Deformation of Curves with Automorphisms

A. Kontogeorgis

University of the Aegean
Mathematics Department

7 Panhellenic Conferense
of Algebra \& Number Theory
Karlovassi Samos

Deformation of Curves with Automorphisms

Contents

(1) Introduction

(2) Examples
(3) Algebraic Tools
(4) Methods of Computation
(5) Galois Module Structure of 2-Holomorphic Differentials

Deformation of Curves with Automorphisms

Let X be a projective nonsingular curve defined over an algebraically closed field of characteristic $p \geq 0$. Let $G \subset \operatorname{Aut}(X)$ be a fixed subgroup of the automorphism group of the curve X. We will denote by (X, G) the couple of the curve X together with the group G.

parametrized by the base scheme $\operatorname{Spec}(A)$, together with a group homomorphism $G \rightarrow \operatorname{Aut}_{A}(\mathcal{X})$ such that there is a G-equivariant isomorphism ϕ from the fibre over the closed point of A to the original curve X :
\square

Deformation of Curves with Automorphisms

Let X be a projective nonsingular curve defined over an algebraically closed field of characteristic $p \geq 0$. Let $G \subset \operatorname{Aut}(X)$ be a fixed subgroup of the automorphism group of the curve X. We will denote by (X, G) the couple of the curve X together with the group G.
A deformation of the couple (X, G) over the local Artin ring A is a proper, smooth family of curves

$$
\mathcal{X} \rightarrow \operatorname{Spec}(A)
$$

parametrized by the base scheme $\operatorname{Spec}(A)$,
group homomorphism $G \rightarrow \operatorname{Aut}_{A}(\mathcal{X})$ such that there is a
G-equivariant isomorphism ϕ from the fibre over the closed
point of A to the original curve X :

Deformation of Curves with
 Automorphisms

Let X be a projective nonsingular curve defined over an algebraically closed field of characteristic $p \geq 0$. Let $G \subset \operatorname{Aut}(X)$ be a fixed subgroup of the automorphism group of the curve X. We will denote by (X, G) the couple of the curve X together with the group G.
A deformation of the couple (X, G) over the local Artin ring A is a proper, smooth family of curves

$$
\mathcal{X} \rightarrow \operatorname{Spec}(A)
$$

parametrized by the base scheme $\operatorname{Spec}(A)$, together with a group homomorphism $G \rightarrow \operatorname{Aut}_{A}(\mathcal{X})$ such that there is a G-equivariant isomorphism ϕ from the fibre over the closed point of A to the original curve X :

$$
\phi: \mathcal{X} \otimes_{\operatorname{Spec}(A)} \operatorname{Spec}(k) \rightarrow X
$$

Deformation of Curves with Automorphisms

Two deformations $\mathcal{X}_{1}, \mathcal{X}_{2}$ are considered to be equivalent if there is a G-equivariant isomorphism ψ, making the following diagram commutative:

The deformation functor of curves with automorphisms is defined:

Equivalence classes
of deformations of
couples (X, G) over A)

Deformation of Curves with
 Automorphisms

Two deformations $\mathcal{X}_{1}, \mathcal{X}_{2}$ are considered to be equivalent if there is a G-equivariant isomorphism ψ, making the following diagram commutative:

The deformation functor of curves with automorphisms is defined:

$$
D_{\mathrm{gl}}: \mathcal{C} \rightarrow \text { Sets, } \mathrm{A} \mapsto\left\{\begin{array}{l}
\text { Equivalence classes } \\
\text { of deformations of } \\
\text { couples }(X, G) \text { over } A
\end{array}\right\}
$$

Deformation of Curves with Automorphisms

An Example

The Fermat curve defines a curve over \mathbb{Z}.

$$
C: X^{n}+Y^{n}+Z^{n}=0
$$

This can be seen as a family of Curves over elements of $\operatorname{Spec} \mathbb{Z}$. Indeed for every prime p the fibre over p is the curve C_{p} defined over \mathbb{F}_{p}.

