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Abstract. The automorphism group of a curve is studied from the view-
point of the canonical embedding and Petri’s theorem. A criterion for
identifying the automorphism group as an algebraic subgroup the gen-
eral linear group is given. Furthermore, the action of the automorphism
group is extended to a linear action on the generators of the minimal
free resolution of the canonical ring of the curve X.
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1. Introduction

Let X be a non-singular complete algebraic curve defined over an alge-
braically closed field of characteristic p ≥ 0. If the genus g of the curve
X is g ≥ 2 then the automorphism group G = Aut(X) of the curve X is fi-
nite. The theory of automorphisms of curves is an interesting object of study,
see the surveys [1], [5] and the references therein.

On the other hand the theory of syzygies which originates in the work
of Hilbert and Sylvester has attracted a lot of researchers and it seems that
a lot of geometric information can be found in the minimal free resolution
of the ring of functions of an algebraic curve. For an introduction to this
fascinating area we refer to [7].

In this article we aim to put together the theory of syzygies of the
canonical embedding and the theory of automorphisms of curves. Throughout
this article X is a non-hyperelliptic, non-trigonal and a non-singular quintic
of genus 6 and we also assume p ̸= 2. These conditions are needed for Petri’s
theorem to hold, while the p ̸= 2 condition is needed to ensure the faithful
action of the automorphism group on the space of holomorphic differentials
H0(X,ΩX).
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More precisely, in section 2.1 we use Petri’s theorem in order to give a
necessary and sufficient condition for an element in GL(H0(X,ΩX)) to act
as an automorphism of our curve. In this way we can arrive to

Proposition 1. The automorphism group of a curve X as a finite set can be
seen as a subset of the g2(g + 1)2 − 1-dimensional projective space and can
be described by explicit quadratic equations.

In section 3 we show that the automorphism group G of the curve acts
linearly on a minimal free resolution F of the ring of regular functions SX

of the curve X canonically embedded in Pg−1. Notice that an action of a
group G on a graded moduleM gives rise to a series of linear representations
ρd : G→Md to all linear spacesMd of degree d for d ∈ Z. For the case of the
free modules Fi of the minimal free resolution F we relate the actions of the
group G in both Fi and in the dual Fg−2−i in terms of an inner automorphism
of G.

This information is used in order to show that the action of the group
G on generators of the modules Fi sends generators of degree d to linear
combinations of generators of degree d. Let S = Sym(H0(X,ΩX)) be the
symmetric algebra of H0(X,ΩX).

Proposition 2. There is a well defined linear action of the automorphism
group G on minimal generators of the free resolution, which sends a minimal
generator of degree d of the free module Fi to a linear combination of other
generators of degree d.

The degree d-part of TorSi (k, SX) will be denoted by TorSi (k, SX)d,
which is a vector space of dimension βi,d. We can use our computation in

order to show that all TorSi (k, SX)d are acted on by the group G, but this
also follows by Koszul cohomology, see [2]. Indeed, one starts with the vector
space V = H0(X,ΩX), dimV = g, S = Sym(V ) and considers the exact
Koszul complex

0 → ∧gV ⊗ S(−g) → ∧g−1V ⊗ S(−g + 1) → · · ·

· · · → ∧2V ⊗ S(−2) → v ⊗ S(−1) → S → k → 0.

The symmetry property of the Tor functor implies that one can calculate
TorSi (k, SX) by using the Koszul resolution of k instead of the Koszul res-
olution of SX . Since the Koszul resolution of k is a complex of G-modules
and all differentials are G-module morphisms the TorSi (k, SX)d are naturally
G-modules. On the other hand the passage to the action on generators is not
explicit since the isomorphism between the graded components of the terms
in the minimal resolution and Koszul cohomology spaces is not explicit, as
as it comes from the spectral sequence that ensures the symmetry of Tor
functor.

Finally, the representations to the d graded space of each Fi, ρi,d : G→
GL(Fi,d) can be expressed as a direct sum of the G-modules TorSi (k, SX)d.
We conclude by showing that the G-module structure of all Fi is determined
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by knowledge of the G-module structure of H0(X,ΩX) and the G-module

structure of each TorSi (k, SX) for all 0 ≤ i ≤ g − 2.
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2. Automorphisms of curves and Petri’s theorem

Consider a complete non-singular non-hyperelliptic curve of genus g ≥ 3
over an algebraically closed field K. Let ΩX denote the sheaf of holomorphic
differentials on X.

