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Automorphisms of Families of Curves

Motivation

Let X — S be a family of curves over a base scheme S.
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Automorphisms of Families of Curves

Motivation

Let X — S be a family of curves over a base scheme S.

For every point P : Speck — S, we will consider the absolute
automorphism group of the fiber P to be the automorphism group
Autz (X xs Speck) where k is the algebraic closure of k.
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Automorphisms of Families of Curves

Motivation

Let X — S be a family of curves over a base scheme S.

For every point P : Speck — S, we will consider the absolute
automorphism group of the fiber P to be the automorphism group
Autz (X xs Speck) where k is the algebraic closure of k.
Question: How does the automorphism group vary along the
fibers P?
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Automorphisms of Families of Curves

Fermat Curves

@ The Fermat Equation

XP+1+yP+1+ZP+1
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Automorphisms of Families of Curves

Fermat Curves

@ The Fermat Equation
Xps+1 +yP5+1 +ZPS+1
@ This equation gives us a “curve” over a field k by considering:

P}( = (XO Yo - Zo) so that ng_H _|_y635+1 +ng+1 —0

On the Automorphism Groups of modular curves Xg(N)



Automorphisms of Families of Curves

Fermat Curves

@ The Fermat Equation
xP° 1 +yps+1 +2p5+1
@ This equation gives us a “curve” over a field k by considering:
PL 5 (xo : o : 20) so that x4y 4 7T — ¢

@ The field k might be Q,@,R,C,FP,FP etc.
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Automorphisms of Families of Curves

Arithmetic Surfaces

Generic Fibre
Riemann Surface

Special Fibres
Curves overF,

[1s]
D

——
Generic Point
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Automorphisms of Families of Curves

Stable Curves

Theorem (Deligne-Mumford 69)

Consider a stable curve X — S over a scheme S and let &;, denote
its generic fibre. Every automorphism ¢ : X,y — X, can be
extended to an automorphism ¢ : X — X.

Aut(X,) C Aut(Xp)
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Automorphisms of Families of Curves

Fermat Curves

@ The Fermat curve
Xp5+1 +yps+1 + zps—i-l -0

It can be seen as a smooth family over SpecZ[ﬁ]

_f (pnxpn) xS ifqg#p
Ant(X.p) = { PGU(3,p*) ifg=p

Tzermias, Leopoldt, Shioda.
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Automorphisms of Families of Curves

Exceptional Fibers

o A special fibre X, := & x5 5/p with Aut(X,) > Aut(A),) will
be called exceptional. In general we know that there are finite
many exceptional fibres and it is an interesting problem to
determine exactly the exceptional fibres.
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Modular Curves

Modular Curves

o I =PSL(2,7)
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Modular Curves

Modular Curves

o I = PSL(2,Z)
o [(N):={oel:o=1I modN}
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Modular Curves

Modular Curves

o I = PSL(2,Z)
o [(N):={oel:o=1I modN}

° I‘O(N)::{o—:<i 3>€r:c50modN}
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Modular Curves

Modular Curves

[ = PSL(2, Z)
[(N):={o el :o=I modN}

Fo(N) = {o = <i 3) €l:c=0 modN}
Y(N) :=H/T(N), Yo(N) = H/To(N)
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Modular Curves

Modular Curves

[ = PSL(2,Z)
[(N):={o el :o=I modN}

Fo(N) = {o = <i 3) €l:c=0 modN}
Y(N) :=H/T(N), Yo(N) = H/To(N)

X(N) =Y (N)Ucusps, Xo(N) = Yo(N) U cusps
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Modular Curves

Fundamental Domain for Xy(30)

A NV
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Modular Curves

Automorphisms of Modular Curves over C

o Aut(X(N)) = PSL(2,Z/NZ), Serre, K.
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Modular Curves

Automorphisms of Modular Curves over C

o Aut(X(N)) = PSL(2,Z/NZ), Serre, K.

° Aut(Xo(N)) = NAut(H)ro(N)/ro(N) unless N = 37,63 that
have an extra involution, Elkies, Kenku, Momose, Ogg.
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Modular Curves

Modular Curves

PL = H/T
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Modular Curves

Modular Curves
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Modular Curves

Moduli Interpretation
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Modular Curves

Modular Curves over Families

Theorem (lgusa 59)

The curves Xo(N) have a non singular projective model which is
defined by equations over Q, whose reduction modulo primes
p,p1 N are also non-singular, or in a more abstract language that
there is a proper smooth curve Xy(N) — Z[1/N] so that for

p € SpecZ[1/N] the reduction Xo(N) Xspecz Fp is the moduli
space of elliptic curves with a fixed cyclic subgroup of order N.
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Modular Curves

Variation of automnorphisms: X(N) case

o A. Adler in 97 and C.S. Rajan in 98 proved for X(N), that
X(11)3 := X(11) Xgpecz SpecF3 has the Mathiew group My
as the full automorphism group.