Aut $C_{p}=S_{3} \rtimes(\mu(n) \times \mu(n))$ if $n-1$ not a power of p

$$
\operatorname{Aut} C_{p}=P G U\left(3, \mathbb{F}_{p^{2 h}}\right) \text { if } n-1=p^{h}
$$

The case C_{p} for $n-1=p^{h}$ is very special. It has maximal number of \mathbb{F}_{p} with respect to the Hasse bound and there is unique.

An Example

Introduction
Examples

The Fermat curve defines a curve over \mathbb{Z}.

$$
C: X^{n}+Y^{n}+Z^{n}=0
$$

This can be seen as a family of Curves over elements of $\operatorname{Spec} \mathbb{Z}$. Indeed for every prime p the fibre over p is the curve C_{p} defined over \mathbb{F}_{p}.

The case C_{p} for $n-1=p^{h}$ is very special. It has maximal number of \mathbb{F}_{p} with respect to the Hasse bound and there is unique.

An Example

The Fermat curve defines a curve over \mathbb{Z}.

$$
C: X^{n}+Y^{n}+Z^{n}=0
$$

This can be seen as a family of Curves over elements of $\operatorname{Spec} \mathbb{Z}$. Indeed for every prime p the fibre over p is the curve C_{p} defined over \mathbb{F}_{p}.

$$
\text { Aut } C_{p}=S_{3} \rtimes(\mu(n) \times \mu(n)) \text { if } n-1 \text { not a power of } p
$$

unique.

An Example

The Fermat curve defines a curve over \mathbb{Z}.

$$
C: X^{n}+Y^{n}+Z^{n}=0
$$

This can be seen as a family of Curves over elements of $\operatorname{Spec} \mathbb{Z}$. Indeed for every prime p the fibre over p is the curve C_{p} defined over \mathbb{F}_{p}.

$$
\text { Aut } C_{p}=S_{3} \rtimes(\mu(n) \times \mu(n)) \text { if } n-1 \text { not a power of } p
$$

$$
\operatorname{Aut} C_{p}=P G U\left(3, \mathbb{F}_{p^{2 h}}\right) \text { if } n-1=p^{h}
$$

The case C_{p} for $n-1=p^{h}$ is very special. It has maximal number of \mathbb{F}_{p} with respect to the Hasse bound and there is unique.

An Example

The Fermat curve defines a curve over \mathbb{Z}.

$$
C: X^{n}+Y^{n}+Z^{n}=0
$$

This can be seen as a family of Curves over elements of $\operatorname{Spec} \mathbb{Z}$. Indeed for every prime p the fibre over p is the curve C_{p} defined over \mathbb{F}_{p}.

$$
\text { Aut } C_{p}=S_{3} \rtimes(\mu(n) \times \mu(n)) \text { if } n-1 \text { not a power of } p
$$

$$
\operatorname{Aut} C_{p}=P G U\left(3, \mathbb{F}_{p^{2 h}}\right) \text { if } n-1=p^{h}
$$

The case C_{p} for $n-1=p^{h}$ is very special. It has maximal number of \mathbb{F}_{p} with respect to the Hasse bound and there is unique.

Deformation of Curves with Automorphisms

Artin-Schreier Curves

Consider the curves:

$$
C: y^{p}-y=x^{\ell}
$$

These curves define covers $C \rightarrow \mathbb{P}_{k}^{1}$ ramified only above ∞. These curves can not exist for $k=\mathbb{C}, \mathbb{P}^{1}-\infty$ is simply connected.

is a family of non-isomorphic curves over $k\left[a_{i}\right]_{i=1, \ldots, \ell-1,(i, p)=1}$ all of them have $\mathbb{Z} / p \mathbb{Z}$-action and is a deformation of (C, \mathbb{Z}).

