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Elliptic Curve

An elliptic curve defined over a field K of characteristic p > 3 is a

curve given by the the equation

E : y
2 = x

3 + ax + b such that 4a
3 + 27b

2 6= 0.

The set of points E(K ) together with a point at infinity is an abelian

group.
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Elliptic curves defined over finite fields

The set of points E(Fp) form a finite abelian group. The following bound

holds

#E(Fp) ≤ q + 1− ar ≤ q + 1 + 2
√

q.

Discrete logarithm problem

Given elements P, Q on an abelian group so that nP = Q. Find n.

This is a difficult problem, we have to try all possible n, until we find the

correct one.

Abelian groups are usualy: F∗pr , E .

Even if the abelian group has a big order then is can be a product of

small factors like (Z/2Z)n and the discrete logarithm problem is easy.

For the elliptic curve cases, the discrete logarithm problem is difficult if

the order of the group has order a prime number, therefore it a cyclic

group.
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Construct prime order elliptic curves

1. Randomly: Select random elliptic curves until we hit one with the

correct order.

2. Complex multiplication method.

We will focus on the second method
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Elliptic curves as quotients of the complex numbers

Every elliptic curve over C is a quotient of the universal covering space

C modulo a discrete subgroup - lattice L = Z + τZ, =(τ) > 0. Lettices

L, L′ give the same elliptic curves if and only if

τ ′ =
aτ + b

cτ + b
,

(
a b

c d

)
∈ SL(2,Z).

The quotient map

H→ SL(2,Z)\H ∼= C

is called the j-invariant. It is a SL(2,Z)- invariant function hence

periodic. It admits a Fourier expansion at q = e2πiτ ,

j(τ) =
1

q
+ 744 + 196884q + 21493760q

2 + 864299970q
3+
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j-invariant

Remarks: The coefficients of the Fourier expansion are integers.

They are related to the dimensions of the irreducible representations of

the Monster, the bigest sporadic simple group with order

808017424794512875886459904961710757005754368000000000.
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Number fields

A number field is a finite extension of the field Q, i.e. a field

K = Q[x]/f(x),

where f(x) is an irreducible polynomial of Q[x]. The ring of algebraic

integers O is the ring consisted of elements

O = {x ∈ K : such that x is a root of a monic polynomial f(x) ∈ Z[x]}.

The ring O in not a unique factorization domain but it is a Dedekind

ring: every ideal is decomposed uniquely as a product of prime ideals.

I = P
e1

1 · · · P
er

r .
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Class group

We consider the semigroup of ideals of O, which is enlarged to a group

adding fractional ideals. These are abelian additive subgroups I of the

number field K , such that for some x ∈ O the set xI is an ideal of the

ring O. In this way we construct the group of fractional ideals I(O).

Example: The fractional ideals of Z are the elements
m

n
Z, m, n ∈ Z.

We also consider the subgroup PI(O) of principal fractional ideals aO,

where a ∈ K .

The quotient is the class group

Cl(O) =
I(O)

PI(O)
.

One can show that the class group is a finite group.
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Ramification)

Consider an extension of number fields L/K . A prime ideal P of OK can

be seen as an ideal of OL by scalar extension POL. It does not remain

prime so it can be written as

POL = Q
e1

1 · · ·Q
er

r ,

where Qi are prime ideals of OL.

If all ei = 1 then we will say that P is not ramified in the exension L/K . If

no ideal is ramified then the extension is called unramified.
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Hilber class field

Theorem

For every number field there is a Galois extension HK defined to be the

maximal unramified abelian extension of . For the Galois group is the

class group of K Gal(HK/K ) = Cl(OK ).

The field HK is called the Hilbert’s class field.

Remarks: Unramified extensions in Riemann surface theory correspond

to topological coverings. Fields with class group Cl(OK ) = {1} canot

have unramified covers therefore are in some sence ‘‘simply

connected’’. For example Q simply connected. In this direction: The

fact that every ideal of Z is principal is the number theoretical

analogon to the topological theorem: ‘‘every vector bundle over

simply connected manifold is globaly trivial’’. The group

Cl(OK ) = π1(SpecOK )ab = H1(SpecOK ).
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D. Hilbert
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Construction of the Hilbert class field

Suppose that K = Q(
√
−d), d > 0 with d square free. We compute

that

OK =

{
Z[
√
−d] if − d ≡ 2, 3 mod4

Z[ 1+
√
−d

2
] if − d ≡ 1 mod4

We will show soon that these are the endomorphisms of an elliptic curve

with complex multiplication.
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The class group of an imaginary quadratic field

Quadratic forms of discriminant D

ax
2 + bxy + cy

2; b
2 − 4ac = −D, a, b, c ∈ Z (a, b, c) = 1

K.F. Gauss Disquisitiones Arithmeticae.