On the Automorphism Groups of modular curves Xg(N)



Modular Curves

Variation of automnorphisms: X(N) case

o A. Adler in 97 and C.S. Rajan in 98 proved for X(N), that
X(11)3 := X(11) Xgpecz SpecF3 has the Mathiew group My
as the full automorphism group.

o C. Ritzenthaler in 2003 and P. Bending, A. Carmina, R.
Guralnick 2005 studied the automorphism groups of the
reductions X(q), of modular curves X(q) for varius primes p.
It turns out that the reduction X(7)3 of X(7) at the prime p
has automorphism group PGU(3,3) and these are the only
cases where AutX(q), > AutX(q) = PSL(2, p).
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n of
> r
Equation for Modular curves
t terist

Hyperelliptic modular curves

[
= (3 + 4x% £ 8x + 4)(x> + 8x2 + 16x + 16)

22 1%
23 y2 = (x> — x +1)(x> — 8x2 + 3x — 7)
26 yZ =x5 —8x® £ 8x7 —18x3 +8x2 —8x+1
28 y2 :(x2+7)(x2+x+2)(x2 —x+2)
29 y2=x5—ax® —12x* + 23 £ 8x% +8x — 7
30 y2 = (2 +ax — 1)(x2 +x — 1)(x* + x> +2x2 — x +1)
31 y2 = (x> —6x2 —5x — 1)(x> — 2x2 — x +3)
33 yZ = (x% + x + 3)(x® + 7x° + 28x% + 59x> + 84x? + 63x + 27)
35 y2 = (x® +x —1)(x® —5x® —9x3 —B5x — 1)
37 y2 = x5 4+ 14x° + 35x% + 48x> 1 35x2 4 14x + 1
39 V=0 1% —tx + )P 3 = £ x+ 1)
40 yZ = x5 +8x® —2x% y8x% +1
41 y2 = x® — ax” — 8x% + 10x® + 20x* 1 8x> — 15x® — 20x — 8
46 y2 = (x3 +x2 4+ 2x + 1)(x3 +4x2 +4x + 8)(x6 + 5x% + 14x% + 25x3 + 28x2 + 20x + 8)
47 yZ = (x% + 4x® + 73 + 8x% + 4x + 1)(x® — 5x® — 20x% — 24x — 19)
48 y2 = (x* — 2x3 + 2x% £ 2x + 1)(x* + 2x® + 2x% — 2x + 1) = x® + 14x% + 1
50 y2 =x% —ax® —10x3 —ax+1
59 y2 = (x® +2x2 + 1)(x? +2x® — 4x” — 21x® — 44x5 — 60x* — 613 — 46x2 — 24x — 11)
71 y2:(x7—3x6+2x5+x4—2x3+2x2—x+1)
(x7 —7x% £ 14x5 — 11x% + 14x3 — 14x2 — x — 7)
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Equation for Modular curves

Hyperelliptic modular curves

@ The above list is due to M. Shimura (1995) and Galbraith
(1996)

On the Automorphism Groups of modular curves Xg(N)



Equation for Modular curves

Hyperelliptic modular curves

@ The above list is due to M. Shimura (1995) and Galbraith
(1996)

@ The above models are not the Igusa models. They are singular
at infinity and singular at the fibers over the prime 2.
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Equation for Modular curves

Hyperelliptic modular curves

@ The above list is due to M. Shimura (1995) and Galbraith
(1996)

@ The above models are not the Igusa models. They are singular
at infinity and singular at the fibers over the prime 2.

@ For the prime 2 we will seek another model (Artin-Schreier
extension).
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Equation for Modular curves

Hyperelliptic modular curves

@ The above list is due to M. Shimura (1995) and Galbraith
(1996)

@ The above models are not the Igusa models. They are singular
at infinity and singular at the fibers over the prime 2.

@ For the prime 2 we will seek another model (Artin-Schreier
extension).