Deformation of Curves with Automorphisms

Artin-Schreier Curves

Consider the curves:

$$
C: y^{p}-y=x^{\ell}
$$

These curves define covers $C \rightarrow \mathbb{P}_{k}^{1}$ ramified only above ∞. These curves can not exist for $k=\mathbb{C}, \mathbb{P}^{1}-\infty$ is simply connected.

$$
i=1, \ldots, \ell-1,(i, p)=1
$$

is a family of non-isomorphic curves over $k\left[a_{i}\right] i=1, \ldots, \ell-1,(i, p)=1$ all of them have $\mathbb{Z}_{1} / n \not \mathbb{Z}_{1}$-action and is a deformation of $\left(C, \mathbb{Z}_{1}\right)$.

Artin-Schreier Curves

Consider the curves:

$$
C: y^{p}-y=x^{\ell}
$$

These curves define covers $C \rightarrow \mathbb{P}_{k}^{1}$ ramified only above ∞. These curves can not exist for $k=\mathbb{C}, \mathbb{P}^{1}-\infty$ is simply connected.

is a family of non-isomorphic curves over $k\left[a_{i}\right] i=1, \ldots, \ell-1,(i, p)=1$ all of them have $\mathbb{Z} / p \mathbb{Z}$-action and is a deformation of (C, \mathbb{Z}).

Artin-Schreier Curves

Consider the curves:

$$
C: y^{p}-y=x^{\ell}
$$

These curves define covers $C \rightarrow \mathbb{P}_{k}^{1}$ ramified only above ∞. These curves can not exist for $k=\mathbb{C}, \mathbb{P}^{1}-\infty$ is simply connected.

$$
y^{p}-y=\sum_{i=1, \ldots, \ell-1,(i, p)=1} a_{i} x^{i}+x^{\ell}
$$

is a family of non-isomorphic curves over $k\left[a_{i}\right]_{i=1, \ldots, \ell-1,(i, p)=1}$ all of them have $\mathbb{Z} / p \mathbb{Z}$-action and is a deformation of (C, \mathbb{Z}).

Questions:

Introduction

Examples
Algebraic Tools

- When can a curve be deformed to a family together with the automorphism group?
- What is the maximal dimension of the base?

Questions:

- When can a curve be deformed to a family together with the automorphism group?
- What is the maximal dimension of the base?

```
Deformation
of Curves with
    Automor-
    phisms
```


Answers:

```
- Look at the tangent space of the deformation functor \(D_{g /}(k[\epsilon]), \epsilon^{2}=0\).
- \(D_{g l}(k[\epsilon])=H^{1}\left(X, G, T_{X}\right)\), where \(H^{1}\left(X, G, T_{X}\right)\) is Grothendieck's equivariant cohomology.
- How can we compute \(H^{1}\left(X, G, \mathcal{T}_{X}\right)\) ?
```


Answers:

- Look at the tangent space of the deformation functor $D_{g l}(k[\epsilon]), \epsilon^{2}=0$.
- $D_{g l}(k[\epsilon])=H^{1}\left(X, G, \mathcal{T}_{X}\right)$, where $H^{1}\left(X, G, \mathcal{T}_{X}\right)$ is Grothendieck's equivariant cohomology.
- How can we compute $H^{1}\left(X, G, T_{X}\right)$?

Answers:

- Look at the tangent space of the deformation functor $D_{g l}(k[\epsilon]), \epsilon^{2}=0$.
- $D_{g l}(k[\epsilon])=H^{1}\left(X, G, \mathcal{T}_{X}\right)$, where $H^{1}\left(X, G, \mathcal{T}_{X}\right)$ is Grothendieck's equivariant cohomology.
- How can we compute $H^{1}\left(X, G, \mathcal{T}_{X}\right)$?

