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where k is a field of characteristic p > 0, is about finding a local ring R of character-
istic 0, with maximal ideal mR such that R/mR = k, so that the following diagram is 
commutative:

GLn(R)

G GLn(k)

Equivalently one asks if there is a free R-module V , which is also an R[G]-module such 
that V ⊗R R/mR is the k[G]-module corresponding to our initial representation. We 
know that projective k[G]-modules lift to characteristic zero, [16, chap. 15], but for a 
general k[G]-module such a lifting is not always possible, for example, see [10, prop. 15]. 
This article aims to study the lifting problem for the group G = Cq � Cm, where Cq

is a cyclic group of order ph and Cm is a cyclic group of order m, (p, m) = 1, and also 
gives a necessary and sufficient condition in order to lift. We assume that the local ring 
R contains the q-th roots of unity and k is algebraically closed, and we might need to 
consider a ramified extension of R, in order to ensure that certain q-roots of unit are 
distant in the mR-topology, see Remark 36. An example of such a ring R is the ring of 
Witt vectors W (k)[ζq] with the q-roots of unity adjoined to it.

We notice that a decomposable R[G]-module V gives rise to a decomposable R-module 
modulo mR and also an indecomposable R[G]-module can break in the reduction modulo 
mR into a direct sum of indecomposable k[G]-summands. We also give a classification 
of k[Cq �Cm]-modules in terms of Jordan decomposition and give the relation with the 
more usual uniserial description in terms of their socle [1].

Our interest to this problem comes from the problem of lifting local actions. The local 
lifting problem considers the following question: Does there exist an extension Λ/W (k), 
and a representation

ρ̃ : G ↪→ Aut(Λ[[T ]]),

such that if t is the reduction of T , then the action of G on Λ[[T ]] reduces to the action 
of G on k[[t]]?

If the answer to the above question is positive, then we say that the G-action lifts to 
characteristic zero. A group G for which every local G-action on k[[t]] lifts to character-
istic zero is called a local Oort group for k. Notice that cyclic groups are always local 
Oort groups. This result was known as the “Oort conjecture”, which was recently proved 
by F. Pop [15] using the work of A. Obus and S. Wewers [14].

There are a lot of obstructions that prevent a local action from lifting to characteristic 
zero. Probably the most important of these obstructions is the KGB-obstruction [4]. It 
is believed that this is the only obstruction for the local lifting problem, see [11], [12]. In 
[10, Thm. 3] the authors have given a criterion for the local lifting, which involves the 
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lifting of a linear representation of the same group. The case G = Cq �Cm and especially 
the case of dihedral groups Dq = Cq �C2, is a problem of current interest in the theory 
of local liftings, see [12], [6], [18]. For more details on the local lifting problem we refer 
to [3], [4], [5], [11].

Keep also in mind that the Cq � Cm groups were important to the study of group 
actions on holomorphic differentials of curves defined over fields of positive characteristic 
p, where the group involved has cyclic p-Sylow subgroup, see [2].

Let us now describe the method of proof. For understanding the splitting of inde-
composable R[G]-modules modulo mR, we develop a version of Jordan normal form in 
Lemma 17 for endomorphisms T : V → V of order ph, where V is a free module of rank 
d. We give a way to select this basis, by selecting an initial suitable element E ∈ V , see 
Lemma 16. The normal form (as given in eq. (11)) of the element T of order q, determines 
the decomposition of the reduction. We show that for every indecomposable summand 
Vi of V , we can select E as an eigenvalue of the generator σ of Cm and then by forcing 
the relation ΓT = TαΓ to hold, we see how the action of σ can be extended recursively 
to an action of σ on Vi, this is done in Lemma 25. Proving that this construction gives 
rise to a well-defined action is a technical computation and is done in Lemmata 27, 28, 
29, 33, 34.

The important thing here, is that the definition of the action of σ on E is the “initial 
condition” of a dynamical system that determines the action of Cm on the indecompos-
able summand Vi. The R[Cq � Cm] indecomposable module Vi can break into a direct 
sum Vα(εν , κν)-modules 1 ≤ ν ≤ s (for a precise definition of them see Definition 9, no-
tice that κi denotes the dimension). The action of σ on each Vα(εν , κν) can be uniquely 
determined by the action of σ on an initial basis element as shown in section 3, again 
by a “dynamical system” approach, where we need s initial conditions, one for each 
Vα(εν , κν). The lifting condition essentially means that the indecomposable summands 
Vα(ε, κ) of the special fiber, should be able to be rearranged in a suitable way, so that 
they can be obtained as reductions of indecomposable R[Cq �Cm]-modules. The precise 
expression of our lifting criterion is given in the following theorem:

Theorem 1. Consider a k[G]-module M which is decomposed as a direct sum

M = Vα(ε1, κ1) ⊕ · · · ⊕ Vα(εs, κs).

The module lifts to an R[G]-module if and only if the set {1, . . . , s} can be written as a 
disjoint union of sets Iν , 1 ≤ ν ≤ t so that

a.
∑

μ∈Iν
κμ ≤ q, for all 1 ≤ ν ≤ t.

b.
∑

μ∈Iν
κμ ≡ a modm for all 1 ≤ ν ≤ t, where a ∈ {0, 1}.

c. For each ν, 1 ≤ ν ≤ t there is an enumeration σ : {1, . . . , #Iν} → Iν ⊂ {1, .., s}, such 
that

εσ(2) = εσ(1)α
κσ(1) , εσ(3) = εσ(2)α

κσ(2) , . . . , εσ(s) = εσ(s−1)α
κσ(s−1) .
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In the above proposition, each set Iν corresponds to a collection of modules Vα(εμ, κμ), 
μ ∈ Iν which come as the reduction of an indecomposable R[Cq � Cm]-module Vν of V .
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2. Notation

Let τ be a generator of the cyclic group Cq and σ be a generator of the cyclic group 
Cm. The group G is given in terms of generators and relations as follows:

G = 〈σ, τ |τ q = 1, σm = 1, στσ−1 = τα for some α ∈ N, 1 ≤ α ≤ ph − 1, (α, p) = 1〉.

The integer α satisfies the following congruence:

αm ≡ 1 modq (1)

as one sees by computing τ = σmτσ−m = τα
m . Also the integer α can be seen as an 

element in the finite field Fp, and it is a (p −1)-th root of unity, not necessarily primitive. 
In particular the following holds:

Lemma 2. Let ζm ∈ k be a fixed primitive m-th root of unity. There is a natural number 
a0, 0 ≤ a0 < m − 1 such that α = ζa0

m .

Proof. The integer α if we see it as an element in k is an element in the finite field 
Fp ⊂ k, therefore αp−1 = 1 as an element in Fp. Let ordp(α) be the order of α in F∗

p . By 
eq. (1) we have that ordp(α) | p − 1 and ordp(α) | m, that is ordp(α) | (p − 1, m).

The primitive m-th root of unity ζm generates a finite field Fp(ζm) = Fpν for some 
integer ν, which has cyclic multiplicative group Fpν\{0} containing both the cyclic groups 
〈ζm〉 and 〈α〉. Since for every divisor δ of the order of a cyclic group C there is a unique 
subgroup C ′ < C of order δ we have that α ∈ 〈ζm〉, and the result follows. �
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Definition 3. For each pi | q we define ordpiα to be the smallest natural number o such 
that αo ≡ 1 modpi.

It is clear that for ν ∈ N

αν ≡ 1 modpi ⇒ αν ≡ 1 modpj for all j ≤ i.

Therefore

ordpjα | ordpiα for j ≤ i.

On the other hand α ∈ N and αp−1 ≡ 1 modp so ordpα | p − 1. Also since σtτσ−t = τα
t

we have that αm ≡ 1 modph, therefore ordpα | ordpiα | ordphα | m, for 1 ≤ i ≤ h.

Lemma 4. The center CentG(τ) = 〈τ, σord
ph

α〉. Moreover

|CentG(τ)|
ph

= m

ordph(α) =: m′

Proof. The result follows by observing (τνσt)τ(τνσt)−1 = τα
t , for all 1 ≤ ν ≤ q, 1 ≤

t ≤ m. �
Remark 5. If ordpα = m then ordpiα = m for all 1 ≤ i ≤ h.

Lemma 6. If the group G = Cq�Cm is a subgroup of Aut(k[[t]]), then all orders ordpiα =
m/m′, for all 1 ≤ i ≤ h.

Proof. We will use the notation of the book of J.P. Serre on local fields [17]. By [13, 
Th.1.1b] we have that the first gap i0 in the lower ramification filtration of the cyclic 
group Cq satisfies (m, i0) = m′.

The ramification relation [17, prop. 9 p. 69]

αθi0(τ) = θi0(τα) = θi0(στσ−1) = θ0(σ)i0θi0(τ),

implies that θ0(σ)i0 = α ∈ N. From (m, i0) = m′ and the fact that ordθ0(σ) = m we 
obtain

m

m′ = ordθ0(σ)i0 = ordp(α).

Thus

m

m′ = ordpα|ordpiα|ordphα = m

m′ .

Hence all orders ordpiα = m/m′. �
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Remark 7. If the KGB-obstruction vanishes and α �= 1, then by [11][prop. 5.9] i0 ≡
−1 modm and ordpiα = m for all 1 ≤ i ≤ h.

