On Deformations of Curves with Automorphisms

Aristides Kontogeorgis

kontogar@aegean.gr

University of the Aegean Department of Mathematics

Introduction

Algebraic Curves over \mathbb{C}
 Compact Riemann Surfaces

Introduction

Algebraic Curves over \mathbb{C}

Compact Riemann Surfaces

- Non singular Algebraic Curves X over k, k complete algebraic closed field.

Introduction

Algebraic Curves over \mathbb{C}

Compact Riemann Surfaces

- Non singular Algebraic Curves X over k, k complete algebraic closed field.
- If $g \geq 2, p \nmid|\operatorname{Aut}(X)|$ then $|\operatorname{Aut}(X)| \leq 84(g-1)$.

Introduction

Algebraic Curves over \mathbb{C}

Compact Riemann Surfaces

- Non singular Algebraic Curves X over k, k complete algebraic closed field.
- If $g \geq 2, p \nmid|\operatorname{Aut}(X)|$ then
$|\operatorname{Aut}(X)| \leq 84(g-1)$.
- If $p||\operatorname{Aut}(X)|$ the above bound is wrong,

$$
F: x^{p^{p^{h}+1}}+y^{y^{p^{h}+1}}+z^{p^{h}+1}=0
$$

$\operatorname{Aut}(F)=P G U\left(3, p^{2 h}\right),|\operatorname{Aut}(F)|=f(g)$, f polynomial in g of degree 4 .

- X is a Mumford Curve $\Rightarrow|\operatorname{Aut}(X)|<f(g)^{1 / 2}$, $f(g)$ is a polynomial of degree 3 in the genus g.
- X is a Mumford Curve $\Rightarrow|\operatorname{Aut}(X)|<f(g)^{1 / 2}$, $f(g)$ is a polynomial of degree 3 in the genus g.

$$
M_{g}=\left\{\begin{array}{c}
\text { isomorphisms classes of } \\
\text { curves of genus } g
\end{array}\right\} .
$$

- Problem 1: Determine the locus in M_{g} of curves with given automorphism group.
- Problem 1: Determine the locus in M_{g} of curves with given automorphism group.
- The bigger the automorphism group is, the smaller is the locus.
- Problem 1: Determine the locus in M_{g} of curves with given automorphism group.
- The bigger the automorphism group is, the smaller is the locus.
- Problem 2: Determine the dimension of the locus of the curves of given genus with given automorphism group.
- Problem 1: Determine the locus in M_{g} of curves with given automorphism group.
- The bigger the automorphism group is, the smaller is the locus.
- Problem 2: Determine the dimension of the locus of the curves of given genus with given automorphism group.
- Families of curves X with given base T :

$$
X \rightarrow T \Longleftrightarrow T \rightarrow M_{g}
$$

Determine the maximum dimension of the base.

Partial Results

- Cornelissen-Kato Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic Duke Math. J. 1162003 Ordinary Curves

Partial Results

- Cornelissen-Kato Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic Duke Math. J. 1162003

Ordinary Curves

- Bertin, José and Mézard, Ariane Déformations formelles des revêtements sauvagement ramifies de courbes algébriques Inventiones Math. 2000, 141
Cyclic groups

A deformation of the couple (X, G) over a local ring A is a proper, smooth family of curves

$$
\mathcal{X} \rightarrow \operatorname{Spec}(A)
$$

together with a group homomorphism $G \rightarrow \operatorname{Aut}_{A}(\mathcal{X})$ such that there is a G-equivariant isomorphism ϕ from the fibre over the closed point of A to the original curve X.

Two deformations $\mathcal{X}_{1}, \mathcal{X}_{2}$ are considered to be equivalent if there is a G-equivariant isomorphism ψ, making the following diagram commutative:

The global deformation functor is defined:

$D_{\mathrm{gl}}: \mathcal{C} \rightarrow$ Sets, $\mathrm{A} \mapsto\left\{\begin{array}{l}\text { Equivalence classes } \\ \text { of deformations of } \\ \text { couples }(X, G) \text { over } A\end{array}\right\}$

