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Abstract. We study the local lifting problem of actions of semidirect
products of a cyclic p-group by a cyclic prime to p group, where p is the
characteristic of the special fibre. We give a criterion based on Harbater-
Katz-Gabber compactification of local actions, which allows us to decide
whether a local action lifts or not. In particular for the case of dihedral
group we give an example of dihedral local action that can not lift and
in this way we give a stronger obstruction than the KGB-obstruction.

1. Introduction

Let G be a finite group, k and algebraically closed field of characteristic
p > 0 and consider the homomorphism

ρ : G ↪→ Aut(k[[t]]),

which will be called a local G-action. Let W (k) denote the ring of Witt
vectors of k. The local lifting problem considers the following question:
Does there exist an extension Λ/W (k), and a representation

ρ̃ : G ↪→ Aut(Λ[[T ]]),

such that if t is the reduction of T , then the action of G on Λ[[T ]] reduces
to the action of G on k[[t]]? If the answer to the above question is positive,
then we say that the G-action lifts to characteristic zero. A group G for
which every local G-action on k[[t]] lifts to characteristic zero is called a
local Oort group for k.

After studying certain obstructions (the Bertin-obstruction, the KGB-
obstruction, the Hurwitz tree obstruction etc) it is known that the only
possible local Oort groups are

(1) Cyclic groups
(2) Dihedral groups Dph of order 2ph

(3) The alternating group A4

The Oort conjecture states that every cyclic group Cq of order q = ph

lifts locally. This conjecture was proved recently by F. Pop [26] using the
work of A. Obus and S. Wewers [24]. A. Obus proved that A4 is local Oort
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group in [21] and this was also known to F. Pop and I. Bouw and S. Wewers
[6]. The case of dihedral groups Dp are known to be local Oort by the work
of I. Bouw and S. Wewers for p odd [6] and by the work of G. Pagot [25].
Several cases of dihedral groups Dph for small ph have been studied by A.
Obus [22] and H. Dang, S. Das, K. Karagiannis, A. Obus, V. Thatte [11],
while the D4 was studied by B. Weaver [31]. For more details on the lifting
problem we refer to [8], [9], [10], [20].

Probably, the most important of the known so far obstructions is the
KGB obstruction [9]. It was conjectured that if the p-Sylow subgroup of G
is cyclic, then this is the only obstruction for the local lifting problem, see
[20], [22]. In particular, the KGB-obstruction for the dihedral group Dq is
known to vanish, so the conjecture asserts that the local action of Dq always
lifts. We will provide in section 6.1 a counterexample to this conjecture, by
proving that the HKG-cover corresponding to D125, with a selection of lower
jumps 9, 189, 4689 does not lift.

In this article, we will give a necessary and sufficient condition for a
Cq ⋊ Cm-action and in particular for the group Dq to lift. In order to do
so, we will employ the Harbater-Katz-Gabber-compactification (HKG for
short), which can be used in order to construct complete curves out of local
actions. In this way, we have a variety of tools at our disposal, comming
from the theory of complete curves, and we can transform the local action
and its deformations into representations of lineal groups acting on spaces
of differentials of the HKG-curve. We have laid the necessary tools in our
article [17], where we have collected several facts about the relation of liftings
of local actions, liftings of curves and liftings of linear representations.

More precisely let us consider a local action ρ : G → Autk[[t]] of the
group G = Cq ⋊ Cm. The Harbater-Katz-Gabber compactification theorem
asserts that there is a Galois cover X → P1 ramified wildly and completely
only at one point P of X with Galois group G = Gal(X/P1) and tamely
on a different point P ′ with ramification group Cm, so that the action of
G on the completed local ring OX,P coincides with the original action of G
on k[[t]]. Moreover, it is known that the local action lifts if and only if the
corresponding HKG-cover lifts.

In particular, we have proved that in order to lift a subgroup G ⊂ Aut(X),
the representation ρ : G→ GLH0(X,ΩX) should be lifted to characteristic
zero and also the lifting should be compatible with the deformation of the
curve. More precisely, in [17] we have proved the following relative version
of Petri’s theorem

Proposition 1. Let f1, . . . , fr ∈ S := SymH0(X,ΩX) = k[ω1, . . . , ωg] be
quadratic polynomials which generate the canonical ideal IX of a curve X
defined over an algebraic closed field k. Any deformation XA is given by
quadratic polynomials f̃1, . . . , f̃r ∈ SymH0(XA,ΩXA/A) = A[W1, . . . ,Wg],
which reduce to f1, . . . , fr modulo the maximal ideal mA of A.

And we also gave the following liftability criterion:
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Theorem 2. Consider an epimorphism R → k → 0 of local Artin rings.
Let X be a curve which is is canonically embedded in Pg−1

k and the canon-
ical ideal is generated by quadratic polynomials, and acted on by the group
G. The curve X → Spec(k) can be lifted to a family X → Spec(R) ∈
Dgl(R) along with the G-action, if and only if the representation ρk : G →
GLg(k) = GL(H0(X,ΩX)) lifts to a representation ρR : G → GLg(R) =
GL(H0(X ,ΩX /R)) and moreover the lift of the canonical ideal is left in-
variant by the action of ρR(G).

In section 3, we collect results concerning deformations of HKG covers,
Artin representations and orbit actions and also provide a geometric expla-
nation of the KGB-obstruction in remark 12. In section 4 we prove that
the HKG-cover is canonically generated by quadratic polynomials, therefore
theorem 2 can be applied.

In order to decide whether a linear representation of G = Cq⋊Cm can be
lifted we will we use the following criterion for the lifting of the linear repre-
sentation, based on the decomposition of a k[G]-module into intecomposable
summands. We begin by describing the indecomposable k[G]-modules for
the group G = Cq ⋊ Cm:

Proposition 3. Suppose that the group G = Cq ⋊ Cm is represented in
terms of generators σ, τ and relations as follows:

G = ⟨σ, τ |τ q = 1, σm = 1, στσ−1 = τα⟩,
for some α ∈ N, 1 ≤ α ≤ ph − 1, (α, p) = 1. Every indecomposable k[G]-
module has dimension 1 ≤ κ ≤ q and is of the form Vα(λ, κ), where the
underlying space of Vα(λ, κ) has the set of elements {(τ−1)νe, ν = 0, . . . , κ−
1} as a basis for some e ∈ Vα(λ, κ), and the action of σ on e is given by
σe = ζλme, for a fixed primitive m-th root of unity.

Proof. A proof can be found in [18, sec. 3]. Notice also that (τ − 1)κe =
0. □

Notice that in section 6 we will give an alternative description of the in-
decomposable k[G]-modules, namely the Uℓ,µ notation, which is compatible
with the results of [4].

Remark 4. In the article [18] of the authors the Vα(λ, κ) notation is used.
In this article we will need the Galois module structure of the space of
homolomorphic differentials of a curve and we will employ the results of [4],
where the Uℓ,µ notation is used. These modules will be defined in section 6,
notice that Vα(λ, κ) = U(λ+a0(κ−1)modm,κ, see lemma 17.

Theorem 5. Consider a k[G]-module M which is decomposed as a direct
sum

M = Vα(ϵ1, κ1)⊕ · · · ⊕ Vα(ϵs, κs).
The module lifts to an R[G]-module if and only if the set {1, . . . , s} can be
written as a disjoint union of sets Iν , 1 ≤ ν ≤ t so that
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a.
∑

µ∈Iν κµ ≤ q, for all 1 ≤ ν ≤ t.
b.
∑

µ∈Iν κµ ≡ a modm for all 1 ≤ ν ≤ t, where a ∈ {0, 1}.
c. For each ν, 1 ≤ ν ≤ t there is an enumeration σ : {1, . . . ,#Iν} →
Iν ⊂ {1, .., s}, such that

ϵσ(2) = ϵσ(1)α
κσ(1) , ϵσ(3) = ϵσ(3)α

κσ(3) , . . . , ϵσ(s) = ϵσ(s−1)α
κσ(s−1) .

