊

8
3

⌋

= 2 and y(ℓ) = 1 for ℓ = 1, 2.
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In particular if m = 2, then nj,ℓ = 0 if dj ≤ 1 and for dj ≥ 2 we have

(8) nj,ℓ =











dj−1
2 if dj ≡ 1 mod 2

dj
2 − 1 if ℓ = 0 and dj ≡ 0 mod 2
dj
2 if ℓ = 1 and dj ≡ 0 mod 2

Lemma 17. Let m = 2 and assume that dj−1 = dj + 1. Then if dj ≥ 2

nj−1,ℓ − nj,ℓ =



















1 if dj−1 ≡ 1 mod 2 and ℓ = 0

or dj−1 ≡ 0 mod 2 and ℓ = 1

0 if dj−1 ≡ 1 mod 2 and ℓ = 1

or dj−1 ≡ 0 mod 2 and ℓ = 0

If dj ≤ 1, then

nj−1,ℓ − nj,ℓ =

{

0 if dj = 0 or (dj = 1 and ℓ = 0)

1 if dj = 1 and ℓ = 1

Proof. Assume that dj ≥ 2. We distinguish the following two cases, and we
use eq. (8) in each case

• dj−1 is odd and dj is even. Then, if ℓ = 0

nj−1,ℓ − nj,ℓ =
dj−1 − 1

2
−
dj
2

+ 1 = 1

while nj−1,ℓ − nj,ℓ = 0 if ℓ = 1.
• dj−1 is even and dj is odd. Then, if ℓ = 0

nj−1,ℓ − nj,ℓ =
dj−1

2
− 1−

dj − 1

2
= 0,

while nj−1,ℓ − nj,ℓ = 1 if ℓ = 0.

If now dj = 0 and dj−1 = 1, then nj−1,ℓ − nj,ℓ = 0. If dj = 1 and dj−1 = 2
then nj,ℓ = 0 while nj−1,ℓ = 0 if ℓ = 0 and nj−1,ℓ = 1 if ℓ = 1. �

Theorem 18. Let M = H0(X,ΩX), and let τ be the generator of Cq. For

all 0 ≤ j < q we define M (j) to be the kernel of the action of (τ − 1)j . For
0 ≤ a ≤ m − 1 and 1 ≤ b ≤ q = ph, let n(a, b) be the number of indecom-
posable direct k[Cq ⋊ Cm]-module summands of M that are isomorphic to
Ua,b. Let n1(a, b) be the number of indecomposable direct k[Cm]-summands

of M (b)/M (b−1) with socle Sχ−(b−1)(a) and dimension 1. Let n2(a, b) be the

number of indecomposable direct k[Cm]-module summands of M (b+1)/M (b)

with socle Sχ−b(a), where we set n2(a, b) = 0 if b = q. hen,

• n(a, b) = n1(a, b) − n2(a, b).
• The numbers n1(a, b), n2(a, b) can be computed using the isomor-
phism

M (j+1)/M (j) ∼= Sχ−j ⊗k H
0(Y,ΩY (Dj)),

where Y = X/Cq and Dj are the divisors on Y , given in definition 15.
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Proof. This theorem is proved in [3], see remark 4.4. �

Corollary 19. Using the notation of theorem 18, we set

(9) dj =

⌊

1

ph

h
∑

l=1

ph−l(p− 1 + (p − 1− al,t)bl−1)

⌋

.

The numbers n(a, b), n1(a, b) and n2(a, b) defined in theorem 18 are given
by

n(a, b) = n1(a, b) − n2(a, b) = nb−1,a − nb,a.

Proof. We treat the n1(a, b) case and the n2(a, b) follows similarly. By the-
orem 18 we have that

M (b)/M (b−1) ∼= Sχ−(b−1) ⊗k H
0(P1,ΩP1(Db)).

The number of indecomposable k[Cm]-summands of M (b)/M (b−1) isomor-
phic to Sχ−(b−1)(a) = Sa−(b−1)a0 equals to the number of indecomposable

k[Cm]-summands of H0(P1,ΩP1(Db)) isomorphic to Sa, which is computed
in remark 16. �

In [23, Th. 1.1] A. Obus and R. Pries described the upper jumps in the
ramification filtration of Cph ⋊ Cm-covers.

