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Elliptic Curve

1 2

y=xtx yExhx+1
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Elliptic Curve

1 2

y=xtx yExhx+1

The set of points E(K ) together with a point at infinity is an abelian
group.
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Elliptic curves defined over finite fields

ints £(Fp) form a finite abelian group. The following bound

#EF,) <g+1—a <qg+1+2/q

Discrete logarithm problem
Given elements P, Q on an abelian group so that nP = Q. Find n.
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This is a difficult problem, we have to try all possible n, until we find the
correct one.
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Even if the abelian group has a big order then is can be a product of
small factors like (Z/27)" and the discrete logarithm problem is easy.
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Elliptic curves defined over finite fields

oints E(IF,) form a finite abelian group. The following bound

#E(F,) <g+1—a <g+1+2y/q.

Discrete logarithm problem
Given elements P, Q on an abelian group so that nP = Q. Find n.

This is a difficult problem, we have to try all possible n, until we find the
correct one.

Abelian groups are usualy: [, E.

Even if the abelian group has a big order then is can be a product of
small factors like (Z/27)" and the discrete logarithm problem is easy.
For the elliptic curve cases, the discrete logarithm problem is difficult if
the order of the group has order a prime number, therefore it a cyclic
group. _
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Construct prime order elliptic curves

1. Randomly: Select random elliptic curves until we hit one with the
correct order.

2. Complex multiplication method.

We will focus on the second method
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Elliptic curves as quotients of the complex numbers

curve over C is a quotient of the universal covering space

C modulo @Riscrete subgroup - lattice L = Z + 77, (1) > 0.
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Elliptic curves as quotients of the complex numbers

curve over C is a quotient of the universal covering space
C modulo @Riiscrete subgroup - lattice L = Z + 77, (1) > 0. Leftices
L, L' give the same elliptic curves if and only if

, ar+b (a b

= —, € SL(2,7).
cT+b \c d) ( )
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Elliptic curves as quotients of the complex numbers

curve over C is a quotient of the universal covering space
jscrete subgroup - lattice L = Z + 7Z, (1) > 0. Leftices
L, L' give the same elliptic curves if and only if

b
1= 9TED (A P Cgr2,7).
cr+b' \c d

The quotient map
H — SL(2,Z)\H = C

is called the j-invariant. It is a SL(2, Z)- invariant function hence
periodic. It admits a Fourier expansion at g = &',

1
J(T) = — + 744 + 1968849 + 21493760G° + 864299970g°+
q
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J-invariant

Remarks: The coefficients of the Fourier expansion are integers.
They are related to the dimensions of the irreducible representations of
the Monster, the bigest sporadic simple group with order

808017424794512875886459904961710757005754368000000000.
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Number fields

A numbi d is a finite extension of the field Q, i.e. a field
K = Q[x]/f(x),

where f(x) is an ireducible polynomial of Q[x].
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Number fields

A numb d is a finite extension of the field Q, i.e. a field
K = Q[x]/(x),

where f(x) is an ireducible polynomial of Q[x]. The ring of algebraic
integers O is the ring consisted of elements

O = {x € K : such that x is a root of a monic polynomial f(x) € Z[x]}.
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Number fields

d is a finite extension of the field Q, i.e. a field
K = Q[x]/(x),

where f(x) is an ireducible polynomial of Q[x]. The ring of algebraic
integers O is the ring consisted of elements

O = {x € K : such that x is a root of a monic polynomial f(x) € Z[x]}.

The ring O in not a unigue factorization domain but it is a Dedekind
ring: every ideal is decomposed uniquely as a product of prime ideals.

| =P ... P,
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Class group

e semigroup of ideals of O, which is enlarged to a group
adding fractional ideals. These are abelian additive subgroups / of the
number field K, such that for some x € O the set x! is an ideal of the
ring O. In this way we construct the group of fractional ideals I(O).
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Class group

e semigroup of ideals of O, which is enlarged to a group
adding fractional ideals. These are abelian additive subgroups / of the
number field K, such that for some x € O the set x! is an ideal of the
ring O. In this way we construct the group of fractional ideals I(O).
Example: The fractional ideals of Z are the elements %Z, m,n € 7Z.