3. Indecomposable Cq � Cm modules, modular representation theory

In this section we will describe the indecomposable Cq � Cm-modules. We will give 
two methods in studying them. The first one is needed since it is in accordance with the 
method we will give in order to describe indecomposable R[Cq�Cm]-modules. The second 
one, using the structure of the socle, is the standard method of describing k[Cq � Cm]-
modules in modular representation theory.

3.1. Linear algebra method

The indecomposable modules for the group Cq are determined by the Jordan normal 
forms of the generator τ of the cyclic group Cq. So for each 1 ≤ κ ≤ ph there is exactly 
one Cq indecomposable module of dimension κ denoted by Jκ. Therefore, we have the 
following decomposition of an indecomposable Cq � Cm-module M considered as a Cq-
module.

M = Jκ1 ⊕ · · · ⊕ Jκr
. (2)

Lemma 8. In the indecomposable module Jκ, for every element E such that

(τ − Idκ)κ−1E �= 0

the elements B = {E, (τ − Idκ)E, . . . , (τ − Idκ)κ−1E} form a basis of Jκ such that the 
matrix of τ with respect to this basis is given by

τ = Idκ +

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0

1
. . .

...

0
. . . . . .

...
...

. . . 1 0
...

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (3)

In the above notation Idκ denotes the κ × κ identity matrix.

Proof. Since the set B has κ-elements it is enough to prove that it consists of linear 
independent elements. Indeed, consider a linear relation

λ0E + λ1(τ − Idκ)E + · · · + λκ−1(τ − Idκ)κ−1E = 0.

By applying (τ−Idκ)κ−1 we obtain λ0(τ−Idκ)κ−1E = 0, which gives us λ0 = 0. We then 
apply (τ − Idκ)κ−2 to the linear relation and by the same argument we obtain λ1 = 0
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and we continue this way proving that λ0 = · · · = λκ−1 = 0. The matrix form of τ with 
respect to this basis is immediate. �

Equation (2) is a decomposition of an indecomposable Cq�Cm-module in terms of in-
decomposable Cq-modules. If we prove that σ acts on each Cq-indecomposable summand 
Jκ of eq. (2), then this implies that there is only one indecomposable Cq summand in the 
decomposition, that is r = 1. Since the field k is algebraically closed and (m, p) = 1 we 
know that there is a basis of M consisting of eigenvectors of σ. Set κ = κ1 and E = E1. 
There is an eigenvector E of σ, which is not in the kernel of (τ − Idκ)κ−1. Then the 
elements of the set B = {E, (τ− Idκ)E, . . . , (τ− Idκ)κ−1E} are linearly independent and 
form a direct Cq summand of M isomorphic to Jκ.

We will now show that this module is an k[Cq�Cm]-module. For this, we have to show 
that the generator σ of Cm acts on the basis B. Observe that for every 0 ≤ i ≤ κ −1 < ph

σ(τ − 1)i−1 = (τα − 1)i−1σ.

This means that the action of σ on E determines the action of σ on all other basis 
elements eν := (τ − 1)ν−1e, 1 ≤ ν ≤ κ.

Let us compute:

σei+1 = σ(τ − 1)ie = (τα − 1)iζλme

On the basis {e1, . . . , eκ} the matrix τ is given by eq. (3) hence using the binomial 
formula we compute

τα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0(
α
1
)

1
. . .

...(
α
2
) (

α
1
) . . . . . .

...(
α
3
) (

α
2
) . . . 1

. . .
...

...
...

. . .
(
α
1
)

1 0(
α
k

) (
α

k−1
)

· · ·
(
α
2
) (

α
1
)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Thus τα − 1 is a nilpotent matrix A = (aij) of the form:

aij =
{(

α
μ

)
if j = i− μ for some μ, 1 ≤ μ ≤ κ

0 if j ≥ i

The �-th power A� = (a(�)
ij ) of A is then computed by (keep in mind that aij = 0 for 

i ≤ j)

a
(�)
ij =

∑
ai,ν1aν1,ν2aν2,ν3 · · · aν�−1,j
i<ν1<···<ν�−1<j
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This means that we need i −j > � in order to have aij �= 0. Moreover for i = j+� (which 
is the first non zero diagonal below the main diagonal) we have

ai,i+� = ai,i+1ai+1,i+2 · · · ai+�−1,i+� =
(
α

1

)�

= α�.

Therefore, the matrix of A� is of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k − �︷ ︸︸ ︷
0 · · · · · · 0

�︷ ︸︸ ︷
0 · · · 0

...
...

...
...

0 · · · · · · 0 0 · · · 0

α� . . . 0
...

...

∗ α� . . .
...

...
...

...
. . . . . . 0

...
...

∗ · · · ∗ α� 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

Definition 9. We will denote by Vα(λ, κ) the indecomposable κ-dimensional G-module 
given by the basis elements {(τ − 1)νe, ν = 0, . . . , κ − 1}, where σe = ζλme.

This definition is close to the notation used in [9].

Lemma 10. The action of σ on the basis element ei of Vα(λ, κ) is given by:

σei = αi−1ζλmei +
κ∑

ν=i+1
aνeν , (6)

for some coefficients ai ∈ k. In particular the matrix of σ with respect to the basis 
e1, . . . , eκ is lower triangular.

Proof. Recall that ei = (τ − 1)i−1e1. Therefore

σei = σ(τ − 1)i−1e1 = (τα − 1)i−1σe1 = ζλm(τα − 1)i−1e1.

The result follows by eq. (5) �
We have constructed a set of indecomposable modules Vα(λ, κ). Apparently Vα(λ, κ)

can not be isomorphic to Vα(λ′, κ′) if κ �= κ′, since they have different dimensions.
Assume now that κ = κ′. Can the modules Vα(λ, κ) and Vα(λ′, κ) be isomorphic for 

λ �= λ′?
The eigenvalues of the prime to p generator σ on Vα(λ, κ) are

ζλm, αζλm, . . . , ακ−1ζλm.
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Similarly the eigenvalues for σ when acting on Vα(λ′, κ) are

ζλ
′

m , αζλ
′

m , . . . , ακ−1ζλ
′

m .

If the two sets of eigenvalues are different then the modules can not be isomorphic. But 
even if λ �= λ′ modm the two sets of eigenvalues can still be equal. Even in this case the 
modules can not be isomorphic.

Lemma 11. The modules Vα(λ1, κ) and Vα(λ2, κ) are isomorphic if and only if λ1 ≡
λ2 modm.

Proof. Indeed, the module Vα(λ1, κ) has an element e so that the vectors

e, (τ − 1)e, (τ − 1)2e, . . . , (τ − 1)κ−1e (7)

form a basis of Vα(λ1, κ), so that σe = ζλ1
m e. Let φ : Vα(λ2, κ) → Vα(λ1, κ) be an 

isomorphism. Let e′ ∈ Vα(λ2, κ) be an eigenvalue of σ with σe′ = ζλ2
m e′ so that e′, (τ −

1)e′, . . . , (τ − 1)κ−1e′ form a basis of Vα(λ2, κ). Set Vα(λ1, κ) � E = φ(e′). We now 
express E in the basis of Vα(λ1, κ):

E =
κ−1∑
ν=0

ξν(τ − 1)νe,

for some ξν ∈ k. Observe that ξ0 �= 0. Indeed, since φ is an equivariant isomorphism, the 
elements E, (τ − 1)E, . . . , (τ − 1)κ−1 should be a basis of Vα(λ1, κ) and if ξ0 = 0, then 
(τ − 1)κ−1E = 0.

Using eq. (6) we see that σ with respect to the basis given in eq. (7) admits the matrix 
form:

⎛
⎜⎜⎜⎜⎜⎜⎝

ζλ1
m 0 · · · · · · 0
0 αζλ1

m 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . .

...
0 · · · · · · 0 ακ−1ζλ1

m

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Therefore,

σ(E) =
κ−1∑
ν=0

ξiα
νζλ1

m (τ − 1)νe (8)

and on the other hand σ(E) = ζλ2
m E, since φ is an equivariant isomorphism, therefore
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σ(E) =
κ−1∑
ν=0

ζλ2
m ξi(τ − 1)νe (9)

By comparing the coefficients of the basis element e in expressions (8), (9) we arrive at

ξ0(ζλ1
m − ζλ2

m ) = 0,

and since ξ0 �= 0 we have that λ1 ≡ λ2 modm as desired. �
3.2. The uniserial description

We will now give an alternative description of the indecomposable Cq �Cm-modules, 
which is used in [2].

It is known that Aut(Cq) ∼= F∗
p ×Q, for some abelian p-group Q. The representation 

ψ : Cm → Aut(Cq) given by the action of Cm on Cq is known to factor through a 
character χ : Cm → F∗

p . The order of χ divides p − 1 and χp−1 = χ−(p−1) is the trivial 
one dimensional character.

For all i ∈ Z, χi defines a simple k[Cm]-module of k dimension one, which we will 
denote by Sχi . For 0 ≤ � ≤ m − 1 denote by S� the simple module where σ acts as ζ�m. 
Both Sχi , S� can be seen as k[Cq�Cm]-modules using inflation. Finally for 0 ≤ � ≤ m −1
we define χi(�) ∈ {0, 1, . . . , m − 1} such that Sχi(�) ∼= S� ⊗k Sχi .