Equivariant Čech Cohomology

```
Let \(\left\{U_{i}\right\}_{i \in I}\) be an open affine covering of the curve \(X\) consisting of \(G\)-stable open sets \(U_{i}\).
Let \(\zeta_{i}^{\sigma}\) be a family of \(G\)-derivations i.e., elements in \(\Gamma\left(U_{i}, \mathcal{T}_{X}\right)\) and let \(\delta_{i j}\) be Čech-cocycles, in \(\Gamma\left(U_{i} \cap U_{j}, \mathcal{T}_{X}\right)\). Then the equivariant cohomology is given by
```



```
where \(\sigma \gamma_{i}-\gamma_{i}\) is a family of principal \(G\)-derivations and \(\gamma_{j}-\gamma_{i}\) is a family of 1-Čech coboundaries, and moreover
```

$$
\zeta_{j}^{\sigma}-\zeta_{i}^{\sigma}=\sigma\left(\delta_{i j}\right)-\delta_{i j}
$$

Equivariant Čech Cohomology

Let $\left\{U_{i}\right\}_{i \in I}$ be an open affine covering of the curve X consisting of G-stable open sets U_{i}.
Let ζ_{i}^{σ} be a family of G-derivations i.e., elements in $\Gamma\left(U_{i}, \mathcal{T}_{X}\right)$ and let $\delta_{i j}$ be Čech-cocycles, in $\Gamma\left(U_{i} \cap U_{j}, \mathcal{T}_{X}\right)$.
Then the equivariant cohomology is given by
where $\sigma \gamma_{i}-\gamma_{i}$ is a family of principal G-derivations and $\gamma_{j}-\gamma_{i}$ is a family of 1-Čech coboundaries, and moreover

Equivariant Čech Cohomology

Let $\left\{U_{i}\right\}_{i \in I}$ be an open affine covering of the curve X consisting of G-stable open sets U_{i}.
Let ζ_{i}^{σ} be a family of G-derivations i.e., elements in $\Gamma\left(U_{i}, \mathcal{T}_{X}\right)$ and let $\delta_{i j}$ be Čech-cocycles, in $\Gamma\left(U_{i} \cap U_{j}, \mathcal{T}_{X}\right)$. Then the equivariant cohomology is given by

$$
H^{1}\left(X, G, \mathcal{T}_{X}\right)=\frac{\left\{\left\{\zeta_{i}^{\sigma}\right\},\left\{\delta_{i j}\right\}\right\}}{\left\{\left\{\sigma \gamma_{i}-\gamma_{i}\right\},\left\{\gamma_{j}-\gamma_{i}\right\}\right\}},
$$

where $\sigma \gamma_{i}-\gamma_{i}$ is a family of principal G-derivations and $\gamma_{j}-\gamma_{i}$ is a family of 1 -Čech coboundaries, and moreover

$$
\zeta_{j}^{\sigma}-\zeta_{i}^{\sigma}=\sigma\left(\delta_{i j}\right)-\delta_{i j}
$$

Deformation of Curves with Automorphisms

Examples
Algebraic Tools

Methods of Computation

Galois Module Structure of 2-Holomorphic Differentials

Spectral Sequences

First Approach:

Artin-Schreier curves are manageable. By the local-global
principle the computation is reduced to a computation of deformations at wild ramified points. At a wild ramified points we have the following ramification filtration:

$$
G_{0}(P) \subset G_{1}(P) \subset G_{2}(P) \subset \cdots \subset G_{n}(P)
$$

so that

$$
G_{0}(P) / G_{1}(P) \text { is cyclic prime to } p
$$

and

$$
G_{i}(P) / G_{i+1}(P) \text { is elementary abelian. }
$$

Use the Lyndon-Hochshield-Serre spectral sequence at the wild ramified points. The above technique involves the difficult computation of the kernel of the transgression map.