Condition b., with a = 1 happens only if the lifted Cq-action in the generic
fibre has an eigenvalue equal to 1 for the generator τ of Cq.

Proof. See [18]. □

The idea of the above theorem is that indecomposable k[G]-modules in
the decomposition of H0(X,ΩX) of the special fibre, should be combined
together in order to give indecomposable modules in the decomposition of
holomorphic differentials of the relative curve.

We will have the following strategy. We will consider a HKG-cover

X
Cq

//

G

((
P1

Cm

// P1

of the G-action. This has a cyclic subcover X
Cq−→ P1 with Galois group

Cq. We lift this cover using Oort’s conjecture for Cq-groups to a cover
X → SpecΛ. This gives rise to a representation

(1) ρ : G −→ GLH0(X,ΩX),

together with a lifting

(2) GLH0(X ,ΩX /Λ) = GLg(Λ)

modmΛ

��
Cq

//

66

GLH0(X,ΩX) = GLg(k)

of the representation of the cyclic part Cq of G. We then lift the linear
action of eq. (1) in characteristic zero, checking the conditions of theorem
5, in a such a way that the restriction to the Cq group is our initial lifting
of the representation of the Cq subgroup coming from the lifting assured by
Oort’s conjecture given in eq. (2). Notice that the lifting of the cyclic group
acting on a curve of characteristic zero in the generic fibre has the additional
property that every eigenvalue of a generator of Cq is different than one, see
eq. (16). Then using theorem 2 we will modify the initial lifting X to a
lifting X ′ so that X ′ is acted on by G.

Notice that m = 2, that is for the case of dihedral groups Dq of order
2q, there is no need to pair two indecomposable k[Dq]-modules together in
order to lift them into an indecomposable R[Dq]-module. The sets Iν can
be singletons and the conditions of theorem 5 are trivially satisfied. For
example, condition 5.b. does not give any information since every integer is
either odd or even. This means that the linear representations always lift.
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In our geometric setting on the other hand, we know that in the generic
fibre cyclic actions do not have identity eigenvalues, see proposition 16. This
means that we have to consider lifts that satisfy 5.b. with a = 0. Therefore,
indecomposable modules for G = Cq ⋊C2 = Dq of odd dimension d1 should
find another indecomposable module of odd dimension d2 in order to lift to
an R[G]-indecomposable module of even dimension d1 + d2. Moreover, this
dimension should satisfy d1 + d2 ≤ q. If we also take care of the condition
5.c. we arrive at the following

Criterion 6. The HKG-curve with acted on by Dq lifts in characteristic
zero if and only if all indecomposable summands Vα(ϵ, d), where ϵ ∈ {0, 1}
and 1 ≤ d ≤ qh with d odd have a pair Vα(ϵ

′, d′), with ϵ′ ∈ {0, 1} − {ϵ} and
d′ odd and d+ d′ ≤ qh. Notice that since, d, d′ are both odd we have

Vα(ϵ, d) = Uϵ+d−1mod2,d = Uϵ,d, Vα(ϵ
′, d′) = Uϵ′+d′−1mod2,d′ = Uϵ′,d′ .

The indecomposable modules given above will be called complementary. We
will apply this criterion for complementary modules in the Uϵ,d-notation.

In section 5 we will show that given a lifting X of the Cq action using Oort
conjecture, and a lifting of the linear representation satisfying criterion 6 the
lift X can be modified to a lift X ′, which lifts the action of Dq. In order
to apply this idea we need a detailed study of the direct k[G]-summands of
H0(X,ΩX), for G = Cq ⋊ Cm. This is considered in section 6, where we
employ the joint work of the first author with F. Bleher and T. Chinburg [4],
in order to compute the decomposition of H0(X,ΩX) into indecomposable
kG-modules, in terms of the ramification filtration of the local action.

Then the lifting criterion of theorem 5 is applied. Our method gives rise
to an algorithm which takes as input a group Cq⋊Cm, with a given sequence
of lower jumps and decides whether the action lifts to characteristic zero.

In section 6.1 we give an example of an C125⋊C4 HKG-curve which does
not lift and then we restrict ourselves to the case of dihedral groups. The
possible ramification filtrations for local actions of the group Cq ⋊Cm were
computed in the work of A. Obus and R. Pries in [23]. We focus on the case
of dihedral groups Dq with lower jumps

(3) bℓ = w0
p2ℓ + 1

p+ 1
, 0 ≤ ℓ ≤ h− 1.

For the values w0 = 9 we will show that the local action does not lift,
providing a counterexample to the conjecture that the KGB-obstruction is
the only obstruction to the local lifting problem.

Finally, in section 6.2 we prove that the jumps of eq. (3) for the value
w0 = 1 lift in characteristic zero. This result is a special case of the result
of A. Obus in [22, Th. 8.7], proved by completely different methods.
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We also have developed a program in sage [29] in order to compute the
decomposition of H0(X,ΩX) into intecomposable summands, which is freely
available1.
Aknowledgements We would like to thank A. Obus for his remarks and
comments on an earlier version of this article. A. Terezakis is a recipient
of financial support in the context of a doctoral thesis (grant number MIS-
5113934). The implementation of the doctoral thesis was co-financed by
Greece and the European Union (European Social Fund-ESF) through the
Operational Programme—Human Resources Development, Education and
Lifelong Learning—in the context of the Act—Enhancing Human Resources
Research Potential by undertaking a Doctoral Research—Sub-action 2: IKY
Scholarship Programme for Ph.D. candidates in the Greek Universities.

2. Notation

In this article we will study metacyclic groups G = Cq⋊Cm, where q = ph

is a power of the characteristic and m ∈ N, (m, p) = 1. Let τ be a generator
of the cyclic group Cq and σ be a generator of the cyclic group Cm.

The group G is given in terms of generators and relations as follows:

(4) G = ⟨σ, τ |τ q = 1, σm = 1, στσ−1 = τα⟩,

for some α ∈ N, 1 ≤ α ≤ ph − 1, (α, p) = 1. The integer α satisfies the
following congruence:

(5) αm ≡ 1 modq

as one sees by computing τ = σmτσ−m = τα
m
. Also the integer α can be

seen as an element in the finite field Fp, and it is a (p− 1)-th root of unity,
not necessarily primitive. In particular the following holds:

Lemma 7. Let ζm be a fixed primitive m-th root of unity. There is a natural
number a0, 0 ≤ a0 < m− 1 such that α = ζa0m .

Proof. The integer α, if we see it as an element in the field k of characteristic
p > 0, is an element in the finite field Fp ⊂ k, therefore αp−1 = 1 as an
element in Fp. Let ordp(α) be the order of α in F∗

p. By eq. 5 we have that
ordp(α) | p− 1 and ordp(α) | m, that is ordp(α) | (p− 1,m).