Theorem 3 (Noether-Enriques-Petri). There is a short exact sequence

0 → IX → SymH0(X,ΩX) →
∞⊕

n=0

H0(X,Ω⊗n
X ) → 0,

where IX is generated by elements of degree 2 and 3. Also if X is not a non-
singular quintic of genus 6 or X is not a trigonal curve, then IX is generated
by elements of degree 2.

For a proof of this theorem we refer to [16], [9]. The ideal IX is called the
canonical ideal and it is the homogeneous ideal of the embedded curve X →
Pg−1
k . The automorphism group of the ambient space Pg−1 is known to be

PGLg(k), [10, example 7.1.1 p. 151]. On the other hand every automorphism
of X is known to act on H0(X,ΩX) giving rise to a representation

ρ : G→ GL(H0(X,ΩX)),

which is known to be faithful, when X is not hyperelliptic and p ̸= 2, see
[11]. The representation ρ in turn gives rise to a series of representations

ρd : G→ GL(Sd),

where Sd is the vector space of degree d polynomials in the ring S :=
k[ω1, . . . , ωg].

Let X ⊂ Pr be a projective algebraic set. Is it true that every auto-
morphism σ : X → X comes as the restriction of an automorphism of the
ambient projective space, that is by an element of PGLk(r)? For instance
such a criterion for complete intersections is explained in [13, sec. 2]. In the
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case of canonically embedded curves X ⊂ Pg−1 it is clear that any automor-
phism σ ∈ Aut(X) acts also on Pg−1 = ProjH0(X,ΩX). In this way we arrive
at the following:

Lemma 4. Every automorphism σ ∈ Aut(X) corresponds to an element in
PGLg(k) such that σ(IX) ⊂ IX and every element in PGLg(k) such that
σ(IX) ⊂ IX gives rise to an automorphism of X.

In the next section we will describe the elements σ ∈ PGLg(k) such that
σ(IX) ⊂ IX .

2.1. Algebraic equations of automorphisms

For now on we will assume that the canonical ideal IX is generated by poly-
nomials in k[ω1, . . . , ωg] = SymH0(X,ΩX) of degree 2, that is the require-
ments for Petri’s theorem hold. Consider such a set of quadratic polynomials
Ã1, . . . , Ãr generating IX .

A polynomial Ãi of degree two can be encoded in terms of a symmetric
g × g matrix Ai = (aν,µ) as follows. Set ω̄ = (ω1, . . . , ωg)

t. We have

Ãi(ω̄) = ω̄tAiω̄.

The polynomial σ(Ãi) is still a polynomial of degree two so we write

σ(Ai) for the symmetric g× g matrix such that σ(Ãi) = ω̄tσ(A)iω̄. It is clear
that for an element σ ∈ GLg(k), σ(IX) ⊂ IX holds if and only if for all
1 ≤ i ≤ r, σ(Ai) ∈ spank{A1, . . . , Ar}. This means that

(σµ,ν)
tAi(σµ,ν) =

r∑
j=1

λ(σ)jiAj for every 1 ≤ i ≤ j. (1)

2.2. The automorphism group as an algebraic set.

Let A1, . . . , Ar be a set of linear independent g × g matrices such that the
wtAiw 1 ≤ i ≤ r generate the canonical ideal, and wt = (w1, . . . , wg) is a
basis of the space of holomorphic differentials. By choosing an ordered basis of
the vector space of symmetric g×g matrices we can represent any symmetric

g × g matrix A as an element Ā ∈ k
g(g+1)

2 , that is

·̄ : Symmetric g × g matrices −→ k
g(g+1)

2

A 7−→ Ā

We can now put together the r elements Āi as a g(g + 1)/2 × r matrix(
Ā1| · · · |Ār

)
, which has full rank r, since {A1, . . . , Ar} are assumed to be

linear independent.