We will say that two quadratic forms are equivalent if there is an

element in SL(2,Z) sending one to the other. The equivalence classes

are in one to one corespondence to the class group and they can

computed easily since a full set of representatives is given by elements

(a, b, c) such that

|b| ≤ a ≤
√

D

3
, a ≤ c, (a, b, c) = 1, b2 − 4ac = −D

if |b| = a or a = c then b ≥ 0.

, 14/50
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K.F. Gauss
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Complex multiplication

We consider the ring of endomorphisms of an elliptic curve. In most of

the cases End(E) ∼= Z.

[n] : E → E P 7→ nP

There are cases where End(E) is an order in an imaginary quadratic

field. For example

End(C/Z[i]) = Z[i].

Finite fields

Frobenious endomorphism Frobenious F : x 7→ xp is an element in

End(E). It satisfies a characteristic polynomial

x
2 − tr(F)x + q = 0.

Np = p + 1± tr(F)

, 16/50
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Complex mutliplication theorem

theorem

Consider τ ∈ H, which is a root of a monic polynomial in Z[x] of

degree 2. We set Eτ = C/(Z + τZ). Then

1. End(Eτ ) = Eτ .

2. j(τ) = j(Eτ ) is an algebraic integer. Its irreducible polynomial is

given by the equation

HD(x) =
∏

[a,b,c]∈CL(K)

(
x − j

(
−b +

√
−D

2a

))
∈ Z[x].

3. The element j(τ) generates the Hilber class field.

, 17/50



Kronecker’s Jugendtraum or Hilbert’s twelfth problem

Kronecker-Weber theorem

Every abelian extension is a subfield of a cyclotomic Q
(
exp

(
2πi

n

))
.

Kronecker’s Jugendtraum

Produce Hilbert’s class fields as special values of complex functions.

What is known?

Complex multiplication for elliptic curves.

Generalization of imaginary quadratic extensions CM-fields and abelian

varieties with complex multiplication (Shimura).

, 18/50
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Elliptic curve construction

1. We have to construct the j-invariant.

2. By Hasse bound we have that

Z := 4p − (p + 1−m)2 ≥ 0⇒ Z = Dv2.

3. The equation

4p = u
2 + Dv

2

for some u satisfies m = p + 1± u. The negative number −D is

called CM-discriminatnt for the prime p

4.

x
2 − tr(F)x + p 7→ ∆ = tr(F)2 − 4p = −Dv

2.
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Reduction of elliptic curve modulo modp

(C)

��

τ ∈ End(E(C))

��

j is a root of HD(x) ∈ Z[x]

��
(Fp) F ∈ End(E(Fp)) j is a root of HD(x) modp ∈ Fp[x]

, 20/50



Elliptic curve construction

1. Select a prime p. Select the smallest D together with u, v ∈ Z such

that 4p = u2 + Dv2.

2. If one of p + 1− u, p + 1 + u has order a prime number we

proceed to elliptic curve construction. If not we try a different p.

3. Compute the Hilbert polynomial HD(x) ∈ Z[x] using the values of

the j-invariant. Next compute the polynomial HD(x) modp. One

root if the j invariant we are looking for which can be given by (for

j 6= 0, 1728)

y
2 = x

3 + 3kc
2
x + 2kc

3, k = j/(1728− j), c ∈ Fp

, 21/50



There is a problem!

The coefficients of the Hilbert polynomial grow very fast The Hilbert

polynomial for Q(
√
−299) is:

x
8 + 391086320728105978429440x

7

−28635280874816126174326167699456x
6

+2094055410006322146651491130721133658112x
5−

186547260770756829961971675685151791296544768x
4

+6417141278133218665289808655954275181523718111232x
3

−19207839443594488822936988943836177115227877227364352x
2

+45797528808215150136248975363201860724351225694802411520x−

18273883965326272223717626628647422907813731016193733558272
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Alternative method for computing the Hilbert class field.

