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Abstract. We study computational aspects of the problem of decom-
posing finite group actions on graded modules arising in arithmetic geom-
etry, in the context of ordinary representation theory. We provide an algo-
rithm to compute the equivariant Hilbert series of automorphisms acting
on canonical rings of projective curves, using the formulas of Chevalley
and Weil. Further, we apply our results on Fermat curves, determine
explicitly the respective equivariant Hilbert series and extend the com-
putation to the short exact sequence that arises from Petri’s Theorem.
Finally, we implement the above computations in Sage.

Keywords: Hilbert series · Group actions · Holomorphic differentials ·
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1 Introduction

1.1 Equivariant Hilbert Series

One of the most fundamental problems in representation theory of finite groups
is that of decomposing representations into direct sums of indecomposables.
Namely, given a finite group G acting on a vector space V over an arbi-
trary field k, the problem amounts to determining, for each indecomposable
representation W ∈ Ind(G) over k, a natural number nW,V such that V =⊕

W∈Ind(G) nW,V W . In the context of modular representation theory, that is, if
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the characteristic of the ground field is positive and divides the order of G, there
are several complications that make the general case of this problem practically
impossible; however, if char(k) = 0 or char(k) = p � |G|, every indecompos-
able representation is irreducible, and there is a direct approach using character
theory

nW,V = 〈χV , χW 〉 := 1
|G|

∑

g∈G

χV (g)χW (g),

where χV denotes the character of the representation ρ : G → GL(V ).
The above technique can be also used when one generalizes the objects acted

on, from vector spaces V over k to modules M over some k-algebra R. Histori-
cally, a case of particular interest is that of finite groups acting as automorphisms
on polynomial rings: the study of their G-structure is essentially the main moti-
vation behind the development of invariant theory, a subject whose origins date
back to Hilbert’s fourteenth problem. The next level of abstraction dictates to
consider, instead of a polynomial ring, an arbitrary graded, Noetherian k-algebra
R =

⊕∞
d=0 Rd acted upon by a finite group G. Since each graded piece Rd is

a vector space over k, one can apply the techniques of the first paragraph to
obtain for each d ∈ N and each W ∈ Irr(G), natural numbers nW,d such that
Rd =

⊕
W∈Irr(G) nW,dW . The decomposition of R is then given by

R =
∞⊕

d=0

Rd =
∞⊕

d=0

⊕

W∈Irr(G)

nW,dW =
⊕

W∈Irr(G)

∞∑

d=0

nW,dW.

One obtains for each W ∈ Irr(G) a generating function for the sequence
{nW,d}∞

d=0

HR,W (T ) =
∞∑

d=0

nW,dT
d.

By studying the convergence of HR,W (T ), the infinite information of the action
of G on R, which is infinite dimensional over k, can be packaged in a finite
sequence {HR,W (T ) | W ∈ Irr(G)} which is called the equivariant Hilbert series
of the pair (R,G). The best understood case is, again, that of polynomial rings: if
R = Sym (V ) is the symmetric algebra of a finite dimensional k-vector space V ,
Molien’s theorem [15, Theorem 2.1] says that

HR,W (T ) =
dimW

|G|
∑

g∈G

χW (g)
det (IdV − gT )

. (1)

Of course, hoping to obtain an analogous formula for arbitrary graded, Noethe-
rian k-algebras R, is unrealistic, unless one has some concrete information on
the action of G on R. Since graded, Noetherian k-algebras arise as homogeneous
coordinate rings of projective varieties, this can be achieved by switching the
viewpoint towards algebraic geometry.
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1.2 Petri’s Theorem

From now on we assume that k is algebraically closed. Let X be a smooth,
projective curve of genus g over k. Recall that X does not come a priori with
a fixed embedding into projective space; however, it is well known that explicit
projective embeddings can be constructed using (very ample) line bundles on X.
Of all possible projective embeddings of X, there is one that stands out as
canonical: that determined by the cotangent bundle ΩX , referred to also as the
sheaf of holomorphic differentials on X. It is given by

X → P
(
H0(X,ΩX)

) ∼= Pg−1
k , P �→ [ω1(P ) : · · · : ωg(P )],

where {ω1, . . . , ωg} denotes a k-basis for the global sections H0(X,ΩX).
To see that this construction gives an embedding, we rephrase the above in

the algebraic language. Recall that the homogeneous coordinate ring of the pro-
jectivization P

(
H0(X,ΩX)

)
is the symmetric algebra Sym

(
H0(X,ΩX)

)
, which

may be identified with a polynomial ring in g variables. The canonical embedding
is then determined by the so-called canonical map, as ensured by the following
classic theorem [14] due to Max Noether, Federigo Enriques and Karl Petri.

Theorem 1. If X is not hyperelliptic and has genus g ≥ 4, the canonical map

φ : S := Sym
(
H0(X,ΩX)

) → SX :=
∞⊕

m=0

H0(X,Ω⊗m
X ),

is surjective. Its kernel IX , the canonical ideal, is generated in degrees 2 and 3.

Quoting from [3, Section 2, §3], the canonical ring SX “is the homogeneous coor-
dinate ring of the canonically embedded curve X”. Any action of a finite group G
on X induces an action on SX , and thus, we may seek a formula for its equivari-
ant Hilbert series. Assuming that char(k) = p � |G|, we may use Molien’s formula
to compute the respective series for S and thus obtain the equivariant Hilbert
series for the canonical ideal IX . It is worth noting that these calculations are the
starting point in computing the action of G on the minimal graded resolution of
SX as an S-module. The latter is well-studied in the non-equivariant case mainly
due its connection to Green’s syzygy conjecture [5]; we hope that this work will
shed some light to possible generalizations in the equivariant case.

The main results of this paper are:

1. General formulas (Theorem 3) and an algorithm (Algorithm 2) that gives the
equivariant Hilbert series of SX for arbitrary curves X.