There are q ·m isomorphism classes of indecomposable k[Cq � Cm]-modules and are 
all uniserial. An indecomposable k[Cq �Cm]-module U is unique determined by its socle, 
which is the kernel of the action of τ − 1 on U , and its k-dimension. For 0 ≤ � ≤ m − 1
and 1 ≤ μ ≤ q, let U�,μ be the indecomposable k[Cq � Cm] module with socle Sa and 
k-dimension μ. Then U�,μ is uniserial and its μ ascending composition factors are the 
first μ composition factors of the sequence

S�, Sχ−1(�), Sχ−2(�), . . . , Sχ−(p−2)(�), S�, Sχ−1(�), Sχ−2(�), . . . , Sχ−(p−2)(�).

Lemma 12. There is the following relation between the two different notations for inde-
composable modules:

Vα(λ, κ) = U(λ+a0(κ−1))modm,κ),

recall that α = ζa0
m . In particular, for the case of dihedral groups Dq we have the relation

Vα(λ, κ) = Uλ+κ−1mod2,κ.

Proof. Indeed, in the Vα(λ, κ) notation we describe the action of σ on the generator e, 
by assuming that σe = ζλme. We can then describe the action on every basis element 
ei = (τ − 1)i−1e, using the group relations



A. Kontogeorgis, A. Terezakis / Journal of Algebra 659 (2024) 745–779 755
σei = σ(τ − 1)i−1e = (τα − 1)i−1σe = ζλm(τα − 1)i−1e

We will use eq. (10) and in particular

σeκ = ακ−1ζλm.

In the Uμ,κ notation, μ is the action on the one-dimensional socle which is the τ -invariant 
element eκ = (τ − 1)κ−1e, i.e. σ(eκ) = ζμm. Putting all this together we have

μ = λ + (κ− 1)a0 modm.

In the case of dihedral group Dq, m = 2 and α = −1a0 , i.e. a0 = 1, we have Vα(λ, κ) =
Uλ+κ−1mod2,κ. �
Remark 13. The condition ordpiα = m for all 1 ≤ i ≤ h, is equivalent to requiring that 
ψi : Cm → Aut(Cpi) is faithful for all i.

4. Lifting of representations

Proposition 14. Let G = Cq � Cm. Assume that for all 1 ≤ i ≤ h, ordpiα = m. If the 
k[G]-module V̄ lifts to an R[G]-module V , where K = Quot(R) is a field of characteristic
zero, then

m |
(
dim(V ⊗R K) − dim(V ⊗R K)Cq

)
.

Let T : V → V be a lift of the generator τ of Cq and S : V → V is a lift of the generator 
σ of Cm satisfying

Sm = 1, T q = 1, STS−1 = Tα.

If V (ζαiκ
q ) is the eigenspace of the eigenvalue ζα

iκ
q of T acting on V , then

dimV (ζκq ) = dimV (ζακq ) = dimV (ζα
2κ

q ) = · · · = dimV (ζα
m−1κ

q ).

Proof. Consider a lifting V of V̄ . The generator τ of the cyclic part Cq has eigenvalues 
λ1, . . . , λs which are ph-roots of unity. Let ζq be a primitive q-root of unity. Consider any 
eigenvalue λ �= 1. It is of the form λ = ζκq for some κ ∈ N, q � κ. If E is an eigenvector of 
T corresponding to λ, that is TE = ζκq E then

TS−1E = S−1T
α
E = ζκαq S−1E

and we have a series of eigenvectors E, S−1E, S−2E, · · · with corresponding eigenvalues 
ζκq , ζ

κα
q , ζκa

2

q · · · , ζκαo−1

q , where o = ordq/(q,κ)α. Indeed, the integer o satisfies the relation
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καo ≡ κ modq ⇒ αo ≡ 1 mod q

(q, κ) .

Using Lemma 6 we obtain o = m. Therefore the eigenvalues λ �= 1 form orbits of size m, 
while the eigenspace of the eigenvalue 1 is just the invariant space V Cq and the result 
follows. �
5. Indecomposable Cq � Cm modules, integral representation theory

From now on V is a free R-module, where R is an integral local principal ideal domain 
with maximal ideal mR, R has characteristic zero and R contains all q-th roots of unity. 
Let K = Quot(R).

The indecomposable modules for a cyclic group both in the ordinary and in the 
modular case are described by writing down the Jordan normal form of a generator of 
the cyclic group. Since in integral representation theory there are infinitely many non-
isomorphic indecomposable Cq-modules for q = ph, h ≥ 3, one is not expecting to have 
a theory of Jordan normal forms even if one works over complete local principal ideal 
domains [7], [8].

Lemma 15. Let T be an element of order q = ph in End(V ). The minimal polynomial of T
has simple eigenvalues and T is diagonalizable when seen as an element in End(V ⊗K).

Proof. Since T q = IdV , the minimal polynomial of T divides xq − 1, which has simple 
roots over a field of characteristic zero. This ensures that T ∈ End(V ⊗K) is diagonal-
izable. �
Lemma 16. Let f(x) = (x − λ1)(x − λ2) · · · (x − λd) be the minimal polynomial of T on 
V . There is an element E ∈ V , such that

E, (T − λ1IdV )E, (T − λ2IdV )(T − λ1IdV )E, . . . , (T − λd−1IdV ) · · · (T − λ1IdV )E

are linear independent elements in V ⊗K.

Proof. Consider the endomorphisms for i = 1, . . . , d

Πi =
d∏

ν=1
ν �=i

(T − λνIdV ).

In the above product notice that T − λiIdV , T − λjIdV are commuting endomorphisms. 
Since the minimal polynomial of T has degree d all R-modules KerΠi are proper subsets 
of V . Since V can not be a finite union of proper submodules there is an element E∈ V

such that E �∈ Ker(Πi) for all 1 ≤ i ≤ d. Consider a relation
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d∑
μ=0

γμ

μ∏
ν=0

(T − λμIdV )E, (10)

where 
∏0

ν=0(T −λνIdV )E = E. We first apply the operator 
∏d

ν=2(T −λνIdV ) to eq. (10)
and we obtain

0 = γ0Π1E,

and by the selection of E we have that γ0 = 0. We now apply 
∏d

ν=3(T − λνIdV ) to 
eq. (10). We obtain that

0 = γ1

d∏
ν=3

(T − λνIdV )(T − λ1IdV ) = γ1Π2E,

and by the selection of E we have that γ1 = 0. We now apply 
∏d

ν=4(T − λνIdV ) to 
eq. (10) and we obtain

0 = γ2

d∏
ν=4

(T − λνIdV )(T − λ2IdV )(T − λ1IdV )E = γ2Π3E

and by the selection of E we obtain γ3 = 0. Continuing this way we finally arrive at 
γ0 = γ1 = · · · = γd−1 = 0. �
Lemma 17. Let V be a free R-module of rank d acted on by an automorphism T : V → V

of order ph. Assume that the minimal polynomial of T is of degree d and has roots 
λ1, . . . , λd. Then T = (tij) can be written as a matrix with respect to the basis as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · · · · 0

a1 λ2
. . .

...

0 a2 λ3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 ad−1 λd

⎞
⎟⎟⎟⎟⎟⎟⎠ (11)

i.e.

tij =

⎧⎪⎪⎨
⎪⎪⎩
λi if i = j

aj if i = j + 1
0 otherwise

(12)

Proof. By Lemma 16 the elements

E, (T − λ1IdV )E, (T − λ2IdV )(T − λ1IdV )E, . . . , (T − λd−1IdV ) · · · (T − λ1IdV )E
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form a free submodule of V of rank d. The theory of submodules of principal ideal 
domains, there is a basis E1, E2, . . . , Ed of the free module V such that

E1 = E, (13)

a1E2 = (T − λ1IdV )E1,

a2E3 = (T − λ2IdV )E2,

. . .

ad−1Ed = (T − λd−1IdV )Ed−1.

Let us consider the module V1 = 〈E1, . . . , Ed〉 ⊂ V . By construction, the map T restricts 
to an automorphism V1 → V1 that has the desired matrix form with respect to the basis 
E1, . . . , Ed. We then consider the free module V/V1 and we repeat the procedure for the 
minimal polynomial of T , which again acts on V/V1. The desired result follows. �
Remark 18. The element T as defined in eq. (11) has order equal to the higher order of 
the eigenvalues λ1, . . . , λd involved. Indeed, since we have assumed that the eigenvalues 
are different the matrix is diagonalizable in Quot(R) and has order equal to the maximal 
order of the eigenvalues involved. In particular it has order q if there is at least one λi

that is a primitive q-root of unity. The statement about the order of T is not necessarily 

true if some of the eigenvalues are the same. For instance the matrix 
(

1 0
1 1

)
has infinite 

order over a field of characteristic zero.

Remark 19. The number of indecomposable R[T ]-summands of V is given by #{i : ai =
0} + 1.

A lift of a sum of indecomposable kCq-modules Jκ1 ⊕ · · · ⊕ Jκn
can form an indecom-

posable RCq-module. For example, the indecomposable module where the generator T
of Cq has the form

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · · · · 0

a1 λ2
. . .

