
ON THE GALOIS-MODULE STRUCTURE OF

POLYDIFFERENTIALS OF ARTIN-SCHREIER-MUMFORD

CURVES, MODULAR AND INTEGRAL REPRESENTATION

THEORY

ARISTIDES KONTOGEORGIS AND DIMITRA-DIONYSIA STERGIOPOULOU

Abstract. We study the Galois-module structure of polydifferentials for Mum-

ford curves, defined over a field of positive charactersitic, using the theory of

harmonic cocycles. For the case of Artin-Schreier-Mumford curves the struc-
ture of holomorphic polydifferentials is explicitly computed.

1. Introduction

Let X be a smooth projective curve of genus g ≥ 2 over an algebraically closed
field K of characteristic p > 0, and G a group of automorphisms of X. The
group G acts on X from the left, by our convention, and hence on the space of
n-polydifferentials H0(X,Ω⊗n

X ) from the right. The so-called Galois-module struc-

ture problem for X asks for the direct sum decomposition of H0(X,Ω⊗n
X ) into G-

indecomposable pieces. In characteristic zero, the n = 1 case is a classical result
([17]), which can be easily generalized for n ≥ 1.

In positive characteristic, the Galois-module structure is unknown in general.
There are only some partial results known. Let us give a brief overview. If the
cover X → G\X is unramified or if (|G|, p) = 1, Tamagawa [35] determined the G-
module structure of H0(X,ΩX). Valentini [37] generalized this result to unramified
extensions with G being a p-group. In the p-group case, moreover, Salvador and
Bautista [26] determined the semi-simple part of the representation with respect to
the Cartier operator. For the cyclic-group case, Valentini and Madan [38] and S.
Karanikolopoulos [18] determined the structure of H0(X,ΩX) in terms of indecom-
posable modules. A similar study has been done for the elementary abelian case by
Calderón, Salvador and Madan [30]. Finally, N. Borne [3] developed a theory, using
advanced techniques from both modular representation theory and K-theory, for
computing in some cases theK[G]-module structure of the space of polydifferentials
H0(X,Ω⊗n

X ).
Let us point out that the determination of the Galois-module structure as above

has several applications. For example, in [23], [22], the second author connected
the K[G]-module structure of H0(X,Ω⊗2

X ) to the computation of the tangent space
of the global deformation functor of curves.

In this paper, we consider the Galois-module structure problem for the so-called
Artin-Schreier-Mumford curves (see below). We give for these curves explicit bases
of the space of polydifferentials, and apply the theory of B. Köck [20] to complete
spaces of polydifferentials by admitting controlled poles at certain points in order
to obtain projective modules. By this way, we can prove that all indecomposable
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K[G]-modules admit K[G] itself as an injective hull, and finally arrive at our main
results.

Over a complete discrete valuation field K, D. Mumford [28] has shown that
a smooth projective curve with the split multiplicative reduction is isomorphic to
the algebraization of a rigid analytic curve over K of the form Γ\(P1,an

K − LΓ).
Here, Γ is a finitely generated torsion-free discrete subgroup of PGL(2,K), called a
Schottky group, and LΓ is the set of limit points. A smooth projective curve obtained
in this way, denoted by XΓ, is called a Mumford curve, and the uniformization
just described provides us with a set of tools similar to those coming from the
uniformization theory of Riemann surfaces. It is known that the subgroup Γ is
always a free group of finite rank, and the rank is equal to the genus of XΓ. The
authors together with G. Cornelissen have used this technique in order to bound the
automorphism groups of Mumford curves in [9]. In fact, the automorphism group
Aut(XΓ) is isomorphic to the quotient NΓ/Γ of the normalizer of Γ in PGL(2,K)
by Γ; cf. [9, 1.3] and [13, VII.1)]. Also the equivariant deformation theory of such
curves was studied by the first author and G. Cornelissen in [5].

One of the tools we will use is the explicit description of polydifferentials in
terms of harmonic cocycles. P. Schneider and J. Teitelbaum [31][36], defined the
space of modular forms (or harmonic measures as they are known in the literature)
Char(Γ, n) on the reduction graph, and they showed that it is naturally isomorphic
to H0(XΓ,Ω

⊗n
XΓ

). Moreover, the space Char(Γ, n) can be described by the Galois

cohomology Char(Γ, n) ∼= H1(Γ, Pn), where Pn denotes the space of polynomials of
one variable of degree ≤ 2n− 2 (cf. §2 for more details).

Now let us state our main results of this paper. We first give the definition of
Artin-Schreier-Mumford curves:

Definition 1. Let K be a complete non-archimedean valued field of characteristic
p > 0, and q a power of p. For λ ∈ K with 0 < |λ| < 1, the smooth projective
model of the affine plane curve defined by the equation

(xq − x)(yq − y) = λ

will be called an Artin-Schreier-Mumford curve.

These curves are special from quite a few points of view. For example, they are
the Mumford curves with maximal automorphism group (and hence their Schottky
groups are the analogue of classical Hurwitz groups), cf. [9] and [6]. They were
first studied by D. Subrao [34], Valentini-Madan [38], and S. Nakajima [29]. M.
Matignon has studied their equivariant liftability to characteristic zero [27], and
these curves play a special role when studying the ‘field of definition versus field of
moduli’ question for cyclic covers of the projective line (cf. [24]).

In this paper, we only deal with Artin-Schreier-Mumford curves as in Definition
1 with q = p. For the proof of the following facts, we refer to [9, §9] and [10, p.
347]:

Proposition 2. The Artin-Schreier-Mumford curves are Mumford curves of the
form XΓ, where the group Γ is, up to conjugacy, given by the commutator group
Γ = [A,B] of the cyclic subgroups A,B ⊂ PGL(2,K) of order p generated by

(1) ϵA =

(
1 1
0 1

)
and ϵB =

(
1 0
s 1

)
,

respectively, where s ∈ K× and |s| > 1. The groups A and B generate a discrete
subgroup N ⊆ PGL(2,K), which is isomorphic to the free product A∗B. Moreover:

(a) Γ is a normal subgroup of N and N/Γ ∼= A×B;
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(b) Γ is a free group of rank (p − 1)2 with the basis given by the commutators

ei,j = [ϵiA, ϵ
j
B ] (= ϵiAϵ

j
Bϵ

−i
A ϵ−j

B ) for i, j = 1, . . . , p− 1. □

Remark 3. The relation between the parameter λ in Definition 1 and the param-
eter s in Proposition 2 has been studied in [10].

It has been shown in [9, §9] that the automorphism group of the Artin-Schreier-
Mumford curve XΓ contains G = Z/pZ×Z/pZ, generated by the images of ϵA and
ϵB in Aut(XΓ) ∼= NΓ/Γ.

The first result of this paper gives the K[G]-module structure of the space of
1-differentials:

Theorem 4. (1) As a K[A]-module, we have

H0(XΓ,ΩX) ∼= Lp−1 ⊗Z K,

where L is the integral representation of A ∼= Z/pZ with the minimal rank p − 1
(corresponding to the matrix M in (9) below).

(2) As a K[G]-module, H0(XΓ,ΩX) is indecomposable.

Notice that, since the space of 1-differentials can be expressed combinatorially,
the K[A]-module structure actually comes from an integral representation as in
Theorem 4 (1), which is, however, not the case for higher polydifferentials.

Theorem 5. Suppose p ̸= 2. For n > 1, let r (0 ≤ r < p) be the remainder of
2n− 1 modulo p.

(1) As a K[A]-module, the following decomposition holds:

H0(XΓ,Ω
⊗n
XΓ

) ∼= K[A](p−1)(2n−1)−p⌈ 2n−1
p ⌉ ⊕

(
K[A]/(ϵA − 1)p−r

)p
.

A similar result holds for the group B.
(2) As a K[G]-module, the following decomposition holds:

H0(XΓ,Ω
⊗n
XΓ

) ∼= K[G]2n−1−2⌈ 2n−1
p ⌉ ⊕K[G]/(ϵA − 1)p−r ⊕K[G]/(ϵB − 1)p−r.

Let us now describe the structure of this paper. The next section (§2) recalls
the description of the space of polydifferentials of Mumford curves in terms of the
group cohomologies. In §3 we focus on 1-differentials. As a side result, we obtain
a bound for the order of an automorphism acting on them (see Corollary 12). We
also give in this section a criterion for a module to be indecomposable, based on the
dimension of the space of invariant elements. From §4 onward, we proceed to the
study of the space of polydifferentials. In §5 we first study K[A]-module structure
using a combinatorial approach. Then we also show how results of S. Nakajima
[29] can be applied without the usage of the theory of Mumford curves. For the
K[G]-module structure, we employ both the theory of projective covers and the
theory of B. Köck on the Galois-module structure of weakly ramified covers.