Spectral Sequences

First Approach:

Artin-Schreier curves are manageable. By the local-global principle the computation is reduced to a computation of deformations at wild ramified points. we have the following ramification filtration:

$$
G_{0}(P) \subset G_{1}(P) \subset G_{2}(P) \subset \cdots \subset G_{n}(P)
$$

so that

$$
G_{0}(P) / G_{1}(P) \text { is cyclic prime to } p
$$

and

$$
G_{i}(P) / G_{i+1}(P) \text { is elementary abelian. }
$$

Use the Lyndon-Hochshield-Serre spectral sequence at the wild ramified points. The above technique involves the difficult computation of the kernel of the transgression map.

Spectral Sequences

First Approach:

Artin-Schreier curves are manageable. By the local-global principle the computation is reduced to a computation of deformations at wild ramified points. At a wild ramified points we have the following ramification filtration:

$$
G_{0}(P) \subset G_{1}(P) \subset G_{2}(P) \subset \cdots \subset G_{n}(P)
$$

so that

$$
G_{0}(P) / G_{1}(P) \text { is cyclic prime to } p
$$

and

$$
G_{i}(P) / G_{i+1}(P) \text { is elementary abelian. }
$$

Use the Lyndon-Hochshield-Serre spectral sequence at the wild ramified points. The above technique involves the difficult computation of the kernel of the transgression map.

Spectral Sequences

First Approach:

Artin-Schreier curves are manageable. By the local-global principle the computation is reduced to a computation of deformations at wild ramified points. At a wild ramified points we have the following ramification filtration:

$$
G_{0}(P) \subset G_{1}(P) \subset G_{2}(P) \subset \cdots \subset G_{n}(P)
$$

so that

$$
G_{0}(P) / G_{1}(P) \text { is cyclic prime to } p
$$

and

$$
G_{i}(P) / G_{i+1}(P) \text { is elementary abelian. }
$$

Use the Lyndon-Hochshield-Serre spectral sequence at the wild ramified points.

Spectral Sequences

First Approach:

Artin-Schreier curves are manageable. By the local-global principle the computation is reduced to a computation of deformations at wild ramified points. At a wild ramified points we have the following ramification filtration:

$$
G_{0}(P) \subset G_{1}(P) \subset G_{2}(P) \subset \cdots \subset G_{n}(P)
$$

so that

$$
G_{0}(P) / G_{1}(P) \text { is cyclic prime to } p
$$

and

$$
G_{i}(P) / G_{i+1}(P) \text { is elementary abelian. }
$$

Use the Lyndon-Hochshield-Serre spectral sequence at the wild ramified points. The above technique involves the difficult computation of the kernel of the transgression map.

Galois Module stucture of holomorphic differentials

Second Approach: Restrict to p-groups. Using the computation of $H^{1}\left(X, G, \mathcal{T}_{X}\right)$ is terms of Čech cohomology we see that:

$$
H^{1}\left(X, G, \mathcal{T}_{X}\right)=H^{1}\left(X, \mathcal{T}_{X}\right)^{G} \subset H^{1}\left(X, \mathcal{T}_{X}\right)
$$

Use Serre duality:

The computation of invariants reduces to a computation of covariants.

$$
H^{1}\left(X, \mathcal{T}_{X}\right)^{G}=H^{0}\left(X, \Omega^{\otimes 2}\right)_{G}^{*}
$$

Also all arrows are reversed.

Galois Module stucture of holomorphic differentials

Second Approach: Restrict to p-groups. Using the computation of $H^{1}\left(X, G, \mathcal{T}_{X}\right)$ is terms of Čech cohomology we see that:

$$
H^{1}\left(X, G, \mathcal{T}_{X}\right)=H^{1}\left(X, \mathcal{T}_{X}\right)^{G} \subset H^{1}\left(X, \mathcal{T}_{X}\right)
$$

Use Serre duality:

$$
H^{1}\left(X, \mathcal{T}_{X}\right)=H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)^{*}
$$

The computation of invariants reduces to a computation of covariants.

$$
H^{1}\left(X, \mathcal{T}_{X}\right)^{G}=H^{0}\left(X, \Omega^{\otimes 2}\right)_{G}^{*}
$$