...

0 a2 λ3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 ad−1 λd

⎞
⎟⎟⎟⎟⎟⎟⎠

where a1 = · · · = aκ1−1 = 1, aκ1 ∈ mR, aκ1+1, . . . , aκ2+κ1−1 = 1, aκ2+κ1 ∈ mR, etc 
reduces to a decomposable direct sum of Jordan normal forms of sizes κ1, κ2, . . ..

Remark 20. It is an interesting question to classify these matrices up to conjugation with 
a matrix in GLd(R). It seems that the valuation of elements ai should also play a role.
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Definition 21. Let hi(x1, . . . , xj) be the complete symmetric polynomial of degree i in 
the variables x1, . . . , xj . For instance

h3(x1, x2, x3) = x3
1 + x2

1x2 + x2
1x3 + x1x

2
2 + x1x2x3 + x1x

2
3 + x3

2 + x2
2x3 + x2x

2
3 + x3

3.

Set

L(κ, j, ν) = hκ(λj , λj+1, . . . , λj+ν)

A(i, j) =
{
aiai+1 · · · ai+j if j ≥ 0
0 if j < 0

Lemma 22. The matrix Tα = (t(α)
ij ) is given by the following formula:

t
(α)
ij =

⎧⎪⎪⎨
⎪⎪⎩
λα
i if i = j

A(j, i− j − 1) · L(α− (i− j), j, i− j) if j < i

0 if j > i

Proof. For j ≥ i the proof is trivial. When j < i and α = 1 it is immediate, since 
L(x, ·, ·) ≡ 0, for every x ≤ 0. Assume this holds for α = n. Set α = n + 1, we consider 
first the case j + 1 < i, using eq. (12)

t
(n+1)
ij =

r∑
k=1

t
(n)
ik tkj = λjt

(n)
ij + ajt

(n)
i,j+1 = λjA(j, i− j − 1)L(n− (i− j), j, i− j)+

+ ajA(j + 1, i− j − 2)L(n− (i− j − 1), j + 1, i− j − 1) =

= A(j, i− j − 1)
(
λjhn−(i−j)(λj , . . . , λi) + hn−(i−j)+1(λj+1, . . . , λi)

)
=

= A(j, i− j − 1)hn−(i−j)+1(λj , . . . , λi) =

= A(j, i− j − 1)L(n− (i− j) + 1, i, i− j).

If j + 1 = i then we compute

t
(n+1)
ij =

r∑
k=1

t
(n)
ik tkj = λjt

(n)
ij + ajt

(n)
i,j+1

= λjA(j, i− j − 1)L(n− (i− j), j, i− j) + ajλ
(n)
j+1,j+1

= λjA(j, 0)L(n− 1, j, 1) + ajλ
(n)
j+1,j+1

= A(j, 0) (λjhn−1(λj , λj+1) + hn(λj+1))

= A(j, 0)hn(λj , λj+1)

= A(j, i− j − 1)L(n− (i− j) + 1, i, i− j). �
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Remark 23. The space of homogeneous polynomials of degree c in n-variables has di-
mension 

(
n−1+c
n−1

)
. Since all q-roots of unity are reduced to 1 modulo mR the quantity 

L(α− (i − j), j, i − j) is reduced to the number of terms in hα−(i−j)(λj , . . . , λi), which is 
equal to dimension of homogeneous polynomials of degree c = α−(i −j) in n = (i −j) +1
variables, that is

L(α− (i− j), j, i− j) ≡
(
n− 1 + c

n− 1

)
=

(
α

i− j

)
modmR.

This computation is compatible with the computation of τα given in eq. (4).

Recall that we have defined in Proposition 14 the element S : V → V to be a lift of 
the element σ generating Cm.

Lemma 24. There is an eigenvector E of the lift S, which is a generator of the cyclic 

group Cm, so that E is not an element in 
s⋃

i=1
Ker(Πi ⊗K).

Proof. The eigenvectors E1, . . . , Ed of S form a basis of the space V ⊗K. By multiplying 
by certain elements in R, if necessary, we can assume that all Ei are in V and their 
reductions Ei ⊗ R/mR, 1 ≤ i ≤ d give rise to a basis of eigenvectors of a generator 
of the cyclic group Cm acting on V ⊗ R/mR. If every eigenvector Ei is an element of 
some Ker(Πν) for 1 ≤ i ≤ d, then their reductions will be elements in Ker(T − 1)d−1, a 
contradiction since the later kernel has dimension < d. �
Lemma 25. Let V be a free Cq � Cm-module, which is indecomposable as a Cq-module. 
Consider the basis given in Lemma 17. Then the value of S(E1) determines S(Ei) for 
2 ≤ i ≤ d.

Proof. Let S : V → V be a generator of the cyclic group Cm. We will use the notation 
of Lemma 16. We use Lemma 24 in order to select a suitable eigenvector of E1 of S and 
then form the basis E1, E2, . . . , Ed as given in eq. (13). We can compute the action of S
on all basis elements Ei by

S(ai−1Ei) = S(T − λi−1IdV )Ei−1 = (T a − λi−1IdV )S(Ei−1). (14)

This means that one can define recursively the action of S on all elements Ei. Indeed, 
assume that

S(Ei−1) =
d∑

ν=1
γν,i−1Eν .

We now have
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(T a − λi−1IdV )Eν =
d∑

μ=1
t(α)
μ,νEμ − λi−1Eν

= (λα
ν − λi−1)Eν +

d∑
μ=ν+1

t(α)
μ,νEμ.

We combine all the above to

ai−1S(Ei) =
d∑

ν=1
γν,i−1(λα

ν − λi−1)Eν +
d∑

ν=1
γν,i−1

d∑
μ=ν+1

t(α)
μ,νEμ

=
d∑

ν=1
γ̃ν,iEν , (15)

for a selection of elements γ̃ν,i ∈ R, which can be explicitly computed by collecting the 
coefficients of the basis elements E1, . . . , Ed.

Observe that the quantity on the right hand side of eq. (15) must be divisible by ai−1. 
Indeed, let v be the valuation of the local principal ideal domain R. Set

e0 = min
1≤ν≤d

{v(γ̃ν,i)}.

If e0 < v(ai−1), then we divide eq. (15) by πe0 , where π is the local uniformizer of R, 
that is mR = πR. We then consider the divided equation modulo mR to obtain a linear 
dependence relation among the elements Ei ⊗ k, which is a contradiction. Therefore 
e0 ≥ v(ai−1) and we obtain an equation

S(Ei) =
d∑

ν=1

γ̃ν,i
ai−1

Eν =
d∑

ν=1
γν,iEν . �

For example S(E1) = ζεmE1. We compute that

a1S(E2) = (Tα − λ1Id)S(E1)

and

S(E2) = (λα
1 − λ1)
a1

ζεμE1 + ζεm

d∑
μ=2

t
(α)
μ,1

a1
Eμ

= (λα
1 − λ1)
a1

ζεμE1 + ζεm

d∑
μ=2

A(1, μ− 2)L(α− (μ− 1), 1, μ− 1)
a1

Eμ

= (λα
1 − λ1)
a1

ζεμE1 + ζεm

d∑ a1a2 · · · aμ−1hα−(μ−1)(λ1, λ2, . . . , λμ)
a1

Eμ.

μ=2
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Proposition 26. Assume that no element a1, . . . , ad−1 given in eq. (11) is zero. Given 
α ∈ N, α ≥ 1 and an element E1, which is not an element in 

⋃d
i=1 Ker(Πi⊗K). If there 

is a matrix Γ = (γi,j), such that ΓTΓ−1 = Tα and ΓE1 = ζεmE1, then this matrix Γ is 
unique.

Proof. We will use the idea leading to equation (14) replacing S with Γ. We will compute 
recursively and uniquely the entries γμ,i, arriving at the explicit formula of eq. (21).

Observe that trivially γν,1 = 0 for all ν < 1 since we only allow 1 ≤ ν ≤ d. We 
compute

γ̃μ,i = γμ,i−1(λα
μ − λi−1) +

μ−1∑
ν=1

γν,i−1t
(α)
μ,ν (16)

= γμ,i−1(λα
μ − λi−1) +

μ−1∑
ν=1

γν,i−1A(ν, μ− ν − 1)L
(
α− (μ− ν), ν, μ− ν)

= γμ,i−1(λα
μ − λi−1) +

μ−1∑
ν=1

γν,i−1aνaν+1 · · · aμ−1hα−μ+ν(λν , λν+1, . . . , λμ).