2. Explicit formulas (Theorem 4) for the equivariant Hilbert series of SX when
X is a Fermat curve.

3. A Sage [16] program1,2 that computes, when X is a Fermat curve:
(a) {HSX ,V (T ) : V ∈ Irr(G)}, by implementing the formulas of Theorem 4.
(b) {HS,V (T ) : V ∈ Irr(G)}, by implementing Molien’s formula.

1 http://users.uoa.gr/ kontogar/Code/EquivariantSage.ipynb.
2 http://users.uoa.gr/ kontogar/Code/EquivariantSage.pdf.

http://users.uoa.gr/~kontogar/Code/EquivariantSage.ipynb
http://users.uoa.gr/~kontogar/Code/EquivariantSage.pdf
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(c) {HIX ,V (T ) : V ∈ Irr(G)}, subtracting the two above results.

We remark that similar results were obtained in our preprint [1] using differ-
ent techniques. We have verified computationally that the two approaches lead
to the same answers; a concrete theoretical proof involves complicated calcula-
tions, however we can indicatively provide the reader with one, i.e., for one of
the irreducible representations, upon request.

2 Equivariant Hilbert Series of Canonical Rings

Let X be a smooth, projective curve of genus g over an algebraically closed field k
of arbitrary characteristic p ≥ 0. Let G be a finite subgroup of its automorphism
group Autk(X) of order |G| not divisible by p. For m ≥ 1, we denote by Ω⊗m

X

the sheaf of holomorphic m-differentials on X and by Wm the k-vector space
H0(X,Ω⊗m

X ) of its global sections. By the Riemann-Roch Theorem [6, IV.1.3],

dimk Wm =

⎧
⎪⎨

⎪⎩

1 , if m = 0
g , if m = 1
(2m − 1)(g − 1) , if m ≥ 2

it is further well known that the action of G on X induces an action on Wm for all
m ≥ 1. Let Irr(G) denote the group of irreducible representations of G over k; the
isomorphism class of each Wm, viewed as a kG-module, is uniquely determined
by a collection of integers {NV,m}V ∈Irr(G) such that Wm =

⊕
V ∈Irr(G) NV,mV .

The classic approach to computing the integers NV,m goes as follows.

Algorithm 1: Computing the multiplicities NV,m.
Inputs:
1. The character table [χV (g)]V ∈Irr(G)

g∈G
of G over k.

2. The action of G on the closed points of X.
3. A k-basis bm = {f(x, y)dx⊗m} for Wm.

Output: A list of integers {NV,m}V ∈Irr(G) such that Wm =
⊕

V ∈Irr(G) NV,mV .
Method:

1. For each g ∈ G
(a) Compute the matrix ρ(g), given by the action of g on the basis bm.
(b) Produce a list {χWm(g) : g ∈ G} where χWm(g) = Trace (ρ(g)).

2. For each V ∈ Irr(G), compute

NV,m =
1

|G|
∑

g∈G

χWm(g)χV (g).

The downside of the above algorithm comes from input (3), in that there does
not exist a general method to compute explicit bases for the k-vector spaces
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Wm = H0(X,Ω⊗m
X ). Even in the few cases in which bases are known, one of

which is that of Fermat curves that we will study in Sect. 3, the sums in step (2)
can in practice become rather difficult to compute, see for example our proof
of [1, Theorem 20]. An alternative approach, exploited with great success by
many authors, see for example [2,4] and [8], is to express the multiplicities NV,m

in terms of the ramification data of the action of G on X. The resulting formulas
are much easier to use, both in terms of the input required and in terms of
computational complexity; however, as is usually the case in such situations, they
require some familiarity with technical aspects of arithmetic geometry, which we
briefly recall here. For more details the reader may refer to [6, Chapter IV], [12,
Chapters 4 & 10], or [13].

From now on, we assume that the characteristic of k is either 0 or does
not divide |G|. Let Y = X/G be the quotient of X by the action of G. The
quotient map π : X → Y is a non-constant, regular morphism of curves of
degree |G|, so that the number of points in a generic fiber π−1 (Q) , Q ∈ Y is
equal to |G|. There exists a finite set of points Q ∈ Y for which the fiber π−1 (Q)
has cardinality strictly less than |G|, called the branch locus of π and denoted
by B. The ramification locus of π is R = π−1 (B) ⊆ X. By [7, Theorem 11.49],
the decomposition group of a point P ∈ X is the cyclic group GP = {σ ∈ G :
σ(P ) = P} and its order is called the ramification index of P ∈ X. Since the
ramification index is the same for all points in the orbit of P ∈ X, we denote it
by eQ, where Q = π(P ) ∈ Y . The cyclic group GP has eQ-many, distinct, one-
dimensional irreducible representations, determined by their characters. Fix ζeQ

to be a primitive eQ-th root of unity; the irreducible characters of GP are all of
the of the form χd

P , 1 ≤ d ≤ eQ, where χP , is the fundamental character at the
point P , that is, the character obtained by letting GP act on a local uniformizer
uP at P considered modulo u2

P . The monodromy element σP is a generator of GP

such that σP (uP ) = ζeQ
uP . For each irreducible representation V of G, we denote

by nd,Q,V the multiplicity of the irreducible character χd
P in the decomposition

of the restricted representation ResGGP
(V ), i.e., nd,Q,V = 〈χd

P ,ResGGP
(χV )〉. We

summarize the above in the table below.