Proposition 5. An element σ = (σij) ∈ GLg(k) induces an action on the
curve X, if and only if the g(g + 1)/2× 2r matrix

B(σ) =
[
Ā1, . . . , Ār, σtA1σ, . . . , σtArσ

]
has rank r.
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We have that σ is an automorphism if the g(g+1)/2× 2r-matrix B(σ)
has rank r, which means that (r+1)× (r+1)-minors of B(σ) are zero. This
provides us with a description of the automorphism group as a determinantal
variety given by explicit equations of degree (r + 1)2.

But we can do better. Using Gauss elimination we can find a g(g+1)
2 ×

g(g+1)
2 invertible matrix Q which puts the matrix

(
Ā1| · · · |Ār

)
in echelon

form, that is

Q
(
Ā1| · · · |Ār

)
=

(
Ir

O( g(g+1)
2 −r)×r

)
.

But then for each 1 ≤ i ≤ r eq. (1) is satisfied if and only if the lower

( g(g+1)
2 − r)× r bottom block matrix of the matrix

Q
(
σtA1σ| · · · |σtArσ

)
(2)

is zero, while the top r × r block matrix gives rise to the representation

ρ1 : G→ GLr(k),

defined by equation (1). Assuming that the lower ( g(g+1)
2 − r) × r bottom

block matrix gives us r( g(g+1)
2 − r) equations where the entries σ = (σij)

are seen as indeterminates. In this way we can write down elements of the
automorphism group as a zero dimensional algebraic set, satisfying certain
quadratic equations.

3. Syzygies

3.1. Extending group actions

Recall that S = k[ω1, . . . , ωg] is the polynomial ring in g variables. Let
M be a graded S-module acted on by the group G, generated by the ele-
ments m1, . . . ,mr of corresponding degrees a1, . . . , ar. We consider the free
S-module F0 =

⊕r
j=1 S(−aj) together with the onto map

F0 =
⊕
j

S(−aj)
π−→M. (3)

Let us denote byM1, . . . ,Mr elements of F0, such that π(Mi) = mi, assuming
also that deg(Mi) = deg(mi), for 1 ≤ i ≤ r. The action on the generators mi

is given by

σ(mi) =

r∑
ν=1

aν,imi, for some aν,i ∈ S. (4)

Remark 6. We would like to point out here that unlike the theory of vector
spaces, an element x ∈ F0 might admit two different decompositions

x =

r∑
i=1

aimi =

r∑
i=1

bimi, that is

r∑
i=1

(ai − bi)mi = 0,
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and if ai0 − bi0 ̸= 0 we cannot assume that ai0 − bi0 is invertible, so we
can’t express mi0 as an S-linear combination of the other elements mi, for
i0 ̸= i, 1 ≤ i ≤ r in order to contradict minimality. We can only deduce that
{ai − bi}i=1,...,r form a syzygy.

Therefore one might ask if the matrix (aν,i) given in eq. (4) is unique. In
proposition 9 we will prove that the elements aν,i which appear as coefficients
in eq. (4) are in the field k and therefore the expression is indeed unique.

The natural action of Aut(X) on H0(X,ΩX) can be extended to an
action on the ring S = SymH0(X,ΩX), so that σ(xy) = σ(x)σ(y) for all
x, y ∈ S. Therefore if M = IX then for all s ∈ S, m ∈ IX = M we have
σ(sm) = σ(s)σ(m). All the actions in the modules we will consider will have
this property.

For a free module F =
⊕s

j=1 S(−aj), generated by the elements Mi,

1 ≤ i ≤ r, deg(Mi) = ai and a map π : F →M we define the action of G by

σ

 r∑
j=1

sjMj

 =

r∑
j=1

σ(sj)

r∑
ν=1

aν,j(σ)Mν =

r∑
ν=1

 r∑
j=1

aν,j(σ)σ(sj)

Mν ,

where degS aν,j + aν = degS mj . This means that under the action of σ ∈ G
the r-tuple (s1, . . . , sr)

t is sent tos1...
sr

 σ7−→

a1,1(σ) a1,2(σ) · · · a1,r(σ)
...

...
...

ar,1(σ) ar,2(σ) · · · ar,r(σ)


σ(s1)...
σ(sr)

 .

If A(σ) =
(
ai,j(σ)

)
is the matrix corresponding to σ then for σ, τ ∈ G the

following cocycle condition holds:

A(στ) = A(σ)A(τ)σ.

