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What is an elliptic curve?

Definition

An Elliptic Curve defined over a field k is the set E of points (x, y) ∈ k2

satisfying a cubic equation of the form

y
2 = x

3 + ax + b,

so that the cubic polynomial x3 + ax + b has simple roots, together

with a point O at infinity.

The points satisfying the above equation are equiped with an addition

E × E → E

(P,Q) 7→ P + Q

such that O is the zero element and three colinear points sum to zero.
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More on addition on Elliptic Curves

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the elliptic curve E .

The addition can be defined as:

Assume that P1, P2 6= O.

If x1 = x2 and y1 = −y2 we set: P1 + P2 = O. Symmetric points

with respect to the x axis sum to zero O.

In all other cases we set

λ = (3x1 + a)/(2y1) if P1 = P2

λ = (y1 − y2)/(x1 − x2) if P1 6= P2

The point P1 + P2 has coordinates (x3, y3) given by:

(x3, y3) = (λ2 − x1 − x2,−λx3 − y1 + λx1)
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Addition in a picture

Figure : Adding points on y2 + y = x3 − x

, Elliptic Curves, Cryptography 5/23



Abelian Groups

The points in E together with the addition defined have the structure of

an abelian group.

If the field k is a finite field Fp, then the group E(Fp) is a finite group

and has order |E(Fp)| ≤ p2 + 1.
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The Hasse Bound

Figure : Helmut Hasse

H.Hasse proved that for an elliptic

curve defined over the finite field

Fph the following bound holds:

|E| = p
h + 1± s,

Where |s| ≤ 2
√

ph. The number

s is called the ‘‘Frobenious trace".
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Isomorphic Elliptic Curves

Consider the elliptic curve

E : y
2 = x

3 + ax + b.

The discriminant ∆ of the elliptic curve is defined as

∆ = −16(4a3 + 27b2). We also define the j-invariant by the formula:

j(E) =
(4a)3

4a3 + 27b2
= − 4a3

∆(E)
.

Theorem

If two curves are isomorphic they have the same j-invariant. Two elliptic

curves with the same invariant become isomorphic after a quadratic

extension of the field k.
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Elliptic Curves over the complex numbers

Definition

A lattice L is the subset of C consisted of all Z-linear combinations of

two linear independed elements of C. We usual consider lattices of the

form L = 〈1, τ〉 where τ = a + ib, a ∈ R and b > 0.

Weierstrass constructed a function ℘ : C→ C depending on L given by

℘(z, L) =
1

z2
+

∑
λ∈L−{0}

(
1

(z + λ)2
− 1

λ2

)
.
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Elliptic Curves over the complex numbers

The function of Weierstrass satisfies the differential equation:

℘′(z)2 = 4℘(z)3 − g2(L)℘(z)− g3(L).

And it is periodic with respect to the lattice L, i.e.

(℘(z + λ), ℘′(z + λ)) = (℘(z), ℘′(z)).

The points (x, y) = (℘(z), ℘′(z)) satisfy the equation of the elliptic

curve

y
2 = 4x

3 − g2(L)x − g3(L).
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Elliptic curve over the complex numbers
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Modular functions

Theorem

The functions g2, g3,∆, j seen as functions of τ ∈ H remain invariant

under transformations of the form:

τ 7→ aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z).

In particular these functions are periodic. This allows us to consider their

Fourier expansions. The first terms of the Fourier expansion of the

j-invariant is given by

j(τ) =
1

q
+ 744 + 196884q + 21493760q

2 + 864299970q
3 + · · · ,

where q = e2πiτ .

There is a lot of arithmetic information hidden in the above coefficients.
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Complex Multiplication of Elliptic Curves

Consider the ring of endomorphisms of the elliptic curve E , End(E)
consisted of functions f : E → E , f(O) = O. The ring Z ⊂ End(E). If

there is an endomorphism not in Z then it satisfies an equation:

φ2 + aφ+ b = 0, for some a, b ∈ Z, with a
2 − 4b < 0.

In elliptic curves defined over Fp there is always an endomorphism of E

not in Z namely the endomorphism of Frobenious defined by:

E 3 P = (x, y) 7→ φ(P) = (x
p, yp).

The automorphism of Frobenious is related to the number of points of

E(Fp) since this number equals to the number of its fixed points. This is

true since x ∈ F̄p belongs to Fp if and only if xp = x .
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Hasse bound

The Frobenious endomorphism φ satisfies the quadratic equation:

φ2 − tφ+ p = 0.

The coefficient t of φ equals the ‘‘trace of Frobenious". Notice that the

Hasse bound follows since the above quadratic equation should have

negative discriminant.

In order to construct an elliptic curve with given number of points we

should construct an elliptic curve with appropriate trace of Frobenious t .
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Complex Multiplication

Idea: consider τ ∈ H which satisfies the same equation

φ2 − tφ+ p.

and consider the complex Elliptic curve Eτ corresponding to the lattice

〈1, τ〉.
Then reduce Eτ to Fp.
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Complex Multiplication

Gauss studied quadratic forms

ax
2 + bxy + cy

2; b
2 − 4ac = −D, a, b, c ∈ Z (a, b, c) = 1,

up to an equivalence.