Table 1. Notation for the ramification data of the action of G on X

Y = X/G Quotient of X by the action of G

R Ramification locus of π : X → Y

B Branch locus π : X → Y

eQ Ramification index at Q ∈ B

GP = {σ ∈ G : σ(P ) = P} decomposition group at P ∈ R

σP monodromy generator of GP , P ∈ R

{χd
P : 0 ≤ d ≤ eQ − 1} irreducible characters of GP

∼= Z/eQZ

{nd,Q,V : Q ∈ B, 0 ≤ d ≤ eQ − 1, V ∈ Irr(G)} multiplicities of χd
P in ResGGP

(V )

The following result gives an explicit formula for the multiplicities NV,m.
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Theorem 2 (Chevalley-Weil [2]). For each V ∈ Irr(G), we have that

NV,m = EV,m + (2m − 1)(gY − 1) dimV

+
∑

Q∈B

eQ−1∑

d=0

(

(m − 1)
(

1 − 1
eQ

)

+
〈

m − 1 − d

eQ

〉)

nd,Q,V ,

where B, eQ and nd,Q,V are given in Table 1, gY is the genus of Y ,

EV,m =

⎧
⎪⎨

⎪⎩

NV ∗,1 , if m = 0 (V ∗ denotes the dual of V )
1 , if m = 1 and V is the trivial representation
0 , otherwise.

and 〈x〉 = x − �x� denotes the fractional part of x.

Remark 1. For a proof of the above, see [4, Th. 3.8 & Rem. 3.9] The authors com-
pute the multiplicity of V in the equivariant Euler characteristic [H0(X,Ω⊗m

X )]−
[H1(X,Ω⊗m

X )]. The formula for EV,m, which is the multiplicity in H1(X,Ω⊗m
X ),

follows from the Riemann-Roch theorem combined with Serre’s duality. It is
worth mentioning that the above result was generalized in [8] to the weakly
ramified case.

Theorem 3. The equivariant Hilbert series of SX =
⊕

m H0(X,Ω⊗m
X )

HSX ,V (T ) =
∞∑

m=0

NV,mTm

of an irreducible representation V of G is given by the rational function

HSX ,V (T ) = NV ∗,1 + δV T +
3T − 1
(1 − T )2

(gY − 1) dimV +
T

(1 − T )2
dimV |B|

− 1
1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

fQ,V (T )
1 − T eQ

,

where δV = 1 for V = Vtriv and 0 otherwise,

fQ,V (T ) =
eQ−1∑

d=0

nd,Q,V T d

and |B| denotes the cardinality of the branch locus of the cover X → X/G.

Our computations will be in two steps. Write

HSX ,V (T ) = NV ∗,1 + δV T + FV (T ) + GV (T ),
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where

FV (T ) =
∞∑

m=0

⎛

⎝(2m − 1)(gY − 1) dimV +
∑

Q

eQ−1∑

d=0

(m − 1)
(

1 − 1
eQ

)

nd,Q,V

⎞

⎠Tm

GV (T ) =
∞∑

m=0

∑

Q

eQ−1∑

d=0

nd,Q,V

〈
m − d − 1

eQ

〉

Tm. (2)

Lemma 1.

FV (T ) =
3T − 1
(1 − T )2

(gY − 1) dimV +
2T − 1
(1 − T )2

dimV
∑

Q

(

1 − 1
eQ

)

.

Proof. The result follows from the well-known formulas
∞∑

m=0

(2m − 1)Tm =
3T − 1
(1 − T )2

, and
∞∑

m=0

(m − 1)Tm =
2T − 1
(1 − T )2

,

as well as the fact that
eQ−1∑

d=0

nd,Q,V = dimV .

To compute GV (T ), we first prove the following auxiliary lemma.

Lemma 2. For A ∈ Z and 1 < e ∈ N, we have that
∞∑

m=0

〈
m + A

e

〉

Tm =
T

e(1 − T )2
+

vA

e(1 − T )
− T e−vA

(1 − T e)(1 − T )
,

where vA is the remainder of the division of A by e.

Proof. Recall that 〈x〉 = x − �x�. Write m = πe + v and A = πAe + vA, for
0 ≤ v, vA < e and π, πA ∈ Z. Then

〈
m + A

e

〉

=
v + vA

e
−

⌊
v + vA

e

⌋

,

and thus
∞∑

m=0

〈
m + A

e

〉

Tm =
e−1∑

v=0

∞∑

π=0

(
v + vA

e
−

⌊
v + vA

e

⌋)

(T e)π T v

=
1

1 − T e

e−1∑

v=0

(
v + vA

e
−

⌊
v + vA

e

⌋)

T v.

Next, we remark that since
⌊

v + vA

e

⌋

=

{
0 if 0 ≤ v + vA ≤ e − 1
1 if e ≤ v + vA < 2e

,
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we have that

e−1∑

v=0

(
v + vA

e
−

⌊
v + vA

e

⌋)

T v =
e−1∑

v=0

v + vA

e
T v −

e−1∑

v=e−vA

T v

=
1
e

e−1∑

v=0

vT v +
vA

e

e−1∑

v=0

T v − T e−vA

vA−1∑

v=0

T v.

Each of the three sums is given by

1
e

e−1∑

v=0

vT v =
eT e+1 − T e+1 − eT e + T

e(1 − T )2
= − T e

(1 − T )
+

T (1 − T e)
e(1 − T )2

,

vA

e

e−1∑

v=0

T v =
vA(1 − T e)
e(1 − T )

,

T e−vA

vA−1∑

v=0

T v = T e−vA
1 − T vA

1 − T
=

T e−vA

1 − T
− T e

1 − T
.

Observe that the first term of the first sum cancels out with the second term of
the third sum, and thus

∞∑

m=0

〈
m + A

e

〉

Tm =
1

1 − T e

(
T (1 − T e)
e(1 − T )2

+
vA(1 − T e)
e(1 − T )

− T e−vA

1 − T

)

=
T

e(1 − T )2
+

vA

e(1 − T )
− T e−vA

(1 − T e)(1 − T )
.