If we can assume that G acts trivially on the matrix A(τ) for every τ ∈ G
(for instance when A(τ) is a matrix with entries in k for every τ ∈ G), then
the above cocycle condition becomes a homomorphism condition.

Also if A(σ) is a principal derivation, that is there is an r× r matrix Q,
such that

A(σ) = σ(Q) ·Q−1

then after a basis change of the generators we can show that the action on
the coordinates is just given by

(s1, · · · , sr)t
σ7−→ (σ(s1), · · · , σ(sr))t,

that is the matrix A(σ) is the identity. We will call the action on the free
resolution F obtained by extending the action on M the standard action.
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3.2. Group actions on free resolutions

Recall that S = k[ω1, . . . , ωg] is the polynomial ring in g variables. Let M be
a graded S-module generated by the elements m1, . . . ,mr of corresponding
degrees a1, . . . , ar. Consider the minimal free resolution

0 // Fg

ϕg // · · · // F1
ϕ1 //// F0 , (5)

where coker(ϕ1) = F0/Imϕ1 = F0/kerπ ∼= M . Let m be the maximal ideal
of S generated by ⟨ω1, . . . , ωg⟩. Each free module in the resolution can be
written as

Fi =
⊕
j

S(−j)βi,j ,

where the integers βi,j are the Betti numbers of the resolution. The Betti
numbers satisfy

βi,j = βg−2−i,g+1−j . (6)

as one can see by using the self duality of the above resolution by twisting
by S(−g) see [15, prop. 4.1.1], [7, prop. 9.5] or by using Koszul cohomology,
see [8, prop. 4.1].

Assume that M and each Fi is acted on by a group G and that the
maps δi are G-equivariant. We will now study the action of the group G on
the generators of Fi. First of all we have that

Fi =

ri⊕
ν=1

βi,ν⊕
µ=1

ei,ν,µS ∼=
ri⊕

ν=1

S(−di,ν)βi,ν .

In the above formula we assumed that Fi is generated by elements ei,ν,µ such
that the degree of ei,ν,µ = di,ν for all 1 ≤ µ ≤ βi,ν . We also assume that

di,1 < di,2 < · · · < di,ri .

The action of σ is respecting the degrees, so an element of minimal degree
di,1 is sent to a linear combination of elements of minimal degree di,1. In this
way we obtain a representation

ρi,1 : G→ GL(βi,1, k).

In a similar way an element ei,2,µ of degree di,2 is sent to an element of degree
di,2 and we have that

σ(ei,2,µ) =

βi,2∑
j1=1

λi,2,µ,j1ei,2,j1 +

βi,1∑
j2=1

λ′i,2,µ,j1ei,1,j2 ,

where all λi,2,µ,j1 ∈ k and all λ′i,1,µ,j2 ∈ mdi,2−di,1 . In this case we have a
representation with entries in an ring instead of a field, which has the form:

ρi,2 : G→ GL(βi,1 + βi,2,m
di,2−di,1),

σ 7→
(
A1(σ) A1,2(σ)

0 A2(σ)

)
,

where A1(σ) ∈ GL(βi,1, k) and A2(σ) ∈ mdi,2−di,1GL(βi,2, k).
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By induction the situation in the general setting gives rise to a series of
representations:

ρi,j : G→ GL(βi,1 + βi,2,m
di,j−di,1)

σ 7→ A(σ) =


A1(σ) A1,2(σ) · · · A1,j(σ)

0 A2(σ) A2,j(σ)
...

. . .
...

0 · · · 0 Aj(σ)

 (7)

where Aν(σ) ∈ GL(βi,ν , k) and Aκ,λ(σ) is an βi,κ × βi,λ matrix with coef-
ficients in mβi,λ−βi,κ . The representation ρi,ri taken modulo m reduces to

TorSi (k,M), seen as a k[G]-module.

3.3. Unique actions

Let us consider two actions of the automorphisms group G on H0(X,ΩX),
which can naturally be extended on the symmetric algebra SymH0(X,ΩX).
We will denote the first action by g ⋆ v and the second action by g ◦ v, where
g ∈ G, v ∈ SymH0(X,ΩX).

Proposition 7. If the curve X satisfies the conditions of faithful action of
G = Aut(X) on H0(X,ΩX), that is X is not hyperelliptic and p > 2, [11, th.
3.2] and moreover both actions ⋆, ◦ restrict to actions on the canonical ideal
IX , then there is an automorphism i : G→ G, such that g ⋆ v = i(g) ◦ v.