Conventions. For a ring R and a group G, we denote by R[G] the group
ring over R. As for R[G]-modules, we always consider right R[G]-modules, unless
otherwise clearly stated. If an R[G]-module V is finite free as an R-module, then,
for any γ ∈ G, the matrix representation of γ by an R-basis {v1, . . . , vr} of V is
the matrix Mγ ∈ GL(r,R) whose i-th row is given by (a1, . . . , ar), where vγi =∑r

j=1 ajvj . Notice that, by this way, the map G→ GL(r,R) by γ 7→Mγ is a group
homomorphism. Accordingly, Jordan matrices in our sense will be the transpose of
the conventional ones, having 1’s on the lower subdiagonal entries.

Acknowledgements We would like to thank Janne Kool and Fumiharu Kato for
their input at an early stage of this project. The research project is implemented in
the framework of H.F.R.I Call “Basic research Financing Horizontal support of all
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Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded
by the European Union Next Generation EU, H.F.R.I. Project Number: 14907.

2. Preliminaries

2.1. Invariants and direct factors. Let K be an algebraically closed field of
characteristic p > 0, G ∼= Z/pZ a cyclic group of order p, and σ ∈ G a generator.
For each 1 ≤ µ ≤ p, consider the µ× µ Jordan matrix Jµ ∈ GL(µ,K) (with the 1’s
on the lower subdiagonal entries) of eigenvalue 1. Then the µ-dimensional K-vector
space Kµ can be regarded as a right K[G]-module by σ 7→ Jµ. By a slight abuse of
notation, we denote thus obtained K[G]-module by the same notation Jµ; notice
that Jµ is an indecomposable K[G]-module, isomorphic to K[G]/((σ−1)µ) (cf. [38,
§1 p. 107]).

If V is an arbitrary finite dimensional K[G]-module, then, by taking Jordan
normal forms, one has the indecomposable decomposition of the form V ∼=

⊕r
i=1 Jµi

as K[G]-module, where r ≥ 0 and 1 ≤ µi ≤ p for each i = 1, . . . , r.

Proposition 6. Let G be a finite cyclic p-group, and V a finite dimensional K[G]-
module. Then the number of indecomposable K[G]-summands of V is equal to
dimK V G.

Proof. The indecomposable K[G]-summands of V are in one-to-one correspondence
with the blocks of the Jordan normal form of a generator σ of G, seen as an element
of GL(V ). Since a Jordan block has the one-dimensional invariant subspace, every
direct summand contributes exactly an one dimensional invariant subspace. □

Remark 7. The assumption that G is cyclic is necessary. See, for example, the
K[Z/pZ× Z/pZ]-module given by Heller and Reiner in [40, Example 1.4, p. 157].

Corollary 8. Let G be an abelian p-group acting on a finite dimensional non-zero
K-vector space V . Then we have V G ̸= {0}.

Proof. The group G is isomorphic to a direct product of cyclic p-groups. The proof
follows by induction with respect to the number of the direct factors, aided with
the fact MH1×H2 = (MH1)H2 and Proposition 6. □

Corollary 9. In the situation as in Corollary 8, if dimK V G = 1, then V is
indecomposable. □

2.2. Derivations and the group cohomology. Let K be a field, G a group, and
P a right K[G]-module. A derivation (or 1-cocycle) of G to P is a map d : Γ → P
satisfying

(2) d(γγ′) = (dγ)γ
′
+ dγ′

for any γ, γ′ ∈ G. In particular, for γ ∈ G and a integer k ≥ 0, we have

(3) d(γk) = (dγ)1+γ+···+γk−1

.

The set of all derivations Der(G,P ) is naturally a K-linear space. A principal
derivation (or 1-coboundary) is a derivation of the form

G ∋ γ 7→ F γ − F,

by an element F ∈ P . Principal derivations form a subspace PDer(G,P ) of
Der(G,P ). The quotient is the (1st) group cohomology :

H1(G,P ) = Der(G,P )/PDer(G,P ).
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2.3. Polydifferentials on Mumford curves. Now, let K be a complete non-
archimedean valued field, Γ ⊆ PGL(2,K) a Schottky subgroup, and XΓ the Mum-
ford curve obtained from Γ. If N = NΓ ⊆ PGL(2,K) is the normalization of Γ in
PGL(2,K), the quotient group G = N/Γ, which acts on XΓ from the left, is the
automorphism group Aut(XΓ) of XΓ over K. Notice that the group Γ is a free
group of finite rank, whose rank, say g, is equal to the genus of XΓ. We fix a free
generating set {γ1, . . . , γg} of Γ.

For any right K[Γ]-module P , each derivation d : Γ → P is uniquely determined
by its values hi = d(γi) for 1 ≤ i ≤ g, and conversely, since Γ is free, such values
hi ∈ P can be freely chosen to obtain a derivation d; indeed, once hi’s are chosen,
then d(w) for any w ∈ Γ is uniquely determined by the recursive application of (2).

For a positive integer n, we consider the space of polynomials Pn ⊆ K[T ] of
degree ≤ 2(n − 1), which is a K-vector space of dimension 2n − 1. The group

PGL(2,K) acts on Pn from the right as follows: for γ =

(
a b
c d

)
∈ PGL(2,K) and

F ∈ Pn, we define

(4) F γ(T ) :=
(cT + d)2(n−1)

(ad− bc)n−1
F

(
aT + b

cT + d

)
∈ K[T ].

Now, consider the space Der(Γ, Pn) of derivations. By what we have seen above,
this is a K-linear space of dimension (2n − 1)g. The space Der(Γ, Pn) admits a
right action of N (and hence of the group algebra K[N ]) as follows: for δ ∈ N and
d ∈ Der(Γ, Pn), define

(5) (dδ)(γ) = [d(δγδ−1)]δ

for γ ∈ Γ. We have thus a well-defined right action of G = N/Γ on the group
cohomology H1(Γ, Pn), since Γ acts trivially modulo principal derivations:

[d(δγδ−1)]δ = d(δ)γ − d(δ) + d(γ) for δ, γ ∈ Γ.

Theorem 10 ([36, Theorem 1]). For any n ≥ 1, the space H0(XΓ,Ω
⊗n
XΓ

) of n-
differentials on the curve XΓ is naturally isomorphic to the space group cohomology
H1(Γ, Pn). Moreover, this identification is G-equivariant with respect to the natural
right G-action on H0(XΓ,Ω

⊗n
XΓ

). □

3. The space of 1-differentials

3.1. G-action on 1-differentials. We continue to work with the notation as in
§2.3, and suppose K is of characteristic p > 0. By Theorem 10, we have

H0(XΓ,ΩXΓ
) ∼= H1(Γ, P0) = H1(Γ,K) = Hom(Γ,K) = Hom(Γ,Z)⊗K

∼= Hom(Γab,Z)⊗K,
(6)

where Γab ∼= Zg denotes the maximal abelian quotient of the free group Γ. Since
G = N/Γ acts on Γab from the left (by conjugation), we have the right action of G
on Hom(Γab,Z), and hence on Hom(Γab,Z)⊗K. The isomorphism H0(XΓ,ΩXΓ

) ∼=
Hom(Γab,Z) ⊗ K by (6) is easily seen to be G-equivariant. In particular, the G-
action on H0(XΓ,ΩXΓ) comes from an integral representation ρ : G → GL(g,Z).
Then, by [21], we have:

Proposition 11. The integral representation ρ is injective, i.e., G can be seen as
a subgroup of GL(g,Z), unless the cover X → G\X = Y is not tamely ramified,
the characteristic of K is 2, and the genus of Y is 0. □

Corollary 12. Suppose p ̸= 2. If the order of an element g′ ∈ G is a prime number
q, then q ≤ g + 1.

Proof. This follows from Proposition 11 and a special case of [25, Theorem 2.7]. □
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3.2. Proof of Theorem 4. Let A = ⟨ϵA⟩, B = ⟨ϵB⟩, Γ, N , and G = N/Γ be as in

Proposition 2. The set {ei,j = [ϵiA, ϵ
j
B ] | 1 ≤ i, j ≤ p− 1} gives a basis of Γ (cf. [33,

p. 6, Prop. 4]). By an easy calculation, we have

(7) ϵAei,jϵ
−1
A = [ϵi+1

A , ϵjB ][ϵA, ϵ
j
B ]

−1 for 1 ≤ i, j ≤ p− 1,

which describes the left action of A on Γ.
For any γ ∈ Γ, let us denote by γ the image of γ in the maximal abelian quotient

Γab ∼= Zg. The free abelian group Γab has the Z-basis consisting of ei,j ’s. Let {fi,j}
be the dual basis in V = Hom(Γab,Z)⊗K ∼= H0(XΓ,ΩXΓ) of {ei,j}. Since, written
additively in Γab ∼= Zg, we have

ϵAei,jϵ
−1
A =

{
ei+1,j − e1,j for 1 ≤ i ≤ p− 2,

−e1,j if i = p− 1,

for 1 ≤ j ≤ p− 1, we have

(8) f ϵAi,j =

−
p−1∑
k=1

fk,j if i = 1,

fi−1,j for 2 ≤ i ≤ p− 1.