Galois Module stucture of holomorphic differentials

Second Approach: Restrict to p-groups. Using the computation of $H^{1}\left(X, G, \mathcal{T}_{X}\right)$ is terms of Čech cohomology we see that:

$$
H^{1}\left(X, G, \mathcal{T}_{X}\right)=H^{1}\left(X, \mathcal{T}_{X}\right)^{G} \subset H^{1}\left(X, \mathcal{T}_{X}\right)
$$

Use Serre duality:

$$
H^{1}\left(X, \mathcal{T}_{X}\right)=H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)^{*}
$$

The computation of invariants reduces to a computation of covariants.

$$
H^{1}\left(X, \mathcal{T}_{X}\right)^{G}=H^{0}\left(X, \Omega^{\otimes 2}\right)_{G}^{*}
$$

Also all arrows are reversed.

Galois Module stucture of holomorphic differentials

Second Approach: Restrict to p-groups. Using the computation of $H^{1}\left(X, G, \mathcal{T}_{X}\right)$ is terms of Čech cohomology we see that:

$$
H^{1}\left(X, G, \mathcal{T}_{X}\right)=H^{1}\left(X, \mathcal{T}_{X}\right)^{G} \subset H^{1}\left(X, \mathcal{T}_{X}\right)
$$

Use Serre duality:

$$
H^{1}\left(X, \mathcal{T}_{X}\right)=H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)^{*}
$$

The computation of invariants reduces to a computation of covariants.

$$
H^{1}\left(X, \mathcal{T}_{X}\right)^{G}=H^{0}\left(X, \Omega^{\otimes 2}\right)_{G}^{*}
$$

Also all arrows are reversed.

```
Deformation
of Curves with
    Automor-
    phisms
The space \(H^{0}\left(X, \Omega^{\otimes 2}\right)\) is a \(k[G]\)-module. Describe if possible \(H^{0}\left(X, \Omega^{\otimes 2}\right)\) as a sum of simple \(k[G]\)-modules.
```


Deformation of Curves with Automorphisms

The space $H^{0}\left(X, \Omega^{\otimes 2}\right)$ is a $k[G]$-module. Describe if possible $H^{0}\left(X, \Omega^{\otimes 2}\right)$ as a sum of simple $k[G]$-modules.
If the characteristic $p=0$ then the solution of this problem is known (Hurwitz 1900).
If the characteristic $p>0$ the representations involved are modular and the problem is unsolved.
$k[G]$-summands contribute one to the dimension of $H^{0}\left(X, \Omega^{\otimes 2}\right)$
What are the torsion parts and what is their contribution?

The space $H^{0}\left(X, \Omega^{\otimes 2}\right)$ is a $k[G]$-module. Describe if possible $H^{0}\left(X, \Omega^{\otimes 2}\right)$ as a sum of simple $k[G]$-modules.
If the characteristic $p=0$ then the solution of this problem is known (Hurwitz 1900).
If the characteristic $p>0$ the representations involved are modular and the problem is unsolved.
$k[G]$-summands contribute one to the dimension of $H^{0}\left(X, \Omega^{\otimes 2}\right)$
What are the torsion parts and what is their contribution?

The space $H^{0}\left(X, \Omega^{\otimes 2}\right)$ is a $k[G]$-module. Describe if possible $H^{0}\left(X, \Omega^{\otimes 2}\right)$ as a sum of simple $k[G]$-modules.
If the characteristic $p=0$ then the solution of this problem is known (Hurwitz 1900).
If the characteristic $p>0$ the representations involved are modular and the problem is unsolved. $k[G]$-summands contribute one to the dimension of $H^{0}\left(X, \Omega^{\otimes 2}\right)$.
What are the torsion parts and what is their contribution?

