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Let X be a projective nonsingular curve defined over an
algebraically closed field of characteristic p > 0. Let

G C Aut(X) be a fixed subgroup of the automorphism group
of the curve X. We will denote by (X, G) the couple of the
curve X together with the group G.
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parametrized by the base scheme Spec(A),
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Deformation of Curves with
Automorphisms

Let X be a projective nonsingular curve defined over an
algebraically closed field of characteristic p > 0. Let

G C Aut(X) be a fixed subgroup of the automorphism group
of the curve X. We will denote by (X, G) the couple of the
curve X together with the group G.

A deformation of the couple (X, G) over the local Artin ring A
is a proper, smooth family of curves

X — Spec(A)

parametrized by the base scheme Spec(A),together with a
group homomorphism G — Auta(X) such that there is a
G-equivariant isomorphism ¢ from the fibre over the closed
point of A to the original curve X:

QZS X ®Spec(A) Spec(k) — X.
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Two deformations A7, A, are considered to be equivalent if
there is a G-equivariant isomorphism ), making the following
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Deformation of Curves with
Automorphisms

Two deformations A7, A, are considered to be equivalent if
there is a G-equivariant isomorphism ), making the following
diagram commutative:

Xl\"’ /2@

SpecA

The deformation functor of curves with automorphisms is
defined:

Equivalence classes
Dy : C — Sets, A — of deformations of
couples (X, G) over A
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C:X"+Y"+2"=0

This can be seen as a family of Curves over elements of SpecZ.
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defined over [Fj,.
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This can be seen as a family of Curves over elements of SpecZ.
Indeed for every prime p the fibre over p is the curve C,
defined over [Fj,.

AutCp = S3 % (u(n) x p(n)) if n—1 not a power of p
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An Example

The Fermat curve defines a curve over Z.
C:X"+Y"+2"=0

This can be seen as a family of Curves over elements of SpecZ.
Indeed for every prime p the fibre over p is the curve C,
defined over [Fj,.

AutCp = S3 % (u(n) x p(n)) if n—1 not a power of p

AutC, = PGU(3,F ) if n— 1= p".
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An Example

The Fermat curve defines a curve over Z.
C:X"+Y"+2"=0

This can be seen as a family of Curves over elements of SpecZ.
Indeed for every prime p the fibre over p is the curve C,
defined over [Fj,.

AutCp = S3 % (u(n) x p(n)) if n—1 not a power of p

AutC, = PGU(3,F ) if n— 1= p".

The case C, for n—1 = p" is very special. It has maximal
number of I, with respect to the Hasse bound and there is
unique.



Artin-Schreier Curves
Consider the curves:

C:yP—y=xt
These curves define covers C — IP,l( ramified only above oo
These curves can not exist for k = C, P! — oc is simply
connected.

—y= Z

aix' + x*
i=1,..0—1,(i,p)=1

is a family of non-isomorphic curves over k[8,'],':1,..4,€—1.,(i,p)=1
all of them have 7Z/pZ-action and is a deformation of (C,Z).
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Artin-Schreier Curves

Consider the curves:
C:yP—y= xt

These curves define covers C — ]P,l( ramified only above oc.
These curves can not exist for k = C, P! — oo is simply
connected.

yP—y= > aix' 4 x*
i=1,...,0-1,(i,p)=1

is a family of non-isomorphic curves over k[ai]izl,...,l—l,(i,P)Zl
all of them have Z/pZ-action and is a deformation of (C,Z).
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e When can a curve be deformed to a family together with
the automorphism group?

e What is the maximal dimension of the base?
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Grothendieck’s equivariant cohomology.
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e Look at the tangent space of the deformation functor
Dgi(ke]), €2 =0.

o Dg(kle]) = HY(X, G, Tx), where H}(X, G, Tx) is
Grothendieck’s equivariant cohomology.

e How can we compute H(X, G, Tx)?
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Let {U;}ics be an open affine covering of the curve X
consisting of G-stable open sets U;.

Let ¢/ be a family of G-derivations i.e., elements in ['(U;, Tx)
and let 6; be Cech-cocycles, in T(U; N Uj, Tx).
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Equivariant Cech Cohomology

Let {U;}ics be an open affine covering of the curve X
consisting of G-stable open sets U;.

Let ¢/ be a family of G-derivations i.e., elements in ['(U;, Tx)
and let 6; be Cech-cocycles, in T(U; N Uj, Tx).

Then the equivariant cohomology is given by

1 g
HX 6 Tx) = o o oy =

where oy; — ; is a family of principal G-derivations and ; —;
is a family of 1-Cech coboundaries, and moreover

¢ = &7 = oldy) — 0.
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Artin-Schreier curves are manageable. By the local-global
principle the computation is reduced to a computation of
deformations at wild ramified points.
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First Approach:

Artin-Schreier curves are manageable. By the local-global
principle the computation is reduced to a computation of
deformations at wild ramified points. At a wild ramified points
we have the following ramification filtration:

Go(P) C G1(P) C Go(P) C --- C Ga(P),

so that
Go(P)/Gi1(P) is cyclic prime to p

and
Gi(P)/Gi;+1(P) is elementary abelian.
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principle the computation is reduced to a computation of
deformations at wild ramified points. At a wild ramified points
we have the following ramification filtration:

Go(P) C G1(P) C Go(P) C --- C Ga(P),

so that
Go(P)/Gi1(P) is cyclic prime to p

and
Gi(P)/Gi;+1(P) is elementary abelian.