Remark 13. Usually on the dual space we act in terms of the contragredient
representation in order to have a left action on dual elements as well. Here the
action on f : V → k is given by f 7→ fg, where fg is the function sending v 7→ f(gv).

Hence he matrix representation of ϵA with respect to the basis {fi,j} is given by
the block diagonal matrix diag(M, . . . ,M) consisting of p − 1 copies (indexed by
j = 1, . . . , p− 1) of

(9) M =



−1 −1 −1 · · · −1
1 0 · · · · · · 0

0 1 0
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

 ∈ GL(p− 1,Z)

(cf. our convention for the matrix representation in Introduction). Notice that the

matrix M has characteristic polynomial xp−1
x−1 = 1 + x+ · · ·+ xp−1, of which M is

the companion matrix. The integral representation of Z/pZ on Zp−1 given by the
matrix M , denoted by L in the sequel, is the one with the minimal degree p − 1;
cf. [25]. We thus have proven the first part of Theorem 4.

To proceed, let us compute the invariant part by the action of A. It suffices to
look at each block for 1 ≤ j ≤ p− 1. The condition for an element

∑p−1
i=1 λifi,j to

be invariant is given by

p−1∑
i=1

λifi,j =

(
p−1∑
i=1

λifi,j

)ϵA

= −λ1
p−1∑
i=1

fi,j +

p−2∑
i=1

λi+1fi,j ,

which is equivalent to λi = i · λ1 for i = 1, . . . , p − 1. Hence, each diagonal block
contributes 1 to the dimension of the space of invariants. Since there are p − 1
of them, the space of A-invariants in V = Hom(Γab,Z) ⊗ K ∼= H0(XΓ,ΩXΓ

) has
dimension p− 1, generated by the elements

fj =

p−1∑
i=1

i · fi,j for 1 ≤ j ≤ p− 1.
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We can now compute the space of A × B-invariants by using the fact V A×B =
(V A)B . Similarly to (8), one computes

(10) f ϵBi,j =

−
p−1∑
k=1

fi,k if j = 1,

fi,j−1 for 2 ≤ j ≤ p− 1.

From this, one has

(11) f ϵBj =

−
p−1∑
k=1

fk if j = 1,

fj−1 for 2 ≤ j ≤ p− 1,

which means that the matrix representation of ϵB with respect to the basis {fj}
of the space of A-invariants coincides with the one in (9). Hence, the space V A×B

is one dimensional and the representation is indecomposable by Corollary 9, which
finishes the proof of the second part of Theorem 4.

4. Computations on Artin-Schreier-Mumford curves continued.

We continue with the notation of the previous subsection. In this section, as a
preparation for the proof of Theorem 5, we first compute the space H1(Γ, Pn)

G,
and study the K[A]-module structure of Der(Γ, Pn). (See §2 for the definition of
Pn.)

4.1. Computation of the space H1(Γ, Pn)
G. We first of all prove:

Proposition 14. We have PΓ
n = H0(Γ, Pn) = {0} for n > 1.

To show the proposition, we need the following lemma:

Lemma 15. For any discrete free subgroup Γ ⊆ PGL(2,K) of finite rank ≥ 2 and
any closed point x of P1

K , the Γ-orbit Γ · x = {γx | γ ∈ Γ} is an infinite set.

Proof. Suppose Γ · x is finite. If {γ1, . . . , γg} (g ≥ 2) is a free basis of Γ, then there
exists an integer N ≥ 1 such that γNi x = x for any 1 ≤ i ≤ g. Since the subgroup
generated by γN1 , . . . , γ

N
g is discrete and free of rank g, we may replace Γ by this

subgroup, and thus may assume that x is fixed by every element in Γ. Since g ≥ 2,
one can find two γ, δ ∈ Γ that share exactly one point x as their fixed points. Then
one sees easily (cf. the proof of [19, 4.2 (3)]) that [γ, δ] ∈ Γ is a parabolic element,
and hence is of order p, which is absurd. □

Proof of Proposition 14. Let F ∈ PΓ
n . Notice first that, since n > 1, F cannot

be a non-zero constant; indeed, there exists an element

(
a b
c d

)
∈ Γ with c ̸= 0

(e.g., [ϵA, ϵB ]). Hence, if F ̸= 0, there exists an irreducible polynomial over K that
divides F . On the other hand, it can be checked by an easy calculation that, if

ρ ∈ K is a root of F , then for any γ =

(
a b
c d

)
∈ PGL(2,K), γ−1(ρ) =

dρ− b

−cρ+ a
is

a root of F γ . Hence, by Lemma 15, F has to be divided by infinity many irreducible
polynomials, which is absurd. □

Corollary 16. For n > 1, we have

H1(N,Pn) ∼= H1(Γ, Pn)
G.
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Proof. Consider the 5-term restriction-inflation sequence coming from the Lyndon-
Hochschild-Serre spectral sequence [39, par. 6.8.3]:

0 → H1(G,PΓ
n )

inf−→ H1(N,Pn)
res−→ H1(Γ, Pn)

G → H2(G,PΓ
n ) → H2(N,Pn).

By Proposition 14, we have H1(G,PΓ
n ) = H2(G,PΓ

n ) = {0}, whence the result. □

Remark 17. For n = 1, we have P0 = K, and we compute

(12) H1(G,PΓ
0 )

∼= H1(N,P0) ∼= K2.

Indeed, the action of N ∼= A ∗ B on K is trivial, and hence by [39, Ex. 6.2.5, p.
171], we have

H1(N,P0) ∼= H1(A,K)×H1(B,K) ∼= K2.

On the other hand, by [12, §3.5, p. 32], the cohomology ring H∗(G,K) (recall that
G ∼= A×B) is of the form

H∗(G,K) ∼=
∧

[η1, η2]⊗ k[ξ1, ξ2],

where deg ηi = 1, deg ξi = 2, η2i = 0. The degree-1 part is the two dimen-
sional vector space spanned by η1, η2, hence we deduce that the inflation map
H1(G,PΓ

0 ) ↪→ H1(N,P0) is an isomorphism, obtaining the isomorphisms as in
(12). Notice that H2(G,K) is of dimension three, generated by η1∧η2, ξ1, ξ2, while
the space H2(N,K) ∼= H2(A,K)×H2(B,K) (by [39, Cor. 6.2.10, p. 170]) is two-
dimensional, being compatible with the computation of invariants done in section
3.2, and the map H2(G,K) → H2(N,K) is surjective.

To proceed, we need a convenient basis for the space Pn. Consider

(13)

(
T

k

)
=
T (T − 1)(T − 2) · · · (T − k + 1)

k!
∈ K[T ],

for k ≥ 0, which is a polynomial of degree k. For k < 0, we set
(
T
k

)
= 0. For each

k = 0, . . . , 2(n− 1), let q and r be the integers such that k = qp+ r and 0 ≤ r < p,
and define

(14) bk = (T p − T )
q

(
T

r

)
.

The elements bk for 0 ≤ k ≤ 2(n − 1) form a basis of Pn, and using the binomial
relation, we have

(15) bϵAk =

{
bk + bk−1 if p ∤ k,
bk if p|k.

Hence ϵA in terms of {bk} is expressed by the block diagonal matrix

(16) EA = diag(Jp, . . . , Jp, Jr)

consisting of
⌊
2n−1

p

⌋
copies of Jp and Jr (cf. §2.1 for the notation), where 0 ≤ r < p

is the remainder of 2n− 1 modulo p; here, we put J0 = {0} for convenience.

Proposition 18. Suppose n > 1.

(1) We have dimK Der(A,Pn) = dimK Der(B,Pn) = 2n− 1−
⌊
2n−1

p

⌋
.

(2) We have dimK H1(N,Pn) = 2n− 1− 2
⌊
2n−1

p

⌋
.

To show the proposition we the following lemma:
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Lemma 19. Consider the Jordan matrix Jµ for 1 ≤ µ ≤ p. We have

Iµ + Jµ + J2
µ + · · · Jp−1

µ =



0 if µ < p,
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

1 0 · · · 0

 if µ = p.

