Elliptic
Curves
Modular
functions
Galois
Cohomology

Computational Class Field Theory for constructing cryptographic elliptic curves

Aristides Kontogeorgis

Department of Mathematics
University of Athens.

SSE Athens 6 April 2012

[^0]
Contents

Constructing
Elliptic
Curves
(1) Constructing Elliptic Curves
(2) Modular functions
(3) Galois Cohomology
(4) Examples

- Elliptic curves defined over finite fields have applications in cryptography.
- Elliptic curves defined over finite fields have applications in cryptography.
- Produce cryptosystems that are difficult to decode.
- Elliptic curves defined over finite fields have applications in cryptography.
- Produce cryptosystems that are difficult to decode.
- Construct elliptic curves of large prime order.
- Elliptic curves defined over finite fields have applications in cryptography.
- Produce cryptosystems that are difficult to decode.
- Construct elliptic curves of large prime order.

The CM-method

Constructing

 Elliptic Curves- An elliptic curve is an algebraic curve that has an extra group structure.

The CM-method

- An elliptic curve is an algebraic curve that has an extra group structure.
- Elliptic curves are described in terms of their j-invariant.

The CM-method

- An elliptic curve is an algebraic curve that has an extra group structure.
- Elliptic curves are described in terms of their j-invariant.
- If we know the j-invariant we can construct the elliptic curve.

Elliptic curves

An elliptic curve over a finite field \mathbb{F}_{p}, p a prime larger than 3 , is denoted by $E\left(\mathbb{F}_{p}\right)$ and it is comprised of all the points $(x, y) \in \mathbb{F}_{p}$ (in affine coordinates) such that

$$
\begin{equation*}
y^{2}=x^{3}+a x+b \tag{1}
\end{equation*}
$$

with $a, b \in \mathbb{F}_{p}$ satisfying $4 a^{3}+27 b^{2} \neq 0$. These points, together with a special point denoted by \mathcal{O} (the point at infinity) and a properly defined addition operation form an Abelian group. This is the Elliptic Curve group and the point \mathcal{O} is its zero element

Elliptic curves II

```
Constructing
```

Elliptic
Curves

Important quantities defined for an elliptic curve $E\left(\mathbb{F}_{p}\right)$ are

- curve discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$
- j-invariant $j=j=-1728(4 a)^{3} / \Delta$.

Elliptic curves II

Constructing

Important quantities defined for an elliptic curve $E\left(\mathbb{F}_{p}\right)$ are

- curve discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$
- j-invariant $j=j=-1728(4 a)^{3} / \Delta$.

Given a j-invariant $j_{0} \in \mathbb{F}_{p}$ (with $j_{0} \neq 0$, 1728) two ECs can be constructed. If $k=j_{0} /\left(1728-j_{0}\right) \bmod p$, one of these curves is given by Eq. (1) by setting $a=3 k \bmod p$ and $b=2 k \bmod p$. The second curve (the twist of the first) is given by the equation $y^{2}=x^{3}+a c^{2} x+b c^{3}$

Elliptic curves II

Important quantities defined for an elliptic curve $E\left(\mathbb{F}_{p}\right)$ are

- curve discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$
- j-invariant $j=j=-1728(4 a)^{3} / \Delta$.

Given a j-invariant $j_{0} \in \mathbb{F}_{p}$ (with $j_{0} \neq 0$, 1728) two ECs can be constructed. If $k=j_{0} /\left(1728-j_{0}\right) \bmod p$, one of these curves is given by Eq. (1) by setting $a=3 k \bmod p$ and $b=2 k \bmod p$. The second curve (the twist of the first) is given by the equation $y^{2}=x^{3}+a c^{2} x+b c^{3}$
One of the curves has order $p+1-t$, then its twist has order $p+1+t$, or vice versa

CM-curves

Constructing Elliptic Curves

Set $m=\# E$.

- Hasse's theorem, $Z=4 p-(p+1-m)^{2}>0$

CM-curves

Constructing Elliptic Curves

Set $m=\# E$.

- Hasse's theorem, $Z=4 p-(p+1-m)^{2}>0$
- there is a unique factorization $Z=D v^{2}$, with D a square free positive integer.

CM-curves

Constructing

Set $m=\# E$.

- Hasse's theorem, $Z=4 p-(p+1-m)^{2}>0$
- there is a unique factorization $Z=D v^{2}$, with D a square free positive integer.
- $4 p=u^{2}+D v^{2}$ where $m=p+1 \pm u$.

Given a prime p, choose the smallest D is chosen for which there exists some integer u for which $4 p=u^{2}+D v^{2}$ holds.

CM-curves

Constructing

Set $m=\# E$.

- Hasse's theorem, $Z=4 p-(p+1-m)^{2}>0$
- there is a unique factorization $Z=D v^{2}$, with D a square free positive integer.
- $4 p=u^{2}+D v^{2}$ where $m=p+1 \pm u$.

Given a prime p, choose the smallest D is chosen for which there exists some integer u for which $4 p=u^{2}+D v^{2}$ holds. Are $p+1 \pm u$ suitable? If not start with a new D.