The primitive m-th root of unity ζm generates a finite field Fp(ζm) = Fpν

for some integer ν, which has cyclic multiplicative group Fpν\{0} containing
both the cyclic groups ⟨ζm⟩ and ⟨α⟩. Since for every divisor δ of the order

1https://www.dropbox.com/sh/uo0dg91l0vuqulr/AACarhRxsru_zuIp5ogLvy6va?dl=

0

https://www.dropbox.com/sh/uo0dg91l0vuqulr/AACarhRxsru_zuIp5ogLvy6va?dl=0
https://www.dropbox.com/sh/uo0dg91l0vuqulr/AACarhRxsru_zuIp5ogLvy6va?dl=0
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of a cyclic group C there is a unique subgroup C ′ < C of order δ we have
that α ∈ ⟨ζm⟩, and the result follows. □

Remark 8. For the case Cq ⋊ Cm the KGB-obstruction vanishes if and
only if the first lower jump h satisfies h ≡ −1 modm. For this to happen the
conjugation action of Cm on Cq has to be faithful, see [20, prop. 5.9]. Also
notice that by [23, th. 1.1], that if u0, u1, . . . , uh−1 is the sequence of upper
ramification jumps for the Cq subgroup, then the condition h ≡ −1 modm
implies that all upper jumps ui ≡ −1 modm. In remark 12 we will explain
the necessity of the KGB-obstruction in terms of the action of Cm, on the
fixed horizontal divisor of the Cq group.

3. Deformation of covers

3.1. Splitting the branch locus. Consider a deformation X → SpecA of
the curve X together with the action of G. Denote by τ̃ = ρ̃(τ) a lift of
the action of the element τ ∈ Aut(X). Weierstrass preparation theorem [5,
prop. VII.6] implies that:

τ̃(T )− T = gτ̃ (T )uτ̃ (T ),

where gτ̃ (T ) is a distinguished Weierstrass polynomial of degree m+ 1 and
uτ̃ (T ) is a unit in R[[T ]].

The polynomial gτ̃ (T ) gives rise to a horizontal divisor that corresponds to
the fixed points of τ̃ . This horizontal divisor might not be irreducible. The
branch divisor corresponds to the union of the fixed points of any element
in G1(P ). Next lemma gives an alternative definition of a horizontal branch
divisor for the relative curves X → X G, that works even when G is not a
cyclic group.

Lemma 9. Let X → SpecA be an A-curve, admitting a fibrewise action
of the finite group G, where A is a Noetherian local ring. Let S = SpecA,
and ΩX /S, ΩY /S be the sheaves of relative differentials of X over S and Y
over S, respectively. Let π : X → Y be the quotient map. The sheaf

L (−DX /Y ) = Ω−1
X /S ⊗S π

∗ΩY /S

is the ideal sheaf of the horizontal Cartier divisor DX /Y . The intersection
of DX /Y with the special and generic fibre of X gives the ordinary branch
divisors for curves.

Proof. We will first prove that the above defined divisor DX /Y is indeed
an effective Cartier divisor. According to [16, Cor. 1.1.5.2] it is enough to
prove that

• DX /Y is a closed subscheme which is flat over S.
• for all geometric points Speck → S of S, the closed subscheme
DX /Y ⊗S k of X ⊗S k is a Cartier divisor in X ⊗S k/k.

In our case the special fibre is a nonsingular curve. Since the base is a
local ring and the special fibre is nonsingular, the deformation X → SpecA
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is smooth. (See the remark after the definition 3.35 p.142 in [19]). The
smoothness of the curves X → S, and Y → S, implies that the sheaves
ΩX /S and ΩX /S are S-flat, [19, cor. 2.6 p.222].

On the other hand the sheaf ΩY ,SpecA is by [16, Prop. 1.1.5.1] OY -flat.
Therefore, π∗(ΩY ,SpecA) is OX -flat and SpecA-flat [14, Prop. 9.2]. Finally,
observe that the intersection with the special and generic fibre is the ordinary
branch divisor for curves according to [14, IV p.301]. □

For a curve X and a branch point P of X we will denote by iG,P the order
function of the filtration of G at P . The Artin representation of the group G
is defined by arP (σ) = −fP iG,P (σ) for σ ̸= 1 and arP (1) = fP

∑
σ ̸=1 iG,P (σ)

[28, VI.2]. We are going to use the Artin representation at both the special
and generic fibre. In the special fibre we always have fP = 1 since the
field k is algebraically closed. The field of quotients of A should not be
algebraically closed, therefore for a fixed point there might have fP ≥ 1.
The integer iG,P (σ) is equal to the multiplicity of P × P in the intersection
of ∆.Γσ in the relative A-surface X ×SpecA X , where ∆ is the diagonal and
Γσ is the graph of σ [28, p. 105].

Since the diagonals ∆0,∆η and the graphs of σ in the special and generic
fibres respectively of X ×SpecA X are algebraically equivalent divisors we
have:

Proposition 10. Assume that A is an integral domain, and let X → SpecA
be a deformation of X. Let P̄i, i = 1, · · · , s be the horizontal branch divisors
that intersect at the special fibre, at point P , and let Pi be the corresponding
points on the generic fibre. For the Artin representations attached to the
points P, Pi we have:

(6) arP (σ) =
s∑

i=1

arPi(σ).

This generalizes a result of J. Bertin [3]. Moreover if we set σ = 1 to the
above formula we obtain a relation for the valuations of the differents in the
special and the generic fibre, since the value of the Artin’s representation at 1
is the valuation of the different [28, prop. 4.IV,prop. 4.VI]. This observetion
is equivalent to claim 3.2 in [13] and is one direction of a local criterion for
good reduction theorem proved in [13, 3.4], [15, sec. 5].

3.2. The Artin representation on the generic fibre. We can assume
that after a base change of the family X → Spec(A) the points Pi at the
generic fibre have degree 1. Observe also that at the generic fibre the Artin
representation can be computed as follows:

arQ(σ) =

{
1 if σ(Q) = Q,
0 if σ(Q) ̸= Q.

The set of points S := {P1, . . . , Ps} that are the intersections of the ramifi-
cation divisor and the generic fibre are acted on by the group G.
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We will now restrict our attention to the case of a cyclic group H = Cq

of order q. Let Sk be the subset of S fixed by Cph−k , i.e.

P ∈ Sk if and only if H(P ) = Cph−k .

Let sk be the order of Sk. Observe that since for a pointQ in the generic fibre
σ(Q) andQ have the same stabilizers (in general they are conjugate, but here
H is abelian) the sets Sk are acted on by H. Therefore, #Sk =: sk = pkik,
where ik is the number of orbits of the action of H on Sk.

Let b0, b1, . . . , bh−1 be the jumps in the lower ramification filtration. Ob-
serve that

Hjk =

{
Cph−k for 0 ≤ k ≤ h− 1
{1} for k ≥ h.

An element in Hbk fixes only elements in S with stabilizers that contain Hbk .
So Hb0 fixes only S0, Hb1 fixes both S0 and S1 and Hbk fixes all elements
in S0, S1, . . . , Sk. By definition of the Artin representation an element σ in
Hbk −Gbk+1

satisfies arP (σ) = bk + 1 and by using equation (6) we arive at

bk + 1 = i0 + pi1 + · · ·+ pkik.

Remark 11. This gives us a geometric interpretation of the Hasse-Arf the-
orem, which states that for the cyclic p-group of order q = ph, the lower
ramification filtration is given by

H0 = H1 = · · · = Hb0 ≩ Hb0+1 = · · · = Hb1 ≩ Hb1+1 = · · · = Hbh−1
≩ {1},

i.e. the jumps of the ramification filtration appear at the integers b0, . . . , bh−1.
Then

(7) bk + 1 = i0 + i1p+ i2p
2 + · · ·+ ikp

k.

The set of horizontal branch divisors is illustrated in figure 1. Notice that
the group Cm acts on the set of ramification points of H = Cq on the special
fibre but it can’t fix any of them since there are already fixed by a subgroup
of Cq and if a branch point P of Cq was also fixed by an element of Cm, then
the isotropy subgroup of P could not be cyclic. This proves that m divides
the numbers of all orbits i0, . . . , in−1.