Proof. Both actions of G on H0(X,ΩX) introduce automorphisms of the
curve X. That is since G ⋆ IX = IX and G ◦ IX = IX , the group G is
mapped into Aut(X) = G. This means that for every element g ∈ G there
is an element g∗ ∈ Aut(X) = G such that g ⋆ v = g∗v, where the action on
the right is the standard action of the automorphism group on holomorphic
differentials. By the definition of the group action for every g1, g2 ∈ G we
have (g1g2)

∗v = g∗1g
∗
2v for all v ∈ H0(X,ωX) and the faithful action of the

automorphism group provides us with (g1g2)
∗ = g∗1g

∗
2 , i.e. the map i∗ : g 7→

g∗ is a homomorphism. Similarly the map corresponding to the ◦-action,
i◦ : g 7→ g◦ is a homomorphism and the desired homomorphism i is the
composition of i∗i

−1
◦ . □

The map HomS(Fi, S(−g)) induces a symmetry of the free resolution F
by sending Fi to Fg−2−i. Each free module Fi of the resolution F is equipped
by the extension of the action on holomorphic differentials, according to the
construction of section 3.2. On the other hand since S(−g) is a G-module we
have that Fg−2−i

∼= HomS(Fi, S(−g)) is equipped by a second action namely
every ϕ : Fi → S(−g) is acted naturally by G in terms of ϕ 7→ ϕσ = σ−1ϕσ.
How are the two actions related?

Lemma 8. Denote by ⋆ the action of G on Fi induced by taking the S(−g)-
dual. The standard and the ⋆-actions are connected in terms of an automor-
phism ψi of G, that is for all v ∈ Fi g ⋆ v = ψi(g)v.
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Proof. Assume that i ≤ g−2−i. Consider the standard action of G on the free
resolution F. The module Fg−2−i obtains a new action g ⋆v for g ∈ G, v ∈ Fi.
By 3.2 this ⋆ action is transferred to an action on all Fj for j ≥ g − 2 − i,
including the final term Fg−2 which is isomorphic to S(−1). This gives us
two actions on H0(X,ΩX) which satisfy the requirements of proposition 7.
The desired result follows, since the action can be pulled back to all syzygies
using either F or F∗. □

Proposition 9. Under the faithful action requirement we have that all auto-
morphisms σ ∈ G send the direct summand S(−j)βi,j of Fi to itself, that is
the representation matrix in eq. (7) is block diagonal.

Proof. Consider Fi =
⊕ri

ν=1Mi,νS, where Mi,1, . . . ,Mi,ri are assumed to be
minimal generators of Fi with descending degrees ai,ν = deg(mi,ν), 1 ≤ ν ≤
ri. The action of an element σ is given in terms of the matrix A(σ) given in
equation (7). The element ϕ ∈ HomS(Fi, S(−g)) is sent to

h : HomS(Fi, S(−g))
∼=−→ Fg−2−i (8)

ϕ 7−→
(
ϕ(Mi,1), . . . , ϕ(Mi,ri)

)
Each ϕ(Mi,ν) can be considered as an element in S(−g−1+deg(mi,ν)) inside
Fg−2−i. Observe that the element ϕ ∈ HomS(Fi, S(−g)) is known if we know
all ϕ(Mi,ν) for 1 ≤ ν ≤ ri. From now on we will identify such an element ϕ
as a ri-tuple

(
ϕ(Mi,ν)

)
1≤ν≤ri

.

Recall that if A,B are G-modules, then there is an natural action on
Hom(A,B), sending ϕ ∈ Hom(A,B) to σϕ, which is the map

σϕ : A ∋ a 7→ σϕ(σ−1a).

We have also a second action on the module Fg−2−i. We compute
σϕ(Mi,ν) for all base elements Mi,ν in order to describe σϕ:

σ
(
ϕ(σ−1Mi,ν)

)
1≤ν≤κ

=

(
ri∑

µ=1

σ
(
αµ,ν(σ

−1)
)
σϕ(Mi,µ)

)
1≤ν≤ri

=

(
ri∑

µ=1

σ
(
αµ,ν(σ

−1)
)
χ(σ)ϕ(Mi,µ)

)
1≤ν≤ri

where in the last equation we have used the fact that ϕ(Mi) are in the rank
one G-module S(−g) ∼= ∧g−1Ω1

X hence the action of σ ∈ G is given by
multiplication by χ(σ), where χ(σ) is an invertible element is S.