A full set of representatives is given by (a, b, c) such that

|b| ≤ a ≤
√

D

3
, a ≤ c, (a, b, c) = 1, b2 − 4ac = −D

if |b| = a or a = c then b ≥ 0.
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Complex Multiplication

Consider τ ∈ H which satisfies a monic quadratic polynomial in Z[x].
Consider the elliptic curve Eτ = C/(Z + τZ) which has j-invariant j(τ).

The number j(τ) satisfies a polynomial equation:

HD(x) =
∏

[a,b,c]∈CL(D)

(
x − j

(
−b +

√
−D

2a

))
∈ Z[x].

Moreover a root of the reduction of the polynomial HD(x) modp leads

to an elliptic curve over Fp with Frobenious endomorphism that satisfies

the same characteristic polynomial as τ .
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Example CM

For D = 491 we compute

CL(D) = [1, 1, 123], [3,±1, 41], [9,±7, 15], [5,±3, 25], [11,±9, 3].

For each [a, b, c] we select the root

ρ =
−b + i

√
491

2s
, with positive imaginary part.

[a, b, c] Root j-invariant

[1, 1, 123] ρ1 = (−1 + i
√

491)/2 -1.7082855 E30

[3, 1, 41] ρ2 = (−1 + i
√

491)/6 5.977095 E9 + 1.0352632 E10I

[3,−1, 41] ρ3 = (1 + i
√

491)/6 5.9770957 E9 - 1.0352632 E10I

[9, 7, 15] ρ4 = (−7 + i
√

491)/18 -1072.7816 + 1418.3793I

[9,−7, 15] ρ5 = (7 + i
√

491)/18 -1072.7816 - 1418.3793I

[5, 3, 25] ρ6 = (−3 + i
√

491)/10) -343205.38 + 1058567.0I

[5,−3, 25] ρ7 = (3 + i
√

491)/10 -343205.38 - 1058567.0I

[11, 9, 13] ρ8 = (−9 + i
√

491)/22 6.0525190 + 170.50800I

[11,−9, 13] ρ9 = (9 + i
√

491)/22 6.0525190 - 170.50800I
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Example CM

Compute the polynomial

f(x) =
9∏

i=1

(x − j(ρi))

with 100 digits precision and arrive at

xˆ9+(1708285519938293560711165050880.0000 + 0.E-105*I)*xˆ8 +
(-20419995943814746224552691418802908299264.0000 +
5.527147875260444561 E-76*I)*xˆ7 +
(244104497665432748158715313783583130211556702289920.00000
- 3.203247249195215313 E-66*I)*xˆ6 +
(168061099707176489267621705337969352389335280404863647744.0000 -
8.477642883414348322 E-61*I)*xˆ5 +
(302663406228710339993356777425938984884433281603698934574743552.0000 +
1.1797555025677485282E-53*I)*xˆ4 +
(645485900085616784926354786035581108920923697188375949395393249280.0000+
5.552991534850878913 E-50*I)*xˆ3 +

(957041138046397870965520808576552949198885665738183643750394920697856.0000
- 1.5307563300801091721 E-47*I)*xˆ2 +
(7322862871033784419236596129273250845529108502221762556507445472002048.0000+
4.458155165749933023 E-45*I)*x +
(27831365943253888043128977216106999444228139865055751457267582234307592192.0000
- 3.587324068671531702 E-43*I)

which is a polynomial is Z[x].
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Construction

We now have at hand the polynomial

x
9 + 1708285519938293560711165050880x

8+

20419995943814746224552691418802908299264x
7+

244104497665432748158715313783583130211556702289920x
6+

168061099707176489267621705337969352389335280404863647744
5+

302663406228710339993356777425938984884433281603698934574743552x
4+

645485900085616784926354786035581108920923697188375949395393249280x
3+

957041138046397870965520808576552949198885665738183643750394920697856x
2+

73228628710337844192365961292732x+

27831365943253888043128977216106999444228139865055751457267582234307592192
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Construction

Reduce it modulo p and find a root of the reduced polynomial modulo

p. This is the j invariant of a curve which has either p + 1− t or

p + 1 + t points. The curve is given by

y
2 = x

3 + 3kc
2
x + 2kc

3, k = j/(1728− j), c ∈ Fp.

For different values of c correspond two non-isomorphic curves , ′ of

orders p + 1± t . One is

y
2 = x

3 + ax + b

and the other is

y
2 = x

3 + ac
2
x + bc

3,

where c is a non-quadratic residue in Fp. Which of the two curves

corresponds to which order can be computed by selecting one point in

one of them and computing its order n such that nP = O. The order n

should divide either p + 1− t or p + 1 + t .
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Conclusion

This method has the disadvantage that the polynomials H(t)
constructed become very large for the discriminants D required for a

secure implementation of the method.

Can we do better? Yes we can use instead of the modular function j

other modular functions. For example using a class function constructed

by Ramanujan the polynomials constructed are significantly smaller. For

the D = 491 case the corresponding polynomial is given by:

x
9 + x

8 + 16x
7 + 2x

6 + 37x
5 − 31x

4 + 44x
3 − 40x

2 + 29x − 1.

An other approach in order to obtain small polynomials is to carefull

select the discriminants. This will be explained in prof. Konstantinou talk.
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Thanks

Thank you for your attention!

, Elliptic Curves, Cryptography 23/23


	Definitions
	Elliptic Curves over finite fields
	Elliptic Curves over the complex numbers
	The theory of Complex Multiplication
	Class group of imaginary quadratic fields
	Examples
	Conclusion - further work