We also consider the subgroup PI(O) of principal fractional ideals aO,
where a € K.
The quotient is the class group

I(0)

cI0) = 5oy

One can show that the class group is a finite group.
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Ramification)

Consider an extension of number fields L/ K. A prime ideal P of Ok can
be seen as an ideal of O, by scalar extension PO,. It does not remain
prime so it can be written as

I
i
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Ramification)

Consider an extension of number fields L/ K. A prime ideal P of Ok can
be seen as an ideal of O, by scalar extension PO,. It does not remain
prime so it can be written as

PO, = Q1e1 e

r

where ; are prime ideals of O;.
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Ramification)

Consider an extension of number fields L/ K. A prime ideal P of Ok can
be seen as an ideal of O, by scalar extension PO,. It does not remain
prime so it can be written as

PO, = Qf‘ e,
where ; are prime ideals of O;.

If all ¢ = 1 then we will say that P is not ramified in the exension L/ K. If
no ideal is ramified then the extension is called unramified.
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Hilber class field

For every er field there is a Galois extension Hy defined to be the
maximal unramified abelian extension of . For the Galois group is the
class group of K Gal(Hk/K) = Cl(Ok).

The field Hk is called the Hilbert’s class field.
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Hilber class field

er field there is a Galois extension Hy defined to be the
maximal unramified abelian extension of . For the Galois group is the
class group of K Gal(Hk/K) = C1(O).

The field Hk is called the Hilbert’s class field.

Remarks: Unramified extensions in Riemann surface theory correspond
to topological coverings. Fields with class group C1(Ox) = {1} canot
have unramified covers therefore are in some sence *‘simply
connected’’. For example QQ simply connected. In this direction: The
fact that every ideal of Z is principal is the number theoretical
analogon to the topological theorem: “‘every vector bundle over
simply connected manifold is globaly trivial’*. The group

Cl(Ok) = 7' (SpecOk)* = H;(SpecOx).
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D. Hilbert
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Construction of the Hilbert class field

Suppose that K = Q(\/—d), d > 0 with d square free. We compute
that
o Z|v/—d] if —d=2,3 mod4
K = /—d
Z[UFTd] if —d = 1mod4

We wiill show soon that these are the endomorphisms of an elliptic curve
with complex multiplication.
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The class group of an imaginary quadratic field

forms of discriminant D
ax® + + cy?, b? —4ac = —D,a,b,c € Z (a,b,c) = 1

K.F. Gauss Disquisitiones Arithmeticae.
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The class group of an imaginary quadratic field

forms of discriminant D
ax? 4+ bxy + cy?; b® — 4ac = —D,a,b,c € Z (a,b,c) =1
K.F. Gauss Disquisitiones Arithmeticae.

We will say that two quadratic forms are equivalent if there is an
element in SL(2, Z) sending one to the other.
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The class group of an imaginary quadratic field

forms of discriminant D
ax? 4+ bxy + cy?; b® — 4ac = —D,a,b,c € Z (a,b,c) =1

K.F. Gauss Disquisitiones Arithmeticae.

We will say that two quadratic forms are equivalent if there is an
element in SL(2, Z) sending one to the other. The equivalence classes
are in one to one corespondence to the class group and they can
computed easily since a full set of representatives is given by elements
(a, b, ¢) such that

D
b <a< g,agc,(a,b,c):1,b2—4c10:—D

if bl =aora=cthenb > 0.
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Complex multiplication

[n]:E—~E P+—nP

There are cases where End(E) is an order in an imaginary quadratic
field. For example
End(C/Z[i]) = Z]i].
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Complex multiplication

[n]:E—E P+~ nP

There are cases where End(E) is an order in an imaginary quadratic
field. For example

End(C/Z[]) = Z[.

Finite fields

Frobenious endomorphism Frobenious F : x —> xP is an element in
End(E).
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Complex multiplication

[n]:E—E P+~ nP

There are cases where End(E) is an order in an imaginary quadratic
field. For example

End(C/Z[]) = Z[.

Finite fields

Frobenious endomorphism Frobenious F : x —> xP is an element in
End(E). It satisfies a characteristic polynomial

x? —tr(F)x + g =0.