Proof. Set Nµ = Jµ− Iµ, which is the nilpotent Jordan matrix. Then the assertion
follows immediately from the direct calculation

Iµ + Jµ+J
2
µ + · · ·+ Jp−1

µ =

p−1∑
i=0

(Nµ + Iµ)
i
=

p−1∑
i=0

i∑
j=0

(
i

j

)
N j

µ =

p−1∑
j=0

p−1∑
i=j

(
i

j

)
N j

µ

=

p−1∑
j=0

[(
p

j + 1

)
−

j−1∑
i=0

(
i

j

)]
N j

µ =

p−1∑
j=0

(
p

j + 1

)
N j

µ = Np−1
µ ,

since the characteristic ofK is p which divides
(

p
j+1

)
for every j ∈ {0, . . . , p−2}. We

have also used the identity
∑p−1

i=0

(
i
j

)
=
(

p
j+1

)
, which comes from

∑p−1
i=0 (1 + T )i =

[(1 + T )p − 1]/T . □

Proof of Proposition 18. (1) Each derivation δ ∈ Der(A,Pn) is completely deter-
mined by the image F = δ(ϵA) ∈ Pn with

F 1+ϵA+ϵ2A+···ϵp−1
A = 0,

which comes from (3); that is, Der(A,Pn) is isomorphic to the kernel of the block

diagonal matrix I2n−1+EA+E
2
A+· · ·+Ep−1

A , consisting of
⌊
2n−1

p

⌋
copies of Ip+Jp+

· · ·+Jp−1
p and Ir+Jr+· · · Jp−1

r , where 0 ≤ r < p is the remainder of 2n−1 modulo p,
on theK-linear space Pn. Using Lemma 19, we deduce that dimK Der(A,Pn) = (p−

1)
⌊
2n−1

p

⌋
+r = 2n−1−

⌊
2n−1

p

⌋
. Since ϵB = τϵAτ , where τ =

(
0 1
s 0

)
∈ PGL(2,K)

is an involution, a similar argument yields dimK Der(B,P ) = 2n− 1−
⌊
2n−1

p

⌋
, as

needed.
(2) Since every derivation δ on N ∼= A ∗ B can be recovered from δ|A and δ|B ,

one has the K-linear isomorphism Der(N,Pn) → Der(A,Pn) × Der(B,Pn). Thus
we have the exact sequence

0 → PDer(N,Pn) → Der(A,Pn)×Der(B,Pn) → H1(N,Pn) → 0.

On the other hand, due to Proposition 14, the mapping Pn → PDer(N,Pn), which
maps F to the principal derivation δ 7→ F δ − F , is bijective. Hence we have

dimK H1(N,Pn) = 2(2n− 1)− 2

⌊
2n− 1

p

⌋
− (2n− 1)

= 2n− 1− 2

⌊
2n− 1

p

⌋
,

as desired. □

4.2. The K[A]-module structure of Der(Γ, Pn). We want to compute the
action of G ∼= A × B on the coholomogy group H1(Γ, Pn). To this end, we first
calculate dδ for d ∈ Der(Γ, Pn) and δ ∈ A (and δ ∈ B, as well).
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Recall that the elements ei,j = [ϵiA, ϵ
j
B ], i, j ∈ {1, . . . , p−1}, form a free basis of Γ.

For any i, j, i′, j′ ∈ {1, . . . , p−1} and k ∈ {0, . . . , 2n−2}, we define d(k)i,j ∈ Der(Γ, Pn)
by

(17) d
(k)
i,j (ei′,j′) = δii′δjj′b

ϵ−j
B

k

(recall the definition of bk in §4.1). Then, the elements d
(k)
i,j , i, j ∈ {1, . . . , p − 1},

k ∈ {0, . . . , 2n − 2} form a K-basis of Der(Γ, Pn). We calculate, using equations
(2), (5) and (7)

(d
(k)
i,j )

ϵA(ei′,j′) = [d
(k)
i,j (ei′+1,j′)]

ϵj
′

B ϵAϵ−j′
B − [d

(k)
i,j (e1,j′)]

ϵj
′

B ϵAϵ−j′
B

= (δi,i′+1 − δi,1)δjj′b
ϵAϵ−j

B

k .
(18)

Here we have set e0,j = 1 for convenience. By computation we have

(19)
(
d
(k)
i,j

)ϵA
=


d
(k)
i−1,j + d

(k−1)
i−1,j if p ∤ k and i ̸= 1,

d
(k)
i−1,j if p | k and i ̸= 1,

−
∑p−1

i′=1 d
(k)
i′,j + d

(k−1)
i′,j if p ∤ k and i = 1,

−
∑p−1

i′=1 d
(k)
i′,j if p | k and i = 1.

From this one can compute the matrix for ϵA by means of the basis {d(k)ij },
ordered lexicographically

d
(0)
1,1, d

(1)
1,1, . . . , d

(2(n−1))
1,1 , d

(0)
2,1, d

(1)
2,1, . . . , d

(2(n−1))
2,1 , . . . .

The matrix QA in question is the square matrix of degree (2n− 1)(p− 1)2, which
is first of all a block diagonal

(20) QA = diag(N, . . . , N),

consisting of p − 1 copies (indexed by j = 1, . . . , p − 1) of a square matrix N of
degree (2n − 1)(p − 1), and the matrix N is the ‘tensor product’ of M in (9) and
EA in (16), i.e., the matrix obtained by replacing ±1 in M with ±EA.

In more algebraic terms, the K[A]-module structure of Der(Γ, Pn) is described as
follows. As in Theorem 4 (1), let L be the free Z-module of rank p−1 with the Z[A]-
module structure given by ϵA 7→ M (with respect to some basis {v1, . . . , vp−1}),
and W be the K-vector space of dimension 2n− 1 with the K[A]-module structure
by ϵA 7→ EA (with respect to some basis {w1, . . . , w2n−1}). As in §2.1, we simply
denote by Jµ the K-vector space Kµ with the K[A]-module structure by ϵA 7→ Jµ,
we have

(21) W ∼= J
⌊ 2n−1

p ⌋
p ⊕ Jr

as K[A]-module, where r is the remainder of 2n− 1 modulo p; here, as before, we
put J0 = {0} for convenience. Notice that, as we have seen in §4.1, we have Pn

∼=W
as K[A]-module. Then, what we have shown above amounts to the K[A]-module
isomorphism

(22) Der(Γ, Pn) ∼= (W ⊗Z L)
p−1.

To count the number of indecomposable summands, let us consider a slightly
general situation as follows: Let U be a right free K[A]-module, and consider the

K[A]-module U ⊗ZL. Any element x ∈ U ⊗ZL can be written as x =
∑p−1

i=1 ai⊗vi,
where ai ∈ U (1 ≤ i ≤ p− 1). We have

xϵA =

p−1∑
i=1

aϵAi ⊗vϵAi = aϵA1 ⊗
p−1∑
i=1

(−vi)+
p−1∑
i=2

aϵAi ⊗vi−1 =

p−2∑
i=1

(aϵAi+1−a
ϵA
1 )⊗vi−aϵA1 ⊗vp−1.
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By straightforward calculations, we see that the equation x = xϵA holds if and only
if

ai − aϵAi+1 + aϵA1 = 0 (i = 1, . . . , p− 2) and ap−1 + aϵA1 = 0,

if and only if

(23) ai = a
1+ϵ−1

A +···+ϵ1−i
A

1 (i = 1, . . . , p− 1) and a
1+ϵ−1

A +···+ϵ1−p
A

1 = 0.

Hence each x ∈ (U ⊗Z L)
A is determined by its first coefficient a1, which is further

subject to the second condition in (23).
If U = Jµ (1 ≤ µ ≤ p), then by a similar calculation to that in Lemma 19,

we deduce that the second equality of (23) gives a non-trivial condition only when
µ = p, and that

(24) dimK(Jµ ⊗Z L)
A =

{
µ if µ < p,

p− 1 if µ = p.

Proposition 20. (1) As a K[A]-module, we have

Jp ⊗Z L ∼= Jp−1
p .

(2) For 1 ≤ r ≤ p− 1, we have

Jr ⊗Z L ∼= Jr−1
p ⊕ Jp−r

as a K[A]-module.

Proof. (1) First notice that any direct summand has to be of the form Jµ with
1 ≤ µ ≤ p (cf. §2.1); in particular, it is of dimension at most p. Since the number of
indecomposable summands of Jp ⊗Z L is p− 1, and since dimK Jp ⊗Z L = p(p− 1),
it has only Jp as its direct summands.

(2) Consider the obvious exact sequence

0 → Jr → Jp → Jp−r → 0.

Tensoring the free Z-module L yields the exact sequence

0 → Jr ⊗ L→ Jp ⊗ L→ Jp−r ⊗ L→ 0,

from which we obtain

0 → (Jr ⊗ L)A→(Jp ⊗ L)A→(Jp−r ⊗ L)A → H1(A, Jr ⊗ L) → H1(A, Jp ⊗ L).

