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Deformation of Curves with

Automorphisms

Let X be a projective nonsingular curve de�ned over an
algebraically closed �eld of characteristic p � 0. Let
G � Aut(X ) be a �xed subgroup of the automorphism group
of the curve X . We will denote by (X ;G ) the couple of the
curve X together with the group G .
A deformation of the couple (X ;G ) over the local Artin ring A

is a proper, smooth family of curves

X ! Spec(A)

parametrized by the base scheme Spec(A),together with a
group homomorphism G ! AutA(X ) such that there is a
G -equivariant isomorphism � from the �bre over the closed
point of A to the original curve X :

� : X 
Spec(A) Spec(k)! X :
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Deformation of Curves with

Automorphisms

Two deformations X1;X2 are considered to be equivalent if
there is a G -equivariant isomorphism  , making the following
diagram commutative:

X1
 

//

##F
FF

FF
FF

FF
X2

{{xx
xx
xx
xx
x

SpecA

The deformation functor of curves with automorphisms is
de�ned:

Dgl : C ! Sets;A 7!

8<
:

Equivalence classes
of deformations of
couples (X ;G ) over A

9=
;
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An Example

The Fermat curve de�nes a curve over Z.

C : X n + Y n + Zn = 0

This can be seen as a family of Curves over elements of SpecZ.
Indeed for every prime p the �bre over p is the curve Cp

de�ned over Fp.

AutCp = S3 o (�(n)� �(n)) if n � 1 not a power of p

AutCp = PGU(3;Fp2h) if n � 1 = ph:

The case Cp for n � 1 = ph is very special. It has maximal
number of Fp with respect to the Hasse bound and there is
unique.
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Artin-Schreier Curves

Consider the curves:

C : yp � y = x`

These curves de�ne covers C ! P1k rami�ed only above 1.
These curves can not exist for k = C, P1 �1 is simply
connected.

yp � y =
X

i=1;:::;`�1;(i ;p)=1

aix
i + x`

is a family of non-isomorphic curves over k[ai ]i=1;:::;`�1;(i ;p)=1
all of them have Z=pZ-action and is a deformation of (C ;Z).
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Questions:

� When can a curve be deformed to a family together with
the automorphism group?

� What is the maximal dimension of the base?
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Answers:

� Look at the tangent space of the deformation functor
Dgl(k[�]), �

2 = 0.

� Dgl(k[�]) = H1(X ;G ; TX ), where H
1(X ;G ; TX ) is

Grothendieck's equivariant cohomology.

� How can we compute H1(X ;G ; TX )?
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Equivariant �Cech Cohomology

Let fUigi2I be an open a�ne covering of the curve X
consisting of G -stable open sets Ui .
Let ��i be a family of G -derivations i.e., elements in �(Ui ; TX )
and let �ij be �Cech-cocycles, in �(Ui \ Uj ; TX ).
Then the equivariant cohomology is given by

H1(X ;G ; TX ) =
ff��i g; f�ijgg

ff�
i � 
ig; f
j � 
igg
;

where �
i � 
i is a family of principal G -derivations and 
j � 
i
is a family of 1-�Cech coboundaries, and moreover

��j � ��i = �(�ij)� �ij :
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Spectral Sequences

First Approach:

Artin-Schreier curves are manageable. By the local-global
principle the computation is reduced to a computation of
deformations at wild rami�ed points. At a wild rami�ed points
we have the following rami�cation �ltration:

G0(P) � G1(P) � G2(P) � � � � � Gn(P);

so that
G0(P)=G1(P) is cyclic prime to p

and
Gi (P)=Gi+1(P) is elementary abelian:

Use the Lyndon-Hochshield-Serre spectral sequence at the wild
rami�ed points. The above technique involves the di�cult
computation of the kernel of the transgression map.
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Galois Module stucture of

holomorphic di�erentials

Second Approach: Restrict to p-groups. Using the
computation of H1(X ;G ; TX ) is terms of �Cech cohomology we
see that:

H1(X ;G ; TX ) = H1(X ; TX )
G � H1(X ; TX ):

Use Serre duality:

H1(X ; TX ) = H0(X ;

2X )�

The computation of invariants reduces to a computation of
covariants.

H1(X ; TX )
G = H0(X ;

2)�G

Also all arrows are reversed.
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The space H0(X ;

2) is a k[G ]-module. Describe if possible
H0(X ;

2) as a sum of simple k[G ]-modules.
If the characteristic p = 0 then the solution of this problem is
known (Hurwitz 1900).
If the characteristic p > 0 the representations involved are
modular and the problem is unsolved.
k[G ]-summands contribute one to the dimension of
H0(X ;

2).
What are the torsion parts and what is their contribution?
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The cyclic p-case

In the case G = Z=pZ, the problem is solved by Shoichi
Nakajima.
Denote by V the k[G ]-module with k-basis fe1; : : : ; epg and
action given by �e` = e` + e`�1, e0 = 0.
Let Vj be the subspace of V generated by fe1; : : : ; ejg. The
vector spaces Vj are k[G ]-modules.
Using the theory of Jordan normal form of matrices we can
show that every k[G ]-module is isomorphic to a direct sum of
Vj .

H0(X ;

2X ) =

pX
j=1

mjVj

as a direct sum of k[G ]-modules.
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The cyclic p-case

We observe that dimk(Vi )G = 1, therefore

dimk H
0(X ;

2X )G =

pX
j=1

mj :

Describe the mj :

mp := 3gY � 3 +

pX
i=1

�
ni � (p � 1)Ni

p

�
;

and for j = 1; : : : ; p � 1,

mj =
rX

i=1

�
�

�
ni � jNi

p

�
+

�
ni � (j � 1)Ni

p

��
:

ni := vPi

�
div(f �!)

�
= vPi

(2R) = 2(Ni + 1)(p � 1):
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dimk H
0(X ;

2X )G = 3gY � 3 +

rX
i=1

�
2(Ni + 1)(p � 1)

p

�
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In what cases can this method

applyied to?

� Weekly rami�ed covers, i.e. covers where at all wild
rami�ed points P G2(P) = f1g. B. K�ock. Ordinary curves
are weekly rami�ed. Mumford curves are ordinary.

� Cyclic Z=pnZ-covers. N. Borne.

� N. Stadler Theory
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