In order to simplify the notation consider i fixed, and denoteMν =Mi,ν ,
r = ri, ai,j = aj . We can consider as a basis of Hom(Fi, S(−g)) the morphisms
ϕµ given by

ϕµ(Mj) = δµ,j · E, (9)

where E is a basis element of degree g of the rank 1 module S(−g) ∼= S · E.
This is a different basis than the basis Mg−2−i,ν , 1 ≤ n ≤ rg−2−i of Fg−2−i

we have already introduced.
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According to eq. (6) if Mj has degree aj then the element ϕj has degree
g + 1 − aj . Assume that Mr has maximal degree ar. Then, ϕr has minimal
degree. Moreover, in order to describe σϕr we have to consider the tuple
(σϕr(M1), . . . ,

σ ϕr(Mr)). We have(σ
ϕr(Mν)

)
1≤ν≤r

=

(
r∑

µ=1

σ
(
α(i)
µ,ν(σ

−1)
)
χ(σ)ϕr(Mµ)

)
1≤ν≤r

(9)
==

(
σ
(
α(i)
r,ν(σ

−1)
)
χ(σ)E

)
1≤ν≤r

and we finally conclude that

σϕr =

r∑
ν=1

σ−1
(
α(i)
r,ν(σ

−1)
)
χ(σ)ϕν .

In this way every element x ∈ Fg−2−i is acted on by σ in terms of the action

σ ⋆ x = h
(σ
h−1(x)

)
,

where h is the map given in eq. (8). On the other hand the elements h(ϕr)
are in Fg−2−i and by lemma 8 there is an element σ′ ∈ G such that

σ′h(ϕr) =

r∑
ν=1

α(g−2−i)
ν,r (σ′)h(ϕν).

Since the element ϕν has maximal degree among generators of Fi the element
h(ϕr) has minimal degree. This means that all coefficients

α(g−2−i)
ν,r (σ′) = σ

(
α(i)
r,ν(σ

−1)
)
χ(σ)

are zero for all ν such that degmν < degµr. Therefore all coefficients a
(i)
ν,r(σ)

for ν such that degmν < degmr are zero. This holds for all σ ∈ G. By
considering in this way all elements ϕr−1, ϕr−2, . . . , ϕ1, which might have
greater degree than the degree of ϕr the result follows. □

4. Representations on the free resolution

Each S-module Fi in the minimal free resolution can be seen as a series of
representations of the group G. Indeed, the modules Fi are graded and there
is an action of G on each graded part Fi,d, given by representations

ρi,d : G→ GL
(
Fi,d

)
,

where Fi,d is the degree d part of the S-module Fi. The space TorSi (k, SX))
is clearly a G-module, and by proposition 9 there is a decomposition of G-
modules

TorSi (k, SX) =
⊕
j∈Z

TorSi (k, SX)j ,

where TorSi (k, SX)j is the k-vector space generated by generators of Fi that
have degree j. This is a vector space of dimension βi,j .
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Denote by Ind(G) the set of isomorphism classes of indecomposable
k[G]-modules. If k is of characteristic p > 0 and G has no-cyclic p-Sylow
subgroup then the set Ind(G) is infinite, see [3, p.26]. Suppose that each

TorSi (k, SX)j admits the following decomposition in terms of U ∈ Ind(G):

TorSi (k, SX)j =
⊕

U∈Ind(G)

ai,j,UU where ai,j,U ∈ Z.

We obviously have that

βi,j =
∑

U∈Ind(G)

ai,j,U dimk U.

The G-structure of Fi is given by

TorSi (k, SX)⊗ S,

that is the G-module structure of Fi,d is given by

Fi,d =
⊕
d∈Z

⊕
j∈Z

TorSi (k, SX)d−j ⊗ Sj .