- Problem 1. Construct a versal deformation ring.
- Problem 1. Construct a versal deformation ring.
- Problem 2. Determine the dimension of tangent space $\operatorname{dim}_{k} D_{g l}\left(k[\epsilon] / \epsilon^{2}\right)$.
- Problem 1. Construct a versal deformation ring.
- Problem 2. Determine the dimension of tangent space $\operatorname{dim}_{k} D_{g l}\left(k[\epsilon] / \epsilon^{2}\right)$.
- Focus on the second problem: Infinitesimal deformations of the curve X,compute:

$$
\operatorname{dim}_{k} H^{1}\left(X, \mathcal{T}_{X}\right)=3 g-3
$$

- Problem 1. Construct a versal deformation ring.
- Problem 2. Determine the dimension of tangent space $\operatorname{dim}_{k} D_{g l}\left(k[\epsilon] / \epsilon^{2}\right)$.
- Focus on the second problem: Infinitesimal deformations of the curve X,compute:

$$
\operatorname{dim}_{k} H^{1}\left(X, \mathcal{T}_{X}\right)=3 g-3
$$

- Deformations with automorphisms: Compute Grothendieck's equivariant cohomology

$$
\operatorname{dim}_{k} H^{1}\left(X, G, \mathcal{T}_{X}\right)=\operatorname{dim}_{k} D_{g l}\left(k[\epsilon] / \epsilon^{2}\right) .
$$

Compute $\operatorname{dim}_{k} H^{1}\left(X, G, \mathcal{T}_{X}\right)$

- Let $x \in X$ be a ramified point

$$
G(x)=\{g \in G, g(x)=x\} \neq\{1\} .
$$

Compute $\operatorname{dim}_{k} H^{1}\left(X, G, \mathcal{T}_{X}\right)$

- Let $x \in X$ be a ramified point

$$
G(x)=\{g \in G, g(x)=x\} \neq\{1\} .
$$

- What is the structure of $G(x)$?

Compute $\operatorname{dim}_{k} H^{1}\left(X, G, \mathcal{T}_{X}\right)$

- Let $x \in X$ be a ramified point

$$
G(x)=\{g \in G, g(x)=x\} \neq\{1\} .
$$

- What is the structure of $G(x)$?
- Characteristic zero: $G(x)$ is cyclic.

Compute $\operatorname{dim}_{k} H^{1}\left(X, G, \mathcal{T}_{X}\right)$

- Let $x \in X$ be a ramified point

$$
G(x)=\{g \in G, g(x)=x\} \neq\{1\} .
$$

- What is the structure of $G(x)$?
- Characteristic zero: $G(x)$ is cyclic.
- Characteristic $p>0$. The group $G(x)$ is solvable and admits a series:
$G(x)=G_{0}(x) \triangleright G_{1}(x) \triangleright \cdots \triangleright G_{i}(x) \triangleright \cdots G_{n}(x) \triangleright\{1\}$,
$G_{0}(x) / G_{1}(x)$ cyclic of order prime to the characteristic and G_{i} / G_{i+1} is elementary abelian.
- Let x_{i} be a wild ramifid $\left.\left(G_{1}\left(x_{i}\right) \neq\{1\}\right)\right)$ on X.
- Let x_{i} be a wild ramifid $\left.\left(G_{1}\left(x_{i}\right) \neq\{1\}\right)\right)$ on X.
- We define the local deformation functor at x_{i}, from the category \mathcal{C} of local Artin algebras over k, to the category of sets, by:
$D_{i}: \mathcal{C} \rightarrow$ Sets, $A \mapsto\left\{\begin{array}{l}\text { lifts } G_{x_{i}} \rightarrow \operatorname{Aut}(A[[t]]) \text { of } \rho_{i} \\ \text { modulo conjugation with } \\ \text { an element of } \Pi_{A, k}\end{array}\right.$

$$
\begin{gathered}
0 \rightarrow H^{1}\left(X / G, \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \rightarrow H^{1}\left(X, G, \mathcal{T}_{X}\right) \rightarrow \\
\\
\rightarrow H^{0}\left(X / G, R^{1} \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \rightarrow 0
\end{gathered}
$$

$$
\begin{gathered}
0 \rightarrow H^{1}\left(X / G, \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \rightarrow H^{1}\left(X, G, \mathcal{T}_{X}\right) \rightarrow \\
\rightarrow H^{0}\left(X / G, R^{1} \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \rightarrow 0 \\
H^{0}\left(X / G, R^{1} \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \cong \bigoplus_{i=1}^{r} H^{1}\left(G_{x_{i}}, \hat{\mathcal{T}}_{X, x_{i}}\right)
\end{gathered}
$$

$$
\begin{gathered}
0 \rightarrow H^{1}\left(X / G, \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \rightarrow H^{1}\left(X, G, \mathcal{T}_{X}\right) \rightarrow \\
\rightarrow H^{0}\left(X / G, R^{1} \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \rightarrow 0
\end{gathered}
$$