Define

[λα
μ − λx]ji =

j∏
x=i

(λα
μ − λx)

[a]ji =
j∏

x=i

ax

for i ≤ j. If i > j then both of the above quantities are defined to be equal to 1.
Observe that for μ = 1 eq. (16) becomes

γ1,i = 1
ai−1

γ1,i−1(λα
1 − λi−1) (17)

and we arrive at (assuming that Γ(E1) = ζεmE1)

γ1,i = ζεm
a1a2 · · · ai−1

i−1∏
x=1

(λα
1 − λx) = ζεm

a1a2 · · · ai−1
[λα

1 − λx]i−1
1 . (18)

For μ ≥ 2 we have γμ,1 = 0, since by assumption ΓE1 = ζεmE1. Therefore eq. (16) gives 
us

γμ,i =
i−2∑ [λα

μ − λx]i−1
i−κ1

[a]i−1

μ−1∑
γμ2,i−1−κ1 [a]μ−1

μ2
hα−μ+μ2(λμ2 , . . . , λμ)
κ1=0 i−1−κ1 μ2=1
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=
μ−1∑
μ2=1

[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ)
i−2∑
κ1=0

[λα
μ − λx]i−1

i−κ1

[a]i−1
i−1−κ1

γμ2,i−1−κ1 . (19)

We will now prove eq. (19) by induction on i, using equation (16). For i = 2, μ ≥ 2

γμ,2 = 1
a1

γμ,1(λα
μ − λ1) + 1

a1

μ−1∑
μ2=1

γμ2,1[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ)

= 1
a1

[a]μ−1
1 hα−μ+1(λ1, . . . , λμ)γ1,1.

Assume now that eq. (19) holds for computing γμ,i−1. We will treat the γμ,i case. Using 
eq. (16)

γμ,i =
(λα

μ − λi−1)
ai−1

γμ,i−1 + 1
ai−1

μ−1∑
μ2=1

γμ2,i−1[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ)

=
(λα

μ − λi−1)
ai−1

μ−1∑
μ2=1

[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ)
i−3∑
κ1=0

[λα
μ − λx]i−2

i−1−κ1

[a]i−2
i−2−κ1

γμ2,i−2−κ1

+ 1
ai−1

μ−1∑
μ2=1

γμ2,i−1[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ)

=
μ−1∑
μ2=1

[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ)
i−3∑
κ1=0

[λα
μ − λx]i−1

i−1−κ1

[a]i−1
i−2−κ1

γμ2,i−2−κ1

+ 1
ai−1

μ−1∑
μ2=1

γμ2,i−1[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ)

=
μ−1∑
μ2=1

[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ)
i−2∑
κ1=1

[λα
μ − λx]i−1

i−κ1

[a]i−1
i−1−κ1

γμ2,i−1−κ1

+
μ−1∑
μ2=1

[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ) 1
ai−1

γμ2,i−1

=
μ−1∑
μ2=1

[a]μ−1
μ2

hα−μ+μ2(λμ2 , . . . , λμ)
i−2∑
κ1=0

[λα
μ − λx]i−1

i−κ1

[a]i−1
i−1−κ1

γμ2,i−1−κ1

and equation (19) is now proved.
We proceed recursively applying eq. (19) to each of the summands γμ2,i−1−κ1 if μ2 > 1

and i − 1 − κ1 > 1. If μ2 = 1, then γμ2,i−1−κ1 is computed by eq. (17) and if μ2 > 1 and 
i − 1 − κ1 ≤ 1 then γμ2,i−1−κ1 = 0. We can classify all iterations needed by the set Σμ

of sequences (μs, μs−1, . . . , μ3, μ2) such that
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μ = 5

μ2 = 1 μ2 = 2

μ3 = 1

μ2 = 3

μ3 = 1 μ3 = 2

μ4 = 1

μ2 = 4

μ3 = 1 μ3 = 2

μ4 = 1

μ3 = 3

μ4 = 1 μ4 = 2

μ5 = 1

Fig. 1. Iteration tree for μ = 5.

1 = μs < μs−1 < · · · < μ3 < μ2 < μ = μ1. (20)

For example for μ = 5 the set of such sequences is given by

Σμ = {(1), (1, 2), (1, 3), (1, 2, 3), (1, 4), (1, 2, 4), (1, 3, 4), (1, 2, 3, 4)}

corresponding to the tree of iterations given in Fig. 1. The length of the sequence 
(μs, μs−1, . . . , μ2) is given in eq. (20) is s − 1. In each iteration in the sum of eq. (19) the 
i changes to i − 1 − k thus we have the following sequence of indices

i1 = i → i2 = i−1−κ1 → i3 = i−2−(κ1+κ2) → · · · → is = i−(s−1)−(κ1+· · ·+κs−1)

For the sequence i1, i2, . . ., we might have it = 1 for t < s − 1. But in this case, we 
will arrive at the element γμt,it = γμt,1 = 0 since μt > 1. This means that we will have 
to consider only selections κ1, . . . , κs−1 such that is−1 ≥ 1. Therefore we arrive at the 
following expression for μ ≥ 2

γμ,i =
∑

(μs,...,μ2)∈Σμ

[a]μ−1
μ2

[a]μ2−1
μ3

· · · [a]μs−1−1
μs

s∏
ν=2

hα−μν−1+μν
(λμν

, . . . , λμν−1)

·
∑

i=i1>i2>···>is≥1

s−1∏
ν=1

[λα
μν

− λx]iν−1
iν+1+1

[a]iν−1
iν+1

· γ1,is

(19)=
∑

(μs,...,μ2)∈Σμ

s∏
ν=2

hα−μν−1+μν
(λμν

, . . . , λμν−1)

·
∑ [a]μ−1

1
[a]i−1

i

s−1∏
[λα

μν
− λx]iν−1

iν+1+1
ζεm[λα

1 − λx]is−1
1

[a]is−1
1
i=i1>i2>···>is≥1 s ν=1
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=
∑

(μs,...,μ2)∈Σμ

s∏
ν=2

hα−μν−1+μν
(λμν

, . . . , λμν−1)
[a]μ−1

1
[a]i−1

1
ζεm

∑
i=i1>i2>···>is≥1

s∏
ν=1

[λα
μν

− λx]iν−1
iν+1+1

(21)

where is+1 + 1 = 1 that is is+1 = 0. Since γμ,i are uniquely determined the uniqueness
of Γ follows. �

We will now prove that the matrix Γ of Lemma 26 exists by checking that ΓT = TαΓ. 
Set (aμ,i) = ΓT , (bμ,i) = TαΓ. For i < d we have

aμ,i =
d∑

ν=1
γμ,νtν,i = γμ,itii + γμ,i+1ti+1,i

(16)= γμ,iλi + γμ,i(λα
μ − λi) +

μ−1∑
ν=1

γν,it
(α)
μ,ν

= γμ,iλ
α
μ +

μ−1∑
ν=1

γν,it
(α)
μ,ν =

μ∑
ν=1

t(α)
μ,νγν,i = bμ,i.

For i = d we have:

aμ,d =
d∑

ν=1
γμ,νtν,d = γμ,dtd,d = γμ,dλd

while, recall Lemma 22,

bμ,d =
d∑

ν=1
t(α)
μ,νγν,d =

μ−1∑
ν=1

t(α)
μ,νγν,d + λα

μγμ,d.

This gives us the relation

(λd − λα
μ)γμ,d =

μ−1∑
ν=1

t(α)
μ,νγν,d (22)

For μ = 1 using eq. (18) we have

γ1,dλd = γ1,dλ
α
1 ⇒ [λα

1 − λx]d1 = 0.

This relation is satisfied if λα
1 is one of {λ1, . . . , λd}. Without loss of generality we assume 

that

λα
i =

{
λi+1 if m � i

λ if m | i
(23)
i−m+1
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We have the following conditions:

μ = 2 (λd − λα
2 )γ2,d = t

(α)
2,1 γ1,d

μ = 3 (λd − λα
3 )γ3,d = t

(α)
3,1 γ1,d + t

(α)
3,2 γ2,d

μ = 4 (λd − λα
4 )γ4,d = t

(α)
4,1 γ1,d + t

(α)
4,2 γ2,d + t

(α)
4,3 γ3,d

...
...

μ = d− 1 (λd − λα
d−1)γd−1,d = t

(α)
d−1,1γ1,d + t

(α)
d−1,2γ2,d + · · · + t

(α)
d−1,d−2γd−1,d.

All these equations are true provided that

γ1,d, . . . , γd−2,d = 0. (24)

Finally, for μ = d, we have

(λd − λα
d )γd,d =

d−1∑
ν=1

t
(α)
d,νγν,d, (25)

which is true provided that (λd − λα
d )γd,d = t

(a)
d,d−1γd−1,d. In Lemma 29 we will prove 

that eq. (24) holds and eq. (25) will be proved in Lemma 34.

Lemma 27. For n ≥ 2 the vertical sum Sn of the products of every line of the following 
array

y

1 1 (x1 − x2) (x1 − x3) · · · · · · (x1 − xn)
2 (z − x1) 1 (x1 − x3) · · · · · · (x1 − xn)

3 (z − x1) (z − x2) 1
. . . . . .

...
...

...
. . . . . . . . .

...
...

...
. . .

...
n− 1 (z − x1) (z − x2) · · · (z − xn−2) 1 (x1 − xn)
n (z − x1) (z − x2) · · · (z − xn−2) (z − xn−1) 1

is given by

Sn =
n∑

y=1

n∏
ν=y+1

(x1 − xν)
y−1∏
μ=1

(z − xμ) = (z − x2) · · · (z − xn).

In particular when z = xn the sum is zero.
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Proof. We will prove the lemma by induction. For n = 2 we have S2 = (x1 − x2) + (z −
x1) = z − x2. Assume that the equality holds for n. The sum Sn+1 corresponds to the 
array:

y

1 1 (x1 − x2) (x1 − x3) · · · (x1 − xn) (x1 − xn+1)
2 (z − x1) 1 (x1 − x3) · · · (x1 − xn) (x1 − xn+1)

3 (z − x1) (z − x2) 1
. . .

