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1. Introduction
In 2009 at Max Planck Institut fiir Mathematik (Bonn), P. Stevenhagen asked the following question:

“Given any N, can one find a variety and a prime p such that the number of points over the finite
field F, is N?”
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In the case when the variety is of genus 1, we are looking for elliptic curves and a prime number p
for which the number of points on the elliptic curves over the finite field F, is N. Stevenhagen
highlighted a method which allowed him to produce an elliptic curve rapidly if N (more than 60
digits) is given. For more details, see his work with R. Broker [4].

As an “application” of this work, Stevenhagen mentioned that when N is a birthdate, written as an
eight-digit number in the form DDMMYYYY, one can construct an elliptic curve and a prime p such
that the number of points of the curve over F, is exactly N. For example, S. Ramanujan’s birthdate is
22 December 1887 and the curve

y?=x> +5887973x + 11302155

has exactly 22 121887 solutions over Fy,130519. We shall call an elliptic curve attached to a birthdate
a “birthday elliptic curve”.

Stevenhagen’s constructions of such curves require the computations of Hilbert polynomials sat-
isfied by certain special values of the j-invariant. In this article, we illustrate how “birthday elliptic
curves” can be constructed with the aid of computer algebra and the Ramanujan-Weber class invari-
ants and their analogues. We emphasize here that our method is unlikely to be as powerful as that of
Broker and Stevenhagen. However, the main purpose of this article is to connect Ramanujan’s work
to the constructions of “birthday elliptic curves” by computing the values of the j-invariant (instead
of its minimal polynomials) explicitly using various class invariants.

2. Class invariants

Suppose n > 4 is a squarefree integer. Let K, be the imaginary quadratic field Q(+/—n) and C, be
the corresponding ideal class group. It is known, via class field theory, that there exists a maximal
unramified abelian extension of K,, say Hj,, such that the Galois group Gal(H,|K) is isomorphic
to Cy. The field H, is called the Hilbert class field of K.

Let
3
T
j(r)=1728g2( ), Imt >0,
A(T)
where
00 k3€2nirk
g2(1)=1+240) " T
k=1
and
= 24
A= e27ri1' l_[(l . eZﬂirk) )
k=1

It is known that the Hilbert class field H, of K;; can be generated by special values of the j-invariant
over K, [7, Theorem 11.1].

The use of special values of the j-invariant to generate H, is far from satisfactory as their abso-
lute values are often very large. Computing the minimal polynomials satisfied by these values also
involved large integers. As such, other class invariants are more desirable. For more details about
the disadvantage of using j-invariants, see the paper by Gee and Stevenhagen [8] and the references
there.

We collect here a list of class invariants gy, G, t, and A, used to replace j-invariants as functions
that generate the Hilbert class fields.
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(a) Let n=2 (mod 4) and
o0
g, = 9—1/4,7/n/24 1—[(1 . e—ﬂ«/ﬁ(2k—1)),
k=1

Then

_{ Kn(gy?) if3In,
" Kagh  if34n

(b) Let n=1 (mod 4) and
0
Gn = 9—1/4,7/n/24 l—[(1 + e—nﬁ(21<—1))_
k=1

Then

_{Kn(c},Z) if 3|n,
"7 Ku(GYH if34n.

(c) Let n=7 (mod 8). Then

U :{I<n(2_3G,112) if 3|n,
K.(271GhH  if31n.

(d) Let n=3 (mod 24) and

N e]‘[ﬂ/Z 0 <1 _ (_-l)ke—ﬂ\/n/3k>6
n=-——F—=—"

33 ol 1_(_1)ke—n«/3_nl<

Then
_ 2
Hp = Kn (3] /3).
(e) Let n=11 (mod 24) and

1— (_1)l<e—nﬁk/3)(l _ (_1)ke—37‘r\ﬁ_lk)

by = /e VAT ¢
n H 1- (_1)ke—nﬁlc)2

Then

Hp = Kn(tn).

(f) Let n =19 (mod 24). In this case, we compute +/27/t}? and derive H, as

6 27
Hn=1<n tn_6_t_6 .

n
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For more details about G,, A, and t,, we refer the readers to [5,6,1,9].

Readers might wonder why we write H, = K,(27'G%) instead of H, = K,(G,) when n =7
(mod 24) and 3 tn even though both fields are the same. The reason being that 2*163 is a unit
in this case while G, is not. Evaluating units is easier than evaluating algebraic integers. We use ex-
tensively the fact that if o € Gal(H,|Ky) then o (u) is a unit if and only if u is a unit. For more details
of such computations, see [5].

