On the Automorphism Groups of modular curves $X_0(N)$ in positive characteristic

Aristides Kontogeorgis¹ Yifan Yang²

¹Department of Mathematics University of the Aegean.

²Max-Planck-Institut für Mathematik Bonn, and Department of Applied Mathematics National Chiao Tung University TAIWAN

8th Panhellenic Conference in Algebra & Number Theory

On the Automorphism Groups of modular curves $X_0(N)$

1 Automorphisms of Families of Curves

2 Modular Curves

3 Equation for Modular curves

4 Hyperelliptic Curves in Characteristic 2

5 Non hyperelliptic Curves

On the Automorphism Groups of modular curves $X_0(N)$

Motivation

Let $\mathcal{X} \to S$ be a family of curves over a base scheme S.

For every point P: Spec $k \to S$, we will consider the *absolute* automorphism group of the fiber P to be the automorphism group $\operatorname{Aut}_{\bar{k}}(\mathcal{X} \times_S \operatorname{Spec}{\bar{k}})$ where \bar{k} is the algebraic closure of k. Question: How does the automorphism group vary along the fibers P?

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

Let $\mathcal{X} \to S$ be a family of curves over a base scheme S. For every point $P : \operatorname{Spec} k \to S$, we will consider the *absolute* automorphism group of the fiber P to be the automorphism group $\operatorname{Aut}_{\bar{k}}(\mathcal{X} \times_S \operatorname{Spec}\bar{k})$ where \bar{k} is the algebraic closure of k. Question: How does the automorphism group vary along the fibers P?

On the Automorphism Groups of modular curves $X_0(N)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

Let $\mathcal{X} \to S$ be a family of curves over a base scheme S. For every point $P : \operatorname{Spec} k \to S$, we will consider the *absolute* automorphism group of the fiber P to be the automorphism group $\operatorname{Aut}_{\bar{k}}(\mathcal{X} \times_S \operatorname{Spec} \bar{k})$ where \bar{k} is the algebraic closure of k. **Question:** How does the automorphism group vary along the fibers P?

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Fermat Equation

$$x^{p^s+1} + y^{p^s+1} + z^{p^s+1}$$

• This equation gives us a "curve" over a field k by considering:

 $\mathbb{P}^1_k
i (x_0 : y_0 : z_0)$ so that $x_0^{p^s+1} + y_0^{p^s+1} + z_0^{p^s+1} = 0$

• The field k might be $\mathbb{Q}, \overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p, \overline{\mathbb{F}}_p$ etc.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Fermat Equation

$$x^{p^s+1} + y^{p^s+1} + z^{p^s+1}$$

• This equation gives us a "curve" over a field k by considering:

$$\mathbb{P}^1_k
i (x_0:y_0:z_0)$$
 so that $x_0^{p^s+1}+y_0^{p^s+1}+z_0^{p^s+1}=0$

• The field k might be $\mathbb{Q}, \overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p, \overline{\mathbb{F}}_p$ etc.

The Fermat Equation

$$x^{p^s+1} + y^{p^s+1} + z^{p^s+1}$$

• This equation gives us a "curve" over a field k by considering:

$$\mathbb{P}^1_k
i (x_0:y_0:z_0)$$
 so that $x_0^{p^s+1}+y_0^{p^s+1}+z_0^{p^s+1}=0$

• The field k might be $\mathbb{Q}, \overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p, \overline{\mathbb{F}}_p$ etc.

Automorphisms of Families of Curves Modular Curves

Equation for Modular curves Hyperelliptic Curves in Characteristic 2 Non hyperelliptic Curves

Arithmetic Surfaces

On the Automorphism Groups of modular curves $X_0(N)$

Theorem (Deligne-Mumford 69)

Consider a stable curve $\mathcal{X} \to S$ over a scheme S and let \mathcal{X}_{η} denote its generic fibre. Every automorphism $\phi : \mathcal{X}_{\eta} \to \mathcal{X}_{\eta}$ can be extended to an automorphism $\phi : \mathcal{X} \to \mathcal{X}$.

 $\operatorname{Aut}(\mathcal{X}_{\eta}) \subseteq \operatorname{Aut}(\mathcal{X}_{P})$

On the Automorphism Groups of modular curves $X_0(N)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

• The Fermat curve

$$x^{p^s+1} + y^{p^s+1} + z^{p^s+1} = 0$$

It can be seen as a smooth family over $\operatorname{Spec}\mathbb{Z}[rac{1}{
ho^{s+1}}]$

$$\operatorname{Aut}(X,p) = \begin{cases} (\mu_n \times \mu_n) \rtimes S_3 & \text{ if } q \neq p \\ \operatorname{PGU}(3,p^{2s}) & \text{ if } q = p \end{cases}$$

Tzermias, Leopoldt, Shioda.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Exceptional Fibers

• A special fibre $\mathcal{X}_p := \mathcal{X} \times_S S/p$ with $\operatorname{Aut}(\mathcal{X}_p) > \operatorname{Aut}(\mathcal{X}_\eta)$ will be called exceptional. In general we know that there are finite many exceptional fibres and it is an interesting problem to determine exactly the exceptional fibres.

「同 ト イ ヨ ト イ ヨ ト

Modular Curves

•
$$\Gamma = \operatorname{PSL}(2, \mathbb{Z})$$

• $\Gamma(N) := \{ \sigma \in \Gamma : \sigma \equiv \mathbb{I}_2 \mod N \}$
• $\Gamma_0(N) := \left\{ \sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : c \equiv 0 \mod N \right\}$
• $Y(N) := \mathbb{H}/\Gamma(N), \ Y_0(N) = \mathbb{H}/\Gamma_0(N)$
• $X(N) = Y(N) \cup \operatorname{cusps}, \ X_0(N) = Y_0(N) \cup \operatorname{cusps}$

イロン イロン イヨン イヨン On the Automorphism Groups of modular curves $X_0(N)$

Modular Curves

•
$$\Gamma = \operatorname{PSL}(2, \mathbb{Z})$$

• $\Gamma(N) := \{\sigma \in \Gamma : \sigma \equiv \mathbb{I}_2 \mod N\}$
• $\Gamma_0(N) := \{\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : c \equiv 0 \mod N\}$
• $Y(N) := \mathbb{H}/\Gamma(N), Y_0(N) = \mathbb{H}/\Gamma_0(N)$
• $X(N) = Y(N) \cup \operatorname{cusps}, X_0(N) = Y_0(N) \cup \operatorname{cusps}$

イロン イロン イヨン イヨン On the Automorphism Groups of modular curves $X_0(N)$

Modular Curves

•
$$\Gamma = \operatorname{PSL}(2, \mathbb{Z})$$

• $\Gamma(N) := \{\sigma \in \Gamma : \sigma \equiv \mathbb{I}_2 \mod N\}$
• $\Gamma_0(N) := \left\{\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : c \equiv 0 \mod N\right\}$
• $Y(N) := \mathbb{H}/\Gamma(N), \ Y_0(N) = \mathbb{H}/\Gamma_0(N)$
• $X(N) = Y(N) \cup \operatorname{cusps}, \ X_0(N) = Y_0(N) \cup \operatorname{cusp}$

イロン イロン イヨン イヨン On the Automorphism Groups of modular curves $X_0(N)$

Modular Curves

•
$$\Gamma = \operatorname{PSL}(2, \mathbb{Z})$$

• $\Gamma(N) := \{\sigma \in \Gamma : \sigma \equiv \mathbb{I}_2 \mod N\}$
• $\Gamma_0(N) := \left\{\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : c \equiv 0 \mod N\right\}$
• $Y(N) := \mathbb{H}/\Gamma(N), \ Y_0(N) = \mathbb{H}/\Gamma_0(N)$
• $X(N) = Y(N) \cup \operatorname{cusps}, \ X_0(N) = Y_0(N) \cup \operatorname{cusps}$

On the Automorphism Groups of modular curves $X_0(N)$

э

Modular Curves

•
$$\Gamma = \operatorname{PSL}(2, \mathbb{Z})$$

• $\Gamma(N) := \{ \sigma \in \Gamma : \sigma \equiv \mathbb{I}_2 \mod N \}$
• $\Gamma_0(N) := \left\{ \sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : c \equiv 0 \mod N \right\}$
• $Y(N) := \mathbb{H}/\Gamma(N), \ Y_0(N) = \mathbb{H}/\Gamma_0(N)$
• $X(N) = Y(N) \cup \operatorname{cusps}, \ X_0(N) = Y_0(N) \cup \operatorname{cusps}$

・ロン ・部 と ・ ヨ と ・ ヨ と … On the Automorphism Groups of modular curves $X_0(N)$

Fundamental Domain for $X_0(30)$

Automorphisms of Modular Curves over $\mathbb C$

• $\operatorname{Aut}(X(N)) = \operatorname{PSL}(2, \mathbb{Z}/\mathbb{NZ})$, Serre, K.