The space $H^{0}\left(X, \Omega^{\otimes 2}\right)$ is a $k[G]$-module. Describe if possible $H^{0}\left(X, \Omega^{\otimes 2}\right)$ as a sum of simple $k[G]$-modules.
If the characteristic $p=0$ then the solution of this problem is known (Hurwitz 1900).
If the characteristic $p>0$ the representations involved are modular and the problem is unsolved. k [G]-summands contribute one to the dimension of $H^{0}\left(X, \Omega^{\otimes 2}\right)$.
What are the torsion parts and what is their contribution?

Deformation of Curves with Automorphisms Tools

Methods of Computation

Galois Module Structure of 2-Holomorphic Differentials

The cyclic p-case

In the case $G=\mathbb{Z} / p \mathbb{Z}$, the problem is solved by Shoichi Nakajima.
Denote by V the $k[G]$-module with k-basis $\left\{e_{1}, \ldots, e_{p}\right\}$ and action given by $\sigma e_{\ell}=e_{\ell}+e_{\ell-1}, e_{0}=0$. Let V_{j} be the subspace of V generated by $\left\{e_{1}, \ldots, e_{j}\right\}$. The vector spaces V_{j} are $k[G]$-modules. Using the theory of Jordan normal form of matrices we can show that every $k[G]$-module is isomorphic to a direct sum of V_{j}.

$$
H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)=\sum_{j=1}^{p} m_{j} V_{j}
$$

as a direct sum of $k[G]$-modules.

Deformation of Curves with Automorphisms

The cyclic p-case

In the case $G=\mathbb{Z} / p \mathbb{Z}$, the problem is solved by Shoichi Nakajima.
Denote by V the $k[G]$-module with k-basis $\left\{e_{1}, \ldots, e_{p}\right\}$ and action given by $\sigma e_{\ell}=e_{\ell}+e_{\ell-1}, e_{0}=0$.
Let V_{j} be the subspace of V generated by $\left\{e_{1}, \ldots, e_{j}\right\}$. The vector spaces V_{j} are $k[G]$-modules. Using the theory of Jordan normal form of matrices we can show that every $k[G]$-module is isomorphic to a direct sum of V_{j}.

as a direct sum of $k[G]$-modules.

The cyclic p-case

In the case $G=\mathbb{Z} / p \mathbb{Z}$, the problem is solved by Shoichi Nakajima.
Denote by V the $k[G]$-module with k-basis $\left\{e_{1}, \ldots, e_{p}\right\}$ and action given by $\sigma e_{\ell}=e_{\ell}+e_{\ell-1}, e_{0}=0$. Let V_{j} be the subspace of V generated by $\left\{e_{1}, \ldots, e_{j}\right\}$. The vector spaces V_{j} are $k[G]$-modules.
Using the theory of Jordan normal form of matrices we can show that every $k[G]$-module is isomorphic to a direct sum of

as a direct sum of $k[G]$-modules.

The cyclic p-case

In the case $G=\mathbb{Z} / p \mathbb{Z}$, the problem is solved by Shoichi Nakajima.
Denote by V the $k[G]$-module with k-basis $\left\{e_{1}, \ldots, e_{p}\right\}$ and action given by $\sigma e_{\ell}=e_{\ell}+e_{\ell-1}, e_{0}=0$.
Let V_{j} be the subspace of V generated by $\left\{e_{1}, \ldots, e_{j}\right\}$. The vector spaces V_{j} are $k[G]$-modules. Using the theory of Jordan normal form of matrices we can show that every $k[G]$-module is isomorphic to a direct sum of V_{j}.

as a direct sum of $k[G]$-modules.

The cyclic p-case

In the case $G=\mathbb{Z} / p \mathbb{Z}$, the problem is solved by Shoichi Nakajima.
Denote by V the $k[G]$-module with k-basis $\left\{e_{1}, \ldots, e_{p}\right\}$ and action given by $\sigma e_{\ell}=e_{\ell}+e_{\ell-1}, e_{0}=0$. Let V_{j} be the subspace of V generated by $\left\{e_{1}, \ldots, e_{j}\right\}$. The vector spaces V_{j} are $k[G]$-modules. Using the theory of Jordan normal form of matrices we can show that every $k[G]$-module is isomorphic to a direct sum of V_{j}.

$$
H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)=\sum_{j=1}^{p} m_{j} V_{j}
$$

as a direct sum of $k[G]$-modules.