Corollary 1. Let GV (T ) be as in Eq. (2) and fQ,V (T ) =
∑eQ−1

d=0 nd,Q,V T d.
Then

GV (T ) =
dimV · T

(1 − T )2
∑

Q

1
eQ

+
dimV

1 − T

∑

Q

(

1 − 1
eQ

)

− 1
1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

(
fQ,V (T )
1 − T eQ

)

.
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Proof. Observe that if 0 ≤ d ≤ eQ−1, the remainder of the division of A = −d−1
by eQ is vA = eQ − d − 1. Thus, applying Lemma 2 for A = −d − 1 we obtain

∞∑

m=0

∑

Q

eQ−1∑

d=0

nd,Q,V

〈
m − d − 1

eQ

〉

Tm =
∑

Q

eQ−1∑

d=0

nd,Q,V

∞∑

m=0

〈
m − d − 1

eQ

〉

Tm

=
∑

Q

eQ−1∑

d=0

nd,Q,V

(
T

eQ(1 − T )2
+

eQ − d − 1
eQ(1 − T )

− T d+1

(1 − T eQ)(1 − T )

)

=
∑

Q

eQ−1∑

d=0

nd,Q,V T

eQ(1 − T )2
+

(

1 − 1
eQ

)
nd,Q,V

1 − T
− nd,Q,V d

eQ(1 − T )
− nd,Q,V T d+1

(1 − T eQ)(1 − T )

=
∑

Q

fQ,V (1)T
eQ(1 − T )2

+
(

1 − 1
eQ

)
fQ,V (1)
1 − T

− f ′
Q,V (1)

eQ(1 − T )
− fQ,V (T )T

(1 − T eQ)(1 − T )
.

Using again the fact that fQ,V (1) =
eQ−1∑

d=0

nd,Q,V = dimV gives the desired result.

Proof (of Theorem 3). Let FV (T ) and GV (T ) be as in Eq. (2). By Lemma 1 and
Corollary 1 we have that

FV (T ) =
3T − 1
(1 − T )2

(gY − 1) dimV +
2T − 1
(1 − T )2

dimV
∑

Q

(

1 − 1
eQ

)

,

GV (T ) =
dimV · T

(1 − T )2
∑

Q

1
eQ

+
dimV

1 − T

∑

Q

(

1 − 1
eQ

)

− 1
1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

(
fQ,V (T )
1 − T eQ

)

.

Adding the second term of FV (T ) to the second term of GV (T ) gives

(2T − 1) dimV

(1 − T )2
∑

Q

(

1 − 1
eQ

)

+
dimV

1 − T

∑

Q

(

1 − 1
eQ

)

=
dimV · T

(1 − T )2
∑

Q

(

1 − 1
eQ

)

=
dimV · T

(1 − T )2
#B − dimV · T

(1 − T )2
∑

Q

1
eQ

,

and the last term above cancels out with the first term of GV (T ). Thus

FV (T ) + GV (T ) =
3T − 1
(1 − T )2

(gY − 1) dimV +
T

(1 − T )2
dimV |B|

− 1
1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

fQ,V (T )
1 − T eQ

.
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As a corollary we obtain the below algorithm.

Algorithm 2: Computing the equivariant Hilbert series {HSX ,V (T ) : V ∈
Irr(G)}.
Inputs:
1. The character table [χV (g)]V ∈Irr(G)

g∈G
of G over k.

2. The action of G on the closed points of X.

Output: A list of rational functions {HV (t) : V ∈ Irr(G)}
Method:

1. Compute the ramification locus R and the branch locus B of π : X → Y .
2. Compute gY using the Riemann-Hurwitz formula [17, Theorem 3.4.13].
3. For each Q ∈ B

(a) Compute the ramification index eQ.
(b) For each V ∈ Irr(G) and each 0 ≤ d ≤ eQ − 1 compute

nd,Q,V = 〈χd
P ,ResGGP

(χV )〉 and fQ,V (T ) =
∑

d

nd,Q,V T d.

4. For each V ∈ Irr(G), compute HSX ,V (T ) using Theorem 3.

There are two advantages of Algorithm 2 over Algorithm 1. Firstly it can be
used in the cases in which explicit k-bases for polydifferentials are not known; sec-
ondly the inner products of step 3(b) are taken over the decomposition groups GP

which are strictly smaller than the full automorphism group G. On the other
hand, its disadvantages are that one needs to compute the ramification data of
the cover π : X → Y , a problem which is wide open in its full generality, and
that computing the multiplicities nd,Q,V is not always a straightforward task.
We shall demonstrate how this is done in the next section by applying our results
to Fermat curves.

3 The Case of Fermat Curves

Let Fn be a Fermat curve with affine model xn + yn + 1 = 0, defined over an
algebraically closed field k of characteristic p ≥ 0. We assume that n ≥ 4, p > 3
and n−1 is not a power of p. To describe the automorphism group G = Autk(X),
we write

A := Z/nZ × Z/nZ = {σα,β : 0 ≤ α, β ≤ n − 1}
S3 = 〈s, t : s3 = t2 = 1, tst = s−1〉 = {1, s, s2, t, st, ts}.

and note that S3 acts on A by conjugation as:

h ∈ S3 s s2 t ts st

h−1σα,βh σβ−α,−α σ−β,α−β σ−α,β−α σβ,α σα−β,−β
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Remark 2. An automorphism σ : Fn → Fn acts on functions f ∈ k(Fn) by
σ(f) = f ◦σ−1. The group acts on the left on points, so (σ1σ2)P = σ1(σ2P ), and
the action on functions satisfies (σ1σ2f) = f◦(σ1σ2)−1 = f◦σ−1

2 ◦σ−1
1 = σ1(σ2f).

In [11] and [18] the authors prove that Fn has genus g = (n−1)(n−2)
2 , automor-

phism group G = A � S3 and that the action of G on the function field k (Fn),
i.e., the field k(x, y) subject to the equation xn + yn + 1 = 0, is given by

g ∈ G σα,β s s2 t ts st

g(x, y)
(
ζα
n x, ζβ

ny
) (

y
x , 1

x

) (
1
y , x

y

) (
1
x , y

x

)
(y, x)

(
x
y , 1

y

)

where ζn is a fixed primitive n-th root of unity. The above gives us the second
required input item for Algorithm 2. Regarding the first, we use the character
table of G that was computed in [1, Proposition 3]. Recall that S3 has three
irreducible representations: the trivial representation, the sign representation
and the standard representation, denoted by ρtriv, ρsgn and ρstan respectively.