 Aut(X₀(N)) = N_{Aut(ℍ)}Γ₀(N)/Γ₀(N) unless N = 37,63 that have an extra involution, Elkies, Kenku, Momose, Ogg.

On the Automorphism Groups of modular curves $X_0(N)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Automorphisms of Modular Curves over $\mathbb C$

- $\operatorname{Aut}(X(N)) = \operatorname{PSL}(2, \mathbb{Z}/\mathbb{NZ})$, Serre, K.
- Aut(X₀(N)) = N_{Aut(H)}Γ₀(N)/Γ₀(N) unless N = 37,63 that have an extra involution, Elkies, Kenku, Momose, Ogg.

On the Automorphism Groups of modular curves $X_0(N)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Automorphisms of Families of Curves Modular Curves Equation for Modular curves Non hyperelliptic Curves

Modular Curves

・ロト ・部ト ・ヨト ・ヨト On the Automorphism Groups of modular curves $X_0(N)$

э

Modular Curves

On the Automorphism Groups of modular curves $X_0(N)$

| 4 同 1 4 三 1 4 三 1

Moduli Interpretation

On the Automorphism Groups of modular curves $X_0(N)$

Image: A image: A

Image: Image:

Modular Curves over Families

Theorem (Igusa 59)

The curves $X_0(N)$ have a non singular projective model which is defined by equations over \mathbb{Q} , whose reduction modulo primes $p, p \nmid N$ are also non-singular, or in a more abstract language that there is a proper smooth curve $\mathcal{X}_0(N) \to \mathbb{Z}[1/N]$ so that for $p \in \operatorname{Spec}\mathbb{Z}[1/N]$ the reduction $\mathcal{X}_0(N) \times_{\operatorname{Spec}\mathbb{Z}} \mathbb{F}_p$ is the moduli space of elliptic curves with a fixed cyclic subgroup of order N.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Variation of automnorphisms: X(N) case

- A. Adler in 97 and C.S. Rajan in 98 proved for X(N), that $X(11)_3 := X(11) \times_{\operatorname{Spec}\mathbb{Z}} \operatorname{Spec}\mathbb{F}_3$ has the Mathiew group M_{11} as the full automorphism group.
- C. Ritzenthaler in 2003 and P. Bending, A. Carmina, R. Guralnick 2005 studied the automorphism groups of the reductions $X(q)_p$ of modular curves X(q) for varius primes p. It turns out that the reduction $X(7)_3$ of X(7) at the prime p has automorphism group PGU(3,3) and these are the only cases where $AutX(q)_p > AutX(q) \cong PSL(2, p)$.

Variation of automnorphisms: X(N) case

- A. Adler in 97 and C.S. Rajan in 98 proved for X(N), that $X(11)_3 := X(11) \times_{\operatorname{Spec}\mathbb{Z}} \operatorname{Spec}\mathbb{F}_3$ has the Mathiew group M_{11} as the full automorphism group.
- C. Ritzenthaler in 2003 and P. Bending, A. Carmina, R. Guralnick 2005 studied the automorphism groups of the reductions $X(q)_p$ of modular curves X(q) for varius primes p. It turns out that the reduction $X(7)_3$ of X(7) at the prime p has automorphism group PGU(3,3) and these are the only cases where $AutX(q)_p > AutX(q) \cong PSL(2, p)$.

Hyperelliptic modular curves

•	
22	$y^{2} = (x^{3} + 4x^{2} + 8x + 4)(x^{3} + 8x^{2} + 16x + 16)$
23	$y^{2} = (x^{3} - x + 1)(x^{3} - 8x^{2} + 3x - 7)$
26	$y^2 = x^6 - 8x^5 + 8x^4 - 18x^3 + 8x^2 - 8x + 1$
28	$y^{2} = (x^{2} + 7)(x^{2} + x + 2)(x^{2} - x + 2)$
29	$y^2 = x^6 - 4x^5 - 12x^4 + 2x^3 + 8x^2 + 8x - 7$
30	$y^{2} = (x^{2} + 4x - 1)(x^{2} + x - 1)(x^{4} + x^{3} + 2x^{2} - x + 1)$
31	$y^{2} = (x^{3} - 6x^{2} - 5x - 1)(x^{3} - 2x^{2} - x + 3)$
33	$y^{2} = (x^{2} + x + 3)(x^{6} + 7x^{5} + 28x^{4} + 59x^{3} + 84x^{2} + 63x + 27)$
35	$y^{2} = (x^{2} + x - 1)(x^{6} - 5x^{5} - 9x^{3} - 5x - 1)$
37	$y^2 = x^6 + 14x^5 + 35x^4 + 48x^3 + 35x^2 + 14x + 1$
39	$y^{2} = (x^{4} - 7x^{3} + 11x^{2} - 7x + 1)(x^{4} + x^{3} - x^{2} + x + 1)$
40	$y^2 = x^8 + 8x^6 - 2x^4 + 8x^2 + 1$
41	$y^{2} = x^{8} - 4x^{7} - 8x^{6} + 10x^{5} + 20x^{4} + 8x^{3} - 15x^{2} - 20x - 8$
46	$y^{2} = (x^{3} + x^{2} + 2x + 1)(x^{3} + 4x^{2} + 4x + 8)(x^{6} + 5x^{5} + 14x^{4} + 25x^{3} + 28x^{2} + 20x + 8)$
47	$y^{2} = (x^{5} + 4x^{4} + 7x^{3} + 8x^{2} + 4x + 1)(x^{5} - 5x^{3} - 20x^{2} - 24x - 19)$
48	$y^{2} = (x^{4} - 2x^{3} + 2x^{2} + 2x + 1)(x^{4} + 2x^{3} + 2x^{2} - 2x + 1) = x^{8} + 14x^{4} + 1$
50	$y^2 = x^6 - 4x^5 - 10x^3 - 4x + 1$
59	$y^{2} = (x^{3} + 2x^{2} + 1)(x^{9} + 2x^{8} - 4x^{7} - 21x^{6} - 44x^{5} - 60x^{4} - 61x^{3} - 46x^{2} - 24x - 11)$
71	$y^{2} = (x^{7} - 3x^{6} + 2x^{5} + x^{4} - 2x^{3} + 2x^{2} - x + 1)$
	$(x^{7} - 7x^{6} + 14x^{5} - 11x^{4} + 14x^{3} - 14x^{2} - x - 7)$

On the Automorphism Groups of modular curves $X_0(N)$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Hyperelliptic modular curves

• The above list is due to M. Shimura (1995) and Galbraith (1996)

- The above models are not the Igusa models. They are singular at infinity and singular at the fibers over the prime 2.
- For the prime 2 we will seek another model (Artin-Schreier extension).
- For all fibers above $p \neq 2$ we can work with them.

Hyperelliptic modular curves

- The above list is due to M. Shimura (1995) and Galbraith (1996)
- The above models are not the Igusa models. They are singular at infinity and singular at the fibers over the prime 2.
- For the prime 2 we will seek another model (Artin-Schreier extension).
- For all fibers above $p \neq 2$ we can work with them.

Hyperelliptic modular curves

- The above list is due to M. Shimura (1995) and Galbraith (1996)
- The above models are not the Igusa models. They are singular at infinity and singular at the fibers over the prime 2.
- For the prime 2 we will seek another model (Artin-Schreier extension).
- For all fibers above $p \neq 2$ we can work with them.