Np = p+ 1% tr(F)

16/50



Complex mutliplication theorem

theorem
Consider 7 € H, which is a root of a monic polynomial in Z[x] of
degree 2. We set E; = C/(Z + 7Z). Then

1. End(E,) = E,.
2. j(t) = j(E;) is an algebraic integer. Its ireducible polynomial is
given by the equation

k)= [O,b,c]];[CL(K) (X N (T)) "

3. The element j(T) generates the Hilber class field.
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Kronecker’s Jugendtraum or Hilbert’s twelfth problem

Kronecker-Weber theorem
Every abelian extension is a subfield of a cyclotomic (exp (277”) )
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Kronecker’s Jugendtraum or Hilbert’s twelfth problem

Kronecker-Weber theorem
Every abelian extension is a subfield of a cyclotomic (exp (277”) )

Kronecker’s Jugendtraum
Produce Hilbert’s class fields as special values of complex functions.
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Kronecker’s Jugendtraum or Hilbert’s twelfth problem

Kronecker-Weber theorem
Every abelian extension is a subfield of a cyclotomic Q (exp (%))

Kronecker’s Jugendtraum
Produce Hilbert’s class fields as special values of complex functions.

What is known?

Complex multiplication for elliptic curves.

Generdlization of imaginary quadratic extensions CM-fields and abelian
varieties with complex multiplication (Shimura).

18/50



Elliptic curve construction

to construct the j-invariant.
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Elliptic curve construction

1. We ha

2. By Hasse bound we have that
Z:=4p—(p+1-m)>>0=Z=DV

to construct the j-invariant.
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Elliptic curve construction

1. We ha

2. By Hasse bound we have that
Z:=4p—(p+1-—m)?>>0=Z=DV

to construct the j-invariant.

3. The equation
4p = W + DV?

for some u satisfies m = p + 1 £ u. The negative number —D is
called CM-discriminatnt for the prime p
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Elliptic curve construction

. We ha

. By Hasse bound we have that
Z:=4p—(p+1-—m)?>>0=Z=DV

to construct the j-invariant.

. The equation
4p = W + DV?

for some u satisfies m = p + 1 £ u. The negative number —D is
called CM-discriminatnt for the prime p

X2 —tr(F)x + p +— A = tr(F)? — 4p = —DV2.
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Reduction of elliptic curve modulo modp

(©) 7 € End(E(C)) jis aroot of Hp(x) € Z|[x]

| | |

(Fp) F € End(E(Fp)) jis a root of Hp(x) modp € Fy[x]




Elliptic curve construction

. rime p. Select the smallest D together with u, v € Z such
that 4p = u? + DV

2. Ifoneof p+ 1—u, p+ 1+ uhas order a prime number we
proceed to elliptic curve construction. If not we try a different p.

3. Compute the Hilbert polynomial Hp(x) € Z[x] using the values of
the j-invariant. Next compute the polynomial Hp(x) modp. One

root if the j invariant we are looking for which can be given by (for
j#0,1728)

y? = x* + 3kc?x + 2kc® k = j/(1728 — j),c € T,
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There is a problem!

x® 4 391086320728105978429440x’

—28635280874816126174326167699456x°
1-2094055410006322146651491130721133658112x° —
186547260770756829961971675685151791296544768x"
+6417141278133218665289808655954275181523718111232x°
—19207839443594488822936988943836177115227877227364352x°
+45797528808215150136248975363201860724351225694802411520x —
18273883965326272223717626628647422907813731016193
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Alfernative method for computing the Hilbert class field.

n(7) = exp (—) ﬁu "), q = exp(2rir), 7 € HL.




Alfernative method for computing the Hilbert class field.

(1) = exp (—) ﬁu — "), q = exp(2rir), 7 € H.

n=1
which leads to the Weber functions:

)= o3 oy ) oy en(er)
f(2) ) A(7) n(T),fQ( ) \/577(7)'

Which can also producte the Hilbert class field (D. Zagier- N. Yui).
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Alfernative method for computing the Hilbert class field.

n(7) = exp <2ﬂ> ﬁu "), q = exp(2mir), 7 € HL.

which leads to the Weber functions:
2552 (3) n(2r)

(o) = o212 ) A(r) = D2 g(r) =2 :

@ a0 = e M =V

Which can also producte the Hilbert class field (D. Zagier- N. Yui).