Proposition 1. The irreducible representations of G are given in the table
below,

Rep. Degree Character χ(σα,βx), where x ∈ S3

θ νn
3 , νn

3 ,ρ 1 ζ
νn
3 (α+β)χρ(x)

θ νn
3 , νn

3 ,ρstan 2 ζ
νn
3 (α+β)χstan(x)

θκ,κ,ρ 3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ζκ(α+β) + ζκ(α−2β) + ζκ(β−2α) , if x = 1
ζκ(α+β)χρ(x) , if x = ts

ζκ(α−2β)χρ(x) , if x = t

ζκ(β−2α)χρ(x) , if x = st

0 , if x = s, s2

θκ,λ,ρtriv 6

⎧
⎪⎨

⎪⎩

(
ζκα+λβ + ζ−(κ+λ)α+κβ + ζλα−(κ+λ)β+
ζλα+κβ + ζ−(κ+λ)α+λβ + ζκα−(κ+λ)β

)

, if x = 1

0 , if x �= 1

where ν ∈ {0, 1, 2}, ρ ∈ {ρtriv, ρsgn}, κ, λ ∈ Z/nZ, κ, λ �= νn
3 , κ �= λ, κ �=

−2λ, λ �= −2κ and the representations corresponding to κ, λ ∈ {n
3 , 2n

3 } appear
only when 3 | n.

In what follows, we fix all primitive roots of unity to be compatible with the
chosen ζn, in the sense that if n | i, then ζi must satisfy ζ

i/n
i = ζn, whereas if

i | n then ζi = ζ
n/i
n .

Proposition 2. The quotient Fn/G is isomorphic to P1
k, the branch locus of

Fn → P1
k consists of three points P∞, P1, P0. The points Q∞ = (ζ2n, 0), Q1 =
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(1, n
√−2), Q0 = (ζ46n, ζ26n) of Fn lie above each of the three mentioned points, and

their isotropy groups and monodromy generators are given in the following table.

point group monodromy
Q∞ = (ζ2n, 0) Z/2nZ σ1,1t

Q1 = (1, n
√−2) Z/2Z t

Q0 = (ζ46n, ζ26n) Z/3Z σ−1,−1s
2

Proof. The proof can be found at the appendix.

The above implies that, in the notation of Theorem 3, we have gY = 0 and
|B| = 3. Thus the third and fourth term of HSX ,V simplify as follows

3T − 1
(1 − T )2

(gY − 1) dimV +
T

(1 − T )2
dimV |B| = dimV

(1 − T )2
.

Theorem 4. With the above notation, we have that

HSX ,V (T ) = NV ∗,1+δV T +
dimV

(1 − T )2
− 1

1 − T

∑

Q

f ′
Q,V (1)
eQ

− T

1 − T

∑

Q

fQ,V (T )
1 − T eQ

,

where δV = 1 for V = Vtriv and 0 otherwise, the polynomials fQ,V (T ) are given
in the table below

V ∈ Irr(G) fQ∞,V (T ) fQ0,V (T ) fQ1,V (T )

θ0,0,ρtriv 1 1 1

θ0,0,ρsgn Tn 1 T

θn
3 , n

3 ,ρtriv T
4n
3 T 1

θn
3 , n

3 ,ρsgn T
n
3 T T

θ 2n
3 , 2n

3 ,ρtriv
T

2n
3 T 2 1

θ 2νn
3 , 2νn

3 ,ρsgn
T

5n
3 T 2 T

θ νn
3 , νn

3 ,ρstan T
νn
3 + Tn+ νn

3 1 + T + T 2 − T ν 1 + T

θκ,κ,ρtriv Tκ + Tn+κ + T [−2κ]n 1 + T + T 2 2 + T

θκ,κ,ρsgn Tκ + Tn+κ + T [−2κ]n+n 1 + T + T 2 1 + 2T

θκ,λ,ρtriv

Tκ + Tλ + Tn+κ + Tn+λ

+T [−(κ+λ)]n + T [−(κ+λ)]n+n
2(1 + T + T 2) 3 + 3T

and [x]n denotes the smallest non-negative remainder of the division of x by n.
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The proof of the above will be given separately for each of fQ∞,V , fQ0,V , fQ1,V ,
by considering all irreducible representations of Proposition 1. To do so, one
needs to calculate first the multiplicities nd,Q,V , Q ∈ {Q∞, Q0, Q1} as follows:

1. For each Q, write GQ = {σi
Q : 0 ≤ i ≤ eQ} where σQ is the local monodromy

and eQ is the ramification index, both taken from Proposition 2.
2. For each 0 ≤ i ≤ eQ, find σαi,βi

∈ A and xi ∈ S3 such that σi
Q = σαi,βi

xi.
3. Fix a primitive root of unity ζeQ

compatible with ζn as discussed above.
4. Compute nd,Q,V = 〈ResGGQ

(χV ) , χd
Q〉 = ∑eQ−1

i=0 χV

(
σi

P

)
ζ−id
eQ

.

3.1 The Polynomials fQ∞,V (T )

By Proposition 2, Q∞ = (ζ2n, 0) and GQ∞ is generated by the monodromy
element σ1,1t. Since (σ1,1t)

2 = σ0,1, we have that

(σ1,1t)2k = σ0,k and (σ1,1t)2k+1 = σ1,k+1t, for 0 ≤ k ≤ n − 1,

and thus, for 0 ≤ d ≤ 2n − 1, we have that

nd,Q∞,V = 〈ResGGQ∞
(χV ) , χd

Q∞〉

=
1
2n

n−1∑

	=0

ζ
2	(−d)
2n χV (σ0,	) +

1
2n

n−1∑

	=0

ζ
(2	+1)(−d)
2n χV (σ1,	+1t).