- $H^{0}\left(X / G, R^{1} \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \cong \bigoplus_{i=1}^{r} H^{1}\left(G_{x_{i}}, \hat{T}_{X, x_{i}}\right)$
- $D_{i}(k[\epsilon])=H^{1}\left(G_{x_{i}}, \hat{\mathcal{T}}_{X, w_{i}}\right)$

$$
\begin{gathered}
0 \rightarrow H^{1}\left(X / G, \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \rightarrow H^{1}\left(X, G, \mathcal{T}_{X}\right) \rightarrow \\
\rightarrow H^{0}\left(X / G, R^{1} \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \rightarrow 0
\end{gathered}
$$

- $H^{0}\left(X / G, R^{1} \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right) \cong \bigoplus_{i=1}^{r} H^{1}\left(G_{x_{i}}, \hat{\mathcal{T}}_{X, x_{i}}\right)$
- $D_{i}(k[\epsilon])=H^{1}\left(G_{x_{i}}, \hat{T}_{X, x_{i}}\right)$
- $\operatorname{dim}_{k} H^{1}\left(X / G, \pi_{*}^{G}\left(\mathcal{T}_{X}\right)\right)=$

$$
3 g_{X / G}-3+\sum_{k=1}^{r}\left\lceil\sum_{i=0}^{n_{k}} \frac{\left(e_{i}^{(t)}-1\right)}{e_{0}^{(k)}}\right] .
$$

Final Step

Given the short exact sequence of groups

$$
1 \rightarrow K \rightarrow G \rightarrow G / K \rightarrow 1,
$$

and a G-module A, how are the cohomology groups

$$
H^{i}(G, A), H^{i}(K, A) \text { and } H^{i}\left(G / K, A^{K}\right)
$$

related? The answer is given in terms of Lyndon Hochschild Serre spectral sequence

- For small values of i the LHS spectral sequence gives us the low degree terms exact sequence:

$$
\begin{aligned}
& 0 \rightarrow H^{1}\left(G / K, A^{K}\right) \xrightarrow{\inf } H^{1}(G, A) \xrightarrow{\text { res }} H^{1}(K, A)^{G / K} \xrightarrow{\text { tg }} \\
& \xrightarrow{\mathrm{tg}} H^{2}\left(G / K, A^{K}\right) \xrightarrow{\inf } H^{2}(G, K) .
\end{aligned}
$$

- For small values of i the LHS spectral sequence gives us the low degree terms exact sequence:

$$
\begin{aligned}
& 0 \rightarrow H^{1}\left(G / K, A^{K}\right) \xrightarrow{\text { inf }} H^{1}(G, A) \xrightarrow{\text { res }} H^{1}(K, A)^{G / K} \xrightarrow{\text { tg }} \\
& \xrightarrow{\mathrm{tg}} H^{2}\left(G / K, A^{K}\right) \xrightarrow{\inf } H^{2}(G, K) .
\end{aligned}
$$

- The above sequence allows us to reduce the problem to easier computations with cyclic groups.

Examples

- Let p be a prime number, $p>3$ let X be the Fermat curve

$$
x_{0}^{1+p}+x_{1}^{1+p}+x_{2}^{1+p}=0 .
$$

Then $\operatorname{dim}_{k} H^{1}\left(X, G, \mathcal{T}_{X}\right)=0$.

Examples

- Let p be a prime number, $p>3$ let X be the Fermat curve

$$
x_{0}^{1+p}+x_{1}^{1+p}+x_{2}^{1+p}=0 .
$$

Then $\operatorname{dim}_{k} H^{1}\left(X, G, \mathcal{T}_{X}\right)=0$.

$$
\begin{gathered}
C_{f}: w^{p}-w=\sum_{i=1,(i, p)=1}^{m-1} a_{i} x^{i}+x^{m} \\
\operatorname{dim}_{k} H^{1}\left(C_{f}, G, \mathcal{I}_{C_{f}}\right)=m+\left\lceil\frac{m}{p}-\frac{2+m}{p^{m+1}}\right\rceil .
\end{gathered}
$$