Hyperelliptic modular curves

- The above list is due to M. Shimura (1995) and Galbraith (1996)
- The above models are not the Igusa models. They are singular at infinity and singular at the fibers over the prime 2.
- For the prime 2 we will seek another model (Artin-Schreier extension).
- For all fibers above $p \neq 2$ we can work with them.

Real Points Hyperelliptic curves

• Hyperelliptic Curves have a model of the form $y^2 = \prod_{i=1}^{s} (x - \alpha_i)$

• Real Points of the above curve

→ <

Real Points Hyperelliptic curves

- Hyperelliptic Curves have a model of the form $y^2 = \prod_{i=1}^{s} (x \alpha_i)$
- Real Points of the above curve

On the Automorphism Groups of modular curves $X_0(N)$

∃ ► 4

Complex Points Hyperelliptic curves

- a) Two separate copies of $\mathbb C$ each with g+1 cuts.
- b) The upper copy has been turned upside down and the sides of the cuts have been glued according to the arrows
- c) The surface made compact by adding one point at infinity on each

On the Automorphism Groups of modular curves $X_0(N)$

Complex Points Hyperelliptic curves

- a) Two separate copies of $\mathbb C$ each with g+1 cuts.
- b) The upper copy has been turned upside down and the sides of the cuts have been glued according to the arrows
- c) The surface made compact by adding one point at infinity on each

On the Automorphism Groups of modular curves $X_0(N)$

Complex Points Hyperelliptic curves

- a) Two separate copies of $\mathbb C$ each with g+1 cuts.
- b) The upper copy has been turned upside down and the sides of the cuts have been glued according to the arrows
- c) The surface made compact by adding one point at infinity on each

On the Automorphism Groups of modular curves $X_0(N)$
Automorphisms of Hyperelliptic curves $p \neq 2$

• Brandt Stichtenoth 1986

- $j: x \mapsto x, y \mapsto -y$.
- $\mathbb{Z}/2\mathbb{Z} \cong \langle j \rangle \lhd \operatorname{Aut}(C)$
- $H := \operatorname{Aut}(C)/\langle j \rangle$ is a finite subgroup of $\operatorname{PGL}(2, k) = \operatorname{Aut}(\mathbb{P}^1_k).$
- Problem of group extensions

$$1 \rightarrow \langle j \rangle \rightarrow \operatorname{Aut}(C) \rightarrow H \rightarrow 1.$$

Automorphisms of Hyperelliptic curves $p \neq 2$

• Brandt Stichtenoth 1986

- $j: x \mapsto x, y \mapsto -y$.
- $\mathbb{Z}/2\mathbb{Z} \cong \langle j \rangle \lhd \operatorname{Aut}(C)$
- $H := \operatorname{Aut}(C)/\langle j \rangle$ is a finite subgroup of $\operatorname{PGL}(2, k) = \operatorname{Aut}(\mathbb{P}^1_k).$
- Problem of group extensions

$$1 \rightarrow \langle j \rangle \rightarrow \operatorname{Aut}(C) \rightarrow H \rightarrow 1.$$

Automorphisms of Hyperelliptic curves $p \neq 2$

- Brandt Stichtenoth 1986
- $j: x \mapsto x, y \mapsto -y$.
- $\mathbb{Z}/2\mathbb{Z} \cong \langle j \rangle \lhd \operatorname{Aut}(C)$
- $H := \operatorname{Aut}(C)/\langle j \rangle$ is a finite subgroup of $\operatorname{PGL}(2, k) = \operatorname{Aut}(\mathbb{P}^1_k).$
- Problem of group extensions

$$1 \rightarrow \langle j \rangle \rightarrow \operatorname{Aut}(C) \rightarrow H \rightarrow 1.$$

Automorphisms of Hyperelliptic curves $p \neq 2$

- Brandt Stichtenoth 1986
- $j: x \mapsto x, y \mapsto -y$.
- $\mathbb{Z}/2\mathbb{Z} \cong \langle j \rangle \lhd \operatorname{Aut}(C)$
- $H := \operatorname{Aut}(C)/\langle j \rangle$ is a finite subgroup of $\operatorname{PGL}(2, k) = \operatorname{Aut}(\mathbb{P}^1_k).$

• Problem of group extensions

$$1 \rightarrow \langle j \rangle \rightarrow \operatorname{Aut}(C) \rightarrow H \rightarrow 1.$$

Automorphisms of Hyperelliptic curves $p \neq 2$

- Brandt Stichtenoth 1986
- $j: x \mapsto x, y \mapsto -y$.
- $\mathbb{Z}/2\mathbb{Z} \cong \langle j \rangle \lhd \operatorname{Aut}(C)$
- $H := \operatorname{Aut}(C)/\langle j \rangle$ is a finite subgroup of $\operatorname{PGL}(2, k) = \operatorname{Aut}(\mathbb{P}^1_k).$
- Problem of group extensions

$$1 \to \langle j \rangle \to \operatorname{Aut}(C) \to H \to 1.$$

Finite subgroups of PGL(2, k)

- Cyclic group C_n of order n(n, p) = 1 with r = 2, $e_1 = e_2 = n$.
- 2 Elementary abelian *p*-group with r = 1, $e_1 = |G|$.
- 3 Dihedral group D_n of order 2n, with p = 2, (p, n) = 1, r = 2, $e_1 = 2$, $e_2 = n$, or $p \neq 2$, (p, n) = 1, r = 3, $e_1 = e_2 = 2$, $e_3 = n$.
- **③** Alternating group A_4 with $p \neq 2, 3$, r = 3, $e_1 = 2$, $e_2 = e_3 = 3$
- Symmetric group S_4 with $p \neq 2, 3$, r = 3, $e_1 = 2$, $e_2 = 3$, $e_3 = 4$.
- Alternating group A_5 with p = 3, r = 2, $e_1 = 6$, $e_2 = 5$, or $p \neq 2, 3, 5$ r = 3, $e_1 = 2$, $e_2 = 3$, $e_3 = 5$.
- Semidirect product of an elementary abelian p-group of order p^t with a cyclic group C_n of order n with n | p^t 1, r = 2, e₁ = |G|, e₂ = n.
- PSL(2, p^t) with $p \neq 2$, r = 2, $e_1 = \frac{p^t(p^t-1)}{2}$, $e_2 = \frac{p^t+1}{2}$

On the Automorphism Groups of modular curves $X_0(N)$

Platonic Solids

On the Automorphism Groups of modular curves $X_0(N)$

Computation of H

- The group *H* is determined by the configuration of the roots $\alpha_1, \ldots, \alpha_{2g+2}$ in \mathbb{P}^1_k .
- It can be that modulo *p* the configuration of the roots is more symmetrical.
- The hyperelliptic curve $y^2 = x^6 + 5x^3 + 1$ is acted on by j and by $\sigma: x \mapsto \zeta_3 x$.
- This curve modulo 5 is acted on by a bigger group generated by $\sigma': x \mapsto \zeta_6 x$.

Computation of H

- The group *H* is determined by the configuration of the roots $\alpha_1, \ldots, \alpha_{2g+2}$ in \mathbb{P}^1_k .
- It can be that modulo *p* the configuration of the roots is more symmetrical.
- The hyperelliptic curve $y^2 = x^6 + 5x^3 + 1$ is acted on by j and by $\sigma: x \mapsto \zeta_3 x$.
- This curve modulo 5 is acted on by a bigger group generated by $\sigma': x \mapsto \zeta_6 x$.

Computation of H

- The group *H* is determined by the configuration of the roots $\alpha_1, \ldots, \alpha_{2g+2}$ in \mathbb{P}^1_k .
- It can be that modulo *p* the configuration of the roots is more symmetrical.
- The hyperelliptic curve $y^2 = x^6 + 5x^3 + 1$ is acted on by j and by $\sigma: x \mapsto \zeta_3 x$.
- This curve modulo 5 is acted on by a bigger group generated by $\sigma': x \mapsto \zeta_6 x$.

Computation of H

- The group *H* is determined by the configuration of the roots $\alpha_1, \ldots, \alpha_{2g+2}$ in \mathbb{P}^1_k .
- It can be that modulo *p* the configuration of the roots is more symmetrical.
- The hyperelliptic curve $y^2 = x^6 + 5x^3 + 1$ is acted on by j and by $\sigma: x \mapsto \zeta_3 x$.
- This curve modulo 5 is acted on by a bigger group generated by $\sigma': x \mapsto \zeta_6 x$.