The use of units such as 271G} (when n=7 (mod 8) and 3{n) and t, (when n =11 (mod 24))
allow us to compute explicitly the values of these class invariants when C, is of the form

Cn=(Z/22) ®Z/sL, (2.1)

where s = 3, 4, 8. The restriction on the values of s is due to the fact that we can solve polynomial
equation with degree of the polynomial less than 5.

With the explicit values of the various class invariants, we could evaluate special values of j-
invariants that generate H, (see [7, p. 264], [6,1]). We have

24

3
j/=n)= (T +22g§) :
&n
i\— == —-2°G;) .
2 GL6
2 2
hz = DOy 53— 1)°

2
)“n/3

(
J(/=n/3) =27

and

(7))

These relations are derived from the facts that g!? and G2 are special values of a modular function

of level 2, A}2 is a special value of a modular function of level 3 and t}? is a modular function of
level 9.
We next show that the number of integers satisfying (2.1) is finite. We need the following theorem:

Theorem 2.1. Let h(d) denote the class number of the imaginary quadratic field with discriminant d and let
g(d) denote the order of the group of genera. Then

. gd)
Am va =0

For a proof of Theorem 2.1, see [10, p. 458, Proposition 8.8].

Corollary 2.2. The class group cannot be isomorphic to Z/2Z" x H, where H is a fixed finite group, for infinitely
many discriminants.

Proof. Indeed in this case g(d)/h(d) is constant and cannot tend to zero. O

We have done an extensive computer search using magma [3] for discriminants of value < 7 x 10°
and we list them in Tables 1, 2 and 3 for s =3, 4 and 8 respectively.
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3. Finding birthday elliptic curves
It is known that [2, Chapter 8] if
4p =x* +ny?,
then the number of solutions N, of &, over F, is given by

p+1+56

where § = £x. In order to construct a birthday curve for a given birthdate b, we set N, = b. Suppose
that

b=p+1—x

with 4p = x*> +ny?. Then we must have

—ny? =(p —1)>+b> —2(p + 1b. (3.1)

We search for primes p € (b+1—2+b,b+ 1+ 2+/b) such that the expression

(p—1)2+b>=2(p+1)b

factors into —ny? with y as large as possible so that we have an integer n such that the class group
associated with K, is as in (2.1). The key point here is that the suitable values of n are somehow rare
but we have many choices of pairs (p,n) that solve (3.1).

We then compute a special value of j-invariant, say j,,' that generates H, and construct the
elliptic curve &, be

y2 —x> - 3cpx — 2¢q
where

Jn
Ch= ———.
jn—1728

The curve &, may or may not have N, =b. When N, # b, we search for an ¢ such that

()
p
and replace &, by the “twist” of &, say £, given by

y? =x> —30%cx — 203¢,.

1 There are h(n) such values where h(n) = |C,| but we only need one such value. We obtain this value from Section 2.
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4. Examples

We first discuss Ramanujan’s birthday curve mentioned in Section 1. In this case, we find that

(p — 1% +b*>—2(p+1)b=—163 - 293,

where p =22130519 and b =22121887. The corresponding field is K163, which has class number 1.
The j, that we used is then the well-known value

1++/—163
J(%) = —640320°

and this value is all we need to construct Ramanujan’s birthday elliptic curve.

We now discuss a more “complicated” birthday curve. We shall use the birthdate of Tom Osler,
a mathematician at Rowan University. The birthdate is 26 April 1940. It turns out that with b =
26041940 and p =26031737

(p—1>+b>—2(p+1)b=-25.7.103.

The class number of K721 is 16 and

Cro1 ~Z/2Z D Z/SL.

If we were to use the Hilbert class polynomial, then we would need to construct a polynomial of
degree 16. Instead of deriving the Hilbert class polynomial, we compute G731 since 721 =1 (mod 4).
This is obtained by computing the following identities (see [5] for examples of such computa-
tions):

2 2
G G
< 721 ) + <M) =104+39ﬁ+2\/5336+2018ﬁ (41)
G103/7 G721
and
1 2
(G721G103/7)% + <—> — 384 + 1467 + \/297 731+ 112532/7. (4.2)
G103/7G721

We can compute (4.1) and (4.2) because we know that the values on the left hand sides are
algebraic integers in a degree 4 extension over Q (see [5] for more details).

From (4.1) and (4.2), it is clear that we can determine G‘7121. We then determine (7‘7121 modulo p by
solving the congruence

x¥*=7 (mod D)

and using this to derive values of radicals such as \/297 731 + 112532+/7 in Fp. This will allow us to
determine a value of G‘7‘21 modulo p.
Using the relation between j71 and G721, we conclude that over Fj, one of the two curves

y? = x> + 25598199 + 17 065 466
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and

y? =x3+15193287x + 24612553
has exactly 26 041940 solutions. It turns out that the latter yields the correct number of solutions.
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