Dedekind’s η-function

η(τ) = exp

(
2πiτ

24

) ∞∏
n=1

(1− q
n), q = exp(2πiτ), τ ∈ H.

which leads to the Weber functions:

f(z) = e
−πi/24

η( τ+1

2
)

η(τ)
, f1(τ) =

η( τ
2

)

η(τ)
, f2(τ) =

√
2
η(2τ)

η(τ)
.

Which can also producte the Hilbert class field (D. Zagier- N. Yui).

What is special about them?

They are modular functions

, 23/50
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D. Zagier - N. Yui
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Modular functions of level N

We consider the group

Γ(N) =

{
A :=

(
a b

c d

)
∈ SL(2,Z) with A ≡ I2 modN

}
.

The quotient space Γ(N)\H is a Riemann surfaceY (N) which can be

compactified to a compact Riemann surface X(N) adding some points

on the line Im(s) = 0. The meromorphic functions on X(N) are called

modular functions of level N.

The Riemann surfaces X(N) correspond to algebraic curves defined

over the field Q(ζN)). The Fourier expansions of modular functions of

level N have coefficients in Q(ζN).

, 25/50
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over the field Q(ζN)). The Fourier expansions of modular functions of

level N have coefficients in Q(ζN).
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Modular functions of level N

8
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M. Eichler

‘‘There are five

elementary arithmetical

operations: addition,

subtraction,

multiplication, division,

and modular forms.’’
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Shimura reciprocity law

Theorem

Let O = Z[θ] be the ring of algebraic integers of the imaginary

quadratic field K , and x2 + Bx + C the minimal polynomial of θ. We

consider a natural number N > 1 and x1, . . . , xn the generators of the

group (O/NO)∗, xi = ai + biθ ∈ Z[θ]. We also consider the matrix

Ai =

(
ai − Bbi −Cbi

bi ai

)
.

If f is a modular function of level N and for all matrices Ai we have

f(θ) = f
Ai (θ),Q(j) ⊂ Q(θ),

then f(θ) generates the Hilbert class field.
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G. Shimura - P. Stevenhagen - A. Gee
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S. Ramanujan

tn =
√

3
η(3τn)η(

1

3
τn+

2

3
)

η2(τn)
,

τn = − 1

2
+ i

√
n

2
, n ≡ 11 mod24

n pn(t)

11 t − 1

35 t2 + 1− 1

59 t3 + 2t − 1

83 t3 + 2t2 + 2t − 1

107 t3 − 2t2 + 4t − 1

Claim pn generate the Hilbert

class field.

, 30/50
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B. Berndt & Heng Huat Chan
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B. Berndt & Heng Huat Chan

They proved that Ramanujan was right and they asked how

polynomials for other values of n can be constructed

E. Konstantinou and A.K. answered this question

p299(x) = x
8 + x

7 − x
6 − 12x

5 + 16x
4 − 12x

3 + 15x
2 − 13x + 1.
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E. Konstantinou
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H.H. Chan
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Can we find new invariants?

Shimura’s reciprocity law allows us to verify that a modular function

generates the Hilbert’s class field. Can we construct such modular

functions?

All known such invariants came out from extremely talented

Mathematicians.
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Invariants for common people

We can construct finitely dimensional vector spaces V consisted of

modular functions of level N such that GL(2,Z/NZ) is acting on V . We

write a ∈ GL(2,Z/NZ) as b ·
(

1 0

0 d

)
, d ∈ Z/NZ∗ and

b ∈ SL(2,Z/NZ).

The group SL(2,Z/NZ) is generated by the elements S =

(
0 1

−1 0

)
end T =

(
1 1

0 1

)
.

The action of S on functions g ∈ V is defined by g ◦ S = g(−1/z) ∈ V

and the action of T by g ◦ T = g(z + 1) ∈ V .
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Actions

Finaly the action

(
1 0

0 d

)
is given by the action of elements

σd ∈ Gal(Q(ζN)/Q) on Fourier coefficients.