Remark 12. In this way we can recover the necessity of the KGB-obstruction
since by eq. (7) the upper ramification jumps are i0− 1, i0 + i1− 1, . . . , i0 +
· · ·+ in−1 − 1.

The Galois cover X → X/G breaks into two covers X → XCq and XCq →
CG. The genus of CG is zero by assumption and in the cover XCq →
CG there are exactly two ramified points with ramification indices m. An
application of the Riemann-Hurwitz formula shows that the genus of XCq

is zero as well.
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Figure 1. The horizontal Ramification divisor

Fixed by Cph

Orbit size 1
Number of orbits i0

Fixed by Cph−1

Orbit size p
Number of orbits i1

Fixed by Cph−k

Orbit size pk

Number of orbits ik

Fixed by Cp

Orbit size ph−1

Number of orbits ih−1

The genus of the curveX can be computed either by the Riemann-Hurwitz
formula in the special fibre

g = 1− pn +
1

2

∞∑
i=0

(|Gi| − 1)

= 1− pn +
1

2

(
(b0 + 1)(pn − 1) + (b1 − b0)(pn−1 − 1)

+ (b2 − b1)(pn−2 − 1) + · · ·+ (bn − bn−1)(p− 1)
)

or by the Riemann-Hurwitz formula on the generic fibre:

g = 1− pn +
1

2

(
i0(p

n − 1) + i1p(p
n−1 − 1) + · · · in−1p

n−1(p− 1)
)
.(8)

Using eq. (7) we see that the two formulas for g give the same result as
expected.

4. HKG-covers and their canonical ideal

Lemma 13. Consider the Harbater-Katz-Gabber curve corresponding to the
local group action Cq⋊Cm, where q = ph that is a power of the characteristic
p. If one of the following conditions holds:

• h ≥ 3 or h = 2, p > 3
• h = 1 and the first jump i0 in the ramification filtration for the cyclic
group satisfies i0 ̸= 1 and q ≥ 12

i0−1 + 1,

then the curve X has canonical ideal generated by quadratic polynomials.
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Remark 14. Notice, that the missing cases in the above lemma which
satisfy the KGB obstruction, are all either cyclic, D3 or D9, which are all
known local Oort groups.

Proof. Using Petri’s Theorem [27] it is enough to prove that the curve X
has genus g ≥ 6 provided that p or h is big enough. We will also prove that
the curve X is not hyperelliptic nor trigonal.

Remark 15. Let us first recall that a cyclic group of order q = ph for h ≥ 2
can not act on the rational curve, see [30, thm 1]. Also let us recall that a
cyclic group of order p can act on a rational curve and in this case the first
and only break in the ramification filtration is i0 = 1. This latter case is
excluded.

Consider first the case ph = p and i0 ̸= 1. In this case we compute the
genus g of the HKG-curve X using Riemann-Hurwitz formula:

2g = 2− 2mq + q(m− 1) + qm− 1 + i0(q − 1),

where the contribution q(m− 1) is from the q-points above the unique tame
ramified point, while qm−1+i0(q−1) is the contribution of the wild ramified
point. This implies that,

2g = (i0 − 1)(q − 1),

therefore if i0 ≥ 2, it suffices to have q = ph ≥ 13 and more generally it is
enough to have q ≥ 12

i0−1 + 1 in order to ensure that g ≥ 6.
For the case h ≥ 2, we can write a stronger inequality based on Riemann-

Hurwitz theorem as (recall that i0 ≡ i1 modp so i0 − i1 ≥ p)

(9) 2g ≥ (i0 − 1)(ph − 1) + (i0 − i1)(ph−1 − 1) ≥ ph − p,
which implies that g ≥ 6 for p > 3 or h > 3.

In order to prove that the curve is not hyperelliptic we observe that hy-
perelliptic curves have a normal subgroup generated by the hyperelliptic
involution j, so that X → X/⟨j⟩ = P1. It is known that the automorphism
group of a hyperelliptic curve fits in the short exact sequence

(10) 1→ ⟨j⟩ → Aut(X)→ H → 1,

whereH is a subgroup of PGL(2, k), see [7]. Ifm is odd then the hyperelliptic
involution is not an element in Cm. If m is even, let σ be a generator of the
cyclic group of order m and τ a generator of the group Cq. The involution

σm/2 again can’t be the hyperelliptic involution. Indeed, the hyperelliptic
involution is central, while the conjugation action of σ on τ is faithful that
is σm/2τσ−m/2 ̸= τ . In this case G = Cq ⋊ Cm is a subgroup of H which
should act on the rational function field. By the classification of such groups
in [30, Th. 1] this is not possible. Thus X can’t be hyperelliptic.

We will prove now that the curve is not trigonal. Using Clifford’s theorem
we can show [2, B-3 p.137] that a non-hyperelliptic curve of genus g ≥
5 cannot have two distinct g13. Notice that we have already required the
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stronger condition g ≥ 6. So if there is a g13, then this is unique. Moreover,
the g13 gives rise to a map π : X → P1 and every automorphism of the curve
X fixes this map. Therefore, we obtain a morphism ϕ : Cq⋊Cm → PGL2(k)
and we arrive at the short exact sequence

1→ kerϕ→ Cq ⋊ Cm → H → 1,

for some finite subgroup H of PGL(2, k). If kerϕ = {1}, then we have the

tower of curves X
π−→ P1 π′

−→ P1, where π′ is a Galois cover with group
Cq ⋊ Cm. This implies that X is a rational curve contradicting remark 15.
If kerϕ is a cyclic group of order 3, then we have that 3 | m and the tower

X
π−→ P1 π′

−→ P1, where π is a cyclic Galois cover of order 3 and π′ is a
Galois cover with group Cq ⋊ Cm/3. As before this contradicts remark 15
and is not possible. □

5. Invariant subspaces of vector spaces

The g × g symmetric matrices A1, . . . , Ar defining the quadratic canon-
ical ideal of the curve X, define a vector subspace of the vector space V
of g × g symmetric matrices. By Oort conjecture, we know that there are
symmetric matrices Ã1, . . . , Ãr with entries in a local principal ideal do-
main R, which reduce to the initial matrices A1, . . . , Ar. These matrices
Ã1, . . . , Ãr correspond to the lifted relative curve X̃. Moreover, the sub-
module Ṽ = ⟨Ã1, . . . , Ãr⟩ is left invariant under the action of a lifting ρ̃ of
the representation ρ : Cq → GLg(k).

Proposition 16. Let g̃ be the genus of the quotient curve X/H for a sub-
group H of the automorphism group of a curve X in characteristic zero. We
have

dimH0(X,Ω⊗d
X )H =

{
g̃ if d = 1

(2d− 1)(g̃ − 1) +
∑

P∈X/G

⌊
d
(
1− 1

e(P̃ )

)⌋
if d > 1

Proof. See [12, eq. 2.2.3,2.2.4 p. 254]. □

Therefore, a generator of Cq acting on H0(X,ΩX) has no identity eigen-
values and m should divide g. This means that we have to consider liftings
of indecomposable summands of the Cq-module H0(X,ΩX), which satisfy
condition 5.b. with a = 0. We now assume that condition 5.b. of theorem
5 can be fulfilled, so there is a lifting of the representation

GLg(R)

modmR

��
Cq ⋊ Cm

ρ //

ρ̃
99

GLg(k)

see also the discussion in the introduction after the statement of this theorem
after eq. (2).
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We have to show that we can modify the space Ṽ ⊂ Symg(R) to a space

Ṽ ′ with the same reduction V modulo mR so that Ṽ is Cq ⋊ Cm-invariant.
Consider the sum of the free modules

W = Ṽ + ρ̃(σ)Ṽ + ρ̃(σ2)Ṽ + · · ·+ ρ̃(σm−1)Ṽ ⊂ RN .