@ For all fibers above p # 2 we can work with them.
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Equation for Modular curves

Real Points Hyperelliptic curves

@ Hyperelliptic Curves have a model of the form
y? =11 (x = ai)

a a[\cx; algm 9.2
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Equation for Modular curves

Real Points Hyperelliptic curves

@ Hyperelliptic Curves have a model of the form
y? =11 (x = ai)
@ Real Points of the above curve

a a[\cx; algm 9.2
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Equation for Modular curves

Complex Points Hyperelliptic curves

a) Two separate
copies of C each
with g + 1 cuts. a

b)

c)
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Equation for Modular curves

Complex Points Hyperelliptic curves

a) Two separate
copies of C each
with g + 1 cuts. a

b) The upper copy
has been turned
upside down and
the sides of the
cuts have been
glued according to
the arrows

b)

c)
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Equation for Modular curves

Complex Points Hyperelliptic curves

a) Two separate
copies of C each
with g + 1 cuts. a

b) The upper copy
has been turned
upside down and b)
the sides of the
cuts have been
glued according to
the arrows

c) The surface made
compact by adding
one point at

infinity on each
On the Automorphism Groups of modular curves Xg(N)
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Equation for Modular curves

Automorphisms of Hyperelliptic curves p # 2

@ Brandt Stichtenoth 1986
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Equation for Modular curves

Automorphisms of Hyperelliptic curves p # 2

@ Brandt Stichtenoth 1986

@ jiX X, ¥y —V.
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Equation for Modular curves

Automorphisms of Hyperelliptic curves p # 2

e Brandt Stichtenoth 1986
@ jiX X, ¥y —V.

o Z/2Z = (j) < Aut(C)

On the Automorphism Groups of modular curves Xg(N)



Equation for Modular curves

Automorphisms of Hyperelliptic curves p # 2

e Brandt Stichtenoth 1986

@ jiX X, ¥y —V.

e Z/27 = (j) < Aut(C)

o H:= Aut(C)/(j) is a finite subgroup of
PGL(2,k) = Aut(P}).
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Equation for Modular curves

Automorphisms of Hyperelliptic curves p # 2

e Brandt Stichtenoth 1986
@ jiX X, ¥y —V.
e 7/27 = (j) < Aut(C)

o H:=Aut(C)/(j) is a finite subgroup of
PGL(2,k) = Aut(P}).

@ Problem of group extensions
1— () —Aut(C) - H—1

The structure of the group Aut(C) depends on the
intersection of the branch locus of the cover P} — P} /H with
the set of roots «;.
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Equation for Modular curves

Finite subgroups of PGL(2, k)

@ Cyclic group C, of order n (n,p) =1 with r =2, &1 = &2 = n.
@ Elementary abelian p-group with r =1, e; = |G]|.

© Dihedral group D, of order 2n, with p =2, (p,n) =1, r =2,
e1=2,e=norp#2 (p,n)=1r=3 e =e =2,

€3 = n.

Alternating group Ag with p#£2,3, r=3,e1 =2, ey = e3 =3
Symmetric group S4 with p#£2.3, r=3, ¢ =2, & =3,

€3 = 4,

Alternating group As with p=3,r=2,¢6, =6, & =5, or
p7é2,3,5r:3, e1 =2, e =23, e3 =b.

Semidirect product of an elementary abelian p-group of order
p* with a cyclic group C, of order n with n| pt — 1, r =2,

e1 = |G|, & =n.

Q PSL(2,p!) with p£2, r=2, & = 21 o, — 251

On the Automorphism Groups of modular curves Xg(N)
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Equation for Modular curves

Platonic Solids

Tetrahedron
Group: Ay

Octahedron, Cube
Group: S4

Dodecahedron, Icosahedron
Group: A5
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Equation for Modular curves

Computation of H

@ The group H is determined by the configuration of the roots
Ay, ...,02g42 in ]P)i
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Equation for Modular curves

Computation of H

@ The group H is determined by the configuration of the roots
Ay, ...,02g42 in ]P)i

@ It can be that modulo p the configuration of the roots is more
symmetrical.
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Equation for Modular curves

Computation of H

@ The group H is determined by the configuration of the roots
Ay, ...,02g42 in ]P)i

@ It can be that modulo p the configuration of the roots is more
symmetrical.

o The hyperelliptic curve y? = x® + 5x3 + 1 is acted on by j and
by o : x — (3x.
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Equation for Modular curves

Computation of H

@ The group H is determined by the configuration of the roots
Ay, ...,02g42 in ]P)i

@ It can be that modulo p the configuration of the roots is more
symmetrical.

o The hyperelliptic curve y? = x® + 5x3 + 1 is acted on by j and
by o : x — (3x.

@ This curve modulo 5 is acted on by a bigger group generated
by o/ : x — (px.
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Equation for Modular curves

Hyperelliptic Curves with an extra involution

@ Vollklein, Shaska, Shevilla, Guttierez 2002-2007 developed the
theory of dihedral invariants for hyperelliptic curves provided
that H has at least one involution. They also gave a
classification of automorphisms depending on these invariants.
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Equation for Modular curves

Hyperelliptic Curves with an extra involution

@ Vollklein, Shaska, Shevilla, Guttierez 2002-2007 developed the
theory of dihedral invariants for hyperelliptic curves provided
that H has at least one involution. They also gave a
classification of automorphisms depending on these invariants.

o This idea is applicable to hyperelliptic curves of the form:
Xo(N) for N = 22,26,28,37,50 that are of genus 2 and for
N = 39,40, 48, 33, 35, 30 of genus 3.
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Equation for Modular curves

Dihedral Invariants

@ Change the model so that the extra involution acts like
x +— —x (Diagonalization).