5. An example: the Fermat curve

Consider the projective non singular curve given by equation

Fn : xn1 + xn2 + xn0 = 0

This curve has genus g = (n−2)(n−1)
2 . Set x = x1/x0, y = x2/x0. For ω =

dx
yn−1 = − dy

xn−1 we have that the set

xiyjω for 0 ≤ i+ j ≤ n− 3 (10)

forms a basis for holomorphic differentials, [12], [17], [18]. These g differentials
are ordered lexicographically according to (i, j), that is

ω0,0 < ω0,1 < · · · < ω0,n−3 < ω1,0 < ω1,1 < · · · < ω1,n−4 < · · · < ωn−3,0.

The case n = 2 is a rational curve, the case n = 3 is an elliptic curve, the case
n = 4 has genus 3 and gonality 3, the case n = 5 has genus 6 and is quintic
so the first Fermat curve which has canonical ideal generated by quadratic
polynomial is the case n = 6 which has genus 10.

Proposition 10. The canonical ideal of the Fermat curve Fn for n ≥ 6 consists
of two sets of relations

G1 = {ωi1,j1ωi2,j2 − ωi3,j3ωi4,j4 : i1 + i2 = i3 + i4, j1 + j2 = j3 + j4}, (11)

and

G2 =

{
ωi1,j1ωi2,j2 + ωi3,j3ωi4,j4 + ωi5,j5ωi6,j6 = 0 :

i1+i2=n+a,
i3+i4=a,
i5+i6=a,

j1+j2=b
j3+j4=n+b
j5+j6=b

}
(12)

where 0 ≤ a, b are selected such that 0 ≤ a+ b ≤ n− 3.
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We will now prove proposition 10 for n ≥ 6, following the method
developed in [6]. Observe that the holomorphic differentials given in eq. (10)
are in 1-1 correspondence with the elements of the set A = {(i, j) : 0 ≤
i + j ≤ n − 3} ⊂ N2. First we introduce the following term order on the
polynomial algebra S := SymH0(X,ΩX).

Definition 11. Choose any term order ≺t for the variables {ωN,µ : (N,µ) ∈ A}
and define the term order ≺ on the monomials of S as follows:

ωN1,µ1
ωN2,µ2

· · ·ωNd,µd
≺ ωN ′

1,µ
′
1
ωN ′

2,µ
′
2
· · ·ωN ′

s,µ
′
s
if and only if (13)

• d < s or

• d = s and
∑
µi >

∑
µ′
i or

• d = s and
∑
µi =

∑
µ′
i and

∑
Ni <

∑
N ′

i

• d = s and
∑
µi =

∑
µ′
i and

∑
Ni =

∑
N ′

i and

ωN1,µ1
ωN2,µ2

· · ·ωNd,µd
≺t ωN ′

1,µ
′
1
ωN ′

2,µ
′
2
· · ·ωN ′

s,µ
′
s
.

By evaluating
∑E

i=0

∑E−i
j=0 1 we can see that

#{(i, j) ∈ N2 : 0 ≤ i+ j ≤ E} = (E + 1)(E + 2)/2 (14)

We will use the following lemma, for a proof see [6].

Lemma 12. Let J be the ideal generated by the elements G1, G2 and let I be
the canonical ideal. Assume that the cannonical ideal is generated by elements
of degree 2. If dimL (S/in≺(J))2 ≤ 3(g − 1), then I = J .

We extend the correspondence between the variables ωi,j and the points
of A to a correspondence between monomials in S of standard degree 2 and
points of the Minkowski sum of A with itself, defined as

A+A = {(i+ i′, j + j′) | (i, j), (i′, j′) ∈ A} ⊆ N2. (15)

Proposition 13. Let A be the set of exponents of the basis of holomorphic
differentials, and let A + A denote the Minkowski sum of A with itself, as
defined in (15). Then

(ρ, T ) ∈ A+A ⇔ ∃ ωi,jωi′,j′ ∈ S such that mdeg(ωi,jωi′,j′) = (2, ρ,T).

For each n ∈ N we write Tn for the set of monomials of degree n in S
and proceed with the characterization of monomials that do not appear as
leading terms of binomials in G1 ⊆ J .