Since Jp⊗L ∼= Jp−1
p is a free K[A]-module, we have H1(A, Jp⊗L) = {0}. By (24),

we know that dimK H1(A, Jr ⊗ L) = 1. Now if Jr ⊗ L ∼=
⊕m

i=1 Jµi
, we have

H1(A, Jr ⊗ L) ∼=
⊕m

i=1H
1(A, Jµi

).

Since H1(A, Jµ) is zero for µ = p, and is 1-dimensional for 1 ≤ µ < p, Jr ⊗Z L ∼=
Jr−1
p ⊕ Jp−r is the only possibility, for dimK Jr ⊗ L = r(p− 1). □

Remark 21. We note that the results of Proposition 20 can also be deduced from
the case I.a) in the multiplication table of [1]. Another proof of Proposition 20 (1)
can be found in [4, Lemma 7.1.13]. Here, we have provided a different method of
proof.

Remark 22. The problem determining the indecomposable summands of tensor
products in representation theory is called the Clebsch-Gordan problem. The case
of Jordan normal form in modular representation theory was studied by many
authors (see [14] and references within).
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Corollary 23. The K[A]-module structure of Der(Γ, Pn) is given by

Der(Γ, Pn) ∼=


(
J
(p−1)⌊ 2n−1

p ⌋
p ⊕ Jr−1

p ⊕ Jp−r

)p−1

if p ∤ 2n− 1,(
J
(p−1) 2n−1

p
p

)p−1

if p | 2n− 1.

Here, in the first case, r denotes the remainder of 2n− 1 modulo p.

Proof. This follows from (21), (22), and Proposition 20. □

5. Computations on cohomology

In this section we focus on the computation of both the K[A] and K[A× B] =
K[N/Γ] = K

[
(A ∗ B)/[A,B]

]
-module structure of H1(Γ, Pn). We will give two

different proofs of Theorem 5 (1).

5.1. First Proof of Theorem 5 (1). In order to form the quotient we need to
know exactly how the module of principal derivations sits inside the module of
derivations.

Definition 24. From now on we will denote by h the endomorphism h = ϵA − 1.
Let V be a K[A]-module. We will say that an element w ∈ V has order ord(w) = a
if w ∈ kerha − kerha−1. We will say that u generates a module M isomorphic to
Ja as a K[A]-module, if and only if the set {u, h(u), . . . , ha−1(u)} forms a K-vector
space basis of M . Notice that the generator u of a module isomorphic to Ja has
order a.

Generators of direct summands Jp of the space of principal derivations have
order p and therefore go to generators of Jp summands of the space Der(Γ, Pn).

Let br = (T p − T )⌊
2n−1

p ⌋(T
r

)
be a generator of the Jr component of Pn. Let ψ be

the map sending Pn ∋ b to the principal derivation γ 7→ bγ − b. For N1 and N2

given by Corolllary 23, the principal derivation ψ(br) is then decomposed as a sum

(25) ψ(br) =

N1∑
i=1

ai +

N2∑
j=1

βj ∈ JN1
p ⊕ JN2

p−r,

where ai ∈ Jp and bj ∈ Jp−r. Since the order of br is r, there is at least one
summand of order r and all other summands have order ≥ r. It is clear that if ai
in Jp has order t ≥ r, then there is an element a′i ∈ Jp such that hp−t(a′i) = ai. We
will prove that the elements βj in eq. (25) can also be written as hp−r(β′

j). Notice

that if r = 1 this means that βj = 0, since Jr ⊗ Jp−1
∼= Jr−1

p ⊕ Jp−r, and if r = 1,
then there is no Jp direct summand in J1 ⊗ Jp−1

∼= Jp−1 = Jp−r.

Proposition 25. The direct summand Jr of Pn given in eq. (16) is mapped inside
a direct summand of Der(Γ, Pn), isomorphic to JN

p for some N ∈ N.

In order to prove of proposition 25 we have to introduce a combinatorial point
of view of the basis of Jr ⊗ Jp−1. Consider a basis b1, . . . , br of the module Jr such
that ϵA(bν) = bν+bν−1 and a basis ϵ1, . . . , ϵp−1 of Jp−1, such that ϵA(ϵi) = ϵi+ϵi−1.
Also bi and ϵi are considered to be zero for i ≤ 0. The elements ϵi,j = bi ⊗ ϵj form
a basis for the space Jr⊗Jp−1. Geometrically we consider the elements ϵi,j to form
an r × (p− 1) grid arranged as follows:

(26)

e1,p−1 e2,p−1 · · · er−1,p−1 er,p−1

e1,p−2 e2,p−2 · · · er−1,p−2 er,p−2

...
...

...
...

e1,1 e2,1 · · · er−1,1 er,1
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One can approach the action of ϵA on basis elements of Jr ⊗ Jp−1 in the following
way:
First we compute the effect of ϵA:

ϵA(ei,j) = (bi + bi−1)⊗ (ϵj + ϵj−1).

Next, we notice that the action of a λ-power of ϵA is given by:

ϵλA(ei,j) =

(
λ∑

ν=0

(
λ

ν

)
bi−ν

)
⊗

(
λ∑

µ=0

(
λ

µ

)
ϵj−µ

)
Finally we compute:

hk = (ϵA − 1)k =

k∑
λ=0

(
k

λ

)
(−1)k−λϵλA.

Thus the action of hk on eij is given by:

hk(ei,j) = (ϵA − 1)k(ei,j)

=

k∑
λ=0

(
k

λ

)
(−1)k−λϵλA(ei,j)

=

k∑
λ=0

(
k

λ

)
(−1)k−λ

λ∑
ν=0

(
λ

ν

) λ∑
µ=0

(
λ

µ

)
ei−ν,j−µ

=

k∑
λ=0

(
k

λ

)
(−1)k−λ

k∑
ν=0

(
λ

ν

) k∑
µ=0

(
λ

µ

)
ei−ν,j−µ

=

i∑
ν=0

j∑
µ=0

(
k∑

λ=0

(−1)k−λ

(
λ

µ

)(
λ

ν

)(
k

λ

))
ei−ν,j−µ.(27)

In eq. (27) above, we have extended the summation up to k since
(
I
J

)
= 0 for J > I.

We define

δkν,µ :=

k∑
λ=0

(−1)k−λ

(
λ

µ

)(
λ

ν

)(
k

λ

)
Lemma 26. We have

δkν,µ =

(
k

ν

)(
ν

µ− k + ν

)
=

(
k

ν

)(
ν

k − µ

)
.

Proof. Indeed, using [15, Equation 3.49] we get

δkν,µ =

k∑
λ=0

(−1)k−λ

(
k

λ

)(
λ

ν

)(
λ

µ

)
=

k∑
λ=0

(−1)k−λ

(
k

ν

)(
k − ν

k − λ

)(
λ

µ

)

=

(
k

ν

) k∑
λ=0

(−1)k−λ

(
k − ν

k − λ

)(
λ

µ

)
=

(
k

ν

) k−ν∑
i=0

(−1)
i

(
k − ν

i

)(
k − i

µ

)
=

(
k

ν

)(
ν

µ− k + ν

)
,

as needed. □

Combining Lemma 26 with eq. (27) we deduce that

(28) hk(ei,j) =

i∑
ν=0

j∑
µ=0

δkν,µei−ν,j−µ =

i∑
ν=0

j∑
µ=0

(
k

ν

)(
ν

k − µ

)
ei−ν,j−µ.
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We will follow a different approach for computing the coefficients of the basis
elements which appear in the expansion of hk(ei,j). Notice first that

h(ei,j) = ei−1,j + ei,j−1 + ei−1,j−1.

This means that an element ei,j is moved by h to the sum of three elements in the
grid of equation (26) which lie just below to the right and right and below.

(29) ei−1,j ei,j

��

oo

||
ei−1,j−1 ei,j−1

Assume that all the above arrows have length 1. For the h2(ei,j) we have

ei−2,j ei−1,j

��

oo

zz

ei,j

��

oo

||
ei−2,j−1 ei−1,j−1

��

oo

zz

ei,j−1

��

oo

||
ei−2,j−2 ei−2,j−2 ei,j−2

On the other hand side we compute

h2(ei,j) = h(ei−1,j) + h(ei,j−1) + h(ei−1,j−1)

= (ei−2,j + ei−1,j−1 + ei−2,j−1) +

+(ei−1,j−1 + ei,j−2 + ei−1,j−2)

+(ei−2,j−1 + ei−1,j−2 + ei−2,j−2)

= ei−2,j + 2ei−1,j−1 + 2ei−2,j−1 + ei,j−2 + 2ei−1,j−2.

By induction we can prove the following

Lemma 27. The coefficient of eν,µ in hk(ei,j) is the number of paths of length k
we can form from ei,j to eν,µ if from each intermediate node we can go in three
directions of eq. (29).