What is special about them?
They are modular functions
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D. Zagier - N. Yui




Modular functions of level N

F(N) = { = (Z Z) € SL(2,Z) with A = modN}.
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Modular functions of level N

b
[(N) = {A = <Z d) € SL(2,7,) with A = b modN} :
The quotient space '(N)\H is a Riemann surfaceY(N) which can be
compactified to a compact Riemann surface X (N) adding some points
on the line Im(s) = 0.
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Modular functions of level N

a b
F(N) = {A = <c d) € SL(2,Z) with A=k modN} .
The quotient space '(N)\H is a Riemann surfaceY(N) which can be
compactified to a compact Riemann surface X (N) adding some points
on the line Im(s) = 0. The meromorphic functions on X(N) are called
modular functions of level N.
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Modular functions of level N

[(N) = {A = <Z Z) € SL(2,Z) with A = b modN} .
The quotient space '(N)\H is a Riemann surfaceY(N) which can be
compactified to a compact Riemann surface X (N) adding some points
on the line Im(s) = 0. The meromorphic functions on X(N) are called
modular functions of level N.

The Riemann surfaces X(N) correspond fo algebraic curves defined
over the field Q({n)). The Fourier expansions of modular functions of
level N have coefficients in Q((n).
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Modular functions of level N

l H/T(N)
R
PL = H/T

(ZN/7 ‘2)1S

I
i
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M. Eichler

“'There are five
elementary arithmetical
operations: addition,
subtraction,
multiplication, division,
and modular forms.””
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Shimura reciprocity law

e the ring of algebraic integers of the imaginary
quadratic field K, and x? + Bx + C the minimal polynomial of §. We
consider a natural number N > 1 and x, . . ., X, the generators of the
group (O/NO)*, x; = a; + bif) € Z[f]. We also consider the matrix

A — a; — Bb,' —Cb,'
T b; Q; ’

If f is a modular function of level N and for all matrices A; we have
f(6) = 4(6), Q) C Q(6),

then f(6) generates the Hilbert class field.
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G. Shimura - P. Stevenhagen - A. Gee
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S. Ramanujan

— /3" (370t 2 ),

2(Tn

Tn:—§+/§,nz 11 mod24
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S. Ramanujan

— /3" (370t 2 ),

2(7.n

Tn:—§+/§,n: 11 mod24

n pn(1)

1 t—1

35 2411

59 B2t —1

83 | B 4+22 42t —1

107 | B =2 +4t—1
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S. Ramanujan

— /3" (370t 2 ),

2(771

Tn:—§+/§,nz 11 mod24
n pn(1)

1 t—1

35 2411

59 B2t —1

83 | P22 42t —1

107 | B =2 +4t—1

Claim p, generate the Hilbert
class field.
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B. Berndt & Heng Huat Chan
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B. Berndt & Heng Huat Chan

They proved that Ramanujan was right and they asked how
polynomials for other values of n can be constructed
E. Konstantinou and A.K. answered this question

pago(x) = x® +x7 — x® —12x° + 16x* —12x> 4 15x° — 13x + 1.
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E. Konstantinou
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H.H. Chan
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Can we find new invariants?

Shimura’s reciprocity law allows us to verify that a modular function
generates the Hilbert’s class field. Can we construct such modular
functions?
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Can we find new invariants?

Shimura’s reciprocity law allows us to verify that a modular function
generates the Hilbert’s class field. Can we construct such modular
functions?

All known such invariants came out from extremely talented
Mathematicians.
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Invariants for common people

ct finitely dimensional vector spaces V consisted of
modular functions of level N such that GL(2, Z/NZ) is acting on V.
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Invariants for common people

ct finitely dimensional vector spaces V consisted of
modular functions of level N such that GL(2,Z/NZ) is acting on V. We

write a € GL(2,Z/NZ) as b - (1) 2) d € Z/NZ* and
b € SL(2,Z/NZ).
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Invariants for common people

ct finitely dimensional vector spaces V consisted of
modular functions of level N such that GL(2,Z/NZ) is acting on V. We
0

d)' d € Z/NZ* and

1
write a € GL(2,Z/NZ) as b - 0

b € SL(2,Z/NZ).
0 1
The group SL(2,7Z/NZ) is generated by the elements S = < )

-1 0
1 1
T = .
end (0 ])
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Invariants for common people

ct finitely dimensional vector spaces V consisted of

modular functions of level N such that GL(2,Z/NZ) is acting on V. We
1 0

write a € GL(2,Z/NZ) as b - <O d>' d € Z/NZ* and

b € SL(2,Z/NZ).