Observe that W is an R[Cq ⋊Cm]-module and also it is a free submodule of
RN and by the theory of modules over local principal ideal domain there is
a basis E1, . . . , EN of RN such that

W = E1 ⊕ · · · ⊕ Er ⊕ πar+1Er+1 ⊕ · · · ⊕ πaNEN ,

where E1, . . . , Er form a basis of Ṽ , while πar+1Er+1, . . . , π
aNEN form a

basis of the kernel W1 of the reduction modulo mR. Since the reduction is
compatible with the actions of ρ, ρ̃ we have thatW1 is an R[Cq⋊Cm]-module,

while Ṽ is just a Cq-module.
Let π be the R[Cq]-equivariant projection map

W = Ṽ ⊕R[Cq ]−modules W1 →W1.

Since m is an invertible element of R, we can employ the proof of Mascke’s
theorem in order to construct a module Ṽ ′, which is R[Cq ⋊ Cm] stable
and reduces to V modulo mR, see also [1, I.3 p.12]. Indeed, consider the
endomorphism π̄ :W →W defined by

π̄ =
1

m

m−1∑
i=0

ρ̃(σi)πρ̃(σ−i).

We see that π̄ is the identity on W1 since π is the identity on W1. Moreover
Ṽ ′ := kerπ̄ is both Cq and Cm invariant and reduces to V modulo mR.

6. Galois module structure of holomorphic differentials,
special fibre

Consider the group Cq⋊Cm. Let τ be a generator of Cq and σ a generator
of Cm. It is known that Aut(Cq) ∼= F∗

p ×Q, for some abelian group Q. The
representation ψ : Cm → Aut(Cq) given by the action of Cm on Cq is known
to factor through a character χ : Cm → F∗

p. The order of χ divides p − 1

and χp−1 = χ−(p−1) is the trivial one dimensional character. In our setting,
using the definition of G given in eq. (4) and lemma 7 we have that the
character χ is defined by

(11) χ(σ) = α = ζa0m ∈ Fp.

For all i ∈ Z, χi defines a simple k[Cm]-module of k dimension one, which
we will denote by Sχi . For 0 ≤ ℓ ≤ m − 1 denote by Sℓ the simple module

on which σ acts as ζℓm. Both Sχi , Sℓ can be seen as k[Cq ⋊ Cm]-modules

using inflation. Finally for 0 ≤ ℓ ≤ m− 1 we define χi(ℓ) ∈ {0, 1, . . . ,m− 1}
such that Sχi(ℓ)

∼= Sℓ ⊗k Sχi . Using eq. (11) we arrive at

(12) Sχi(ℓ) = Sℓ+ia0 .
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There are q·m isomorphism classes of indecomposable k[Cq⋊Cm]-modules
and are all uniserial, i.e. the set of submodules are totally ordered by inclu-
sion. An indecomposable k[Cq ⋊ Cm]-module U is uniquely determined by
its socle, which is the kernel of the action of τ−1 on U , and its k-dimension.
For 0 ≤ ℓ ≤ m−1 and 1 ≤ µ ≤ q, let Uℓ,µ be the indecomposable k[Cq⋊Cm]
module with socle Sℓ and k-dimension µ. Then Uℓ,µ is uniserial and its µ
ascending composition factors are the first µ composition factors of the se-
quence

Sℓ, Sχ−1(ℓ), Sχ−2(ℓ), . . . , Sχ−(p−2)(ℓ), Sℓ, Sχ−1(ℓ), Sχ−2(ℓ), . . . , Sχ−(p−2)(ℓ)

Lemma 17. There is the following relation between the two different nota-
tions for indecomposable modules:

Vα(λ, κ) = U(λ+a0(κ−1))modm,κ)

In particular, for the case of dihedral groups Dq we have the relation

Vα(λ, κ) = Uλ+κ−1mod2,κ.

Proof. Indeed, in the Vα(λ, κ) notation we describe the action of σ on the
generator e, by assuming that σe = ζλme. We can then describe the action
on every basis element ei = (τ − 1)i−1e, using the group relations

σei = σ(τ − 1)i−1e = (τα − 1)i−1σe = ζλm(τα − 1)i−1e

This allows us to prove, see [18, lemma 10] that

σei = αi−1ζλm +
κ∑

ν=i+1

aνeν

for some elements aν ∈ k and in particular

σeκ = ακ−1ζλm.

Recall that the number α = ζa0m for some natural number a0, 0 ≤ a0 < m−1,
see also [18, lemma 2]. In the Uµ,κ notation, µ is the action on the one-
dimensional socle which is the τ -invariant element eκ = (τ − 1)κ−1e, i.e.
σ(eκ) = ζµm. Putting all this together we have

µ = λ+ (κ− 1)a0 modm.

In the case of dihedral group Dq, m = 2 and α = −1a0 , i.e. a0 = 1, we have
Vα(λ, κ) = Uλ+κ−1mod2,κ. □

Assume that X → P1 is an HKG-cover with Galois group Cq ⋊ Cm. The
subgroup I generated by the Sylow p-subgroups of the inertia groups of all
closed points of X is equal to Cq.

Definition 18. In [4] for each 0 ≤ j ≤ q − 1 the divisor

Dj =
∑
y∈P1

dy,jy,
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is defined, where the integers dy,j are given as follows. Let x be a point of X
above y and consider the i-th ramification group Ix,i at x. The order of the

inertia group at x is assumed to be pn(x) and t i(x) = h − n(x) is defined.
In this article we will have HKG-covers, where n(x) = h, so i(x) = 0. We
will use this in order to simplify the notation in what follows.

Let b0, b1, . . . , bh−1 be the jumps in the numbering of the lower ramifica-
tion filtration subgroups of Ix. We define

dy,j =

⌊
1

ph

h∑
l=1

ph−l
(
p− 1 + (p− 1− al,t)bl−1

)⌋
for all j ≥ 0 with p-adic expansion

j = a1,j + a2,jp+ · · ·+ ah,jp
h−1

In particular Dq−1 = 0. Observe that dy,j ̸= 0 only for wildly ramified
branch points.

Remark 19. For a divisor D on a curve Y define ΩY (D) = ΩY ⊗ OY (D).
In particular for Y = P1, and for D = Dj = dP∞,jP∞, where Dj is a divisor
supported at the infinity point P∞ we have

H0(P1,ΩP1(Dj)) = {f(x)dx : 0 ≤ deg f(x) ≤ dP∞,j − 2}.

For the sake of simplicity, we will denote dP∞,j by dj . The spaceH
0(P1,ΩP1(Dj))

has a basis given by B = {dx, xdx, . . . , xdj−2dx}. Therefore, the number nj,ℓ
of simple modules appearing in the decomposition ΩP1(Dj) isomorphic to
Sℓ for 0 ≤ ℓ < m, is equal to the number of monomials xν with

ν ≡ ℓ− 1 modm, 0 ≤ ν ≤ dj − 2.