Deformation of Curves with Automorphisms Introduction Examples Algebraic Tools

Methods of Computation

Galois Module Structure of 2-Holomorphic Differentials

The cyclic p-case

We observe that $\operatorname{dim}_{k}\left(V_{i}\right)_{G}=1$, therefore

Describe the m_{j} :

and for $j=1, \ldots, p-1$,

$n_{i}:=v_{P_{i}}\left(\operatorname{div}\left(f^{*} \omega\right)\right)=v_{P_{i}}(2 R)=2\left(N_{i}+1\right)(p-1)$.

Deformation of Curves with Automorphisms

Introduction

Examples

Algebraic Tools

Methods of Computation

Galois Module Structure of 2-Holomorphic Differentials

The cyclic p-case

We observe that $\operatorname{dim}_{k}\left(V_{i}\right)_{G}=1$, therefore

$$
\operatorname{dim}_{k} H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)_{G}=\sum_{j=1}^{p} m_{j}
$$

Describe the m_{j} :

and for $j=1, \ldots, p-1$,

$n_{i}:=v_{P_{i}}\left(\operatorname{div}\left(f^{*} \omega\right)\right)=v_{P_{i}}(2 R)=2\left(N_{i}+1\right)(p-1)$.

Deformation of Curves with Automorphisms

Introduction

Examples

Algebraic Tools

Galois Module Structure of 2-Holomorphic Differentials

The cyclic p-case

We observe that $\operatorname{dim}_{k}\left(V_{i}\right)_{G}=1$, therefore

$$
\operatorname{dim}_{k} H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)_{G}=\sum_{j=1}^{p} m_{j}
$$

Describe the m_{j} :

and for $j=1, \ldots, p-1$,

$n_{i}:=v_{P_{i}}\left(\operatorname{div}\left(f^{*} \omega\right)\right)=v_{P_{i}}(2 R)=2\left(N_{i}+1\right)(p-1)$.

The cyclic p-case

We observe that $\operatorname{dim}_{k}\left(V_{i}\right)_{G}=1$, therefore

$$
\operatorname{dim}_{k} H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)_{G}=\sum_{j=1}^{p} m_{j}
$$

Describe the m_{j} :

$$
m_{p}:=3 g_{Y}-3+\sum_{i=1}^{p}\left[\frac{n_{i}-(p-1) N_{i}}{p}\right]
$$

and for $j=1, \ldots, p-1$,

$$
\begin{gathered}
m_{j}=\sum_{i=1}^{r}\left\{-\left[\frac{n_{i}-j N_{i}}{p}\right]+\left[\frac{n_{i}-(j-1) N_{i}}{p}\right]\right\} . \\
n_{i}:=v_{P_{i}}\left(\operatorname{div}\left(f^{*} \omega\right)\right)=v_{P_{i}}(2 R)=2\left(N_{i}+1\right)(p-1) .
\end{gathered}
$$

Deformation of Curves with Automor-
phisms

The cyclic p-case

Introduction

Examples

Algebraic Tools

Methods of

 ComputationGalois Module Structure of 2-Holomorphic Differentials

$$
\operatorname{dim}_{k} H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)_{G}=3 g_{Y}-3+\sum_{i=1}^{r}\left[\frac{2\left(N_{i}+1\right)(p-1)}{p}\right]
$$

In what cases can this method applyied to?

- Weekly ramified covers, i.e. covers where at all wild ramified points $P G_{2}(P)=\{1\}$. B. Köck. Ordinary curves are weekly ramified. Mumford curves are ordinary.
- Cyclic $\mathbb{Z} / p^{n} \mathbb{Z}$-covers. N. Borne.
- N. Stadler Theory