Theorem 20. Let G = Cph ⋊ Cm, where p ∤ m. Let m′ = |CentG(σ)|/p
h,

where 〈τ〉 = Cph. A sequence u1 ≤ · · · ≤ un of rational numbers occurs as
the set of positive breaks in the upper numbering of the ramification filtration
of a G-Galois extension of k((t)) if and only if:

(1) ui ∈
1
mN for 1 ≤ i ≤ h.

(2) gcd(m,mu1) = m′.
(3) p ∤ mu1 and for 1 < i ≤ h, either ui = pui−1 or both ui > pui−1 and

p ∤ mui.
(4) mui ≡ mu1 mod m for 1 ≤ i ≤ n.

We will now describe the lower b0, . . . , bh−1 and upper w0, . . . , wh−1 for
the case of a cyclic group action. Notice that in our setting CentG(τ) =
〈τ〉, therefore m′ = 1. Also the set of upper jumps of Cph is given by
w1 = mu1, . . . , wh = muh, wi ∈ N, see [23, lemma 3.5].

The theorem of Hasse-Arf [29, p. 77] applied for cyclic groups, implies
that there are strictly positive integers ι0, ι1, . . . , ιh−1 such that

bs =

s−1
∑

ν=0

ινp
ν , for 0 ≤ s ≤ h− 1.

Also, the upper jumps for the Cq extension are given by

(10) w0 = i0 − 1, w1 = i0 + i1 − 1, . . . , wh = i0 + i1 + · · ·+ uh − 1.

Assume that for all 0 < ν ≤ h − 1 we have wν = pwν−1. Equation (10)
implies that

i1 = (p− 1)w0, i2 = (p− 1)pw0, i3 = (p− 1)p2w0, . . . , uh−1 = (p− 1)ph−2w0.
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Therefore,

bℓ + 1 =

ℓ
∑

ν=0

iνp
ν

= 1 + w0 + (p − 1)w0 · p+ (p − 1)pw0 · p
2 · · ·+ (p− 1)pℓ−1w0 · p

ℓ

= 1 + u0 + p(p− 1)u0

(

ℓ−1
∑

ν=0

p2ν

)

= 1 + w0 + p(p− 1)w0
p2ℓ − 1

p2 − 1

= 1 + w0 + pw0
p2ℓ − 1

p+ 1
= 1 + w0

p2ℓ+1 + 1

p+ 1
,

where we have used that w0 = b0 = i0 − 1.

5.1. Examples. Consider the curve with lower jumps 1, 21, 521 and higher
jumps 1, 5, 25, acted on by C125⋊C4. According to eq. (3), the only possible
values for α are 1, 57, 68, 124. The value α = 1 gives rise to a cyclic group
G, while the value α = 124 has order 2 modulo 125. The values 57, 68 have
order 4 modulo 125. The cyclic group F∗

5 is generated by the primitive root
2 of order 4. We have that 57 ≡ 2 mod 5, while 68 ≡ 3 ≡ 23 mod 5. We have
thus two choices for the ζ4, namely 2 mod 5 as well as ζ34 = 23 = 3 mod 5. In
remark 16 we have considered the m-th root of unity such that σ(x) = ζmx,
where x is the generating variable for the function field of the curve XCq .

On the other hand the curve X〈τp
h−1

〉 is a Cp ⋊ Cm cover of P1 with cyclic

Galois group generated by τ̃ = τ mod 〈τp
h−1

〉 and

στ̃σ−1 = τ̃α

According to [27, lemma 1.4.1] it has the following model:

xm = u, yp − y = f(x).

and if the action of σ on x is given by σ(x) = ζmx, then α = ζ−j
m mod m,

where j = deg(f) and equals to the first upper jump u0 for Cp.
Assume that α = ζ−1

m , that is u0 ≡ 1 mod m. We will now use theorem 5
in order to show that this action does not lift. Using corollary 19 together
with remark 16 we have that H0(X,ΩX) is decomposed into the following
indecomposable modules, each one appearing with multiplicity one:

U0,5, U3,11, U2,17, U1,23, U0,29, U3,35, U2,41, U1,47, U0,53, U3,59,
U2,65, U1,71, U0,77, U3,83, U2,89, U1,95, U0,101, U3,107, U2,113, U1,119.