Since every element in SL(2,Z/NZ) is a word in S, T we have a

function ρ

( O
NO
)∗ ρ

))φ // GL(2,Z/NZ) // GL(V), (1)

where φ is the natural homomorphisms.
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Cocylces

The function ρ as it is defined is not a homomorphism, but it satisfies the

cocycle condition

ρ(στ) = ρ(τ)ρ(σ)τ (2)

and gives rise to a class in H1(G,GL(V)), where G = (O/NO)∗. The

restriction of ρ on the subgroup H = kerφ ⊂ G defined as

H := {x ∈ G : det(φ(x)) = 1}

is a homomorphism.
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Invariant Theory

Select a basis e1, . . . , em of V

Invariant theory gives us effective methods (Reynolds operator,

diagonalization) for computing the ring of invariants

Q(ζN)[e1, . . . , em]H .

We select the vector space Vn of invariant polynomials of degree n.

The action of G/H on Vn gives a cocycle

ρ′ ∈ H
1(Gal(Q(ζN))/Q),GL(Vn)).

Multidimensional Hilbert’s 90 theorem gives us the existence of

P ∈ GL(Vn) so that

ρ′(σ) = P
−1

P
σ. (3)

, 39/50
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Computing P

Modified version of Glasby-Howlett probabilistic algorithm

BQ :=
∑
σ∈G/H

ρ(σ)Q
σ. (4)

If we find a 2× 2 matrix in GL(2,Q(ζN)) so that BQ is invertible, then

P := B
−1

Q .

Since non invertible matrices are rare (they form a Zariski closed set in

the space of matrices) finding such an invertible matrix is easy. The first

random choice for Q always worked!

, 40/50
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Examples

Generalized Weber functions g0, g1, g2, g3

g0(τ) =
η( τ

3
)

η(τ)
, g1(τ) = ζ−1

24

η( τ+1

3
)

η(τ)
,

g2(τ) =
η( τ+2

3
)

η(τ)
, g3(τ) =

√
3
η(3τ)

η(τ)
,

They are modular functions of level 72.
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Example

For n = −571 the group H has order 144 and G has order 3456. We

compute that the polynomials

I1 := g0g2 + ζ6
72g1g3, I2 := g0g3 + (−ζ18

72 + ζ6
72)g1g2

are invariant under the action of H.

Final invariants

e1 := (−12ζ
18

72
+ 12ζ

6

72
)g0g3 + 12ζ

6

72
g0g3 + 12g1g2 + 12g1g3,

e2 := 12ζ
6

72
g1g2 + (−12ζ

18

72
+ 12ζ

6

72
)g0g3 + (−12ζ

12

72
+ 12)g1g3 + 12ζ

12

72
g1g3

Every Z-linear combination of e1, e2 is also an invariant.
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Examples

Invariant polynomial

Hilbert t
5 + 400497845154831586723701480652800t

4+

818520809154613065770038265334290448384t
3+

4398250752422094811238689419574422303726895104t
2

−16319730975176203906274913715913862844512542392320t

+15283054453672803818066421650036653646232315192410112

t
5 − 5433338830617345268674t

4
+ 90705913519542658324778088t

3

g12
0
g12

1
+ g12

2
g12

3
−3049357177530030535811751619728t

2

−390071826912221442431043741686448t

- 12509992052647780072147837007511456

e1 t
5 − 936t

4 − 60912t
3 − 2426112t

2 − 40310784t − 3386105856

e2 t
5 − 1512t

4 − 29808t
3 + 979776t

2 + 3359232t − 423263232
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Generalized Weber Functions

νN,0 :=
√

N

η ◦
(

N 0

0 1

)
η

and νk,N :=

η ◦
(

1 k

0 N

)
η

, 0 ≤ k ≤ N − 1.

These are known to be modular functions of level 24N. Notice that√
N ∈ Q(ζN) ⊂ Q(ζ24·N) and an explicit expression of

√
N in terms of

ζN can be given by using Gauss sums

, 44/50



Generalized Weber Functions

νN,0 :=
√

N

η ◦
(

N 0

0 1

)
η

and νk,N :=

η ◦
(

1 k

0 N

)
η

, 0 ≤ k ≤ N − 1.