Use the Lyndon-Hochshield-Serre spectral sequence at the wild
ramified points.
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Spectral Sequences

First Approach:

Artin-Schreier curves are manageable. By the local-global
principle the computation is reduced to a computation of
deformations at wild ramified points. At a wild ramified points
we have the following ramification filtration:

Go(P) C G1(P) C Go(P) C --- C Ga(P),
so that
Go(P)/Gi1(P) is cyclic prime to p

and
Gi(P)/Gi;+1(P) is elementary abelian.

Use the Lyndon-Hochshield-Serre spectral sequence at the wild
ramified points. The above technique involves the difficult
computation of the kernel of the transgression map.
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Second Approach: Restrict to p-groups. Using the
computation of H'(X, G, Tx) is terms of Cech cohomology we
see that:

HY(X, G, Tx) = HY(X, Tx)® € HY(X, Tx).
Use Serre duality:

HY(X, Tx) = H°(X,Q%%)*



Deformation
of Curves with
Automor-
phisms

Methods of
Computation

Galois Module stucture of
holomorphic differentials

Second Approach: Restrict to p-groups. Using the
computation of H'(X, G, Tx) is terms of Cech cohomology we
see that:

HY X, G, Tx) = HY(X,Tx)® c HY(X, Tx).
Use Serre duality:
HY(X, Tx) = H°(X,Q%%)*

The computation of invariants reduces to a computation of
covariants.

HY (X, Tx)® = H(X,Q%?)%

Also all arrows are reversed.
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Second Approach: Restrict to p-groups. Using the
computation of H'(X, G, Tx) is terms of Cech cohomology we
see that:

HY X, G, Tx) = HY(X,Tx)® c HY(X, Tx).
Use Serre duality:
HY(X, Tx) = H°(X,Q%%)*

The computation of invariants reduces to a computation of
covariants.

HY (X, Tx)® = H(X,Q%?)%

Also all arrows are reversed.
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The space H%(X,Q%?) is a k[G]-module. Describe if possible
HO(X,Q%2) as a sum of simple k[G]-modules.

If the characteristic p = 0 then the solution of this problem is
known (Hurwitz 1900).
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HO(X,Q%2) as a sum of simple k[G]-modules.

If the characteristic p = 0 then the solution of this problem is
known (Hurwitz 1900).

If the characteristic p > 0 the representations involved are
modular and the problem is unsolved.
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The space H%(X,Q%?) is a k[G]-module. Describe if possible
HO(X,Q%2) as a sum of simple k[G]-modules.

If the characteristic p = 0 then the solution of this problem is
known (Hurwitz 1900).

If the characteristic p > 0 the representations involved are
modular and the problem is unsolved.

k[G]-summands contribute one to the dimension of

HO(X, Q%2).
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The space H%(X,Q%?) is a k[G]-module. Describe if possible
HO(X,Q%2) as a sum of simple k[G]-modules.

If the characteristic p = 0 then the solution of this problem is
known (Hurwitz 1900).

If the characteristic p > 0 the representations involved are
modular and the problem is unsolved.

k[G]-summands contribute one to the dimension of

HO(X, Q®?).

What are the torsion parts and what is their contribution?



Deformation
of Curves with
Automor-

phisms The cyclic p-case

In the case G = 7Z/pZ, the problem is solved by Shoichi
Nakajima.

Galois Module
Structure of
2-Holomorphic
Differentials



Deformation
of Curves with
Automor-
phisms

Galois Module
Structure of
2-Holomorphic
Differentials

The cyclic p-case

In the case G = 7Z/pZ, the problem is solved by Shoichi
Nakajima.

Denote by V the k[G]-module with k-basis {e1,..., ey} and
action given by oe; = ey + €p_1, eg = 0.
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In the case G = 7Z/pZ, the problem is solved by Shoichi
Nakajima.

Denote by V the k[G]-module with k-basis {e1,..., ey} and
action given by oe; = ey + €p_1, eg = 0.

Let V; be the subspace of V generated by {e;,...,ej}. The
vector spaces V; are k[G]-modules.
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In the case G = 7Z/pZ, the problem is solved by Shoichi
Nakajima.

Denote by V the k[G]-module with k-basis {e1,..., ey} and
action given by oe; = ey + €p_1, eg = 0.

Let V; be the subspace of V generated by {e;,...,ej}. The
vector spaces V; are k[G]-modules.

Using the theory of Jordan normal form of matrices we can
show that every k[G]-module is isomorphic to a direct sum of
V.
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The cyclic p-case

In the case G = 7Z/pZ, the problem is solved by Shoichi
Nakajima.

Denote by V the k[G]-module with k-basis {e1,..., ey} and
action given by oe; = ey + €p_1, eg = 0.

Let V; be the subspace of V generated by {e;,...,ej}. The
vector spaces V; are k[G]-modules.

Using the theory of Jordan normal form of matrices we can
show that every k[G]-module is isomorphic to a direct sum of
V.

Q®2 Z m;V;

as a direct sum of k[G]-modules.
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We observe that dim(V;)g = 1, therefore
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dim, HO(X, Q%% = > m;.
j=1

Describe the m;:
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The cyclic p-case

We observe that dim(V;)g = 1, therefore
P
dim, HO(X, Q%% = > m;.
j=1
Describe the m;:

p
mp 1= 3gy —3—1-2
i=1

[ni - (Pp— 1)/\/;] ’

and forj=1,...,p—1,

-E L o)

i=1

ni := vp, (div(f*w)) = vp,(2R) = 2(N; + 1)(p — 1).
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Deformation
of Curves with
Automor-

phisms In what cases can this method
applyied to?
gtar'istu“r"eog;"e e Weekly ramified covers, i.e. covers where at all wild
2-Holomorphic ramified points P Go(P) = {1}. B. Kock. Ordinary curves

are weekly ramified. Mumford curves are ordinary.
o Cyclic Z/p"Z-covers. N. Borne.
e N. Stadler Theory
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