For all Ul,κ listed above we have l 6≡ 0 mod 4 so the module Ul,κ can not be
lifted by itself. We will now examine possible matchings of modules. Recall
that we are looking for sets Ul1,κ1 , Ul1,κ2 , . . . , Ult,κt

so that κ1+ · · ·+κt ≤ ph.
Trying to satisfy only the dimension criterion we see that only possible
matchings are {U1,119, U0,5}, {U2,113, U3,11}, {U3,107, U2,17} etc. We thus
have the following vertical matchings for the modules:
U0,5 U3,11 U2,17 U1,23 U0,29 U3,35 U2,41 U1,47 U0,53 U3,59

U1,119 U2,113 U3,107 U0,101 U1,95 U2,89 U3,83 U0,77 U1,71 U2,65
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Observe that the sum of all dimensions vertically are 124 = 53 − 1. The
pair {U0,5, U1,119} does not satisfy criterion c. of theorem 5. Indeed, for

l1 = 0, κ1 = 5 and l2 = 1, κ2 = 119 we have α = ζ−1
4 and l1 + κ1(−1) =

3 6= l2 = 1 mod 4 and also l2 + κ2(−1) = 2 6= l1 = 0 mod 4. Therefore, the
action cannot be lifted.

Remark 21. Note that the only possible choice for α other than ζ−1
4 is

α = ζ4. According to [27, lemma 1.4.1], this forces the first lower jump to
be congruent to −1 modulo 4. Equivalently, as noted in remark 8, the KGB
obstruction vanishes. At the same time, the criterion c. of theorem 5 is
satisfied for all pairs, and therefore the representation can be lifted.

The above example has non-vanishing KGB obstruction, see remark 8, so
our criterion does not give something new here. The case of dihedral groups,
in which the KGB-obstruction is always vanishing, is more difficult to find
an example that does not lift.

Let us now consider the case of dihedral groups D125 = C125⋊C2, that is
m = 2 and assume that the lower jumps are 1, 21, 521 and higher jumps are
1, 5, 25. The set of indecomposable modules is given by the following table:
U0,5 U1,11 U0,17 U1,23 U0,29 U1,35 U0,41 U1,47 U0,53 U1,59

U1,119 U0,113 U1,107 U0,101 U1,95 U0,89 U1,83 U0,77 U1,71 U0,65

which is exactly the set of indecomposable groups Ul,κ for C125 ⋊C4 but
l is reduced modulo 2. Now α = −1, that is a0 = 1 and for all vertical pairs
of modules Ul1,κ1 , Ul2,κ2 we have that l1 + κ1 = l2, that is criterion c. of
theorem 5 is satisfied. This indicates that, in this liftable case, our criterion
is consistent with the vanishing of the KGB-obstruction.

Let us now give an example of dihedral group which does not lift. The
HKG-cover with lower jumps 9, 9 · 21 = 189, 9 · 521 = 4689 has genus 11656
and the following modules appear in its decomposition, each one appearing
with multiplicity one:
U0,1, U1,1, U0,2, U1,2, U1,3, U0,4, U1,4, U0,5, U1,6, U0,7, U1,7, U0,8, U1,8, U0,9, U1,9, U0,11, U1,11, U0,12,