Y = X212 4 g% 4o a1

On the Automorphism Groups of modular curves Xg(N)



Equation for Modular curves

Dihedral Invariants

@ Change the model so that the extra involution acts like
x +— —x (Diagonalization).

Y = X212 4 g% 4o a1

. . —i+1 —i
o Compute invariants u; := af i+ aj + ag i+

i=1,...,.8

! f
ag_j4+1 Tor

On the Automorphism Groups of modular curves Xg(N)



Equation for Modular curves

The automorphism group is isomorphic to
Q@ Ve if and only if (u1,u2) = (0,0) or (u1, uz) = (6750, 450)

@ o GLs(3) if and only if (u1, u2) = (—250,50) and p # 5
@© B if and only if (uy, up) = (—250,50) and p =5

© Ds if and only if u2 — 220uy — 16u; + 4500 = 0,
@ Dy if and only if 2u? — u3 for up # 2,18, 0,50, 450.

(Cases 0,450, 50 are reduced to 1,2 ). The group B mentioned
above is given by:

B :=(a,b,c|c?,a® b ta2ba,(cb )3 a'bhca’cac).

Vi = Oy x ™, ()2, (xy)?).
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Equation for Modular curves

@ A similar theorem holds. Too complicated to write it down!
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Equation for Modular curves

@ A similar theorem holds. Too complicated to write it down!

@ An additional difficulty: The normalized models are defined
over af(P)ID different than Z.

s, (276t18av2) o (-184V21276) .  e5ica043
30 X —— X 46 x™ + x
—540 \/5—765) (—540 \/5—765) (—540 \/‘2’—765)
—240 \/3+508)x% 508+240 /3 ) x2
33 ] ) +342x% + ( ) 473+264 /3
—264 \/3+473 —264 \/3+473 —264 /31473

35 | 5x® 4 (140 +1287)x® — 34 x* + (140 — 128/)x% + 5
39 | 27x® —22.97x% +2.29x* +22 . 11x2+3

40 | x® —18x* +1

48 | x® 4 1ax* 41
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Equation for Modular curves

Example: X(48)

e Generic automorphism group: Z/2Z x Sa.
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Equation for Modular curves

Example: X(48)

e Generic automorphism group: Z/2Z x Sa.

@ Possible exceptional prime p = 7.
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Equation for Modular curves

Example: X(48)

e Generic automorphism group: Z/2Z x Sa.

@ Possible exceptional prime p = 7.

@ Automorphism group of the fibre at p = 7 to an extension of
PGL(2,7) by Z/27Z. Using magma we compute that this
group admits the following presentation:

— — — — — — — — — — — — 2
A= <a,b,c|c2,ba 2p1, 1,b 1a3pa 1,ba b ra tea 1c, (a 1p=teh 1) >
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Equation for Modular curves

The prime N =£ 37 case

@ These curves have only one involution the hyperelliptic one.
The reduced group is not zero and the method of dihedral
invariants is not applicable.
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Equation for Modular curves

The prime N =£ 37 case

@ These curves have only one involution the hyperelliptic one.
The reduced group is not zero and the method of dihedral
invariants is not applicable.

@ Brute Force!
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Equation for Modular curves

The method

o y? = fy(x) where fy(x) € Z[x].
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Equation for Modular curves

The method

o y? = fy(x) where fy(x) € Z[x].

ax+b
cx+d”

e Find o given by x —
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Equation for Modular curves

The method

o y? = fy(x) where fy(x) € Z[x].

ax+b
cx+d”

e Consider the coefficients of the polynomial

e Find o given by x —

deg fN

b .
- (22 o S

If o is an automorphism then all a; should be zero.
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Equation for Modular curves

The method

o y? = fy(x) where fy(x) € Z[x].

ax+b
cx+d”

e Consider the coefficients of the polynomial

e Find o given by x —

deg fN

b
fn(x) — fy (ijid>(c —i—ddegf"’— Z a;x".