...
...

...
...

. . . . . .
...

...
n− 1 (z − x1) · · · (z − xn−2) 1 (x1 − xn) (x1 − xn+1)
n (z − x1) (z − x2) · · · (z − xn−1) 1 (x1 − xn+1)

n + 1 (z − x1) (z − x2) · · · (z − xn−1) (z − xn) 1

We have by definition Sn+1 = Sn(x1 − xn+1) + (z − x1)(z − x2) · · · (z − xn), which by 
induction gives

Sn+1 = (z − x2) · · · (z − xn)(x1 − xn+1) + (z − x1)(z − x2) · · · (z − xn)

= (z − x2) · · · (z − xn)(x1 − xn+1 + z − x1)

and gives the desired result. �
Lemma 28. Consider A < l < L < B. The quantity

∑
l≤y≤L

[λa − λx]y−1
A · [λb − λx]By+1

is equal to

[λa − λx]l−1
A · [λb − λx]BL+1 ·

[λa − λx]Ll − [λb − λx]Ll
(λa − λb)

.

Proof. We write

∑
l≤y≤L

[λa − λx]y−1
A · [λb − λx]By+1

= [λa − λx]l−1
A · [λb − λx]BL+1 ·

∑
l≤y≤L

[λa − λx]y−1
l · [λb − λx]Ly+1

The last sum can be read as the vertical sum S of the products of every line in the 
following array:
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y

l 1 (λb − λl+1) (λb − λl+2) · · · (λb − λL−1) (λb − λL)
l + 1 (λa − λl) 1 (λb − λl+2) · · · (λb − λL−1) (λb − λL)

l + 2 (λa − λl) (λa − λl+1) 1
...

...
...

...
...

...
...

L− 2 (λa − λl) (λa − λl+1) · · · 1 (λb − λL−1) (λb − λL)
L− 1 (λa − λl) (λa − λl+1) · · · (λa − λL−2) 1 (λb − λL)
L (λa − λl) (λa − λl+1) · · · (λa − λL−2) (λa − λL−1) 1

If l = b, then Lemma 27 implies that S = [λa − λx]Lb+1. Furthermore, if L = a then 
S = 0.

The quantity S cannot be directly computed using Lemma 27, if l �= b. We proceed 
by forming the array:

y

b 1 (λb − λb+1) · · · (λb − λl) · · · · · · · · · · · · (λb − λL)
...

...
...

l − 1 (λa − λb) · · · 1 (λb − λl) · · · · · · · · · · · · (λb − λL)
l (λa − λb) · · · (λa − λl−1) 1 (λb − λl+1) (λb − λl+2) · · · (λb − λL−1) (λb − λL)

l + 1 (λa − λb) · · · (λa − λl−1) (λa − λl) 1 (λb − λl+2) · · · (λb − λL−1) (λb − λL)

l + 2 (λa − λb) · · · (λa − λl−1) (λa − λl) (λa − λl+1) 1
...

...
...

...
...

. . . . . .
...

...
L− 2 (λa − λb) · · · (λa − λl−1) (λa − λl) (λa − λl+1) · · · 1 (λb − λL−1) (λb − λL)
L− 1 (λa − λb) · · · (λa − λl−1) (λa − λl) (λa − λl+1) · · · (λa − λL−2) 1 (λb − λL)
L (λa − λb) · · · (λa − λl−1) (λa − λl) (λa − λl+1) · · · (λa − λL−2) (λa − λL−1) 1

The value of this array is computed using Lemma 27 to be equal to [λa−λx]Lb+1. We ob-
serve that the sum of the products of the top left array can be computed using Lemma 27, 
while the sum of the products of the lower right array is S.

[λa − λx]l−1
b · S + [λa − λx]l−1

b+1 · [λb − λx]Ll = [λa − λx]Lb+1

we arrive at

[λa − λx]l−1
b S = [λa − λx]l−1

b+1
(
[λa − λx]Ll − [λb − λx]Ll

)
or equivalently

(λa − λb) · S = [λa − λx]Ll − [λb − λx]Ll . �
Lemma 29. For all 1 ≤ μ ≤ d − 2 we have γμ,d = 0.

Proof. Let μ1 = μ > μ2 > · · · > μs = 1 ∈ Σμ be a selection of iterations and d = i1 >

i2 > · · · > is ≥ 1 > is+1 = 0 be the sequence of i’s. Using eq. (23) we see that the 
quantity [λα

μ − λx]iν−1
i +1 �= 0 if and only if one of the following two inequalities hold:
ν ν+1



A. Kontogeorgis, A. Terezakis / Journal of Algebra 659 (2024) 745–779 769
either iν+1 >μν −mf(μν) (26)

or iν <μν + 2 −mf(μν), (27)

where

f(x) =
{

1 if m | x
0 if m � x

We will denote the above two inequalities by (26)ν , (27)ν when applied for the integer 
ν. Assume that for all 1 ≤ ν ≤ s one of the two inequalities (26)ν , (27)ν hold, that is 
[λα

μν
−λx]iν−1

iν+1+1 �= 0. Inequality (26)s can not hold for ν = s since it gives us 0 = is+1 >

1 = μs, we have m � 1 = μs.
We will keep the sequence μ̄ : μ1 > μ2 > · · · > μs fixed and we will sum over all 

possible selections of sequences of i1 > · · · is > is+1 = 0, that is we will show that the 
sum

Γμ̄,i :=
∑

i=i1>i2>···>is≥1

s∏
ν=1

[λα
μν

− λx]iν−1
iν+1+1 (28)

is zero, which will show that γμ,d = 0 using eq. (21).
Observe now that if (27)ν holds and m � μν , μν−1, then (27)ν−1 also holds. Indeed the 

combination of (27)ν and (26)ν−1 gives the impossible inequality

μν + 2
(27)ν
> iν

(26)ν−1
> μν−1.

Assume now that m | ν and (27)ν holds, then (27)ν−1 also holds. Indeed the combination 
of (27)ν and (26)ν−1 gives us

μν + 2 −m
(27)ν
> iν

(26)ν−1
> μν−1 −mf(μν−1).

If m � μν−1, then the above inequality is impossible since it implies that

μν + 2 −m > μν−1 > μν .

If m | μν−1, then the inequality is also impossible since it implies that μν + 2 > μν−1 so 
if we write μν−1 = k′m and μν = km, k, k′ ∈ N, k′ > k, we arrive at 2 > (k′−k)m ≥ m. 
This proves the following

Lemma 30. The inequality (26)ν−1 might be correct only in cases where m | μν−1, m � μν .

Assume that for all ν inequality (27) holds. Then for ν = 1 it gives us (recall that 
μ ≤ d − 2)
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μ + 2 ≤ d = i1 < μ1 + 2 −mf(μ1) = μ + 2 −mf(μ), (29)

which is impossible. Therefore either there are ν such that none of the two inequalities 
(26)ν , (27)ν hold (in this case the contribution to the sum is zero) or there are cases 
where (26) holds.

The summands appearing in eq. (28) can be non-zero, for example the sequence μ1 =
m > μ2 = 1 with i2 = 2 < i1 = d, s = 2 give the contribution

[λα
μ2

− λx]i2−1
1 [λα

μ1
− λx]d−1

i2
= [λα

1 − λx]11[λα
m − λx]d−1

i2+1 = (λ2 − λ1)[λ1 − λx]d−1
3

while for i2 = 1 < i1 = d it gives the contribution

[λα
μ2

− λx]i2−1
1 [λα

μ1
− λx]d−1

i2+1 = [λα
1 − λx]01[λα

m − λx]d−1
2 = [λ1 − λx]d−1

2 .

It is clear that these non-zero contributions cancel out when added.

Lemma 31. Assume that m | μν0−1 and m � μν0 , where (27)ν0 and (26)ν0−1 hold. Then, 
we can eliminate μν0−1 and iν0 from both selections of the sequence of μ’s and i’s, i.e. 
we can form the sequence of length s − 1

μ̄s−1 = μs < μ̄s−2 = μs−1 < · · · < μ̄ν0−1 = μν0 < μ̄ν0−2 = μν0−2 < · · · < μ̄1 = μ1,

and the corresponding sequence of equal length

īs−1 = is < īs−2 = is−1 < · · · < īν0 = iν0+1 < īν0−1 = iν0−1 < · · · < ī1 = i1 = d,

so that

Γμ̄,i =
∑

i1>···>is

s∏
ν=1

[λα
μν

− λx]iν−1
iν+1+1 = (�)

∑
ī1>···>īs−1

s∏
ν=1

ν �=ν0−1

[λα
μν

− λx]īν−1
īν+1+1,

where (�) is a non zero element.

Proof (of Lemma 31). We are in the case m | μν0−1 and m � μν0 , where (27)ν0 and 
(26)ν0−1 hold,

μν0−1 −m
(26)ν0−1

< iν0

(27)ν0
< μν0 + 2, (30)

or equivalently

μ0 := μν0−1 −m + 1 ≤ iν0 ≤ μν0 + 1

For iν0+1 the inequality (26)ν0 iν0+1 > μν0 −mf(μν0) can not hold, since it implies



A. Kontogeorgis, A. Terezakis / Journal of Algebra 659 (2024) 745–779 771
iν0+1 < iν0

(27)ν0
< μν0 + 2 < iν0+1 + 2.