イロト イポト イヨト イヨト 二日

Hyperelliptic Curves with an extra involution

- Vollklein, Shaska, Shevilla, Guttierez 2002-2007 developed the theory of *dihedral invariants* for hyperelliptic curves provided that *H* has at least one involution. They also gave a classification of automorphisms depending on these invariants.
- This idea is applicable to hyperelliptic curves of the form: $X_0(N)$ for N = 22, 26, 28, 37, 50 that are of genus 2 and for N = 39, 40, 48, 33, 35, 30 of genus 3.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Hyperelliptic Curves with an extra involution

- Vollklein, Shaska, Shevilla, Guttierez 2002-2007 developed the theory of *dihedral invariants* for hyperelliptic curves provided that *H* has at least one involution. They also gave a classification of automorphisms depending on these invariants.
- This idea is applicable to hyperelliptic curves of the form: $X_0(N)$ for N = 22, 26, 28, 37, 50 that are of genus 2 and for N = 39, 40, 48, 33, 35, 30 of genus 3.

・ 同 ト ・ ヨ ト ・ - ヨ ト ・

Dihedral Invariants

 Change the model so that the extra involution acts like x → -x (Diagonalization).

$$y^2 = x^{2g+2} + a_1 x^{2g} + \dots + a_g x^2 + 1.$$

• Compute invariants $u_i := a_1^{g-i+1}a_i + a_g^{g-i+1}a_{g-i+1}$ for $i = 1, \dots, g$

Dihedral Invariants

 Change the model so that the extra involution acts like x → -x (Diagonalization).

$$y^2 = x^{2g+2} + a_1 x^{2g} + \dots + a_g x^2 + 1.$$

• Compute invariants $u_i := a_1^{g-i+1}a_i + a_g^{g-i+1}a_{g-i+1}$ for $i = 1, \dots, g$

g = 2

Theorem

2

The automorphism group is isomorphic to

1
$$V_6$$
 if and only if $(u_1, u_2) = (0, 0)$ or $(u_1, u_2) = (6750, 450)$

• GL₂(3) if and only if
$$(u_1, u_2) = (-250, 50)$$
 and $p \neq 5$
• B if and only if $(u_1, u_2) = (-250, 50)$ and $p = 5$

3
$$D_6$$
 if and only if $u_2^2 - 220u_2 - 16u_1 + 4500 = 0$,

•
$$D_4$$
 if and only if $2u_1^2 - u_2^3$ for $u_2 \neq 2, 18, 0, 50, 450$.

(Cases 0, 450, 50 are reduced to 1, 2). The group B mentioned above is given by:

$$B := \langle a, b, c | c^{2}, a^{-5}, b^{-1}a^{-2}ba, (cb^{-1})^{3}, a^{-1}bca^{2}cac \rangle.$$
$$V_{n} := \langle x, y | x^{4}, y^{n}, (xy)^{2}, (x^{-1}y)^{2} \rangle.$$

• A similar theorem holds. Too complicated to write it down!

 An additional difficulty: The normalized models are defined over a PID different than Z.

1.1	
	$x^{8} + \frac{\left(276+184\sqrt{2}\right)}{\left(-540\sqrt{2}-765\right)}x^{6} - 46x^{4} + \frac{\left(-184\sqrt{2}+276\right)}{\left(-540\sqrt{2}-765\right)}x^{2} - \frac{765+540\sqrt{2}}{\left(-540\sqrt{2}-765\right)}x^{2} - \frac{765+540\sqrt{2}}{\left(-560\sqrt{2}-765\right)}x^{2} - \frac{765+540\sqrt{2}}{\left($
	$x^{8} + \frac{(-240\sqrt{3}+508)x^{6}}{-264\sqrt{3}+473} + 342x^{4} + \frac{(508+240\sqrt{3})x^{2}}{-264\sqrt{3}+473} + \frac{473+264\sqrt{3}}{-264\sqrt{3}+473}$
	$5x^{8} + (140 + 128i)x^{6} - 34x^{4} + (140 - 128i)x^{2} + 5$
	$27 x^8 - 2^2 \cdot 97 x^6 + 2 \cdot 29 x^4 + 2^2 \cdot 11 x^2 + 3$
40	$x^8 - 18x^4 + 1$
	$x^{8} + 14x^{4} + 1$

On the Automorphism Groups of modular curves X₀(N)

- A similar theorem holds. Too complicated to write it down!
- An additional difficulty: The normalized models are defined over a PID different than Z.

N	f(x)
30	$x^{8} + \frac{\left(276+184\sqrt{2}\right)}{\left(-540\sqrt{2}-765\right)}x^{6} - 46x^{4} + \frac{\left(-184\sqrt{2}+276\right)}{\left(-540\sqrt{2}-765\right)}x^{2} - \frac{765+540\sqrt{2}}{\left(-540\sqrt{2}-765\right)}x^{6} + \frac{1}{2}x^{6} + $
33	$x^{8} + \frac{\left(-240\sqrt{3}+508\right)x^{6}}{-264\sqrt{3}+473} + 342x^{4} + \frac{\left(508+240\sqrt{3}\right)x^{2}}{-264\sqrt{3}+473} + \frac{473+264\sqrt{3}}{-264\sqrt{3}+473}$
35	$5x^{8} + (140 + 128 i)x^{6} - 34x^{4} + (140 - 128 i)x^{2} + 5$
39	$27 x^{8} - 2^{2} \cdot 97 x^{6} + 2 \cdot 29 x^{4} + 2^{2} \cdot 11 x^{2} + 3$
40	$x^8 - 18x^4 + 1$
48	$x^{8} + 14x^{4} + 1$

On the Automorphism Groups of modular curves $X_0(N)$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Generic automorphism group: $\mathbb{Z}/2\mathbb{Z} \times S_4$.

- Possible exceptional prime p = 7.
- Automorphism group of the fibre at p = 7 to an extension of PGL(2,7) by $\mathbb{Z}/2\mathbb{Z}$. Using magma we compute that this group admits the following presentation:

$$A := \left\langle a, b, c \mid c^2, ba^{-2}b^{-1}a^{-1}, b^{-1}a^3ba^{-1}, ba^{-1}cb^{-1}a^{-1}ca^{-1}c, \left(a^{-1}b^{-1}cb^{-1}\right)^2 \right\rangle.$$

On the Automorphism Groups of modular curves $X_0(N)$

- Generic automorphism group: $\mathbb{Z}/2\mathbb{Z} \times S_4$.
- Possible exceptional prime p = 7.
- Automorphism group of the fibre at p = 7 to an extension of PGL(2,7) by $\mathbb{Z}/2\mathbb{Z}$. Using magma we compute that this group admits the following presentation:

$$A := \left\langle a, b, c \mid c^2, ba^{-2}b^{-1}a^{-1}, b^{-1}a^3ba^{-1}, ba^{-1}cb^{-1}a^{-1}ca^{-1}c, \left(a^{-1}b^{-1}cb^{-1}\right)^2 \right\rangle.$$

On the Automorphism Groups of modular curves $X_0(N)$

- Generic automorphism group: $\mathbb{Z}/2\mathbb{Z} \times S_4$.
- Possible exceptional prime p = 7.
- Automorphism group of the fibre at p = 7 to an extension of PGL(2,7) by $\mathbb{Z}/2\mathbb{Z}$. Using magma we compute that this group admits the following presentation:

$$A := \left\langle a, b, c \mid c^2, ba^{-2}b^{-1}a^{-1}, b^{-1}a^3ba^{-1}, ba^{-1}cb^{-1}a^{-1}ca^{-1}c, (a^{-1}b^{-1}cb^{-1})^2 \right\rangle.$$

The prime $N \neq 37$ case

- These curves have only one involution the hyperelliptic one. The reduced group is not zero and the method of dihedral invariants is not applicable.
- Brute Force!

The prime $N \neq 37$ case

- These curves have only one involution the hyperelliptic one. The reduced group is not zero and the method of dihedral invariants is not applicable.
- Brute Force!