If dj ≤ 1 then B = ∅ and nj,ℓ = 0 for all 0 ≤ ℓ < m. If dj > 1, then we

know that in the dj − 1 elements of the basis B, the first m
⌊
dj−1
m

⌋
elements

contribute to every representative modulo m. Thus, we have at least
⌊
dj−1
m

⌋
elements in isomorphic to Sℓ for every 0 ≤ ℓ < m. We will now count the
rest elements, of the form {xνdx}, where

m

⌊
dj − 1

m

⌋
≤ ν ≤ dj − 2 and ν ≡ ℓ− 1 modm,

where ℓ− 1 is the unique integer in {0, 1, . . . ,m − 1} equivalent to ℓ − 1
modulo m. We observe that the number yj(ℓ) of such elements ν is given by

yj(ℓ) =

{
1 if ℓ− 1 ≤ dj − 2−m

⌊
dj−1
m

⌋
0 otherwise

Therefore

nj,ℓ =

{⌊
dj−1
m

⌋
+ yj(ℓ) if dj ≥ 2

0 if dj ≤ 1
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For example if dj = 9 and m = 3, then a basis for H0(P1,ΩP1(9P∞)) is
given by {dx, xdx, x2dx, . . . x7dx}. This basis has 8 elements, and each triple
{dx, xdx, x2dx}, {x3dx, x4dx, x5dx} contributes one to each class S0, S1, S2,
while there are two remaining basis elements {x6dx, x7dx, }, which con-
tribute one to S1, S2. Notice that

⌊
8
3

⌋
= 2 and y(ℓ) = 1 for ℓ = 1, 2.

In particular if m = 2, then nj,ℓ = 0 if dj ≤ 1 and for dj ≥ 2 we have

(13) nj,ℓ =


dj−1
2 if dj ≡ 1 mod2

dj
2 − 1 if ℓ = 0 and dj ≡ 0 mod2
dj
2 if ℓ = 1 and dj ≡ 0 mod2

Lemma 20. Let m = 2 and assume that dj−1 = dj + 1. Then if dj ≥ 2

nj−1,ℓ − nj,ℓ =


1 if dj−1 ≡ 1 mod2 and ℓ = 0

or dj−1 ≡ 0 mod2 and ℓ = 1

0 if dj−1 ≡ 1 mod2 and ℓ = 1

or dj−1 ≡ 0 mod2 and ℓ = 0

If dj ≤ 1, then

nj−1,ℓ − nj,ℓ =

{
0 if dj = 0 or (dj = 1 and ℓ = 0)

1 if dj = 1 and ℓ = 1

Proof. Assume that dj ≥ 2. We distinguish the following two cases, and we
will use eq. (13)

• dj−1 is odd and dj is even. Then, if ℓ = 0

nj−1,ℓ − nj,ℓ =
dj−1 − 1

2
− dj

2
+ 1 = 1

while nj−1,ℓ − nj,ℓ = 0 if ℓ = 1.
• dj−1 is even and dj is odd. Then, if ℓ = 0

nj−1,ℓ − nj,ℓ =
dj−1

2
− 1− dj − 1

2
= 0,

while nj−1,ℓ − nj,ℓ = 1 if ℓ = 0.

If now dj = 0 and dj−1 = 1, then nj−1,ℓ − nj,ℓ = 0. If dj = 1 and dj−1 = 2
then nj,ℓ = 0 while nj−1,ℓ = 0 if ℓ = 0 and nj−1,ℓ = 1 if ℓ = 1.

□

Theorem 21. Let M = H0(X,ΩX), let τ be the generator of Cq, and for

all 0 ≤ j < q we define M (j) to be the kernel of the action of k[Cq](τ − 1)j.

For 0 ≤ a ≤ m−1 and 1 ≤ b ≤ q = ph, let n(a, b) be the number of indecom-
posable direct k[Cq ⋊ Cm]-module summands of M that are isomorphic to
Ua,b. Let n1(a, b) be the number of indecomposable direct k[Cm]-summands

of M (b)/M (b−1) with socle Sχ−(b−1)(a) and dimension 1. Let n2(a, b) be the
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number of indecomposable direct k[Cm]-module summands of M (b+1)/M (b)

with socle Sχ−b(a), where we set n2(a, b) = 0 if b = q.

n(a, b) = n1(a, b)− n2(a, b).
The numbers n1(a, b), n2(a, b) can be computed using the isomorphism

M (j+1)/M (j) ∼= Sχ−j ⊗k H
0(Y,ΩY (Dj)),

where Y = X/Cq and Dj are the divisors on Y , given in definition 18.

Proof. This theorem is proved in [4], see remark 4.4. □

Corollary 22. Set dj =
⌊

1
ph

∑h
l=1 p

h−l(p− 1 + (p− 1− al,t)bl−1)
⌋
. The

numbers n(a, b), n1(a, b) and n2(a, b) are given by

n(a, b) = n1(a, b)− n2(a, b) = nb−1,a − nb,a.
Proof. We will treat the n1(a, b) case and the n2(a, b) follows similarly. By
the equivariant isomorphism for M = H0(X,ΩX) we have that

M (b)/M (b−1) ∼= Sχ−(b−1) ⊗k H
0(P1,ΩP1(Db)).

The number of idecomposable k[Cm]-summands of M (b)/M (b−1) isomorphic
to Sχ−(b−1)(a) = Sa−(b−1)a0 equals to the number of idecomposable k[Cm]-

summands of H0(P1,ΩP1(Dj)) isomorphic to Sa which is computed in re-
mark 19. □

In [23, Th. 1.1] A. Obus and R. Pries described the upper jumps in the
ramification filtration of Cph ⋊ Cm-covers.

Theorem 23. Let G = Cph ⋊ Cm, where p ∤ m. Let m′ = |CentG(σ)|/ph,
where ⟨τ⟩ = Cph. A sequence u1 ≤ · · · ≤ un of rational numbers occurs as
the set of positive breaks in the upper numbering of the ramification filtration
of a G-Galois extension of k((t)) if and only if:

(1) ui ∈ 1
mN for 1 ≤ i ≤ h

(2) gcd(m,mu1) = m′

(3) p ∤ mu1 and for 1 < i ≤ h, either ui = pui−1 or both ui > pui−1 and
p ∤ mui.

(4) mui ≡ mu1 modm for 1 ≤ i ≤ n.
Notice that in our setting CentG(τ) = ⟨τ⟩, therefore m′ = 1. Also the set

of upper jumps of Cph is given by w1 = mu1, . . . , wh = muh, wi ∈ N, see [23,
lemma 3.5].

The theorem of Hasse-Arf [28, p. 77] applied for cyclic groups, implies
that there are strictly positive integers ι0, ι1, . . . , ιh−1 such that

bs =
s−1∑
ν=0

ινp
ν , for 0 ≤ s ≤ h− 1.

Also, the upper jumps for the Cq extension are given by

(14) w0 = i0 − 1, w1 = i0 + i1 − 1, . . . , wh = i0 + i1 + · · ·+ uh − 1.
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Assume that for all 0 < ν ≤ h − 1 we have wν = pwν−1. Equation (14)
implies that

i1 = (p− 1)w0, i2 = (p− 1)pw0, i3 = (p− 1)p2w0, . . . , uh−1 = (p− 1)ph−2w0.

Therefore,

bℓ + 1 =
ℓ∑

ν=0

iνp
ν

= 1 + w0 + (p− 1)w0 · p+ (p− 1)pw0 · p2 · · ·+ (p− 1)pℓ−1w0 · pℓ

= 1 + u0 + p(p− 1)u0

(
ℓ−1∑
ν=0

p2ν

)
= 1 + w0 + p(p− 1)w0

p2ℓ − 1

p2 − 1

= 1 + w0 + pw0
p2ℓ − 1

p+ 1
= 1 + w0

p2ℓ+1 + 1

p+ 1
,

where we have used that w0 = b0 = i0 − 1.