• When V = θ νn
3 , νn

3 ,ρ, ρ ∈ {ρtriv, ρsgn}, Proposition 1 gives

χV (σ0,	) = ζ
νn�
3

n = ζ
2νn�

3
2n and χV (σ1,	+1t) = ζ

νn(�+2)
3

n χρ(t) = ζ
2νn(�+2)

3
2n χρ(t).

Thus, we compute

nd,Q∞,V =
1
2n

n−1∑

	=0

ζ
2	(−d)
2n ζ

2νn�
3

2n +
1
2n

n−1∑

	=0

ζ
(2	+1)(−d)
2n ζ

2νn(�+2)
3

2n χρ(t)

=
1
2n

n−1∑

	=0

ζ
2	( νn

3 −d)
2n +

1
2n

n−1∑

	=0

ζ
2	( νn

3 −d)+( 4νn
3 −d)

2n χρ(t)

=

{
1
2 + 1

2ζ
4νn
3 −d

2n χρ(t) , if n | νn
3 − d

0 , otherwise.

The only two values of d such that 0 ≤ d ≤ 2n − 1 and n | νn
3 − d are d = νn

3
and d = n + νn

3 . So

fQ∞,V (T ) =
(
1
2
+

1
2
ζνn
2n χρ(t)

)

T
νn
3 +

(
1
2
+

1
2
ζ
(ν−1)n
2n χρ(t)

)

Tn+ νn
3 .

Notice that for ν ∈ {0, 1, 2} we always have that {ζνn
2n , ζ

(ν−1)n
2n } = {−1, 1}.
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• When V = θ νn
3 , νn

3 ,ρstan , Proposition 1 gives

χV (σ0,	) = 2ζ
2νn�

3
2n and χV (σ1,	+1t) = 0.

We compute as above

nd,Q∞,V =
1
n

n−1∑

	=0

ζ
2	( νn

3 −d)
2n + 0 =

{
1 , if n | νn

3 − d

0 , otherwise
,

and thus
fQ∞,V (T ) = T

νn
3 + Tn+ νn

3 .

• When V = θκ,κ,ρ, ρ ∈ {ρtriv, ρsgn}, Proposition 1 gives

χV (σ0,	) = 2ζκ	
n + ζ−2κ	

n = 2ζ2κ	
2n + ζ−4κ	

2n and

χV (σ1,	+1t) = ζ−κ(2	+1)
n χρ(t) = ζ

−2κ(2	+1)
2n χρ(t).

We then have

nd,Q∞,V =
1
n

n−1∑

	=0

ζ
2	(κ−d)
2n +

1
2n

n−1∑

	=0

ζ
−2	(2κ+d)
2n +

1
2n

n−1∑

	=0

ζ
−2	(2κ+d)
2n ζ

−(2κ+d)
2n χρ(t)

=

⎧
⎪⎨

⎪⎩

1 , if n | κ − d
1
2 + 1

2ζ
−(2κ+d)
2n χρ(t) , if n | 2κ + d

0 otherwise.

The first case gives d = κ or d = n + κ, while the second gives d = [−2k]n or
d = n + [−2k]n so

fQ∞,V (T ) = Tκ + Tn+κ +
(
1
2
+

1
2
χρ(t)

)

T [−2κ]n +
(
1
2

− 1
2
χρ(t)

)

T [−2κ]n+n.

• Finally, for V = θκ,λ,ρtriv we have that

χV (σ0,	) = 2ζ2λ	
2n + 2ζ2κ	

2n + 2ζ−2(κ+λ)	
2n and χV (σ1,	+1t) = 0.

Thus

nd,Q∞,V =
1
n

n−1∑

	=0

(
ζ
2	(λ−d)
2n + ζ

2	(κ−d)
2n + ζ

−2	(κ+λ+d)
2n

)

=

{
1 , if n | λ − d or n | κ − d or n | κ + λ + d

0 , otherwise

and so

fQ∞,V (T ) = Tκ + Tλ + Tn+κ + Tn+λ + T [−(κ+λ)]n + T [−(κ+λ)]n+n.



Equivariant Hilbert Series of Canonical Rings of Curves 97

3.2 The Polynomials fQ0,V (T )

By Proposition 2, Q0 = (ζ46n, ζ26n) and GQ0 is generated by the monodromy
element σ−1,−1s

2. For d = 0, 1, 2 we have

nd,Q0,V = 〈ResGGQ0
(χV ) , χd

Q0
〉

=
1
3

(
χV (1) + ζ−d

3 χV (σ−1,−1s) + ζ
2(−d)
3 χV

(
(σ−1,−1s

2)2
))

.

• For both V = θ νn
3 , νn

3 ,ρ, ρ ∈ {ρtriv, ρsgn} we have

nd,Q0,V =
1
3

(
1 + ζ−d

3 ζ
− 2νn

3
n + ζ

2(−d)
3 ζ

− 4νn
3

n

)
=

1
3

(
1 + ζ−d−2ν

3 + ζ−2d−4ν
3

)

=

{
1 , if d ≡ −2ν mod 3 ≡ ν mod 3
0 , otherwise.

and so fQ0,V (T ) = T [ν]3 = T ν .

• When V = θ νn
3 , νn

3 ,ρstan we have

nd,Q0,V =
1
3

(
2 − ζ−d−2ν

3 − ζ−2d−4ν
3

)
=

1
3

(
3 − 1 − ζ−d−2ν

3 − ζ−2d−4ν
3

)

=

{
1 , if d �≡ −2ν mod 3
0 , otherwise

and so fQ0,V (T ) = 1 + T + T 2 − T [−2ν]3 = 1 + T + T 2 − T ν .