On the Automorphism Groups of modular curves X₀(N)

The method

• $y^2 = f_N(x)$ where $f_N(x) \in \mathbb{Z}[x]$.

- Find σ given by $x \mapsto \frac{ax+b}{cx+d}$.
- Consider the coefficients of the polynomial

$$f_N(x) - f_N\left(\frac{ax+b}{cx+d}\right)(cx+d)^{\deg f_N} = \sum_{\nu=0}^{\deg f_N} a_i x^i.$$

If σ is an automorphism then all a_i should be zero.

 Find the p so that the Diophantine equations a_i = 0 have solutions modulo p.

The method

- $y^2 = f_N(x)$ where $f_N(x) \in \mathbb{Z}[x]$.
- Find σ given by $x \mapsto \frac{ax+b}{cx+d}$.
- Consider the coefficients of the polynomial

$$f_N(x) - f_N\left(\frac{ax+b}{cx+d}\right)(cx+d)^{\deg f_N} = \sum_{\nu=0}^{\deg f_N} a_i x^i.$$

If σ is an automorphism then all a_i should be zero.

 Find the p so that the Diophantine equations a_i = 0 have solutions modulo p.

The method

- $y^2 = f_N(x)$ where $f_N(x) \in \mathbb{Z}[x]$.
- Find σ given by $x \mapsto \frac{ax+b}{cx+d}$.
- Consider the coefficients of the polynomial

$$f_N(x) - f_N\left(\frac{ax+b}{cx+d}\right)(cx+d)^{\deg f_N} = \sum_{\nu=0}^{\deg f_N} a_i x^i.$$

If σ is an automorphism then all a_i should be zero.

Find the p so that the Diophantine equations a_i = 0 have solutions modulo p.

The method

- $y^2 = f_N(x)$ where $f_N(x) \in \mathbb{Z}[x]$.
- Find σ given by $x \mapsto \frac{ax+b}{cx+d}$.
- Consider the coefficients of the polynomial

$$f_N(x) - f_N\left(\frac{ax+b}{cx+d}\right)(cx+d)^{\deg f_N} = \sum_{\nu=0}^{\deg f_N} a_i x^i.$$

If σ is an automorphism then all a_i should be zero.

Find the p so that the Diophantine equations a_i = 0 have solutions modulo p.

- Consider the ideal $I_r := \langle a_i, i = 1, ..., r \rangle \lhd \mathbb{Z}[a, b, c, d]$ where $r < \deg f_N$.
- Compute a Gröbner basis for *I_r* with respect of the lex order a < b < d < c, and then we form the set S of all basis elements that are polynomials in c only.
- The generic fibre the only admissible automorphism is the trivial one, the gcd of elements in S is c^{α} for some $1 < \alpha \in \mathbb{N}$. We divide every element in S by c^{α} and we obtain an integer δ as an element in the set $\{f/c^{\alpha} : f \in S\}$. The prime factors p of δ are exactly the possible primes where an automorphism σ with $c \neq 0$ can appear.
- Consider the same system modulo $\overline{\mathbb{F}}_p$

- Consider the ideal $I_r := \langle a_i, i = 1, ..., r \rangle \lhd \mathbb{Z}[a, b, c, d]$ where $r < \deg f_N$.
- Compute a Gröbner basis for I_r with respect of the lex order a < b < d < c, and then we form the set S of all basis elements that are polynomials in c only.
- The generic fibre the only admissible automorphism is the trivial one, the gcd of elements in S is c^{α} for some $1 < \alpha \in \mathbb{N}$. We divide every element in S by c^{α} and we obtain an integer δ as an element in the set $\{f/c^{\alpha} : f \in S\}$. The prime factors p of δ are exactly the possible primes where an automorphism σ with $c \neq 0$ can appear.
- Consider the same system modulo $\overline{\mathbb{F}}_p$

- Consider the ideal $I_r := \langle a_i, i = 1, ..., r \rangle \lhd \mathbb{Z}[a, b, c, d]$ where $r < \deg f_N$.
- Compute a Gröbner basis for I_r with respect of the lex order a < b < d < c, and then we form the set S of all basis elements that are polynomials in c only.
- The generic fibre the only admissible automorphism is the trivial one, the gcd of elements in S is c^{α} for some $1 < \alpha \in \mathbb{N}$. We divide every element in S by c^{α} and we obtain an integer δ as an element in the set $\{f/c^{\alpha} : f \in S\}$. The prime factors p of δ are exactly the possible primes where an automorphism σ with $c \neq 0$ can appear.
- Consider the same system modulo $\overline{\mathbb{F}}_p$

- Consider the ideal $I_r := \langle a_i, i = 1, ..., r \rangle \lhd \mathbb{Z}[a, b, c, d]$ where $r < \deg f_N$.
- Compute a Gröbner basis for I_r with respect of the lex order a < b < d < c, and then we form the set S of all basis elements that are polynomials in c only.
- The generic fibre the only admissible automorphism is the trivial one, the gcd of elements in S is c^{α} for some $1 < \alpha \in \mathbb{N}$. We divide every element in S by c^{α} and we obtain an integer δ as an element in the set $\{f/c^{\alpha} : f \in S\}$. The prime factors p of δ are exactly the possible primes where an automorphism σ with $c \neq 0$ can appear.
- Consider the same system modulo $\overline{\mathbb{F}}_p$

Example: N = 41

۲

```
a^2 + 3*d^18 - 4*d^2 + 19*c^{18} + 15*c^{10} + 866*c^2.
  a*c^2 + d*c^2,
  2*a + 2*b*d^7*c + 2*d^9 + d^7*c^2 - 4*d + 39*c^{17} + 24*c^9 + 142*c
 b^8 + 3*b^2*d^6 + 2*d^7*c + d^6*c^2 + 13*c^24 + 22*c^{16} + 521*c^8.
  2*b^4 + 2*b*d^3 + 2*b*d^2*c + 2*d^3*c + d^2*c^2 + 14*c^20 + 17*c^{12} + 17*c^{12}
      685*c^4.
  2*b^2*c + 2*b*d*c + 2*d^2*c + 34*c^19 + 12*c^11 + 40*c^3.
  b*c^2 + 2*d^2*c + d*c^2 + 39*c^19 + 19*c^11 + 553*c^3.
  4*b + d^7*c^2 + 25*c^{17} + 39*c^9 + 1472*c
  d^{24} + 40*c^{24} + 34*c^{16} + 139*c^{8} - 1
  d^8*c^2 + 20*c^{18} + 18*c^{10} + 199*c^2.
 2*d^8*c + 40*c^17 + 36*c^9 + 398*c,
 4*d^8 + 5*c^24 + 14*c^{16} + 677*c^8 - 4
 d*c^3 + 16*c^20 + 7*c^{12} + 599*c^4.
  2*d*c^2 + 32*c^19 + 14*c^11 + 501*c^3.
 4*d*c + 23*c^{18} + 28*c^{10} + 264*c^{2}
 c^25 + 36*c^17 + 39*c^9 + 496*c.
 41*c^9 + 2624*c.
  697*c^3.
  1394*c^2.
  2788*c
```

イロト 不得 とくほ とくほ とうほう

Example: N = 41

- For example, for the N = 41 case the only exceptions can happen at the primes 2, 17, 41.
- The primes 2,41 are excluded so we focus to the p = 17 case. We reduce our curve modulo 17 and then we compute that the ideal $I_{\text{deg } f_{41}} \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z}$ has a Gröbner basis of the form:

 ${a+16d+b, d^8+12b^8+16, b(d+8b), c+8b, b(b^8+13)}.$

• We will now solve the above system. If b = 0 then we see that c = 0 and a = d, therefore we obtain the identity matrix. If $b \neq 0$ then $b^8 + 13 = 0 \Rightarrow b^4 = 2$. Let b be a fourth root of 2 in $\overline{\mathbb{F}}_{17}$. Then c = -8b, d = -8b, a = -9b. The equation $d^8 + 12b^8 + 16$ is compatible with the system. Thus we obtain the extra automorphism σ so that $\overline{\sigma} : x \mapsto \frac{-9bx+b}{-8bx-9b} = \frac{9x-1}{8x+9}$. The automorphism group in this case is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Example: N = 41