0 1
The group SL(2,7Z/NZ) is generated by the elements S = < >

-1 0
1 1
T = .
end (0 ]>

The action of S on functions g € V is defined by go S = g(—1/z) € V
and the action of Tby go T =g(z+ 1) € V.
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Actions

Finaly the action is given by the action of elements

1
0
og4 € Gal(Q(¢n)/Q) on Fourier coefficients.
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Actions

Finaly the action is given by the action of elements

1
0
og4 € Gal(Q(¢n)/Q) on Fourier coefficients.

Since every element in SL(2, Z/NZ) is a word in S, T we have a

function p
P

/\
(%) % GL(2, Z/NZ) — GL(V), )

where ¢ is the natural homomorphisms.
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Cocylces

The function p as it is defined is not a homomorphism, but it safisfies the
cocycle condition

p(or) = p(7)p(co)" @
and gives rise to a class in H' (G, GL(V)), where G = (O/NO)*.
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Cocyilces

The function p as it is defined is not a homomorphism, but it safisfies the
cocycle condition

plot) = p(1)p(c)” @

and gives rise to a class in H'(G, GL(V)), where G = (O/NO)*. The
restriction of p on the subgroup H = ker ¢ C G defined as

H:={x € G:det(p(x)) =1}

is a homomorphism.
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Invariant Theory

1y-ev,€mofV
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Invariant Theory

Invariant theory gives us effective methods (Reynolds operator,
diagonalization) for computing the ring of invariants

Q(cw)ler, - - em]™.

We select the vector space V), of invariant polynomials of degree n.
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Invariant Theory

Invariant theory gives us effective methods (Reynolds operator,
diagonalization) for computing the ring of invariants

Q(CN)[G], N em]H.

We select the vector space V), of invariant polynomials of degree n.
The action of G/ H on V,, gives a cocycle

P € H'(Gal(Q(n))/Q), GL(Vn))-

Multidimensional Hilbert’s 90 theorem gives us the existence of
P € GL(V,) so that
(o) =P P, ©))

39/50



Computing P

Modified version of Glasby-Howlett probabilistic algorithm
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Computing P

Modified version of Glasby-Howlett probabilistic algorithm

Ba:= Y p(0)e. )

cE€EG/H

If we find @ 2 x 2 matrix in GL(2, Q({x)) so that Bg is invertible, then
P:=Bg'.
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Computing P

Modified version of Glasby-Howlett probabilistic algorithm

Bg = Z p(0)Q’. @

0EG/H

If we find @ 2 x 2 matrix in GL(2, Q({x)) so that Bg is invertible, then
P:=Bg'.

Since non invertible matrices are rare (they form a Zariski closed set in
the space of matrices) finding such an invertible matrix is easy. The first
random choice for  always worked!

40/50



Examples

Generalized Weber functions gg, g1, g2, g3

|
i

f
|
i

41/50



Examples

Generalized Weber functions gg, g1, g2, g3

(%) o n(HH)
=0 =y 20 = ey
_nCEE) oy aen)
)= Sy B =V

They are modular functions of level 72.
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he group H has order 144 and G has order 3456. We
the polynomials

h = goga + (50103, b= gogs + (—(rn + (5)8102

are invariant under the action of H.
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he group H has order 144 and G has order 3456. We
the polynomials

h = gof2 + (30103, k= gods + (—(75 + (52) 002

are invariant under the action of H.