6.1. Examples of local actions that don’t lift. Consider the curve with
lower jumps 1, 21, 521 and higer jumps 1, 5, 25, acted on by C125 ⋊ C4. Ac-
cording to eq. (5), the only possible values for α are 1, 57, 68, 124. The value
α = 1 gives rise to a cyclic group G, while the value α = 124 has order 2
modulo 125. The values 57, 68 have order 4 modulo 125. The cyclic group F∗

5

is generated by the primitive root 2 of order 4. We have that 57 ≡ 2 mod5,
while 68 ≡ 3 ≡ 23 mod5.

Using corollary 22 together with remark 19 we have that H0(X,ΩX) is
decomposed into the following indecomposable modules, each one appearing
with multiplicity one:

U0,5, U3,11, U2,17, U1,23, U0,29, U3,35, U2,41, U1,47, U0,53, U3,59,
U2,65, U1,71, U0,77, U3,83, U2,89, U1,95, U0,101, U3,107, U2,113, U1,119

We have that 119 ≡ 3 mod4 so the module U1,119 can not be lifted by
itself. Also it can’t be paired with U0,5 since 119 + 5 ≡ 4 ̸= 1 mod4. All
other modules have dimension d such that d + 119 > 125. Therefore, the
representation of H0(G,ΩX) cannot be lifted. Notice that this example has
non-vanishing KGB obstruction, so our criterion does not give something
new here.

The case of dihedral groups, in which the KGB-obstruction is always
vanishing, is more difficult to find an example that does not lift.

The HKB-curve with lower jumps 9, 9 · 21 = 189, 9 · 521 = 4689 has
genus 11656 and the following modules appear in its decomposition, each
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one appearing with multiplicity one:

U0,1, U1,1, U0,2, U1,2, U1,3, U0,4, U1,4, U0,5, U1,6, U0,7, U1,7, U0,8, U1,8, U0,9,
U1,9, U0,11, U1,11, U0,12, U1,12, U0,13, U1,13, U0,14, U1,15, U0,16, U0,17, U1,17,
U0,18, U1,18, U0,19, U1,19, U0,21, U1,21, U0,22, U1,22, U0,23, U1,23, U1,24, U0,25,
U1,26, U0,27, U1,27, U0,28, U1,28, U0,29, U1,29, U0,31, U1,31, U0,32, U1,32, U0,33,
U0,34, U1,34, U1,35, U0,36, U0,37, U1,37, U0,38, U1,38, U0,39, U1,39, U0,41, U1,41,
U0,42, U1,42, U0,43, U1,43, U1,44, U0,45, U0,46, U1,46, U1,47, U0,48, U1,48, U0,49,
U1,49, U0,51, U1,51, U0,52, U1,52, U0,53, U0,54, U1,54, U1,55, U0,56, U0,57, U1,57,
U0,58, U1,58, U0,59, U1,59, U0,61, U1,61, U0,62, U1,62, U0,63, U1,63, U1,64, U0,65,
U0,66, U1,66, U1,67, U0,68, U1,68, U0,69, U1,69, U0,71, U1,71, U0,72, U1,72, U0,73,
U1,73, U0,74, U1,75, U0,76, U0,77, U1,77, U0,78, U1,78, U0,79, U1,79, U0,81, U1,81,
U0,82, U1,82, U0,83, U1,83, U1,84, U0,85, U1,86, U0,87, U1,87, U0,88, U1,88, U0,89,
U1,89, U0,91, U1,91, U0,92, U1,92, U0,93, U1,93, U0,94, U1,95, U0,96, U1,96, U0,97,
U0,98, U1,98, U0,99, U1,99, U0,101, U1,101, U0,102, U1,102, U1,103, U0,104, U1,104,
U0,105, U1,106, U0,107, U1,107, U0,108, U1,108, U0,109, U1,109, U0,111, U1,111,
U0,112, U1,112, U0,113, U1,113, U0,114, U1,115, U0,116, U1,116, U0,117, U0,118,
U1,118, U0,119, U1,119, U0,121, U1,121, U0,122, U1,122, U0,123, U1,123, U1,124,

The above formulas were computed using Sage 9.8 [29]. In order to be
completely sure that the computations are correct we will compute the values
we need by hand also. We have

dj =

⌊
1

125

(
52
(
4 + (4− a1)9

)
+ 5
(
4 + (4− a2)189

)
+
(
4 + (4− a3)4689

))⌋
=

⌊
1

125
(23560− 225a1 − 945a2 − 4689a3)

⌋
j p−adic dj nj,0 nj,1 nj−1,0 − nj,0 nj−1,1 − nj,1
0 0, 0, 0

⌊
23560
125

⌋
= 188 93 94 − −

1 1, 0, 0
⌊
23335
125

⌋
= 186 92 93 1 1

2 1, 0, 0
⌊
23110
125

⌋
= 184 91 92 1 1

3 1, 0, 0
⌊
22885
125

⌋
= 183 91 91 0 1

4 1, 0, 0
⌊
22660
125

⌋
= 181 90 90 1 1

5 0, 1, 0
⌊
22615
125

⌋
= 180 89 90 1 0

6 1, 1, 0
⌊
22390
125

⌋
= 179 89 89 0 1

...
...

...
...

...
...

...

120 0, 4, 4
⌊
1024
125

⌋
= 8 3 4

121 1, 4, 4
⌊
799
125

⌋
= 6 2 3 1 1

122 2, 4, 4
⌊
574
125

⌋
= 4 1 2 1 1

123 3, 4, 4
⌊
349
125

⌋
= 2 0 1 1 1

124 4, 4, 4
⌊
124
125

⌋
= 0 0 0 0 1

Notice that U1,123, U0,123 can be paired with U1,0, U1,1, and then for U0,121,
U1,121 there is only one U1,3 to be paired with. The lift is not possible.
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6.2. Examples of actions that lift. Our aim now is to prove the following

Proposition 24. Assume that the first lower jump equals b0 = w0 = 1 and
each other lower jump is given by

(15) bℓ =
p2ℓ+1 + 1

p+ 1
.

Then, the local action of the dihedral group Dph lifts.

Remark 25. Notice that in this case if dj−1 > dj then dj−1 = dj + 1.

Remark 26. This set of upper jumps was constructed by assuming that
w0 = 1 and wν = pwν−1 for all 0 < wν ≤ h−1. Hence the above proposition
is a special case of [22, cor. 1.20], for m = 2.

Definition 27. For an integer j with p-adic expansion j = a1 + a2p+ · · ·+
ahp

h−1 we define

B(j) =

h∑
ℓ=1

aℓbℓ−1p
h−ℓ.

Lemma 28. Write

j − 1 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)ps−2 + asp
s−1 + · · ·

j = (as + 1)ps−1 + · · ·
where 1 ≤ s ≤ h is the smallest integer such that the corresponding coeffi-
cient as in the p-adic expansion of j − 1 satisfies 0 ≤ as < p− 1. Then

(16) B(j)−B(j − 1) = ph−s.

Proof. By definition of the function B(j) and using the values of bℓ from eq.
(15), we have

B(j)−B(j − 1) = bs−1p
h−s − (p− 1)(b0p

h−1 + · · ·+ bs−2p
h−s+1)

=
p2s−1 + 1

p+ 1
ph−s − (p− 1)

s−1∑
ν=1

ph−ν p
2ν−1 + 1

p+ 1

= ph−s.

□

Definition 29. We will call the element j of type s if all p-adic coefficients
a = ν in the p-adic expansion of j for 1 ≤ ν ≤ s − 1 are p − 1, while as is
not p− 1. For example j − 1 in lemma 28 is of type s, while j is of type 1.