U1,12, U0,13, U1,13, U0,14, U1,15, U0,16, U0,17, U1,17, U0,18, U1,18, U0,19, U1,19, U0,21, U1,21, U0,22, U1,22,

U0,23, U1,23, U1,24, U0,25, U1,26, U0,27, U1,27, U0,28, U1,28, U0,29, U1,29, U0,31, U1,31, U0,32, U1,32, U0,33,

U0,34, U1,34, U1,35, U0,36, U0,37, U1,37, U0,38, U1,38, U0,39, U1,39, U0,41, U1,41, U0,42, U1,42, U0,43, U1,43,

U1,44, U0,45, U0,46, U1,46, U1,47, U0,48, U1,48, U0,49, U1,49, U0,51, U1,51, U0,52, U1,52, U0,53, U0,54, U1,54,

U1,55, U0,56, U0,57, U1,57, U0,58, U1,58, U0,59, U1,59, U0,61, U1,61, U0,62, U1,62, U0,63, U1,63, U1,64, U0,65,

U0,66, U1,66, U1,67, U0,68, U1,68, U0,69, U1,69, U0,71, U1,71, U0,72, U1,72, U0,73, U1,73, U0,74, U1,75, U0,76,

U0,77, U1,77, U0,78, U1,78, U0,79, U1,79, U0,81, U1,81, U0,82, U1,82, U0,83, U1,83, U1,84, U0,85, U1,86, U0,87,

U1,87, U0,88, U1,88, U0,89, U1,89, U0,91, U1,91, U0,92, U1,92, U0,93, U1,93, U0,94, U1,95, U0,96, U1,96, U0,97,

U0,98, U1,98, U0,99, U1,99, U0,101, U1,101, U0,102, U1,102, U1,103, U0,104, U1,104, U0,105, U1,106, U0,107,

U1,107, U0,108, U1,108, U0,109, U1,109, U0,111, U1,111, U0,112, U1,112, U0,113, U1,113, U0,114, U1,115, U0,116,

U1,116, U0,117, U0,118, U1,118, U0,119, U1,119, U0,121, U1,121, U0,122, U1,122, U0,123, U1,123, U1,124.

The above formulas were computed using Sage 9.8 [30]. In order to be
completely sure that the computations are correct we will compute the values
we need by hand also. We have

dj =

⌊

1

125

(

52
(

4 + (4− a1)9
)

+ 5
(

4 + (4− a2)189
)

+
(

4 + (4− a3)4689
))

⌋

=

⌊

1

125
(23560 − 225a1 − 945a2 − 4689a3)

⌋
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j p−adic dj nj,0 nj,1 nj−1,0 − nj,0 nj−1,1 − nj,1
0 0, 0, 0

⌊

23560
125

⌋

= 188 93 94 − −

1 1, 0, 0
⌊

23335
125

⌋

= 186 92 93 1 1

2 2, 0, 0
⌊

23110
125

⌋

= 184 91 92 1 1

3 3, 0, 0
⌊

22885
125

⌋

= 183 91 91 0 1

4 4, 0, 0
⌊

22660
125

⌋

= 181 90 90 1 1

5 0, 1, 0
⌊

22615
125

⌋

= 180 89 90 1 0

6 1, 1, 0
⌊

22390
125

⌋

= 179 89 89 0 1
...

...
...

...
...

...
...

120 0, 4, 4
⌊

1024
125

⌋

= 8 3 4

121 1, 4, 4
⌊

799
125

⌋

= 6 2 3 1 1

122 2, 4, 4
⌊

574
125

⌋

= 4 1 2 1 1

123 3, 4, 4
⌊

349
125

⌋

= 2 0 1 1 1

124 4, 4, 4
⌊

124
125

⌋

= 0 0 0 0 1

Notice that U1,123, U0,123 can be paired with U1,0, U1,1, and then for U0,121,
U1,121 there is only one U1,3 to be paired with. The lift is not possible.
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Bordeaux, 34(1):251–269, 2022.

[11] Hershel M. Farkas and Irwin Kra. Riemann surfaces, volume 71 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1980.

[12] Barry Green and Michel Matignon. Liftings of Galois covers of smooth curves. Com-
positio Math., 113(3):237–272, 1998.



AN OBSTRUCTION TO THE LOCAL LIFTING PROBLEM 17

[13] Robin Hartshorne. Algebraic Geometry. Springer-Verlag, New York, 1977. Graduate
Texts in Mathematics, No. 52.

[14] Kazuya Kato. Vanishing cycles, ramification of valuations, and class field theory. Duke
Math. J., 55(3):629–659, 1987. ss

[15] Nicholas M. Katz and Barry Mazur. Arithmetic moduli of elliptic curves. Princeton
University Press, Princeton, NJ, 1985.

[16] Aristides Kontogeorgis and Alexios Terezakis. The canonical ideal and the de-
formation theory of curves with automorphisms, arXiv 2101.11084 2025 v5
https://arxiv.org/abs/2101.11084 Journal of Pure and Applied Algebra (Ac-
cepted)

[17] Aristides Kontogeorgis and Alexios Terezakis. On the lifting problem of representa-
tions of a metacyclic group. J. Algebra, 659:745–779, 2024.

[18] Aristides Kontogeorgis and Ioannis Tsouknidas Ioannis. A generating set for the
canonical ideal of HKG-curves Res. Number Theory 2021.

[19] Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate
Texts in Mathematics. Oxford University Press, Oxford, 2002. Translated from the
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