If o is an automorphism then all a; should be zero.

o Find the p so that the Diophantine equations a; = 0 have
solutions modulo p.
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Equation for Modular curves

Grobner Bases

e Consider the ideal I, := (a;,i =1,...,r) <Z]a, b, c, d] where
r < deg fn.
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Equation for Modular curves

Grobner Bases

e Consider the ideal I, := (a;,i =1,...,r) <Z]a, b, c, d] where
r < deg fN-

@ Compute a Grdbner basis for /, with respect of the lex order
a< b < d < c, and then we form the set S of all basis
elements that are polynomials in ¢ only.
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Equation for Modular curves

Grobner Bases

e Consider the ideal I, := (a;,i =1,...,r) <Z]a, b, c, d] where
r < deg fN-

@ Compute a Grdbner basis for /, with respect of the lex order
a< b < d < c, and then we form the set S of all basis
elements that are polynomials in ¢ only.

@ The generic fibre the only admissible automorphism is the
trivial one, the gcd of elements in S is ¢ for some 1 < « € N,
We divide every element in S by c® and we obtain an integer §
as an element in the set {f/c®: f € S}. The prime factors p
of § are exactly the possible primes where an automorphism o
with ¢ # 0 can appear.
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Equation for Modular curves

Grobner Bases

e Consider the ideal I, := (a;,i =1,...,r) <Z]a, b, c, d] where
r < deg fN-

@ Compute a Grdbner basis for /, with respect of the lex order
a< b < d < c, and then we form the set S of all basis
elements that are polynomials in ¢ only.

@ The generic fibre the only admissible automorphism is the
trivial one, the gcd of elements in S is ¢ for some 1 < « € N,
We divide every element in S by c® and we obtain an integer §
as an element in the set {f/c®: f € S}. The prime factors p
of § are exactly the possible primes where an automorphism o
with ¢ # 0 can appear.

o Consider the same system modulo I_Fp

On the Automorphism Groups of modular curves Xg(N)



Equation for Modular curves

Example: N =41

("] at2 + 3%d~18 - 4*d"2 + 19%c~18 + 15xc~10 + 866%c"2
axc~2 + d*xc~2,
2%a + 2%b*d"T7xc + 2%d"9 + d"T7*c~2 - 4xd + 39%c~17 + 24xc~9 + 142xc,
b~8 + 3*%b~2%d"6 + 2%d"T*c + d"6%c”2 + 13%c~24 + 22%c~16 + 521xc"8,
2%b~4 + 2%b*d~3 + 2%bxd~2%c + 2xd"3*c + d"2%c"2 + 14%c~20 + 17xc"12 +
685*c~4,
2%b~2%c + 2%bkd*c + 2xd~2%c + 34%c~19 + 12xc~11 + 40%c~3,
b*c"2 + 2%d"2%c + dxc”2 + 39%c”19 + 19xc~11 + B53*%c"~3,
4xb + d~7*c”2 + 256%c”~17 + 39%c~9 + 1472%c,
d~24 + 40%*c~24 + 34%c~16 + 139*c~8 - 1,
d~8*%c~2 + 20%c~18 + 18%c~10 + 199%c~2,
2%d~8%c + 40%c~17 + 36%c~9 + 398%c,
4xd~8 + b*c~24 + 14%c~16 + 677*c"8 - 4,
d*c~3 + 16%c~20 + T*c~12 + 599*c~4,
2%d*c~2 + 32%c~19 + 14%c~11 + B501%c"3,
4xd*c + 23xc~18 + 28%c~10 + 264x*c~2,
c"25 + 36%c”~17 + 39%c~9 + 496xc,
41%c"9 + 2624*c,
697*c"3,
1394%c~2,
2788*c

dular curves Xq(N)




Equation for Modular curves

Example: N =41

@ For example, for the N = 41 case the only exceptions can
happen at the primes 2,17,41.
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Equation for Modular curves

Example: N =41

@ For example, for the N = 41 case the only exceptions can
happen at the primes 2,17,41.

@ The primes 2,41 are excluded so we focus to the p = 17 case.
We reduce our curve modulo 17 and then we compute that the
ideal lyeg f,, ®7z Z/pZ has a Grébner basis of the form:

{a+16d + b, d® + 12b% 4 16, b(d + 8b), c + 8b, b(b® + 13)}.

On the Automorphism Groups of modular curves Xg(N)



Equation for Modular curves

Example: N =41

@ For example, for the N = 41 case the only exceptions can
happen at the primes 2,17,41.

@ The primes 2,41 are excluded so we focus to the p = 17 case.
We reduce our curve modulo 17 and then we compute that the
ideal lyeg f,, ®7z Z/pZ has a Grébner basis of the form:

{a+16d + b, d® + 12b% 4 16, b(d + 8b), c + 8b, b(b® + 13)}.