Lemma 28. Fix an i, j, where i ∈ {1, . . . , r} and j ∈ {1, . . . , p − 1}. The image
of hk(ei,j) is contained in the space generated by vertices in the grid of eq. (26),
which lie left and down of the line s+ t = i+ j−k, i.e. it is contained in the vector
space generated by the elements es,t where s+ t ≤ i+ j − k.

Proof. This is immediate by either the geometric viewpoint explained in Lemma
27 or by the computation given in eq. (28). □

Proposition 29. The kernel of hk is the vector space generated by the elements
ei,j where i+ j ≤ k + 1.

Proof. Consider an element es,t in the expression of hk(ei,j) in eq. (28). It follows
from Lemma 28 that s+ t ≤ i+ j − k ≤ 1 and hence either s ≤ 0 or t ≤ 0. Thus,
es,t is the zero element and hk(ei,j) = 0, as needed. Conversely, if ei,j is a basis
element such that i + j ≥ k + 2, then there exists always a lattice path of lenght
k, where the allowed moves are down and left (see figure 1), which sends ei,j to
a non-zero basis element es,t. It follows that hk(ei,j) ̸= 0 and hence ei,j does not
belong to the kernel of hk. □

Consider again the map ψ sending an element x ∈ Pn to the principal derivation
γ 7→ xγ − x.
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ℓ : i+ j = k + 1

i+ j ≤ k + 1

Figure 1. Two lattice paths in blue color

ℓ1 : i+ j = r + 1

kerhr : i+ j ≤ r + 1

kerhp−r : i+ j ≤ p− r + 1

ℓ2 : i+ j = p− r + 1

p− 1

r

p− 2r

p− r

r

p
−

1
−
r

ℓ1 : i+ j = r + 1

kerhr : i+ j ≤ r + 1

kerhp−r : i+ j ≤ p− r + 1

ℓ2 : i+ j = p− r + 1

p− 1

r

p− r

r

Figure 2. Jr ⊗ Jp−1 for r < p− r (left) and r > p− r (right).

We would like to prove that the element b2n−2 ∈ Pn of order r generating the
direct summand Jr of Pn is mapped to ψ(b2n−2) = hp−r(y) for some element
y ∈ Jr ⊗ Jp−1.

Since the map ψ is h-equivariant, it follows that ψ(b2n−2) lies in the kernel of
hr, which is the space generated by elements left and below of line ℓ1, given by
vertices ei,j such that i+ j = r + 1. It follows from Proposition 29 that ker(hr) is
the vector space generated by vertices in the r × r triangle in the lower left corner
of the r × (p − 1) grid, including those on the line ℓ1 (see Figure 2) and we will
prove that ker(hr) ⊆ Im(hp−r). It suffices to show that dimker(hr) ≤ dimIm(hp−r).
Moreover, the kernel of the map hp−r consists of elements which lie left and down
of line ℓ2, including those on the line ℓ2, where ℓ2 is the line consisted by elements
ei,j such that i+ j = p− r + 1. We distinguish the following cases:

Case 1: Suppose that 1 < r < p− r. Then, the kernel of hp−r has dimension:

(p− r) + (p− r − 1) + · · ·+ (p− 2r + 1) = (p− 2r) · r + r(r + 1)

2

(see Figure 2). Consequently we have

dim Im(hp−r) = r(p− 1)− dimker(hp−r) =
3(r2 − r)

2
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Since dimker(hr) = 1+2+· · ·+r = r(r+1)
2 and r ≥ 2, we deduce that dim Im(hp−r) ≥

dimker(hr), as needed.
Case 2: Suppose that p− r < r. This case differs from the previous one, since

here the line ℓ2 is to the left of the line ℓ1. The kernel of the map hp−r is generated
by the vertices of the (p− r)× (p− r) triangle of points which are below and to the
left of line ℓ2, including those on ℓ2, which is given by equation i + j = p − r + 1,
and has dimension 1+ 2+ · · ·+ (p− r) = (p− r)(p− r+1)/2 (see Proposition 29).
It follows that

dim Im(hp−r) = r(p− 1)− dimker(hp−r) =
4rp− r − r2 − p2 − p

2
.

Similarly, the kernel of the map hr is generated by the vertices of the r× r triangle
of points which are below and to the left of line ℓ1, including those on ℓ1, given
by equation i + j = r + 1, and has dimension 1 + 2 + · · · + r = r(r + 1)/2 (see
Proposition 29). Therefore,

(30) dim Im(hp−r)− dimker(hr) = −r2 + (2p− 1)r − p2 + p

2
.

Since r ≤ p− 1, the condition p− r < r yields p ≥ 3. Moreover, if p = 3 then r = 2
and hence dim Im(hp−r) = dimker(hr) = 3. We assume now that p ≥ 5. Then, the
polynomial in equation (30) has two real roots

ρ1 =
2p− 1−

√
2p2 − 6p+ 1

2
, ρ2 =

2p− 1 +
√
2p2 − 6p+ 1

2
,

where ρ1 <
p
2 and ρ2 > p−1. Since p

2 < r ≤ p−1, we conclude that dim Im(hp−r) >
dimker(hr), as needed.

Case 3 Suppose that r = 1. We will treat this special case differently. Recall
that we have the basis b0, . . . , b2n−2 for the space Pn as defined in eq. (14) and the

elments d
(k)
i,j , for 0 ≤ k ≤ 2(n − 1), 1 ≤ i, j ≤ p − 1 as a basis for Der(Γ, Pn) as

given in eq. (17).
Since 2n− 1 has remainder r = 1 when divided by p, we have that 2(n− 1) = pq

is divided by p and b2(n−1) = bpq = (T p − T )q according to eq. (14).

Consider the principal derivation ψ(bpq) sending γi,j = [eiA, e
j
B ] 7→ b

γi,j
pq − bpq.

We have

(31) b
ϵiAϵjBϵ−i

A ϵ−j
B

pq − bpq =

pq∑
λ=0

a(i, j)
(pq)
λ b

e−j
B

λ .

By applying ejB in eq. (31), using that b2n−2 is ϵA-invariant we obtain

(32) b
ϵjBϵ−i

A
pq − b

ϵjB
pq =

pq∑
λ=0

a(i, j)
(pq)
λ bλ.

Using the matrix form for eB given in eq. (1) and the action on polynomials as
given in eq. (4) we compute

ejB =

(
1 0
js 1

)
and

b
ejB
pq = (sjT + 1)pq

(1− (sjT + 1)p−1)q

(1 + sjT )pq

=

(
p−1∑
ν=1

(
p− 1

ν

)
(sjT )ν

)q

.
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Also b
ejBe−i

A
pq is again a polynomial of degree at most (p− 1)q. The left hand side of

equation (32) is a polynomial of degree at most (p − 1)q, that is it cannot involve

elements bpq as summands, i.e. a(i, j)
(pq)
pq = 0. Thus the expression ψ(bpq) does not

involve basis elements d
(pq)
i,j , which give rise to the Jp−1 summands in Der(Γ, Pn).

We have seen that ψ(b2n−2) = hp−r(y) for some y of order p, therefore ψ(b2n−2)
is inside a Jp direct summand of Der(Γ, Pn). Indeed, the element y can be expressed
as a linear combination

y =

N1∑
i=1

λiai +

N2∑
j=1

µjbj ,

where ai are generators of Jp summands and bj are generators of Jr summands.
Since y has order p at least one of the coefficients λi0 is not zero, and by basis
exchange lemma of linar algebra we see that {a1, . . . , ai0−1, y, ai0+1, . . . , } are also
generators of the Jp summands.

We can now proceed to the computation of the quotient Der(Γ, Pn)/PDer(Γ, Pn)
is isomorphic to

H1(Γ, Pn) ∼= Der(Γ, Pn)/PDer(Γ, Pn)

∼= J
(p−1)⌊ (2n−1)(p−1)

p ⌋−1−⌊ 2n−1
p ⌋

p ⊕ Jp/Jr ⊕ Jp−1
p−r

∼= J
(p−1)(2n−1)−p⌈ 2n−1

p ⌉
p ⊕ Jp

p−r.(33)

5.2. Second Proof of Theorem 5 (1). Our second proof of Theorem 5 (1) uses
the algebraic theory of curves (xp − x)(yp − y) = c.

Recall that the Artin-Schreier-Mumford curves we are studying, are uniformized
by Γ = [A,B] ∼= [Z/pZ,Z/pZ], and are given by the following algebraic model

Xc : (x
p − x)(yp − y) = c,

for some c ∈ K, |c| < 1. The group Z/pZ is a subgroup of the automorphism group
and acts for instance on the curve Xc by letting the generator τ of Z/pZ to act on
the curve in terms of the map (x, y) 7→ (x, y + 1). We call Y the quotient curve
Xc/⟨τ⟩. Note that Y is isomorphic to P1, and hence the genus gY is zero.