Final invariants
1 == (—12¢)5 + 12¢5) 8083 + 12¢5,9005 + 1291 92 + 120183,

6 18 6 12 12
& 1= 12C7, 8102 + (—12¢7; +12¢3,) 083 + (—12¢7; + 12)g193 + 12¢;5 0195

Every Z-linear combination of ey, e; is also an invariant.
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Examples

Invariant polynomial
Hiloert 17 4 400497845154831586723701480652800 +
8185208091546 130657700382653342904483841° +
439825075242209481123868941957442230372689510412
—16319730975176203906274913715913862844512542392320+
+15283054453672803818066421650036653646232315192410112
7 — 54333388306173452686741% + 907059135195426583247780881°
902077 + 932052 | —304935717753003063581175161972812
—390071826912221442431043741686448t
- 12509992052647780072147837007511456
e 1 — 93617 — 6091215 — 24261127 — 40310784t — 3386105856
& 2 — 151217 — 2980815 + 9797761 + 3369232t — 423263232

Em:ﬁwxm: ?ﬁ
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Generalized Weber Functions

77O(N 0) 770<1 k)

0 1 0 N

VNO::\/N—cnduk,N::—,nggN—L
U]

)

These are known to be modular functions of level 24N.
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Generalized Weber Functions

77O(N 0) 770<1 k)

0 1 0 N

VNO::\/N—cnde,N::—,nggN—L
U]

)

These are known to be modular functions of level 24N. Notice that

VN € Q(¢n) € Q(Caan) and an explicit expression of /N in terms of
(N can be given by using Gauss sums
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Action of SL(2, Z)

eep in mind that
10 1(2) = Gan(z) and 10 S(z) = (5 ' Vizn(2).
We compute that
vnooS=1gnyandvygo T = CQ'\",_U/N’O,

-1
vunoS=vyoand pnoT = (5 VIN,

for1 < k < N—1and N is prime

—C\ 1=n N(k—c) -1
Vk,N © S = <n > I 2 24 and Vk,N © T= C24 Vk+1,N,

where ¢ = —k™' modN.
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Example =5

Assu
determin

at N = 5 and D = —91. We compute that the group H of
has invariants

vso+ (¢ = (®)ras and vos + (31 = ¢ = (7 = (P + 7+ .
Using our method we arrive at the final invariants:

hoo= (—1224¢% + 612¢% + 2740¢"° + 1516¢% — 612)v5 0
+(4256¢% — 2128¢%° — 1516¢"° + 2740¢* + 2128) 1 5
+(—1224¢%" — 2740¢% + 612¢"° 4 1224¢" +1516¢%) 11 5

+(1516¢% — 612¢% + 1224¢™® — 1516¢7 — 2740¢) 5 5,

b= (—1952¢® 4 976¢% 4 2128¢" + 176¢" — 976)vs 0
+(2304¢% — 1152¢%° — 176¢™¢ + 2128¢° + 1152)10.5
+(—1952¢%" — 2128¢% + 976¢" + 1952¢" + 176¢%)1 5

+(176¢% — 976¢% +1952¢"° — 176¢% — 2128¢)v3, 5.

The Q-vector space generated by these two functions congists
functions. -
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Hilbert Class Field

We can now compute the corresponding polynomials:
1?2 — 3060t — 28090800 and #* — 4880t — 71443200.

Just for comparison the Hilbert polynomial corresponding to the j
invariant is:

12 4 10359073013760t — 3845689020776448.
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Questions - furhter research

1. Select the best invariants
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Questions - furhter research

1. Select the best invariantsMinimizing height in a laftice

2. By examples we see that the best invariants are in the case of
monomials
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Questions - furhter research

1. Select the best invariantsMinimizing height in a laftice
2. By examples we see that the best invariants are in the case of
monomials

3. There are cases n mod24 where no monomial invariants exist. In
these cases our method gives us the best known results.

48/50



Thank you!
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ntinou, A. Kontogeorgis Computing polynomials of the

1, class invariants
Canad. Math. Bull., Vol. 52, No. 4, pg. 583--597, 2009.

E. Konstantinou, A. Kontogeorgis

Ramanujan invariants for discriminants congruent to 5 (mod 2)4
em Int. J. Number Theory, Vol. 8, No. 1, pg. 265--287, 2012.

A. Kontogeorgis

Constructing class invariants
In Math. Comp., Vol. 83, No. 287, pg. 1477--1488, 2014.
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