- For example, for the N = 41 case the only exceptions can happen at the primes 2, 17, 41.
- The primes 2,41 are excluded so we focus to the p = 17 case. We reduce our curve modulo 17 and then we compute that the ideal $I_{\text{deg } f_{41}} \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z}$ has a Gröbner basis of the form:

 ${a+16d+b, d^8+12b^8+16, b(d+8b), c+8b, b(b^8+13)}.$

• We will now solve the above system. If b = 0 then we see that c = 0 and a = d, therefore we obtain the identity matrix. If $b \neq 0$ then $b^8 + 13 = 0 \Rightarrow b^4 = 2$. Let b be a fourth root of 2 in $\overline{\mathbb{F}}_{17}$. Then c = -8b, d = -8b, a = -9b. The equation $d^8 + 12b^8 + 16$ is compatible with the system. Thus we obtain the extra automorphism σ so that $\overline{\sigma} : x \mapsto \frac{-9bx+b}{-8bx-9b} = \frac{9x-1}{8x+9}$. The automorphism group in this case is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Example: N = 41

- For example, for the N = 41 case the only exceptions can happen at the primes 2, 17, 41.
- The primes 2,41 are excluded so we focus to the p = 17 case. We reduce our curve modulo 17 and then we compute that the ideal $I_{\text{deg } f_{41}} \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z}$ has a Gröbner basis of the form:

 ${a + 16d + b, d^8 + 12b^8 + 16, b(d + 8b), c + 8b, b(b^8 + 13)}.$

• We will now solve the above system. If b = 0 then we see that c = 0 and a = d, therefore we obtain the identity matrix. If $b \neq 0$ then $b^8 + 13 = 0 \Rightarrow b^4 = 2$. Let b be a fourth root of 2 in $\overline{\mathbb{F}}_{17}$. Then c = -8b, d = -8b, a = -9b. The equation $d^8 + 12b^8 + 16$ is compatible with the system. Thus we obtain the extra automorphism σ so that $\overline{\sigma} : x \mapsto \frac{-9bx+b}{-8bx-9b} = \frac{9x-1}{8x+9}$. The automorphism group in this case is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Minimal Weierstrass Models

• Every hyperelliptic curve of genus g has a model:

$$C := y^2 + q(x)y + p(x)$$

with deg $q(x) \le g + 1$ and deg $p(x) \le 2g + 1$. (Application of Riemann-Roch theorem, Lockhart 1994)

- In characteristic p ≠ 2 we can find a model of the form y² = f(x) by completing the square in the left hand side.
- In characteristic 2 this model is given in terms of an Artin-Schreier extension. Set Y = y/q in order to obtain

$$Y^2 + Y = \frac{p}{q^2},$$

and the hyperelliptic involution is given by $(x, Y) \mapsto (x, Y + 1).$
Minimal Weierstrass Models

• Every hyperelliptic curve of genus g has a model:

$$C := y^2 + q(x)y + p(x)$$

with deg $q(x) \le g + 1$ and deg $p(x) \le 2g + 1$. (Application of Riemann-Roch theorem, Lockhart 1994)

- In characteristic $p \neq 2$ we can find a model of the form $y^2 = f(x)$ by completing the square in the left hand side.
- In characteristic 2 this model is given in terms of an Artin-Schreier extension. Set Y = y/q in order to obtain

$$Y^2 + Y = \frac{p}{q^2},$$

and the hyperelliptic involution is given by $(x, Y) \mapsto (x, Y + 1).$

On the Automorphism Groups of modular curves $X_0(N)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Minimal Weierstrass Models

• Every hyperelliptic curve of genus g has a model:

$$C := y^2 + q(x)y + p(x)$$

with deg $q(x) \le g + 1$ and deg $p(x) \le 2g + 1$. (Application of Riemann-Roch theorem, Lockhart 1994)

- In characteristic $p \neq 2$ we can find a model of the form $y^2 = f(x)$ by completing the square in the left hand side.
- In characteristic 2 this model is given in terms of an Artin-Schreier extension. Set Y = y/q in order to obtain

$$Y^2 + Y = \frac{p}{q^2},$$

and the hyperelliptic involution is given by $(x, Y) \mapsto (x, Y + 1).$

Minimal Weierstrass Models

• Every hyperelliptic curve of genus g has a model:

$$C := y^2 + q(x)y + p(x)$$

with deg $q(x) \le g + 1$ and deg $p(x) \le 2g + 1$. (Application of Riemann-Roch theorem, Lockhart 1994)

- In characteristic $p \neq 2$ we can find a model of the form $y^2 = f(x)$ by completing the square in the left hand side.
- In characteristic 2 this model is given in terms of an Artin-Schreier extension. Set Y = y/q in order to obtain

$$Y^2 + Y = \frac{p}{q^2}$$

and the hyperelliptic involution is given by $(x, Y) \mapsto (x, Y + 1)$.

伺 と く ヨ と く ヨ と …

Automorphisms of Weierstrass Models

• A basis for the space of holomorphic differentials on C is given by

$$\omega_i = \frac{x^{i-1}dx}{2y+q} = \frac{x^{i-1}dx}{q}, \quad 1 \le i \le g,$$

- Every automorphism σ of C induces a linear action on the space of holomorphic differentials.
- Write $q((ax + b)/(cx + d))(cx + d)^{g+1} = q^*(x) \in \overline{\mathbb{F}}_2[x]$.
- $q^* = \lambda q$

Automorphisms of Weierstrass Models

• A basis for the space of holomorphic differentials on C is given by

$$\omega_i = \frac{x^{i-1}dx}{2y+q} = \frac{x^{i-1}dx}{q}, \quad 1 \le i \le g,$$

- Every automorphism σ of C induces a linear action on the space of holomorphic differentials.
- Write q((ax + b)/(cx + d))(cx + d)^{g+1} = q*(x) ∈ 𝔽₂[x].
 q* = λq

Automorphisms of Weierstrass Models

• A basis for the space of holomorphic differentials on C is given by

$$\omega_i = \frac{x^{i-1}dx}{2y+q} = \frac{x^{i-1}dx}{q}, \ 1 \le i \le g,$$

- Every automorphism σ of C induces a linear action on the space of holomorphic differentials.
- Write $q((ax + b)/(cx + d))(cx + d)^{g+1} = q^*(x) \in \overline{\mathbb{F}}_2[x]$. • $q^* = \lambda q$

Automorphisms of Weierstrass Models

• A basis for the space of holomorphic differentials on C is given by

$$\omega_i = \frac{x^{i-1}dx}{2y+q} = \frac{x^{i-1}dx}{q}, \ 1 \le i \le g,$$

- Every automorphism σ of C induces a linear action on the space of holomorphic differentials.
- Write $q((ax + b)/(cx + d))(cx + d)^{g+1} = q^*(x) \in \overline{\mathbb{F}}_2[x]$.

•
$$q^* = \lambda q$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Automorphisms of Weierstrass Models

Theorem

Let $C := y^2 + q(x)y + p(x)$ be a hyperelliptic curve of genus gover $\overline{\mathbb{F}}_2$ with deg $q(x) \leq g + 1$ and deg $p(x) \leq 2g + 1$. Then every automorphism σ of C is of the form

$$\sigma: (x, y) \longmapsto \left(\frac{ax+b}{cx+d}, \frac{y+h(x)}{(cx+d)^{g+1}}\right)$$

for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\bar{\mathbb{F}}_2)$ and $h(x) \in \bar{\mathbb{F}}_2[x]$ of degree at most g+1 satisfying

$$q\left(\frac{ax+b}{cx+d}\right)(cx+d)^{g+1} = q(x), \quad p\left(\frac{ax+b}{cx+d}\right)(cx+d)^{2g+2} = p(x) + h(x)^2 + q(x)h(x).$$

On the Automorphism Groups of modular curves $X_0(N)$

3 ×

Example: $X_0(37)$ in characteristic 2

• Weierstrass model:

$$y^{2} + (x^{3} + x^{2} + x +)y = x^{5} + x^{3} + x$$

• Search for *a*, *b*, *c*, *d* so that the conditions of the previous theorem is fulfilled. System of equations, Gröbner basis approach.