Complex analytic viewpoint

Constructing Elliptic

- Consider elliptic curves over \mathbb{C}.

Complex analytic viewpoint

- Consider elliptic curves over \mathbb{C}.
- These are abelian groups of the form \mathbb{C} / L, where L is a discrete subgroup.

Complex analytic viewpoint

Constructing

- Consider elliptic curves over \mathbb{C}.
- These are abelian groups of the form \mathbb{C} / L, where L is a discrete subgroup.
- The j invariant becomes a complex meromorphic function $j: \mathbb{H} \rightarrow \mathbb{C}$.

$$
j(\tau)=\frac{1}{q}+744+196884 q+21493760 q^{2}+864299970 q^{3}+\cdots
$$

where $q=\exp (2 \pi i \tau)$.

CM-curves II

Constructing Elliptic Curves

Cohomology

Now having the D at hand we consider the number field $\mathbb{Q}(\sqrt{-D})$.

CM-curves II

Now having the D at hand we consider the number field $\mathbb{Q}(\sqrt{-D})$. CM-theory: The Hilbert class field is generated by j. Thus, j satisfies a polynomial equation. The action of the class group can be effectively generated by Gauss theory of quadratic forms.

CM-curves II

Now having the D at hand we consider the number field $\mathbb{Q}(\sqrt{-D})$. CM-theory: The Hilbert class field is generated by j. Thus, j satisfies a polynomial equation. The action of the class group can be effectively generated by Gauss theory of quadratic forms.
Compute the Hilbert polynomial $\mathbb{Z}[t]=\prod\left(x-j^{[a, b, c]}\right)(\theta)$ using floating point approximations of $j^{[a, b, c]}(\theta)$, where $\mathcal{O}_{K}=\mathbb{Z}[\theta]$.
Theorem
The elliptic curve defined over \mathbb{F}_{p} with j invariant a root of the Hilbert polynomial modulo p has order $p+1 \pm u$.
$2094055410006322146651491130721133658112 x^{5}-$
$186547260770756829961971675685151791296544768 x^{4}+$
$6417141278133218665289808655954275181523718111232 x^{3}-$
$19207839443594488822936988943836177115227877227364352 x^{2}+$
$45797528808215150136248975363201860724351225694802411520 x-$
18273883965326272223717626628647422907813731016193733558272

Hilbert class field of imaginary quadratic fields

Problem: The Hilbert polynomials constructed by this method has very big coefficients. Is there a better method to construct CM-elliptic curves?
Answer: Yes, we can use other class functions. These generate the Hilbert class field.

Examples of Class functions for

$$
D=-299
$$

$M_{299,13}(x)=x^{8}+78 x^{7}+793 x^{6}+5070 x^{5}+20956 x^{4}+65910 x^{3}+134017 x^{2}+171366 x+28561$

$$
\begin{aligned}
& M_{299,5,7}(x)=x^{8}-8 x^{7}+31 x^{6}-22 x^{5}+28 x^{4}-2 x^{3}-19 x^{2}+8 x-1 \\
& M_{299,3,13}(x)=x^{8}-6 x^{7}+16 x^{6}+12 x^{5}-23 x^{4}+12 x^{3}+16 x^{2}-6 x+1
\end{aligned}
$$

$$
T_{299}(x)=x^{8}+x^{7}-x^{6}-12 x^{5}+16 x^{4}-12 x^{3}+15 x^{2}-13 x+1
$$

Modular functions of level N

- Complex functions $\mathbb{H} \rightarrow \mathbb{C}$

Modular functions of level N

- Complex functions $\mathbb{H} \rightarrow \mathbb{C}$
- Invariant under the action of

$$
\Gamma(N)=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a \equiv d \equiv 1 \bmod N, c \equiv b \equiv 0 \bmod N, \operatorname{det} A=1\right\}
$$

- Some analytic conditions at the cusps.

Modular functions of level N

- Complex functions $\mathbb{H} \rightarrow \mathbb{C}$
- Invariant under the action of

$$
\Gamma(N)=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a \equiv d \equiv 1 \bmod N, c \equiv b \equiv 0 \bmod N, \operatorname{det} A=1\right\}
$$

- Some analytic conditions at the cusps.

Remarks:

(1) Modular functions are periodic and have Fourier expansions with coefficients in $\mathbb{Q}\left(\zeta_{N}\right)$.

Modular functions of level N

- Complex functions $\mathbb{H} \rightarrow \mathbb{C}$
- Invariant under the action of

$$
\Gamma(N)=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a \equiv d \equiv 1 \bmod N, c \equiv b \equiv 0 \bmod N, \operatorname{det} A=1\right\}
$$

- Some analytic conditions at the cusps.

Remarks:

(1) Modular functions are periodic and have Fourier expansions with coefficients in $\mathbb{Q}\left(\zeta_{N}\right)$.
(2) All above examples are modular functions.

Shimura reciprocity law

- Gee-Stevenhagen provided us with a method in order to check if a modular function is a class invariant that can be used for the elliptic curve generation.
- They gave an explicit matrix action of the group $G_{N}:=(\mathbb{O} / N \mathbb{O})^{*}$ on modular forms (Shimura Reciprocity) and they were able to prove that a modular function is a class invariant if and only if this function is invariant under the action of G_{N}.