Denote the function field of Xc, for a fixed value of |c| < 1, by F . The extension
F/K(x) is a cyclic extension of the rational function field K(x). In this extension
p-places Pi = (x− i), 1 ≤ i ≤ p− 1 of K(x) are weakly ramified. The different is:

DiffF/K(x) =

p−1∑
i=0

2(p− 1)Pi.

We will employ the results of S. Nakajima [29]. We have the following decomposition
in terms of indecomposable modules

H0(X,Ω⊗n
X ) =

p⊕
i=1

miJi,

and the coefficients are given by [29, Theorem 1] (we have used the equivalent
expression given at the final displayed equation of the proof of this theorem):

mp = (2n− 1)(gY − 1) +

p∑
i=1

⌊
ni − (p− 1)Ni

p

⌋
,

where Ni = 1 (ordinary curves) and ni = 2n(p− 1), see [23, Section 4].
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Since gY = 0 we compute:

mp = (2n− 1)(gY − 1) + p

⌊
2n(p− 1)− (p− 1)

p

⌋
= (2n− 1)(gY − 1) + p(2n− 1)− p

⌈
2n− 1

p

⌉
gY =0
= (p− 1)(2n− 1)− p

⌈
2n− 1

p

⌉
.

For 1 ≤ j ≤ p − 1 the coefficients mj are given by the following formulas [29,
Theorem 1]:

mj

p
= −

⌊
ni − jNi

p

⌋
+

⌊
ni − (j − 1)Ni

p

⌋
= −

⌊
2n(p− 1)− j

p

⌋
+

⌊
2n(p− 1)− (j − 1)

p

⌋
= −

⌊
−2n− j

p

⌋
+

⌊
−2n− (j − 1)

p

⌋
=

⌈
2n+ j

p

⌉
−
⌈
2n+ j − 1

p

⌉
.

We now notice that for 0 ≤ j ≤ p−1 the above expression is zero unless p | 2n+j−1.

We write 2n− 1 =
⌊
2n−1

p

⌋
p+ r, and we see that mj = 0 unless

j = p− r = p− (2n− 1) +

⌊
2n− 1

p

⌋
p.

Notice that if p > 2n− 1 then j = p− (2n− 1). So we have that

(34) H1(Γ, Pn) = H0(X,Ω⊗n
X ) = K[A](p−1)(2n−1)−p⌈ 2n−1

p ⌉⊕ Jp
p−r.

5.3. Using the theory of B. Köck. Study of the K[A×B]-module structure.
In this section we will employ the results of B. Köck on the projectivity of the
cohomology groups of certain sheaves in the weakly ramified case. Consider a p-
group G and the cover π : X → X/G =: Y . For every point P of X we consider
the local uniformizer t at P , the stabilizer G(P ) of P and assign a sequence of
ramification groups

Gi(P ) = {σ ∈ G(P ) : vP (σ(t)− t) ≥ i+ 1}.

Notice that G0(P ) = G(P ) for p-groups, see [32, chap. IV]. Let ei(P ) denote
the order of Gi(P ). We use the notation Xram for the set of ramification points.
We will say that the cover X → X/G is weakly ramified if all ei(P ) vanish for
i ≥ 2. All Mumford curves X are ordinary and in X → X/Aut(X) only weak
ramification is allowed [9]. We denote by ΩX the sheaf of differentials on X and
by ΩX(D) the sheaf ΩX ⊗OX

OX(D). For a divisor D =
∑

P∈X nPP we denote by
Dred =

∑
P∈X:nP ̸=0 P the associated reduced divisor. We will also denote by

L(D) = H0(X,OX(D)) = {D + (f) > 0 : f ∈ FX} ∪ {0},

where FX is the function field of the curve X. The ramification divisor equals
R =

∑
P∈X

∑∞
i=0

(
ei(P ) − 1

)
. Finally, Σ denotes the skyscraper sheaf defined by

the short exact sequence:

(35) 0 → Ω⊗n
X → Ω⊗n

X

(
(2n− 1)Rred

)
→ Σ → 0.

Lemma 30. For n > 1 the cohomology group H1(X,Ω⊗n
X ) = 0.
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Proof. There is a correspondence of sheaves between divisors and 1-dimensional
OX -modules, D 7→ OX(D). The divisor of any differential is a canonical divisor K
and ΩX can be identified with O(K).

Recall that Serre duality asserts:

dimH1(X,OX(D)) = dimH0(X,ΩX ⊗OX(D)−1).

Hence we find that

dimH1(X,Ω⊗n
X ) = dimH0(X,ΩX ⊗ Ω−⊗n

X ).

The sheaf ΩX ⊗ Ω−n
X corresponds to the OX -module OX(K − nK) and since

H0(X,OX(K − nK)) = L(K − nK),

it holds that

dimH1(X,Ω⊗n
X ) = dimL(K − nK) = 0.

□

Now we apply the functor of global sections to the short exact sequence in (35)
and obtain the following short exact sequence:
(36)
0 → H0(X,Ω⊗n

X ) → H0
(
X,Ω⊗n

X

(
(2n− 1)Rred

))
→ H0(X,Σ) → H1(X,Ω⊗n

X ) = 0.

Theorem 31. The K[G]-module H0
(
X,Ω⊗n

X

(
(2n−1)Rred

))
is a free K[G]-module

of rank (2n − 1)(gY − 1 + r0), where r0 denotes the cardinality of XG
ram = {P ∈

X/G : e(P ) > 1}, and gY denotes the genus of the quotient curve Y = X/G.

Proof. Since G is a p-group a module is free if and only if it is projective. So we have
to show that H0

(
X,Ω⊗n

X

(
(2n−1)Rred

))
is projective. B. Köck proved [20, Theorem

2.1] that if D =
∑

P∈X npP is a G-equivariant divisor, the map π : X → Y := X/G
is weakly ramified, nP ≡ −1 mod eP for all P ∈ X and deg(D) ≥ 2gX − 2, then
the module H0(X,OX(D)) is projective.

We have to check the conditions for the divisor D = nKX + (2n − 1)Rred,
where KX is a canonical divisor on X. Notice that KX = π∗KY + R and R =∑

P∈X 2
(
e0(P )− 1

)
, therefore

D = nπ∗KY +
∑

P∈X:e0(P )>1

(2ne0(P )− 2n+ 2n− 1)P.

Therefore, the condition nP ≡ −1 mod e0(P ) is satisfied.
We will now compute the dimension ofH0

(
X,Ω⊗n

X

(
(2n−1)Rred

))
using Riemann–

Roch theorem, keep in mind that H1
(
X,Ω⊗n

X

(
(2n− 1)Rred

))
= 0

dimK H0
(
X,Ω⊗n

X

(
(2n− 1)Rred

))
= n(2gX − 2) + (2n− 1)|Xram|+ 1− gX

= (2n− 1)(gX − 1 + |Xram|)
= |G|(2n− 1)(gY − 1 + r0),

where in the last equality we have used the Riemann–Hurwitz formula [16, 7, Corol-
lary IV 2.4]

gX − 1 = |G|(gY − 1) +
∑

P∈Xram

(e0(P )− 1).

□

Remark 32. This method was applied by the second author and B. Köck in [22]
for the n = 2 case in order to compute the dimension of the tangent space to the
deformation functor of curves with automorphisms. Deformations of curves with
automorphisms for Mumford curves were also studied by the first author and G.
Cornelissen in [5].
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The sequence in eq. (36) leads to the following short exact sequence of modules:

(37) 0 → H0(X,Ω⊗n
X ) → K[G](2n−1)(gY −1+r0) → H0(X,Σ) → 0.

Since Σ is a skyscraper sheaf the space H0(X,Σ) is the direct sum of the stalks of
Σ

H0(X,Σ) =
⊕

P∈Xram

ΣP
∼=

r0⊕
j=1

IndGG(Pj)(ΣPj ),

where, for a subgroup H of G, IndGHV denotes the induced representation of an

K[H]-module V to a K[G]-module, i.e., IndGHV = V ⊗K[H] K[G].

5.4. Return to Artin-Schreier-Mumford curves: proof of Theorem 5 (2).
Recall that we are in the case N = A ∗ B and Γ = [A,B], where A ∼= B ∼= Z/pZ.
Set G = N/Γ = Z/pZ× Z/pZ.

Lemma 33. The indecomposable summands of the module IndGG(Pj)(ΣPj
) are either

K[G] or K[G]/⟨(σ − 1)λ⟩, where σ = ϵA or ϵB and 1 ≤ λ ≤ p− 1.