・ 同 ト ・ ヨ ト ・ ヨ

Example: $X_0(37)$ in characteristic 2

• Weierstrass model:

$$y^{2} + (x^{3} + x^{2} + x +)y = x^{5} + x^{3} + x$$

• Search for *a*, *b*, *c*, *d* so that the conditions of the previous theorem is fulfilled. System of equations, Gröbner basis approach.

Image: A Image: A

Example: $X_0(37)$ in characteristic 2

Gröbner basis.

 $\begin{array}{l} u_0+u_3+d^2c^4+d^2c+dc^8+dc^2+c^{192}+c^{180}+c^{168}+c^{165}+c^{150}+c^{138}+c^{135}\\ +c^{132}+c^{120}+c^{105}+c^{96}+c^{90}+c^{84}+c^{75}+c^{69}+c^{66}+c^{48}+c^{36}+c^{18}+c^{9},\\ u_1+u_3+d^2c+dc^8+c^{168}+c^{138}+c^{120}+c^{105}+c^{90}+c^{75}+c^{72}+c^{60}+c^{48}\\ +c^{45}+c^{30}+c^{24}+c^{18}+c^{15}+c^{12}+c^{3},\\ u_2+u_3+d^2c^4+dc^2+c^{180}+c^{165}+c^{150}+c^{144}+c^{135}+c^{129}+c^{96}+c^{84}+c^{69}\\ +c^{66}+c^{60}+c^{48}+c^{45}+c^{36}+c^{33}+c^{30}+c^{18}+c^{15},\\ u_3^2+u_3+d^2c^4+d^2c+dc^5+dc^2+c^{36}+c^{33}+c^{21}+c^{18}+c^6+c^3,\\ a+d+c^{16}+c,\\ b+c^{16},\\ d^3+d^2c+dc^2+c^{192}+c^{144}+c^{132}+c^{129}+c^{72}+c^{48}+c^{33}+c^{24}+c^{18}\\ +c^{12}+c^{9}+1,\\ d(c^{16}+c)+c^{176}+c^{161}+c^{146}+c^{131}+c^{80}+c^{65}+c^{56}+c^{41}+c^{26}+c^{20}\\ +c^{17}+c^{11}+c^5+c^2,\\ (c^{16}+c)(c^{192}+c^{144}+c^{132}+c^{129}+c^{96}+c^{72}+c^{66}+c^{48}+c^{36}+c^{33}\\ +c^{24}+c^{18}+c^{12}+c^{9}+c^{6}+c^{3}+1). \end{array}$

The last element is a polynomial on c of degree 192. It is a product of 12 irreducible polynomials of degree 8 over F₂. Total number of solutions in F₂ is 480.

On the Automorphism Groups of modular curves $X_0(N)$

Example: $X_0(37)$ in characteristic 2

Gröbner basis.

 $\begin{array}{l} u_0+u_3+d^2c^4+d^2c+dc^8+dc^2+c^{192}+c^{180}+c^{168}+c^{165}+c^{150}+c^{138}+c^{135}\\ +c^{132}+c^{120}+c^{105}+c^{96}+c^{90}+c^{84}+c^{75}+c^{69}+c^{66}+c^{48}+c^{36}+c^{18}+c^{9},\\ u_1+u_3+d^2c+dc^8+c^{168}+c^{138}+c^{120}+c^{105}+c^{90}+c^{75}+c^{72}+c^{60}+c^{48}\\ +c^{45}+c^{30}+c^{24}+c^{18}+c^{15}+c^{12}+c^{3},\\ u_2+u_3+d^2c^4+dc^2+c^{180}+c^{165}+c^{150}+c^{144}+c^{135}+c^{129}+c^{96}+c^{84}+c^{69}\\ +c^{66}+c^{60}+c^{48}+c^{45}+c^{36}+c^{33}+c^{30}+c^{18}+c^{15},\\ u_3^2+u_3+d^2c^4+d^2c+dc^5+dc^2+c^{36}+c^{33}+c^{21}+c^{18}+c^6+c^3,\\ a+d+c^{16}+c,\\ b+c^{16},\\ d^3+d^2c+dc^2+c^{192}+c^{144}+c^{132}+c^{129}+c^{72}+c^{48}+c^{33}+c^{24}+c^{18}\\ +c^{12}+c^{9}+1,\\ d(c^{16}+c)+c^{176}+c^{161}+c^{146}+c^{131}+c^{80}+c^{65}+c^{56}+c^{41}+c^{26}+c^{20}\\ +c^{17}+c^{11}+c^5+c^2,\\ (c^{16}+c)(c^{192}+c^{144}+c^{132}+c^{129}+c^{96}+c^{72}+c^{66}+c^{48}+c^{36}+c^{33}\\ +c^{24}+c^{18}+c^{12}+c^{9}+c^{6}+c^{3}+1). \end{array}$

The last element is a polynomial on c of degree 192. It is a product of 12 irreducible polynomials of degree 8 over 𝔽₂. Total number of solutions in 𝔽₂ is 480.

Example: $X_0(37)$ in characteristic 2

 However, since for each root α of x³ + 1 in F₄, (u₀, u₁, u₂, u₃, a, b, c, d) and (u₀, u₁, u₂, u₃, αa, αb, αc, αd) give the same automorphism, we find that

$$|G| = 480/3 = 160, \qquad |\overline{G}| = |G|/2 = 80.$$

- \overline{G} is the semi-direct product of an elementary abelian 2-group of order 16 by a cyclic group of order 5.
- By using a restriction argument on $H^2(\overline{G}, \mathbb{Z}/2\mathbb{Z})$ we can see that the structure of the group in the midle is determined by the 2-Syllow subgroup which is isomorphic to the extraspecial group E_{32-} , which has 5 subgroups isomorphic to $Q_8 \times (\mathbb{Z}/2\mathbb{Z})$ and another 5 subgroup isomorphic to H_{16} . The group G is a semi-direct product of E_{32-} by a cyclic group of order 5.

Example: $X_0(37)$ in characteristic 2

 However, since for each root α of x³ + 1 in F₄, (u₀, u₁, u₂, u₃, a, b, c, d) and (u₀, u₁, u₂, u₃, αa, αb, αc, αd) give the same automorphism, we find that

$$|G| = 480/3 = 160, \qquad |\overline{G}| = |G|/2 = 80.$$

- \overline{G} is the semi-direct product of an elementary abelian 2-group of order 16 by a cyclic group of order 5.
- By using a restriction argument on $H^2(\overline{G}, \mathbb{Z}/2\mathbb{Z})$ we can see that the structure of the group in the midle is determined by the 2-Syllow subgroup which is isomorphic to the extraspecial group E_{32-} , which has 5 subgroups isomorphic to $Q_8 \times (\mathbb{Z}/2\mathbb{Z})$ and another 5 subgroup isomorphic to H_{16} . The group G is a semi-direct product of E_{32-} by a cyclic group of order 5.

Example: $X_0(37)$ in characteristic 2

 However, since for each root α of x³ + 1 in F₄, (u₀, u₁, u₂, u₃, a, b, c, d) and (u₀, u₁, u₂, u₃, αa, αb, αc, αd) give the same automorphism, we find that

$$|G| = 480/3 = 160, \qquad |\overline{G}| = |G|/2 = 80.$$

- \overline{G} is the semi-direct product of an elementary abelian 2-group of order 16 by a cyclic group of order 5.
- By using a restriction argument on $H^2(\overline{G}, \mathbb{Z}/2\mathbb{Z})$ we can see that the structure of the group in the midle is determined by the 2-Syllow subgroup which is isomorphic to the extraspecial group E_{32-} , which has 5 subgroups isomorphic to $Q_8 \times (\mathbb{Z}/2\mathbb{Z})$ and another 5 subgroup isomorphic to H_{16} . The group G is a semi-direct product of E_{32-} by a cyclic group of order 5.