Proposition 30. Write πj =
⌊
B(j)
ph

⌋
. Then,

πj =

{
πj−1 + 1 if j = k(p+ 1)

πj−1 otherwise

Also ph ∤ B(j) for all 1 ≤ j ≤ ph − 1.
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Proof. Equation (16) implies that B(j) > B(j − 1) hence πj ≥ πj−1. Write

B(j) = πjp
h + vj , 0 ≤ vj < ph for each 0 ≤ j ≤ ph−1. We observe first that

B(j)−B(j − 1) = (πj − πj−1)p
h + vj − vj−1

therefore

πj − πj−1 =
1

ps
− vj−1 − vj

ph
.

Notice that |vj − vj−1| < ph, thus |πj − πj−1| < 2. Since πj ≥ πj−1 we have
either πj = πj−1 or πj = πj−1 + 1.

In the following table we present the change on B(j) after increasing j−1
to j, where j − 1 has type s, using lemma 28.

j B(j)
⌊
B(j)
ph

⌋
0 0 0
1 ph−1 0

a1 = 2, . . . , p− 1 a1p
h−1 0

p (p− 1)ph−1 + ph−2 0

p+ 1 ph + ph−2 1

p+ 2 ph + ph−2 + ph−1 1
p+ a1, a1 = 3, . . . , p− 1 ph + ph−2 + (a1 − 1)ph−1 1

2p ph + 2ph−2 + (p− 2)ph−1 1
2p+ 1 ph + 2ph−2 + (p− 1)ph−1 1

2p+ 2 2ph + 2ph−2 2

2p+ 3 2ph + 2ph−2 + ph−1 2
2p+ a1 2ph + 2ph−2 + (a1 − 2)ph−1 2

3p 2ph + 3ph−2 + (p− 3)ph−1 2
· · · · · · · · ·

(p− 1)p (p− 2)ph + (p− 1)ph−2 + ph−1 p− 2
· · · · · · · · ·

(p− 1) + (p− 1)p (p− 1)ph + (p− 1)ph−2 p− 1
p2 (p− 1)ph + (p− 1)ph−2 + ph−3 p− 1
· · · · · · · · ·

(p− 1) + p2 (p− 1)ph + (p− 1)ph−2 + ph−3 + (p− 1)ph−1 p− 1

p+ p2 ph+1 + ph−3 p

1 + p+ p2 ph+1 + ph−1 + ph−3 p

Indeed, if the type of j − 1 is s = 1 then B(j) = B(j − 1) + ph−1, therefore
πj = πj−1. It is clear from the above table that πj = πj−1+1 at j = kp+k,
for 1 ≤ k ≤ p. These integers are put in a box in the table above.

We will prove the result in full generality by induction. Observe that if
j − 1 is of type s, and πj = πj−1 + 1, then B(j) = B(j − 1) + ph−s and
moreover

B(j − 1) = (p− 1)ph−1 + (p− 1)ph−2 + · · ·+ (p− 1)ph−s + πj−1p
h + u

B(j) = ph + πj−1p
h + u
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for some

u = uj − (p− 1)ph−1 + (p− 1)ph−2 + · · ·+ (p− 1)ph−s =

h−s−1∑
ν=0

γνp
ν ,

for some integers 0 ≤ γν < p, 0 ≤ ν ≤ h − s − 1. Set T = πj−1p
h + u.

Assume by induction that this jump occurs at j = k(p+ 1). We will prove
that the next jump will occur at j = k(p + 1) + (p + 1) = (k + 1)(p + 1).
Indeed, j has the zero p-adic coefficient a0 equal to 0, so it is of type 1 and
we have

B(j + 1) = B(j) + ph−1 + T(17)

B(j + 2) = B(j) + 2ph−1 + T

· · ·

B(j + (p− 1)) = B(j) + (p− 1)ph−1 + T ←− type 2

B(j + p) = B(j) + (p− 1)ph−1 + ph−2 + T

B(j + p+ 1) = B(j) + ph + T + ph−2.

Therefore, πj = πj+1 = · · · = πj+p < πj+(p+1) = πj + 1, i.e. the desired
result.

In order to prove that ph ∤ B(j) we observe first that all values of B(j)
given in the table are not divisible by ph. The result can be proved by
induction. Indeed, we can assume that B(j) is not divisible by ph and then
we add ph−1. Therefore all values in equation (17) when divided by ph have
non-zero residue either νph−1 + u for ν = 1, . . . , (p− 1) or ph−2 + u. □

Theorem 31. Assume that w0 = 1, and the jumps of the Cq action are as
in proposition 24. Then each direct summand U(ϵ, j) of H0(X,ΩX) has a
compatible pair according to criterion 6, which is given by

U(ϵ′, ph − 1− j) if h is odd

U(ϵ′, ph − p− j) if h is even

Proof. For every 1 ≤ j ≤ ph−1, set j̃ = ph−1− j. For every 1 ≤ j ≤ ph−1
write B(j) = πjp

h + vj , 0 ≤ vj < ph. Recall that

dj =

⌊
ph − 1 +B(ph − 1)−B(j)

ph

⌋
=

⌊
ph − 1 +B(j̃)

ph

⌋
= 1+πj̃+

⌊
−1 + vj
ph

⌋
.

Since vj ̸= 0, we have that
⌊
−1+vj

ph

⌋
= 0. Therefore, dj−1 > dj if and only if

πj̃+1 > πj̃ that is

(18) j̃ + 1 = k(p+ 1)⇒ j̃ = k(p+ 1)− 1.

Observe now that if dj−1 = dj + 1, that is j̃ = k(p+ 1)− 1, then

(19) j = ph − 1− j̃ = ph − k(p+ 1).
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• If h is odd, then by the right hand side of eq. (18) we have

j̃ = ph − (1 + ph) + k(p+ 1) = ph − k′(p+ 1)

for some integer k′ = ph+1
p+1 − k, since in this case p + 1 | ph + 1. This

proves that dj̃−1 = dj̃ + 1, using proposition 30, since both j, j̃ are of

the same form. Using ˜̃j = j we can assume that j < j̃. Then dj − dj̃
is the number of jumps between dj , dj̃ , that is the number of elements

x = ph − lx(p+ 1) ∈ N of the form

j = ph − k(p+ 1) < ph − lx(p+ 1) ≤ ph − k′(p+ 1)

that is k′ ≤ lx < k. This number equals k − k′ = 2k − ph+1
p+1 , which is odd

since ph+1
p+1 =

∑h−1
ν=0(−p)ν is odd.

• If h is even, then we set j′ = ph − p− j and using eq. (19) we have

j′ = ph − p− j = ph − (p+ ph) + k(p+ 1) = ph − k′(p+ 1)

for some integer k′ = ph+p
p+1 − k, since in this case p + 1 | ph + p. As

in the h odd case, this proves that dj̃−1 = dj̃ + 1, using proposition 30,

since both j, j′ are of the same form. Again since j′′ = j we can assume
that j < j′. As in the odd h case, the difference dj − dj′ is the number

of jumps between dj , dj′ , which equals to 2k − ph+p
p+1 which is odd since

ph+p
p+1 = pp

h−1+1
p+1 is odd.

Observe that we have proved in both cases that dj is odd if and only if dj̃
(resp. d′j) is even. The change of ϵ to ϵ′ follows by lemma 20, which implies

that if we have the indecomposable summand U(ϵ, dj), where ϵ ∈ {0, 1},
then we also have U(ϵ′, dj̃) (resp. U(ϵ′, dj′)) with ϵ′ ∈ {0, 1} − {ϵ} and

dj + dj̃ ≤ qh (resp. dj + dj′ ≤ qh), that is criterion 6 is satisfied. □
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