• When V = θκ,κ,ρ, ρ ∈ {ρtriv, ρsgn}, we have nd,Q0,V = 1 for d ∈ {0, 1, 2} and
so fQ0,V = 1 + T + T 2.

• When V = θκ,λ,ρtriv , nd,Q,V = 2 for d ∈ {0, 1, 2} and so fQ0,V = 2(1+T +T 2).

3.3 The Polynomials fQ1,V (T )

By Proposition 2, Q1 = (1, n
√−2) and GQ1 is generated by the monodromy

element t. For d ∈ {0, 1} we have

nd,Q1,V = 〈ResGGQ1
(χV ) , χd

Q1
〉

=
1
2

(
χV (1) + (−1)−dχV (t)

)
=

1
2

(
dimV + (−1)dχV (t)

)

• When V = θ νn
3 , νn

3 ,ρ, ρ ∈ {ρtriv, ρsgn, ρstan}, we get

fQ1,V (T ) =

⎧
⎪⎨

⎪⎩

1 , if ρ = ρtriv

T , if ρ = ρsgn

1 + T , if ρ = ρstan.

• When V = θκ,κ,ρ, ρ ∈ {ρtriv, ρsgn}, we get

fQ1,V (T ) =

{
2 + T , if ρ = ρtriv

1 + 2T , if ρ = ρsgn.

• Finally, when V = θκ,λ,ρtriv , fQ1,V (T ) = 3 + 3T .
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4 Implementation and Examples

Let Fn be a Fermat curve over k, with the assumptions on n and k as in the
previous section. By Petri’s Theorem 1, there exists a short exact sequence

0 → IX := kerφ ↪→ S := Sym
(
H0(X,ΩX)

) φ
� SX :=

∞⊕

m=0

H0(X,Ω⊗m
X ) → 0,

which is split over kG, since char(k) � |G|.
In this section, we present our Sage [16] program3,4, which, as mentioned in

the introduction, computes for each V ∈ Irr(G):

1. HSX ,V (T ), by implementing the formulas of Theorem 4.
2. HS,V (T ), by implementing Molien’s formula (see Eq. 1).
3. HIX ,V (T ) = HS,V (T ) − HSX ,V (T ), by subtracting the two above results.

The computation of HSX ,V (T ) follows by Theorem 4. First we implement the
difference HSX ,V (T )−NV ∗,1−δV T for each V ∈ Irr(G). Then we read each NV ∗1
from the implementation of HSX ,V ∗(T )− NV,1 − δV ∗T and add T if V is trivial.
We remark that implementing the algorithm for n = 6 we retrieve same results
as in [1, Table 1, pg. 18], where we computed the kG-structure of H0(X,Ω⊗m

X )
using an alternative approach. For example, the series for V = θ0,1,triv is

HSX ,V (T ) =
T 3

T 5 − 2T 4 + T 3 + T 2 − 2T + 1
.

To implement Molien’s formula, it is required to input the character table of
G and the representation G → GL

(
H0(X,ΩX)

)
. The former is taken directly

from Proposition 1, while the latter was implemented using the action of G on
a basis {ωi,j} of H0(X,ΩX) which we computed in [1, Prop. 6]:

σα,β(ωi,j) s(ωi,j) t(ωi,j) ts(ωi,j) st(ωi,j) s2(ωi,j)

ζα(i+1)+β(j+1)ωi,j ωn−3−(i+j),i −ωn−3−(i+j),j −ωj,i −ωi,n−3−(i+j) ωj,n−3−(i+j)

The output is much more complicated than HSX ,V (T ): for instance when n = 6
and V = θ0,1,triv we obtain a rational function with numerator of degree 18 and
denominator of degree 30.

The final step is to compute the equivariant Hilbert series of IX using Petri’s
Theorem 1. For n = 6 and V = θ0,1,triv, HIX ,V (T ) = HS,V (T ) − HSX ,V (T ) has
power series expansion

8T
3
+ 20T

4
+ 49T

5
+ 130T

6
+ 319T

7
+ 667T

8
+ 1363T

9
+ 2557T

10
+ higher order terms.

The interpretation is that the representation θ0,1,triv appears, for example, 2557
times in the decomposition of the degree 10 graded piece of IX into irreducible
summands.
3 http://users.uoa.gr/ kontogar/Code/EquivariantSage.ipynb.
4 http://users.uoa.gr/ kontogar/Code/EquivariantSage.pdf.

http://users.uoa.gr/~kontogar/Code/EquivariantSage.ipynb
http://users.uoa.gr/~kontogar/Code/EquivariantSage.pdf
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5 Appendix - The Ramification Data of Fermat Curves

In this section we give the details for the proof of Proposition 2. We shall work
over k = C for simplicity, even though the arguments are valid over any alge-
braically closed field of characteristic prime to the order of G. Recall that all
roots of unity are fixed, as per the discussion preceding Proposition 2.

The Fermat curve can be seen as double Kummer cover of the projective
line P1. We will work with Galois extensions of the corresponding function fields
and in this way we have the Kummer extension of function fields C(Fn)/C(x),
where C(Fn) is the extension obtained by the rational function field C(x) by
adjoining the quantity y = (−1−xn)

1
n . Then we can consider the cyclic extension

of function fields C(x)/C(xn). The ramification in such extensions is well known,
see for example [9,10], namely there is ramification in the cover C (Fn) /C (Fn)

A

over the points xn = −1, xn = 0, xn = ∞, where A = Z/nZ × Z/nZ.
Since G = Aut(Fn) = A � S3, the Galois extension C(Fn)/C(Fn)G cor-

responding to the cover Fn → Fn/G has the intermediate subfield C(Fn)A =
C(xn), and C(Fn)A/C(Fn)G is Galois with Galois group the symmetric group S3.
Moreover, the extension C(Fn)A/C(Fn)G corresponds to a ramified cover P1 →
P1 ramified over three points. Such covers can be explained in terms of the j
invariant, see [19]. Indeed, if we set X = −xn then the group S3 can be realized
by the six Möbius automorphisms:

X �→
{

X,
1
X

, 1 − X,
1

1 − X
,

X

1 − X
,
X − 1

X

}

.