Automorphisms of Hyperelliptic Modular Curves

•					
	Ν	Genus	Generic Aut.	Exceptional primes	Except. Aut.
	22	2	$(\mathbb{Z}/2\mathbb{Z})^2$	3,29	<i>D</i> ₆
				101	D_4
	23	2	$\mathbb{Z}/2\mathbb{Z}$	3, 13, 29, 43, 101, 5623	<i>D</i> ₂
	26	2	$(\mathbb{Z}/2\mathbb{Z})^2$	7,31	D_6
				41,89	<i>D</i> ₄
	28	2	D_6	3	GL ₂ (3)
				5	В
				11	V_6
	29	2	$\mathbb{Z}/2\mathbb{Z}$	19	<i>D</i> ₄
				5,67,137,51241	D_2
	30	3	$(\mathbb{Z}/2\mathbb{Z})^3$	23	V_8

On the Automorphism Groups of modular curves $X_0(N)$

Automorphisms of Hyperelliptic Modular Curves

•					
	Ν	Genus	Generic Aut	Exceptional primes	Except. Aut.
	31	2	$\mathbb{Z}/2\mathbb{Z}$	3	$\mathbb{Z}/2\mathbb{Z} imes\mathbb{Z}/4\mathbb{Z}$
				5,	D_2
				11, 37, 67, 131, 149	
	33	3	$(\mathbb{Z}/2\mathbb{Z})^3$	2	$GL_2(2) imes \mathbb{Z}/2\mathbb{Z}$
				19	$\mathbb{Z}/2\mathbb{Z} imes\mathbb{Z}/4\mathbb{Z}$
				47	$(\mathbb{Z}/2\mathbb{Z})^3$
	35	3	$(\mathbb{Z}/2\mathbb{Z})^2$	_	—
	37	2	$(\mathbb{Z}/2\mathbb{Z})^2$	2	$E_{32-} ightarrow (\mathbb{Z}/5\mathbb{Z})$
				3	$\mathbb{Z}/3\mathbb{Z} imes (\mathbb{Z}/2\mathbb{Z})$
				7,31	D_6
				29,61	D_4
	39	3	$(\mathbb{Z}/2\mathbb{Z})^2$	5	$\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}_{\mathbb{C}}$

On the Automorphism Groups of modular curves $X_0(N)$

Automorphisms of Hyperelliptic Modular Curves

•					
	Ν	Genus	Generic Aut	Exceptional primes	Except. Aut.
	41	3	$\mathbb{Z}/2\mathbb{Z}$	17	<i>D</i> ₂
	46	5	$(\mathbb{Z}/2\mathbb{Z})^2$	3	$(\mathbb{Z}/2\mathbb{Z})^3$
	47	4	$\mathbb{Z}/2\mathbb{Z}$	_	
	48	3	$\mathbb{Z}/2\mathbb{Z} imes S_4$	7	A, A = 672
	50	2	$(\mathbb{Z}/2\mathbb{Z})^2$	3	D_6
				37	D_4
	59	5	$\mathbb{Z}/2\mathbb{Z}$	—	<u> </u>
	71	6	$\mathbb{Z}/2\mathbb{Z}$		

On the Automorphism Groups of modular curves $X_0(N)$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The canonical embedding

Theorem

Let $\omega_1, \ldots, \omega_g$ be a basis of $H^0(X_0(N), \Omega^1)$, and suppose that $X_0(N)$ is not hyperelliptic. The map

 $\Phi: X_0(N) \to \mathbb{P}^{g-1},$

$$P\mapsto (1:rac{\omega_2}{\omega_1}:\ldots:rac{\omega_g}{\omega_1})$$

gives an embedding of $X_0(N)$ in \mathbb{P}^{g-1} . Every automorphism of $X_0(N)$ is the restriction of an automorphism of the ambient space \mathbb{P}^{g-1} . The automorphism group of \mathbb{P}_k^{g-1} equals $\mathrm{PGL}(g,k)$.

g = 3, non hyperelliptic

• All non-hyperelliptic curves of genus 3 are hypersurfaces in \mathbb{P}^2 .

On the Automorphism Groups of modular curves $X_0(N)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

g = 3, non hyperelliptic

۲

• All non-hyperelliptic curves of genus 3 are hypersurfaces in \mathbb{P}^2 .

On the Automorphism Groups of modular curves $X_0(N)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Linear automorphisms

• Idea: Compute all matrices $A = (a_{ij})$ such that

$$f(Ax) = \lambda_A f(x).$$

• Difficult problem to solve.

On the Automorphism Groups of modular curves $X_0(N)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Linear automorphisms

• Idea: Compute all matrices $A = (a_{ij})$ such that

$$f(Ax) = \lambda_A f(x).$$

• Difficult problem to solve.

On the Automorphism Groups of modular curves $X_0(N)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Projective Duality

• Consider the Gauss map

$$X \to X^*$$
$$(x_0, x_1, x_2) \mapsto \left(\frac{\partial f}{\partial x} : \frac{\partial f}{\partial y} : \frac{\partial f}{\partial z} \right) \Big|_{(x_0, y_0, z_0)}$$

- Every automorphism induces a linear action (by A⁻¹) on the dual curve.
- A simpler problem (the derivatives are simpler than the original polynomials)

Projective Duality

• Consider the Gauss map

$$X \to X^*$$
$$(x_0, x_1, x_2) \mapsto \left(\frac{\partial f}{\partial x} : \frac{\partial f}{\partial y} : \frac{\partial f}{\partial z}\right)\Big|_{(x_0, y_0, z_0)}$$

- Every automorphism induces a linear action (by A^{-1}) on the dual curve.
- A simpler problem (the derivatives are simpler than the original polynomials)

Projective Duality

• Consider the Gauss map

$$X \to X^*$$
$$(x_0, x_1, x_2) \mapsto \left(\frac{\partial f}{\partial x} : \frac{\partial f}{\partial y} : \frac{\partial f}{\partial z}\right)\Big|_{(x_0, y_0, z_0)}$$

- Every automorphism induces a linear action (by A⁻¹) on the dual curve.
- A simpler problem (the derivatives are simpler than the original polynomials)

Example: $X_0(64)$

۲

$$Y_1 := \frac{\partial f}{\partial x} = 4x^3, Y_2 := \frac{\partial f}{\partial y} = 4y^3, Y_3 := \frac{\partial f}{\partial z} = -4z^3$$

• Find *a*_{ii} such that

$$4\left(\sum_{\nu=1}^{3}a_{i\nu}x_{\nu}\right)^{3} = b_{11}Y_{1} + b_{12}Y_{2} + b_{13}Y_{3}$$
etc

The group is bigger than $(\mu_4 \times \mu_4) \rtimes S_3$ only in characteristic 3, since then raising to the third power is linear!

• $\operatorname{Aut}(X_0(64),3) \cong \operatorname{PGU}(3,\mathbb{F}_9).$

Example: $X_0(64)$

٠

$Y_1 := rac{\partial f}{\partial x} = 4x^3, Y_2 := rac{\partial f}{\partial y} = 4y^3, Y_3 := rac{\partial f}{\partial z} = -4z^3$

Find a_{ij} such that

$$4\left(\sum_{\nu=1}^{3}a_{i\nu}x_{\nu}\right)^{3}=b_{11}Y_{1}+b_{12}Y_{2}+b_{13}Y_{3}\text{etc}$$

The group is bigger than $(\mu_4 \times \mu_4) \rtimes S_3$ only in characteristic 3, since then raising to the third power is linear!

• $\operatorname{Aut}(X_0(64),3) \cong \operatorname{PGU}(3,\mathbb{F}_9).$

Example: $X_0(64)$

٩

$$Y_1 := \frac{\partial f}{\partial x} = 4x^3, Y_2 := \frac{\partial f}{\partial y} = 4y^3, Y_3 := \frac{\partial f}{\partial z} = -4z^3$$

Find a_{ij} such that

$$4\left(\sum_{\nu=1}^{3}a_{i\nu}x_{\nu}\right)^{3} = b_{11}Y_{1} + b_{12}Y_{2} + b_{13}Y_{3}$$
etc

The group is bigger than $(\mu_4 \times \mu_4) \rtimes S_3$ only in characteristic 3, since then raising to the third power is linear!

• $\operatorname{Aut}(X_0(64),3) \cong \operatorname{PGU}(3,\mathbb{F}_9).$