Observe that also

iν0+1 + 1 ≤ iν0 ≤ iν0−1 − 1.

Set l = max{μ0, iν0+1 + 1} and L = min{μν0 + 1, iν0−1 − 1}. Then y = iν0 satisfies

l ≤ y ≤ L.

By Lemma 28 the quantity
∑

l≤y≤L

[λμν0+1 − λx]y−1
iν0+1+1 · [λμ0 − λx]iν0−1−1

y+1

equals to

[λμν0+1 − λx]l−1
iν0+1+1 · [λμ0 − λx]

iν0−1−1
L+1 ·

[λμν0+1 − λx]Ll − [λμ0 − λx]Ll
(λμν0+1 − λμ0)

[λμν0+1 − λx]Liν0+1+1 · [λμ0 − λx]
iν0−1−1
L+1 − [λμν0+1 − λx]l−1

iν0+1+1 · [λμ0 − λx]iν0−1−1
l

(λμν0+1 − λμ0)
.

(31)
Case A1 l = μ0 ≥ iν0+1 + 1. Then [λμ0 − λx]Ll = 0.

Case A2 l = iν0+1 + 1 > μ0. We set z := iν0+1, which is bounded by eq. (27)ν0+1 that is

μ0
Case A2

≤ z
(27)ν0+1

≤ μν0+1 + 1.

Notice that in this case m � μν0+1. If m | μν0+1, then since we have assumed that 
inequality (27)ν0+1 holds we have

μν0−1 −m = μ0 − 1
(Case A2)

< iν0+1
(27)ν0+1

< μν0+1 + 2 −m,

which implies that μν0−1 < μν0+1 + 2, a contradiction. Thus for l = z + 1 we compute
∑

μ0≤z≤μν0+1+1
[λα

μν0+1
− λx]iν0+1−1

iν0+2+1 · [λμ0 − λx]Ll =

=
∑

μ0≤z≤μν0+1+1
[λμν0+1+1 − λx]z−1

iν0+2+1 · [λμ0 − λx]Lz+1 =

= (�) ·
[λμν0+1+1 − λx]μν0+1+1

μ0 − [λμ0 − λx]
μν0+1+1
μ0

λ − λ
= 0.
μν0+1+1 μ0+1
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Case B1 L = μν0 + 1 ≤ iν0−1 − 1. In this case [λμν0+1 − λx]Ll = 0.

Case B2 L = iν0−1 − 1 < μν0 + 1. In this case eq. (31) is reduced to

[λμν0+1 − λx]
iν0−1−1
iν0+1+1

(λμν0+1 − λμ0)

This means that we have erased the μν0−1 from the product and we have

∑
i1>···>is

s∏
ν=1

[λα
μν

− λx]iν−1
iν+1+1 = (�)

∑
i1>···>is

s∏
ν=1

ν �=ν0−1

[λα
μν

− λx]iν−1
iν+1+1,

where (�) is a non zero element. This procedure gives us that the original quantity

[λα
μν0

− λx]
iν0−1
iν0+1+1 · [λα

μν0−1
− λx]iν0−1−1

iν0+1

after summing over iν0 becomes the quantity

[λα
μν0

− λx]iν0−1−1
iν0+1+1 = [λα

μ̄ν0−1
− λx]

īν0−1−1
īν0+1 ,

that is we have eliminated the μν0−1 and iν0 from both selections of the sequence of μ’s 
and i’s, i.e. we have the sequence of length s − 1

μ̄s−1 = μs < μ̄s−2 = μs−1 < · · · < μ̄ν0−1 = μν0 < μ̄ν0−2 = μν0−2 < · · · < μ̄1 = μ1,

and the corresponding sequence of equal length

īs−1 = is < īs−2 = is−1 < · · · < īν0 = iν0+1 < īν0−1 = iν0−1 < · · · < ī1 = i1 = d, �
Remark 32. One should be careful here since īν0−1 = iν0−1 > iν0 > īν0 = iν0+1, so 
īν0−1 > īν0 + 1. This means that the new sequence of īs−1 > · · · > ī1 satisfies a stronger 
inequality in the ν0 position, unless ν0 − 1 = d in the computation of γd,d.

Consider the set s, s − 1, . . . , ν0 such that m � μν for s ≥ ν ≥ ν0 and assume that 
m | μν0−1 and (27)ν0 and (26)ν0−1 hold. We apply Lemma 31 and we obtain a new 
sequence of μ’s with μν0−1 removed, provided that ν0−1 > 1. We continue this way and 
in the sequence of μ’s we eliminate all possible inequalities like (30) obtaining a series 
of μ which involves only inequalities of type (27). But this is not possible if μ ≤ d − 2, 
according to equation (29). This proves that all γμ,d = 0 for 1 ≤ μ ≤ d −2, and completes 
the proof of Lemma 29. �
Lemma 33. If μ2 �= d − 1, then the contribution of the corresponding summand Γμ̄,i to 
γd,d is zero.
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Proof. We are in the case μ = d = i. We begin the procedure of eliminating all sequences 
of inequalities of the form (23)ν0 , (22)ν0−1, where m | ν0 − 1, m � ν0, using Lemma 31. 
For ν = 1 inequality (27)1 can not hold since it implies the impossible inequality d =
i1 < d + 2 −m. Therefore, (26)1 holds, that is i2 > d −m. On the other hand we can 
assume that (27)2 holds by the elimination process, so we have

d−m
(26)1
< i2

(27)2
< μ2 + 2.

Following the analysis of the proof of Lemma 29 we see that the contribution to γd,d
is non zero if case B2 holds, that is (ν0 = 2 in this case) d − 1 = iν0−1 − 1 < μ2 + 1, 
obtaining that μ2 = d − 1. �
Lemma 34. Equation (25) holds, that is

(λd − λα
d )γd,d =

d−1∑
ν=1

t
(α)
d,νγν,d = t

(α)
d,d−1γd−1,d.

Proof. We will use the procedure of the proof of Lemma 31. We recall that for each fixed 
sequence of μs > · · · > μ1 we summed over all possible sequences i1 > · · · > is+1 = 0. 
In the final step the inequality (30) appears, for ν0 = 2, and μν0 = μ2 = d − 1 and 
ν0 − 1 = 1 and μν0−1 = μ = d, that is:

0 = μν0−1 −m
(26)2
< iν0

(27)1
< μν0 + 2 = d + 1.

As in the proof of Lemma 31 we sum over y = iν and the result is either zero in case B1 
or in the B2 case, where μν0 = μ2 = d − 1 and μ0 = μν0−1 − m + 1 = d − m + 1, the 
contribution is computed to be equal to

[λα
μν0+1 − λx]iν0−1−1

iν0+1+1

(λμν0+1 − λμ0)
=

[λα
d − λx]d−1

i3+1
λd − λα

d

.

The last μν0−1 = μ1 = d is eliminated in the above expression. This means that for a 
fixed sequence μ1 > . . . > μs the contribution of the inner sum in eq. (28) is given by

1
λd − λα

d

·
∑

d−1=i2>i3>···>is≥1

s∏
ν=2

[λα
μν

− λx]iν−1
iν+1+1.

Observe that μ1 = d does not appear in this expression and this expression corresponds 
to the sequence μ̄1 = μ2 = d − 1 > μ̄2 = μ3 > · · · > μ̄s−1 = μ̄s = 1. Notice, also that the 
problem described in Remark 32 does not appear here, since we erased i1 which is not 
between some i’s but the first one. Therefore, we can relate it to a similar expression that 
contributes to γd−1,d. Conversely every contribution of γd−1,d gives rise to a contribution 
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in γd,d, by multiplying by λd − λα
d . The desired result follows by the expression of γμ,d

given in eq. (21). �
We have shown so far how to construct matrices Γ, T so that

T q = 1,ΓTΓ−1 = Tα. (32)

We will now prove that Γ has order m. By equation (32) Γk should satisfy the equation

ΓkTΓ−k = Tαk

.

Using Proposition 26 asserting the uniqueness of such Γk with α replaced by αk we have 
that the matrix multiplication of the entries of Γ giving rise to (γ(k)

μ,i ) = Γk coincide to 
the values by the recursive method of Proposition 26 applied for Γ′ = Γk, α′ = αk and 
Γ′E1 = ζεkmE1. In particular for k = m, we have αm ≡ 1 modpν for all 1 ≤ ν ≤ h, that 
is the matrix Γk should be recursively constructed using Proposition 26 for the relation 
ΓmTΓm = T , ΓmE1 = E1, leading to the conclusion Γm = Id. Notice that the first 
eigenvalue of Γ is a primitive root of unity, therefore Γ has order exactly m.

By Lemma 10 the action of σ in the special fiber is given by a lower triangular matrix. 
Therefore, we must have

γν,i ∈ mR for ν < i. (33)

Proposition 35. If

v(λi − λj) > v(aν) for all 1 ≤ i, j ≤ d and 1 ≤ ν ≤ d− 1, (34)

then the matrix (γμ,i) has entries in the ring R and is lower triangular modulo mR.