@ We will now solve the above system. If b = 0 then we see that
¢ =0 and a = d, therefore we obtain the identity matrix. If
b # 0 then b® +13 =0 = b* = 2. Let b be a fourth root of 2
in F17. Then ¢ = —8b, d = —8b, a = —9b. The equation
d® 4 12b% 4 16 is compatible with the system. Thus we obtain
the extra automorphism o so that & : x — :89btjffgbb = gﬁ;é.

The automorphism group in this case is Z/27Z x Z/27.
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Hyperelliptic Curves in Characteristic 2

Minimal Weierstrass Models

@ Every hyperelliptic curve of genus g has a model:
C:=y*+q(x)y +p(x)
with deg g(x) < g + 1 and deg p(x) < 2g + 1.
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Hyperelliptic Curves in Characteristic 2

Minimal Weierstrass Models

@ Every hyperelliptic curve of genus g has a model:
C:=y*+q(x)y +p(x)

with deg g(x) < g + 1 and deg p(x) < 2g + 1. (Application of
Riemann-Roch theorem, Lockhart 1994)
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Hyperelliptic Curves in Characteristic 2

Minimal Weierstrass Models

@ Every hyperelliptic curve of genus g has a model:
C:=y*+q(x)y +p(x)

with deg g(x) < g + 1 and deg p(x) < 2g + 1. (Application of
Riemann-Roch theorem, Lockhart 1994)

@ In characteristic p # 2 we can find a model of the form
y? = f(x) by completing the square in the left hand side.
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Hyperelliptic Curves in Characteristic 2

Minimal Weierstrass Models

@ Every hyperelliptic curve of genus g has a model:
C:=y*+q(x)y +p(x)
with deg g(x) < g + 1 and deg p(x) < 2g + 1. (Application of
Riemann-Roch theorem, Lockhart 1994)
@ In characteristic p # 2 we can find a model of the form
y? = f(x) by completing the square in the left hand side.

@ In characteristic 2 this model is given in terms of an
Artin-Schreier extension. Set Y = y/q in order to obtain

p

W+Y:?,

and the hyperelliptic involution is given by
(x,Y)— (x,Y+1).
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Hyperelliptic Curves in Characteristic 2

Automorphisms of Weierstrass Models

@ A basis for the space of holomorphic differentials on C is given
by . .
xldx  xldx )
wi = = 1<i<g
2y +q q
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Hyperelliptic Curves in Characteristic 2

Automorphisms of Weierstrass Models

@ A basis for the space of holomorphic differentials on C is given
by . .
xldx  xldx )
wj = = L l1<i<g
2y +q q
@ Every automorphism o of C induces a linear action on the
space of holomorphic differentials.
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Hyperelliptic Curves in Characteristic 2

Automorphisms of Weierstrass Models

@ A basis for the space of holomorphic differentials on C is given
by . .
xldx  xldx )
wj = = L l1<i<g
2y +q q
@ Every automorphism o of C induces a linear action on the
space of holomorphic differentials.

o Write g((ax + b)/(cx + d))(cx + d)&+! = g*(x) € Fy[x].
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Hyperelliptic Curves in Characteristic 2

Automorphisms of Weierstrass Models

@ A basis for the space of holomorphic differentials on C is given
by . .
xldx  xldx )
wj = = L l1<i<g
2y +q q
@ Every automorphism o of C induces a linear action on the
space of holomorphic differentials.

o Write g((ax + b)/(cx + d))(cx + d)&+! = g*(x) € Fy[x].
° g =\q
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Hyperelliptic Curves in Characteristic 2

Automorphisms of Weierstrass Models

Theorem

Let C:= y? 4+ q(x)y + p(x) be a hyperelliptic curve of genus g
over Iy with deg g(x) < g + 1 and deg p(x) < 2g + 1. Then every
automorphism o of C is of the form

ax+b y+h(x)
ex +d’ (ex + d)gtl

o

for some (2 5) € GLy(FF2) and h(x) € Fa[x] of degree at most
g + 1 satisfying

ax+ b 41 ax + b 2g42 _ o2 b
q<cx+d)(6><+d)‘ = q(x), p(cx+d>(cx+d)‘ = p(x) + h(x)® + q(x)h(x).
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Hyperelliptic Curves in Characteristic 2

Example: Xo(37) in characteristic 2

@ Weierstrass model:

Y+ 03+ x4y =x + x>+ x
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Hyperelliptic Curves in Characteristic 2

Example: Xo(37) in characteristic 2

o Weierstrass model:
Y+ 03+ x4y =x + x>+ x

@ Search for a, b, ¢, d so that the conditions of the previous
theorem is fulfilled. System of equations, Grobner basis
approach.
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Hyperelliptic Curves in Characteristic 2

Example: Xo(37) in characteristic 2

o Grobner basis.