The fixed points of these maps are given in the following table:

transform order equation fixed points
1
X

2 X2 − 1 = 0 1, −1

1 − X 2 2X − 1 1
2
, ∞

X
X−1

2 X2 − 2X = 0 0, 2
1

1−X
, X−1

X
3 X2 − X + 1 = 0 ζ6,

1
ζ6

and the function

j(X) =
4
27

(X2 − X + 1)3

X2(X − 1)2

is a generator of the fixed field C(X)S3 = C(Fn)G = C(j). The fixed points
of the S3-cover P1 → P1 are P(j=0), P(j=1), P(j=∞). The map j maps the fixed
points as follows:

X j(X)
0, 1,∞ �−→ ∞
−1, 2, 1

2 �−→ 1
ζ6,

1
ζ6

�−→ 0
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In Fig. 1 we display the ramification diagram above the point P(j=∞) and in
Fig. 2 the respective diagram above the points P(j=1) and P(j=0). Note that in
the first row we denote by Pi,i′ the i-th ramification point above P(X=i′), for
i′ ∈ {0, 1,∞}, the labels in the vertical lines of the first column indicate the
Galois groups, whereas in all other columns they indicate ramification indices.

Fig. 1. Ramification diagram for P(j=∞)

Fig. 2. Ramification diagram for P(j=1) and P(j=∞)

Each of the points P(X=−1), P(X=2), P(X= 1
2 )

, P(X=ζ6), P(X= 1
ζ6

) has n2 points
in the Fermat curve. For instance the point X = −xn = ζ6 is lifted to the
points (x, y) where x = (−ζ6)1/n = ζ	

nζ2nζ6n = ζ6	+4
6n , for 0 ≤ � ≤ n − 1, and

similarly, yn = −1 − xn = −1 + ζ6 = ζ26 , since ζ26 − ζ6 + 1 = 0. Therefore,
for 0 ≤ k ≤ n − 1, y = ζk

nζ26n = ζ6k+2
6n . This means that the set of points

{(ζ6	+4
6n , ζ6k+2

6n ) : 0 ≤ k, � < n} are the n2 points above the point P(X=ζ6).
We will now select an arbitrary point above each P(j=∞), P(j=1), P(j=0) and

for each such point we will find the cyclic subgroup and the monodromy element.
Recall that by Remark 2, automorphisms σ ∈ G act on functions f ∈ C (Fn) by
σ(f) = f ◦ σ−1.
• Consider the point Q∞ = (ζ2n, 0) above P(j=∞). The isotropy subgroup is a
cyclic group of order 2n. For example we can verify that it is fixed by the element
σQ = σ1,1t. Further, since (σ1,1t)

2 = σ0,1, we have that

(σ1,1t)2k = σ0,k and (σ1,1t)2k+1 = σ1,k+1t, for 0 ≤ k ≤ n − 1
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A local uniformizer at Q∞ is y, which is acted on by (σ1,1t)2 = σ0,1 by y �→ ζny.
Hence, the monodromy element at Q∞ is σ1,1t.
• Consider the point Q1 above P(j=1) given by affine coordinates (1, n

√−2), which
is fixed by the automorphism t acting on functions as t(x) = 1/x, t(y) = y/x.
Since the decomposition group at Q1 is a cyclic group of order 2 the monodromy
at Q1 is the element t.
• A point Q0 = (x0, y0) above P(j=0) is given by X = ζ6, that is, xn

0 = −ζ6,
therefore x0 = (−ζ6)1/n = ζ	

nζ2nζ6n = ζ6	+4
6n , for 0 ≤ � ≤ n − 1. Similarly

yn
0 = −1−xn = −1+ζ6 = ζ26 , since ζ26−ζ6+1 = 0. Therefore, y0 = ζk

nζ26n = ζ6k+2
6n ,

for 0 ≤ k ≤ n − 1.
Let s be the automorphism acting on functions by s(x) = y/x, s(y) = 1/x,

so that s2(x) = 1/y, s2(y) = x/y. Observe that the point with coordinates
(x0, y0) =

(
ζ46n, ζ26n

)
is sent by σ1,1s to (x0, y0). Indeed,

(
ζ46n, ζ26n

) s�−→ (
ζ2−4
6n , ζ−4

6n

) σ1,1�−→ (
ζ46n, ζ26n

)
.

The function x − x0 = x − ζ46n is a local uniformizer at (x0, y0). By Remark 2,
σ1,1s acts on functions as σ−1,−1s

2 and thus

σ−1,−1s
2(x − ζ46n) = σ−1,−1

(
1
y

− ζ46n

)

=
ζ66n

y
− ζ46n = −ζ46n

y − ζ26n

y

= −ζ46n

y − ζ26n

ζ26n + (y − ζ26n)

= −ζ26n(y − ζ26n)

(

1 +
∞∑

ν=1

−1
ζ26n

(y − ζ26n)
ν

)

. (3)

On the other hand Taylor expansion of the Fermat equation at (x0, y0) gives

0 = xn+yn+1 = xn
0+yn

0+1+nxn−1
0 (x−x0)+nyn−1

0 (y−y0))+higher order terms,

that is
ζ
4(n−1)
6n (x − ζ46n) + ζ

2(n−1)
6n (y − ζ26n) mod m2

(x0,y0)

and this combined with Eq. (3) gives

σ−1,−1s
2(x − ζ46n) = ζ26nζ

2(n−1)
6n (x − ζ46n) = ζ3(x − ζ46n),

i.e., σ−1,−1s
2 is indeed the monodromy at the point Q0 = (x0, y0).
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