Proposition 14. Let σ be the map of sets

σ : A+A → T2

(ρ, T ) 7→ min
≺

{ωi,jωi′,j′ ∈ T2 | (ρ, T ) = (i+ i′, j + j′)}

Then

σ(A+A) = {ωi,jωi′,j′ ∈ T2 | ωi,j · ωi′,j′ ̸= in≺(f), ∀ f ∈ G1}



Automorphisms and the canonical ideal 13

The above proposition gives a characterization of the monomials that
do not appear as initial terms of elements of G1, therefore they survive
in the quotient (S/in≺(J))2. Indeed, the minimal of the set {ωi,jωi′,j′ ∈
T2 | (ρ, T ) = (i + i′, j + j′)} will never appear as the initial term of an el-
ement in G1. Therefore A + A is bijective with a basis of the vector space
(S/in≺G1)2. However, some of these monomials appear as initial terms of
polynomials in G2 and these have to be subtracted in order to compute
dimL (S/in≺(J))2

Proposition 15. Let

C = {(ρ, b) ∈ A+A | ρ = n+ a, 0 ≤ a+ b ≤ n− 6, a, b ∈ N}
Then

σ(C) ⊆ {ωi,jωi′,j′ ∈ T2 | ∃ g ∈ G2 such that ωi,jωi′,j′ = in≺(g)}
Moreover #C = #σ(C) = (n− 5)(n− 4)/2.

Proof. Observe that elements in G2 are mapped into elements of the form
xayb(xn + yn + 1)ω2 ∈ H0(X,Ω⊗2

X ). By the form of the initial term of such
an element of G2 we have for i1 + i2 = n+ a = ρ, j1 + j2 = b. Therefore

i3 + i4 = a = ρ− n, j3 + j4 = n+ b, i5 + i6 = a = ρ− n, j5 + j6 = b = T

We should have 0 ≤ a+b ≤ n−6 and by eq. (14) we have that the cardinality
of C equals (n− 5)(n− 4)/2. □

We now observe that

A+A ⊂ {i, j ∈ N : i+ j ≤ 2n− 6}
so #(A+A) ≤ (2n− 5)(2n− 4)/2 and

dimL (S/in≺(J))2 = #
(
(A+A)\C

)
= #(A+A)−#C

≤ (2n− 5)(2n− 4)

2
− (n− 5)(n− 4)

2
= 3(g − 1).

so by lemma 12 we have that I = J .

5.1. Automorphisms of the Fermat curve

The group of automorphisms of the Fermat curve is given by [19], [14]

G =

{
PGU(3, ph), if n = 1 + ph

(Z/nZ× Z/nZ)⋊ S3, otherwise

The action of the automorphism group is given in terms of a 3× 3 matrix A
sending

x = (x1/x0) 7→
∑2

i=0 a1,ixi∑2
i=0 a0,ixi

y = (x2/x0) 7→
∑2

i=0 a2,ixi∑2
i=0 a0,ixi

,

In characteristic 0, the matrix A is a monomial matrix, that is, it has only
one non-zero element in each row and column and this element is an n-th
root of unity. Two matrices A1, A2 give rise to the same automorphism if
and only if they differ by an element in the group {λI3 : λ ∈ k}. In any case
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the group G is naturally a subgroup of PGL3(k). Finding the representation
matrix of G as an element in PGLg−1(k) is easy when n ̸= 1 + ph and more
complicated in n = 1 + ph case. We have two different embeddings of the
Fermat curve Fn in projective space

Pg−1
k Fn

//oo P2
k.

In both cases the automorphism group is given as restriction of the automor-
phism group of the ambient space.

The computation of the automorphism group in terms of the vanishing
of the polynomials given in equation (2) is quite complicated.

We have performed this computation in magma [4], and it turns out
the automorphism group for the n = 6 case is described as an algebraic set
described by g2 = 100 variables and 756 equations.

1 FERMATCURVE(6, RATIONALS()) ;
2 x_{7, 8}∗x_{10, 10} − 2∗x_{9, 8}∗x_{9, 10} + x_{10, 8}∗x_{7, 10},
3 .................756 equations....................
4 >x_{7, 9}∗x_{10, 10} − 2∗x_{9, 9}∗x_{9, 10} + x_{10, 9}∗x_{7, 10}
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Boston, Boston, MA, 1985, pp. 129–142.



Automorphisms and the canonical ideal 15

10. Hartshorne, R. Algebraic geometry. Springer-Verlag, New York, 1977. Grad-
uate Texts in Mathematics, No. 52.
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