ug + u3 + d2c® + d%c 4 dc® + dc? 192 180 | (168 4 (165 | 150 138 (135
+5132 +cl2° +c1°5 +‘:96 +L_90 +584 +C75 +L‘69 +‘:66 +C‘8 +536 +C18 +‘39v
™ + u3 + dzc + dC + CISS + C133 + CIZO 4 6105 + 690 4 675 + C72 4 CGO + ‘:48

+ +c +c +c c3

u2+U3+dzc4+dc +6180+5155+6150+C144+C135+6129+C96+C4+ng
+c86 4 80 8 4 8 +c +c +c +c

U3+U3+d264+d26+dc + dec? +c +c +c +t:6+53,
a+d+r:16+c,

b+616

s

a3+ d2c+dc 4192 4 (144 132 | 129 | (72 | 48 | 33, 24, 18
+c12 4 9 +1,

d( 16 +C)+C176 + Clﬁl + 5146 4 C131 +c8° 4 555 + C56 +C + C26 +C20
47 4 M B2 5

(16 1 ¢)(c192 4 (144 | (132 4 (129 | (96 | (72 | (66 , 48 | (36 , (33

+c24 418 112 1% b 3.

dular curves Xq(N)




Hyperelliptic Curves in Characteristic 2

Example: Xo(37) in characteristic 2

o Grobner basis.

ug + u3 + d2c® + d%c 4 dc® + dc? 192 180 | (168 4 (165 | 150 138 (135
+5132 +cl2° + C105 + ‘:96 + 690 4 584 + C75 +ng + ‘:66 +C‘8 + 536 + Cls +‘39v
uy + u3 + d?c + dc® 168 | (138 4 120 4 (105 4 (90 4 (75 | (72 4 60 4 .48

+c 45+630+624+C18+615+512+ 3

u2+U3+d2c4+dc +c18°+c155+c15°+c144+c135+6129+c96+c4+c69
+ 6+ 80 8 1 48 +c 3+ 30 4 184 18

U3+Ll3 d2c4+dzc+dc + dec? +c36+c33+c21+c18+c +c,
a+d+r:16+c

b 16 ’

s

a3+ d2c+dc 4192 4 (144 132 | 129 | (72 | 48 | 33, 24, 18
+c12 49 41,

d(c'® Jrc)Jrcne + ‘__161 4 146, (131, 80, 65 56 _ 41 26 , 20
47 4 M B2 5

(16 1 ¢)(c192 4 (144 | (132 4 (129 | (96 | (72 | (66 , 48 | (36 , (33

i - NP L R

@ The last element is a polynomial on ¢ of degree 192. It is a
product of 12 irreducible polynomials of degree 8 over 5.
Total number of solutions in I, is 480.
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Hyperelliptic Curves in Characteristic 2

Example: Xo(37) in characteristic 2

@ However, since for each root o of x3 + 1 in Ty,
(uo, u1, up,u3,a,b,c,d) and (up, u1, Uz, uz, a, ab, ac, ad)
give the same automorphism, we find that

|G| = 480/3 = 160, |G| = |G|/2 = 80.

On the Automorphism Groups of modular curves Xg(N)



Hyperelliptic Curves in Characteristic 2

Example: Xo(37) in characteristic 2

@ However, since for each root o of x3 + 1 in Ty,
(uo, u1, up,u3,a,b,c,d) and (up, u1, Uz, uz, a, ab, ac, ad)
give the same automorphism, we find that

|G| = 480/3 = 160, |G| = |G|/2 = 80.

o G is the semi-direct product of an elementary abelian 2-group
of order 16 by a cyclic group of order 5.
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Hyperelliptic Curves in Characteristic 2

Example: Xo(37) in characteristic 2

@ However, since for each root o of x3 + 1 in Ty,
(uo, u1, up,u3,a,b,c,d) and (up, u1, Uz, uz, a, ab, ac, ad)
give the same automorphism, we find that

|G| = 480/3 = 160, |G| = |G|/2 = 80.

o G is the semi-direct product of an elementary abelian 2-group
of order 16 by a cyclic group of order 5.

o By using a restriction argument on H2(G,Z/27) we can see
that the structure of the group in the midle is determined by
the 2-Syllow subgroup which is isomorphic to the extraspecial
group Eszp_, which has 5 subgroups isomorphic to Qg x (Z/27)
and another 5 subgroup isomorphic to Hig. The group G is a
semi-direct product of E3>_ by a cyclic group of order 5.
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Hyperelliptic Curves in Characteristic 2

Automorphisms of Hyperelliptic Modular Curves

N Genus Generic Aut. Exceptional primes Except. Aut.