Proof. It follows from the ramification of the function field of Artin-Schreier-Mum-
ford curves, seen as a double Artin-Schreier extension of the rational function field,
where r0 = 2, i.e., only two points p1, p2 of X/(A×B) are ramified in the cover
X → X/(A × B). Another way of obtaining this result is by using the theory of
graphs of Mumford curves developed by the first author, and by noticing that the
subgroup of the normalizer of the Artin-Schreier-Mumford curve giving rise to the
A × B cover is just A ∗ B corresponding to a graph with two ends, see [7], [19,
Proposition 5.6.2]. Select a point P1 of X which lies above p1 and a point P2 of X
which lies above p2. Let G(P1) = A and G(P2) = B.

We will use an approach similar to [22] in order to study the Galois module
structure of the stalk ΣPj

as a K[GPj
]-module. Let P = Pj for j = 1 or j = 2.

Notice first that nKX = nπ∗KY + nR, so if the multiplicity of the divisor KY at
π(P ) ism, then the multiplicity of nKX at P ismnp+2n(p−1) and the multiplicity
of nKX+(2n−1)Rred at P ismnp+2n(p−1)+(2n−1). So if t is a local uniformizer
at P and s is a local uniformizer at π(P ) we have that:

ΣP =

〈
t

smn+2n
,

t2

smn+2n
, . . . ,

t2n−1

smn+2n

〉
K

,

which is G(P )-equivariant isomorphic to the K-vector space generated by:

ΣP =
〈
t, t2, . . . , t2n−1

〉
K
.

The action of G(P ) on Σp is given by the transformation σ(1/t) = 1/t + 1 for a
generator σ of the cyclic group G(P ), or equivalently σ(t) = t

1+t , see [8]. Notice,

that the element t−p− t−1 = 1−tp−1

tp is invariant and so is its inverse tp(1− tp−1)−1.

Here the unit (1− tp−1)−1, can be seen as a polynomial modulo t2n, if we expand
it in terms of a geometric series and truncate the terms of degree ≥ 2n. Now we
analyse the G(P )-module structure of ΣP using Jordan blocks. Observe that for
0 ≤ k ≤ p− 1:

σ

(
1/t

k

)
=

(
1/t

k

)
+

(
1/t

k − 1

)
,

where (
1/t

k

)
=

1

k!

k−1∏
ν=0

(
1

t
− ν

)
=

1

k!tk

k−1∏
ν=0

(1− tν).
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Note that
(
1/t
k

)
is a rational function, where the denominator is k!tk. So if we

multiply it by the invariant element tp(1−tp−1)−1 we obtain a polynomial of degree
p− k. Another K-vector space basis of ΣP is given by:(

tp

(1− tp−1)

)i(
1/t

k

)
,

where 1 ≤ i ≤
⌊
2n−1

p

⌋
and 0 ≤ k ≤ p− 1

or i =
⌊
2n−1

p

⌋
+ 1 and p− r ≤ k ≤ p− 1

.

The above defined elements are seen as polynomials by expanding them as pow-
erseries and truncate the powers of t greater than 2n. These polynomials, depending
on i and k, have degree pi−k. Their degrees start from degree one (i = 1, k = p−1)

to 2n− 1 (i =
⌊
2n−1

p

⌋
+ 1, k = p− r).

For fixed i, i = 1, . . . ,
⌊
2n−1

p

⌋
, and by allowing k to vary from 0 ≤ k ≤ p− 1, we

obtain a Jordan block Jp. The remaining block i =
⌊
2n−1

p

⌋
+ 1, p− r ≤ k ≤ p− 1

is Jr.
So the structure of ΣP is given by

(38) ΣP = J
⌊ 2n−1

p ⌋
p

⊕
Jr.

Recall [11, 12.16 p.74] that if H is a subgroup of G and g1, . . . , gℓ is a set of coset
representatives of G in H, then for an K[H]-module M the induced module can be
written as

IndGHM =

ℓ⊕
ν=1

gν ⊗M.

Using the above equation for G = A × B and H = G(P1) = A (resp. G(P2) = B)
we have

IndGG(Pj)(Jp) = K[G] and IndGG(P1)(Jr) =
K[G]

(ϵA − 1)r
.

Similarly

IndGG(P2)(Jr) =
K[G]

(ϵB − 1)r

and both of the above K[G]-modules are indecomposable. □

Proposition 34. The indecomposable summands Vi of H0(X,Ω⊗n
X ) are either

K[G] or K[G]/⟨(σ − 1)p−r⟩, for σ = ϵA or σ = ϵB and r is the remainder of
the division 2n− 1 by p.

Proof. Let Vi be a indecomposable summand ofH0(X,Ω⊗n
X ). Consider the injective

hull of Vi. This is the smallest injective module containing Vi, and it is of the form
K[G]a. Keep in mind that for group algebras of finite groups the notions of injective
and projective modules coincide [11, Theorem 62.3].

Therefore we have to consider the smallest a such that Vi ⊂ K[G]a. We have
the short exact sequence:

(39) 0 → Vi → K[G]a → Ω−1(Vi) → 0,

where Ω−1(M) for a a K[G]-module denotes the cokernel of the embedding of
M inside its injective hull. Since the algebra K[G] is self injective (i.e., K[G] is
injective) we have (for some appropriate natural number t)

(40) Vi ∼= Ω(Ω−1)(Vi)
⊕

K[G]t,

where Ω(Ω−1(Vi)) denotes the loop space of Ω−1(Vi), see [2, Exercise 1 p.11]. Since
Vi is indecomposable, one of the two direct summands of eq. (40) is zero, so either
Vi ∼= K[G] or Vi = Ω(Ω−1)(Vi).
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In the second case, we can consider the following diagram, where the first row
comes from eq. (37) and the second by eq. (39):

0 // H0(X,Ω⊗n
X ) // K[G](2n−1)(gY −1+r0) // H0(X,Σ) // 0

0 // Vi //

OO

K[G]a //

OO

Ω−1(Vi) //

OO

0

.

Notice that since Vi is a direct summand of H0(X,Ω⊗n
X ) which is contained in

K[G](2n−1)(gY −1+r0) we can assume that the injective hull K[G]a of Vi is a submod-
ule ofK[G](2n−1)(gY −1+r0). The module Ω−1(Vi) is a non-zero indecomposable non-

projective factor of H0(X,Σ) and is isomorphic to IndGG(Pi)(Jr) = K[G]/⟨(σ−1)r⟩.
It can not be K[G] since K[G] is projective. We compute

Vi = Ω(IndGG(Pi)(Jr)) = Ω(K[G]/⟨(σ − 1)r)⟩) ∼= K[G]/⟨(σ − 1)p−r⟩.

□

Corollary 35. The space H0(X,Ω⊗n
X )G has dimension equal to the number of

indecomposable summands.

Proof. Notice that each indecomposable summand Vi is contained in a K[G]. □

Corollary 36. If 2n− 1 ≡ 0 mod p then H0(X,Ω⊗n) is projective.

Now we finish the proof of 5 (2). Using the sequence given in eq. (37) and the
fact that only two points of Y are ramified in X → Y , i.e., gY = 0, r0 = 2, together
with eq. (38) we obtain that the number of summands which are isomorphic to

K[G] in H0(X,Ω⊗n) is 2n−1−2
⌈
2n−1

p

⌉
. There are two indecomposible summands

in H0(X,Ω⊗n
X ), V1, V2 such that

K[G]/V1 = K[G]/hr and K[G]/V2 = K[G]/(ϵB − 1)r.

We see that

V1 = K[G]/hp−r and V2 = K[G]/(ϵB − 1)p−r.

Adding all these together we obtain:

H0(X,Ω⊗n
X ) = K[G]2n−1−2⌈ 2n−1

p ⌉⊕K[G]/hp−r
⊕

K[G]/(ϵB − 1)p−r.

The Proof of Theorem 5 (2) is now complete.
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29. Shōichi Nakajima, Action of an automorphism of order p on cohomology groups of an algebraic

curve, J. Pure Appl. Algebra 42 (1986), no. 1, 85–94. MR MR852320 (88d:14018)
30. Martha Rzedowski-Calderón, Gabriel Villa-Salvador, and Manohar L. Madan, Galois module

structure of holomorphic differentials in characteristic p, Arch. Math. (Basel) 66 (1996),

no. 2, 150–156. MR MR1367157 (97e:11142)
31. P. Schneider, Rigid-analytic L-transforms, Number theory, Noordwijkerhout 1983 (Noord-

wijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 216–230.

MR 756097 (86b:11043)
32. Jean-Pierre Serre, Local fields, Springer-Verlag, New York, 1979, Translated from the French

by Marvin Jay Greenberg. MR 82e:12016
33. , Trees, Springer-Verlag, Berlin, 1980, Translated from the French by John Stillwell.

MR MR607504 (82c:20083)
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