These are known to be modular functions of level 24N. Notice that√
N ∈ Q(ζN) ⊂ Q(ζ24·N) and an explicit expression of

√
N in terms of

ζN can be given by using Gauss sums

, 44/50



Action of SL(2,Z)

In order to describe the SL(2,Z)-action we have to describe the

action of the two generators S, T of SL(2,Z) given by S : z 7→ − 1

z
and

T : z 7→ z + 1. Keep in mind that

η ◦ T(z) = ζ24η(z) and η ◦ S(z) = ζ−1

8

√
izη(z).

We compute that

νN,0 ◦ S = ν0,N and νN,0 ◦ T = ζN−1

24 νN,0,

ν0,N ◦ S = νN,0 and ν0,N ◦ T = ζ−1

24 ν1,N ,

for 1 ≤ k < N − 1 and N is prime

νk,N ◦ S =

(
−c

n

)
i

1−n

2 ζ
N(k−c)
24 and νk,N ◦ T = ζ−1

24 νk+1,N ,

where c = −k−1 modN.
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Example = 5

Assume that N = 5 and D = −91. We compute that the group H of

determinant 1 has invariants

ν5,0 + (ζ25 − ζ5)ν3,5 and ν0,5 + (ζ31 − ζ23 − ζ19 − ζ15 + ζ7 + ζ3)ν1,5.

Using our method we arrive at the final invariants:

I1 = (−1224ζ
28 + 612ζ

20 + 2740ζ
16 + 1516ζ

4 − 612)ν5,0

+(4256ζ
28 − 2128ζ

20 − 1516ζ
16 + 2740ζ

4 + 2128)ν0,5

+(−1224ζ
31 − 2740ζ

27 + 612ζ
15 + 1224ζ

11 + 1516ζ
3)ν1,5

+(1516ζ
29 − 612ζ

25 + 1224ζ
13 − 1516ζ

9 − 2740ζ)ν3,5,

I2 = (−1952ζ
28 + 976ζ

20 + 2128ζ
16 + 176ζ

4 − 976)ν5,0

+(2304ζ
28 − 1152ζ

20 − 176ζ
16 + 2128ζ

4 + 1152)ν0,5

+(−1952ζ
31 − 2128ζ

27 + 976ζ
15 + 1952ζ

11 + 176ζ
3)ν1,5

+(176ζ
29 − 976ζ

25 + 1952ζ
13 − 176ζ

9 − 2128ζ)ν3, 5.

The Q-vector space generated by these two functions consists of class

functions.
, 46/50



Hilbert Class Field

We can now compute the corresponding polynomials:

t
2 − 3060t − 28090800 and t

2 − 4880t − 71443200.

Just for comparison the Hilbert polynomial corresponding to the j

invariant is:

t
2 + 10359073013760t − 3845689020776448.

, 47/50



Questions - furhter research

1. Select the best invariantsMinimizing height in a lattice

2. By examples we see that the best invariants are in the case of

monomials

3. There are cases n mod24 where no monomial invariants exist. In

these cases our method gives us the best known results.

, 48/50



Questions - furhter research

1. Select the best invariantsMinimizing height in a lattice

2. By examples we see that the best invariants are in the case of

monomials

3. There are cases n mod24 where no monomial invariants exist. In

these cases our method gives us the best known results.

, 48/50



Questions - furhter research

1. Select the best invariantsMinimizing height in a lattice

2. By examples we see that the best invariants are in the case of

monomials

3. There are cases n mod24 where no monomial invariants exist. In

these cases our method gives us the best known results.

, 48/50



Questions - furhter research

1. Select the best invariantsMinimizing height in a lattice

2. By examples we see that the best invariants are in the case of

monomials

3. There are cases n mod24 where no monomial invariants exist. In

these cases our method gives us the best known results.

, 48/50



Thank you!
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E. Konstantinou, A. Kontogeorgis Computing polynomials of the

Ramanujan tn class invariants
Canad. Math. Bull., Vol. 52, No. 4, pg. 583--597, 2009.

E. Konstantinou, A. Kontogeorgis

Ramanujan invariants for discriminants congruent to 5 (mod 2)4

em Int. J. Number Theory, Vol. 8, No. 1, pg. 265--287, 2012.

A. Kontogeorgis

Constructing class invariants
In Math. Comp., Vol. 83, No. 287, pg. 1477--1488, 2014.
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