22 2 (Z)27)* 3,29 Dg
101 D,
23 2 7./27 3,13,29,43,101,5623 D,
26 2 (Z/27)? 1,31 Dg
41,89 D,
28 2 Dg 3 GL2(3)
5 B
11 Ve
29 2 7./27. 19 D,
5, 67,137,51241 D,
30 3 (Z)27)® 23 Vs
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Hyperelliptic Curves in Characteristic 2

Automorphisms of Hyperelliptic Modular Curves

o

N  Genus Generic Aut Exceptional primes Except. Aut.

31 2 7.]27 3 7.)27 x 7.4
5, D,
11,37,67,131,149

33 3 (Z)27)3 2 GLy(2) x Z/2Z
19 7.)27 x 7./4Z
47 (Z.)27.)3

3% 3 (Z)27.)> — —

37 2 (Z)27)> 2 Es, x (Z/57)
3 7./37 x (Z.]27)
7,31 Dg
29,61 D,

39 3 (Z/27.)> 5 7.)27 x Z.]4Z
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Hyperelliptic Curves in Characteristic 2

Automorphisms of Hyperelliptic Modular Curves

N  Genus Generic Aut Exceptional primes Except. Aut.

41 3 VAPY/ 17 D,
46 5 (z)27.)> 3 (z./27.)3
47 4 Z/2Z — —
48 3 )27 x Sy T A, |A| =672
50 2 (Z/27)* 3 Ds
37 Dy
50 5 Z/2Z — —
71 6 7./27 — —
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Non hyperelliptic Curves

The canonical embedding

Let w1,

gives an embedding of Xo(N) in P&~1L.

Every automorphism of Xo(N) is the restriction of an
automorphism of the ambient space P81,

The automorphism group oﬂP’i_l equals PGL(g, k).

..., wg be a basis of H*(Xo(N),Q!), and suppose that
Xo(N) is not hyperelliptic. The map

®: Xo(N) — P&,

wo w
P—(1:=:...:2£
w1 w1
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Non hyperelliptic Curves

g = 3, non hyperelliptic

o All non-hyperelliptic curves of genus 3 are hypersurfaces in P?2.
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Non hyperelliptic Curves

g = 3, non hyperelliptic

o All non-hyperelliptic curves of genus 3 are hypersurfaces in P?2.

Xo(34) | x* 4+ y* — 24 + 53y + xy® — 2x2y? 4+ 3xyz? = 0
Xo(43) | 2x3y +6x%y? + 11xy3 + 9y* — x°z — 6x%yz — 14xy°z
—12y3z 4 2x%2% + 8xyz® + 10y?2?> — xz3 4+ z* =0
Xo(45) | x* +y* +81z* — 2x%y? — 2x%y? — 2x?2°—

18y2z% — 16xy°z =0

Xo(64) | x* +y* —z* =0
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Non hyperelliptic Curves

Linear automorphisms

o Idea: Compute all matrices A = (aj;) such that

f(Ax) = Aaf(x).
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Non hyperelliptic Curves

Linear automorphisms

o Idea: Compute all matrices A = (aj;) such that
f(Ax) = Aaf(x).

o Difficult problem to solve.
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Non hyperelliptic Curves

Projective Duality

o Consider the Gauss map

X — X*

(x0, X1, x2) — g : g : g
Ox 0Jdy 0z

(x0,¥0,20)
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Non hyperelliptic Curves

Projective Duality

o Consider the Gauss map

X — X*
(x0, X1, x2) — g : g : g
Ox 0Jdy 0z

@ Every automorphism induces a linear action (by A1) on the
dual curve.

(x0,¥0,20)
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Non hyperelliptic Curves

Projective Duality

o Consider the Gauss map

X — X*
(x0, X1, x2) — (gf : gf : gf)
x gy 2/ l(x0.¥0,20)

@ Every automorphism induces a linear action (by A1) on the
dual curve.

@ A simpler problem (the derivatives are simpler than the original
polynomials)
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Non hyperelliptic Curves

Example: Xo(64)
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Non hyperelliptic Curves

Example: Xo(64)

e Find ajj such that

3 3
4 (Z aiVXV> = b1 Y1 + b12Y2 + b1z Ysetc
v=1

The group is bigger than (14 X u4) x S3 only in characteristic
3, since then raising to the third power is linear!
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Non hyperelliptic Curves

Example: Xo(64)

e Find ajj such that

3 3
4 (Z aiVXV> = b1 Y1 + b12Y2 + b1z Ysetc
v=1

The group is bigger than (14 X u4) x S3 only in characteristic
3, since then raising to the third power is linear!

o Aut(Xp(64),3) =2 PGU(3,Fo).

On the Automorphism Groups of modular curves Xg(N)
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