Proof. Assume that the condition of eq. (34) holds. In equation (21) we compute the 
fraction

[a]μ−1
1

[a]i−1
1

=

⎧⎪⎪⎨
⎪⎪⎩

1
[a]i−1

μ
if i > μ

1 if i = μ

[a]μ−1
i if i < μ

(35)

The number of (λα
μ − λx) factors in the numerator is equal to (recall that is+1 = 0)

s∑
ν=1

(iν − 1 − iν+1 − 1 + 1) = i− s,

and i > μ ≥ s, so i − s > 0. Therefore, for the upper part of the matrix i > μ we 
have i − s factors of the form (λα

i − λj) in the numerator and i − μ factors ax in the 
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denominator. Their difference is equal to (i − s) − (i − μ) = μ − s ≥ 0. By assumption 
the matrix reduces to an upper triangular matrix modulo mR. �
Remark 36. The condition given in equation (34) can be satisfied in the following way: It 
is clear that λi−λj ∈ mR. Even in the case vmR

(λi −λj) = 1 we can consider a ramified 
extension R′ of the ring R with ramification index e, in order to make the valuation 
vmR′ (λi − λj) = e and then there is space to select vmR′ (ai) < vmR′ (λi − λj).

Proposition 37. We have that

γi,i ≡ ζεmαi−1 modmR (36)

Let A = {a1, . . . , ad−1} ∈ R be the set of elements below the diagonal in eq. (11). If 
ai ∈ mR, then

γμ,i ∈ mR for μ �= i,

that is Ei is an eigenvector for the reduced action of Γ modulo mR. If aκ1 , . . . , aκr
are 

the elements of the set A which are in mR, then the reduced matrix of Γ has the form:

⎛
⎜⎜⎜⎝

Γ1 0 · · · 0

0 Γ2
. . .

...
...

. . . . . . 0
0 · · · 0 Γr

⎞
⎟⎟⎟⎠

where Γ1, Γ2, . . . , Γr+1 for 1 ≤ ν ≤ r + 1 are (κν − κν−1) × (κν − κν−1) lower triangular 
matrices (we set κ0 = 0, κr+1 = d).

Proof. Consider the matrix Γ:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ11
...

. . . 0
γκ1,1 · · · γκ1,κ1
γ11 γκ1+1,κ1+1

...
. . .

γμ,i γκ2,κ1+1 · · · γκ2,κ2

γκ1+1,κ1+1 γμ,i
. . .

γκr+1,κr+1

· · ·
...

. . .
γκ1,κ1 γκ2,κ2 γd,κr+1 · · · γd,d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 ≤ i ≤ κ1 < m ≤ d

κ1 < i ≤ κ2 < μ ≤ d

We have that μ = i and the only element in Σμ which does not have any factor of the 
form (λα

y − λx) is the sequence
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1 = μs = μs−1 − 1 < μs−1 < · · · < μ2 = μ1 − 1 < μ1 = μ

For this sequence eq. (21) becomes

γi,i =
s∏

ν=2
hα−1(λμν

, λμν−1)ζεm modmR,

which gives the desired result since hα−1(λμν
, λμν−1) ≡

(
α
1
)

= α modmR.
For proving that all entries γμ,i ∈ mR for κν < i ≤ κν+1 < μ ≤ d, that is for all entries 

below the central blocks, we observe that from equation (21) combined with eq. (35) that 
γμ,i is divisible by [a]μ−1

i = aiai+1 · · · aκν+1 · · · aμ−1 ∈ mR. �
Recall that by Lemma 2 there is an 1 ≤ a0 ≤ m such that α = ζa0

m .

Proposition 38. The indecomposable module V modulo mR breaks into a direct sum of 
r + 1 indecomposable k[Cq � Cm] modules Vν , 1 ≤ ν ≤ r + 1. Each Vν is isomorphic to 
Vα(ε + a0κν−1, κν − κν−1).

Proof. By eq. (36) the first eigenvalue of the reduced matrix block Γν is

ζεmακν−1 = ζε+(κν−1)a0
m .

Since that first eigenvalue together with the size of the block determine the last eigen-
value, that is the action of Cm on the socle the reduced block is uniquely determined up 
to isomorphism. �

This way we arrive at a new obstruction. Assume that the indecomposable represen-
tation given by the matrix T as in Lemma 17 reduces modulo mR to a sum of Jordan 
blocks. Then the σ action on the leading elements of each Jordan block in the special 
fiber should be described by the corresponding action of σ on the leading eigenvector E
of V . The corresponding actions on the special fiber should be compatible.

This observation is formally given in Theorem 1, which we now prove. Recall that the 
k[G]-module M is decomposed as a direct sum

M = Vα(ε1, κ1) ⊕ · · · ⊕ Vα(εs, κs).

Each set Iν , 1 ≤ ν ≤ t corresponds to an indecomposable R[G]-module, which decom-
poses to the indecomposables Vα(εμ, κμ), ν ∈ Iν of the special fiber. Indecomposable 
summands have different roots of unity in R, therefore 

∑
μ∈Iν

kμ ≤ q, this is condition 
(1.a.). The second condition (1.b.) comes from Proposition 14. If 1 is one of the possi-
ble eigenvalues of the lift T , then 

∑
μ∈Iν

κμ ≡ 1 modm. If all eigenvalues of the lift T
are different than one, then 

∑
μ∈Iν

κμ ≡ 0 modm. If #Iν = q, then there is one zero 
eigenvalue and the sum equals 1 modm.
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It is clear by eq. (36) that condition (1.c.) is a necessary condition. On the other hand 
if (1.c.) is satisfied we can write (after a permutation if necessary) the set {1, . . . , s}, 
s =

∑t
ν=1 #Iν as a disjoint union

{1, . . . , s} = I1 ∪ I2 ∪ · · · ∪ It

where each set Iν , 1 ≤ ν ≤ t contains the indecomposable representations Vα(εμ, kμ) that 
will form the reduction of an indecomposable representation of R[G]. Assume that the 
representations indexed by the set I1 have dimensions {κ(1)

1 , . . . , κ(1)
r1 }, where r1 = #I1, 

the representations indexed by I2 have dimensions {κ(2)
1 , . . . , κ(2)

r2 }, where r2 = #I2 and 
finally the representations indexed by It have dimensions {κ(t)

1 , . . . , κ(t)
rt }, where rt = #It. 

We define

b1 =
r1∑
j=1

k
(1)
j ,

b2 = b1 +
r2∑
j=1

k
(2)
j ,

b3 = b1 + b2 +
r3∑
j=1

k
(3)
j ,

...

bt−1 = b1 + · · · + bt−2 +
rt−1∑
j=1

k
(t−1)
j .

The matrix given in eq. (11), where

ai =

⎧⎪⎪⎨
⎪⎪⎩

0 if i ∈ {b1, . . . , bs−1}
π if i ∈ {κ(ν)

1 , κ
(ν)
1 + κ

(ν)
2 , κ

(ν)
1 + κ

(ν)
2 + κ

(ν)
3 , . . . , κ

(ν)
1 + κ

(ν)
2 + · · · + κ

(ν)
rν−1}

1 otherwise

lifts the τ generator, and by (15) there is a well defined extended action of the σ as well.

Example. Consider the group q = 52, m = 4, α = 7,

G = C52 � C4 = 〈σ, τ |σ4 = τ25 = 1, στσ−1 = τ7〉.

Observe that ord57 = ord527 = 4.

• The module Vα(ε, 25) is projective and is known to lift in characteristic zero. This fits 
well with Theorem 1, since 4 | 25 − 1 = 4 · 6.
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• The modules Vα(ε, κ) do not lift in characteristic zero if 4 � κ or 4 � κ −1. Therefore only 
Vα(ε, 1), Vα(ε, 4), Vα(ε, 5), Vα(ε, 8), Vα(ε, 9), Vα(ε, 12), Vα(ε, 13), Vα(ε, 16), Vα(ε, 17), 
Vα(ε, 20), Vα(ε, 21), Vα(ε, 24), Vα(ε, 25) lift.

• The module Vα(1, 2) ⊕ Vα(3, 2) lift to characteristic zero, where the matrix of T with 
respect to a basis E1, E2, E3, E4 is given by

T =

⎛
⎜⎜⎝
ζq 0 0 0
1 ζ2

q 0 0
0 π ζ3

q 0
0 0 1 ζ4

q

⎞
⎟⎟⎠

and S(E1) = ζmE1.
• The module Vα(1, 2) ⊕ Vα(1, 2) does not lift in characteristic zero. There is no way 

to permute the direct summands so that the eigenvalues of a lift S of σ are given by 
ζεm, αζεm, α2ζεm, α3ζεm. Notice that α = 2 = ζm.

• The module Vα(ε1, 21) ⊕ Vα(221 · ε1, 23) does not lift in characteristic zero. The sum 
21 + 23 is divisible by 4, ε2 = 221ε1 is compatible, but 21 + 23 = 44 > 25 so the 
representation of T in the supposed indecomposable module formed by their sum can 
not have different eigenvalues which should be 25-th roots of unity.

Data availability

No data was used for the research described in the article.
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