Find new invariants

Assume that we can find a finite dimensional vector space V consisted of modular functions of level N so that GL($2, \mathbb{Z} / N \mathbb{Z}$) acts on V.

Find new invariants

Assume that we can find a finite dimensional vector space V consisted of modular functions of level N so that GL($2, \mathbb{Z} / N \mathbb{Z}$) acts on V.
We can always find such a vector space. We simple have to consider the orbit of f under the action of the finite group $\mathrm{GL}(2, \mathbb{Z} / N \mathbb{Z})$.

Find new invariants

Assume that we can find a finite dimensional vector space V consisted of modular functions of level N so that GL($2, \mathbb{Z} / N \mathbb{Z}$) acts on V.
We can always find such a vector space. We simple have to consider the orbit of f under the action of the finite group $\mathrm{GL}(2, \mathbb{Z} / N \mathbb{Z})$.
Every element $a \in G L(2, \mathbb{Z} / N \mathbb{Z})$ can be written as $b \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & d\end{array}\right)$, $d \in \mathbb{Z} / N \mathbb{Z}^{*}$ and $b \in \operatorname{SL}(2, \mathbb{Z} / N \mathbb{Z})$.

Find new invariants

Assume that we can find a finite dimensional vector space V consisted of modular functions of level N so that GL($2, \mathbb{Z} / N \mathbb{Z}$) acts on V.
We can always find such a vector space. We simple have to consider the orbit of f under the action of the finite group $\mathrm{GL}(2, \mathbb{Z} / N \mathbb{Z})$.
Every element $a \in \operatorname{GL}(2, \mathbb{Z} / N \mathbb{Z})$ can be written as $b \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & d\end{array}\right)$, $d \in \mathbb{Z} / N \mathbb{Z}^{*}$ and $b \in \operatorname{SL}(2, \mathbb{Z} / N \mathbb{Z})$.
The group $\mathrm{SL}(2, \mathbb{Z} / N \mathbb{Z})$ is generated by the elements
$S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Find new invariants

Assume that we can find a finite dimensional vector space V consisted of modular functions of level N so that GL($2, \mathbb{Z} / N \mathbb{Z}$) acts on V.
We can always find such a vector space. We simple have to consider the orbit of f under the action of the finite group $\mathrm{GL}(2, \mathbb{Z} / N \mathbb{Z})$.
Every element $a \in G L(2, \mathbb{Z} / N \mathbb{Z})$ can be written as $b \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & d\end{array}\right)$, $d \in \mathbb{Z} / N \mathbb{Z}^{*}$ and $b \in \operatorname{SL}(2, \mathbb{Z} / N \mathbb{Z})$.
The group $\mathrm{SL}(2, \mathbb{Z} / N \mathbb{Z})$ is generated by the elements
$S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
The action of S on functions $g \in V$ is defined to be $g \circ S=g(-1 / z) \in V$ and the action of T is defined $g \circ T=g(z+1) \in V$.

Actions

The action of the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & d\end{array}\right)$ is given by the action of the elements $\sigma_{d} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)$ on the Fourier coefficients of the expansion at the cusp at infinity.

Actions

The action of the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & d\end{array}\right)$ is given by the action of the elements $\sigma_{d} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)$ on the Fourier coefficients of the expansion at the cusp at infinity. Since every element in $\operatorname{SL}(2, \mathbb{Z} / N \mathbb{Z})$ can be written as a word in S, T we obtain a function ρ

$$
\begin{equation*}
\left(\frac{\mathcal{O}}{N \mathcal{O}}\right)^{*} \xrightarrow{\phi} \mathrm{GL}(2, \mathbb{Z} / N \mathbb{Z}) \longrightarrow \mathrm{GL}(V), \tag{2}
\end{equation*}
$$

where ϕ is the natural homomorphism

Cocylces

Constructing Elliptic Curves

The map ρ defined in eq. (2) in previous section is not a homomorphism.

Cocylces

The map ρ defined in eq. (2) in previous section is not a homomorphism.

Proposition

The map ρ defined in eq. (2) satisfies the cocycle condition

$$
\begin{equation*}
\rho(\sigma \tau)=\rho(\tau) \rho(\sigma)^{\tau} \tag{3}
\end{equation*}
$$

and gives rise to a class in $H^{1}(G, G L(V))$, where $G=(\mathcal{O} / N \mathcal{O})^{*}$. The restriction of the map ρ in the subgroup H of G defined by

$$
H:=\{x \in G: \operatorname{det}(\phi(x))=1\}
$$

is a homomorphism.

Invariant Theory

Constructing Elliptic Curves

Modular functions

Galois Cohomology

Select a basis e_{1}, \ldots, e_{m} of V

Invariant Theory

Select a basis e_{1}, \ldots, e_{m} of V
Classical invariant theory provides us with effective methods (Reynolds operator method,linear algebra method) in order to compute the ring of invariants $\mathbb{Q}\left(\zeta_{N}\right)\left[e_{1}, \ldots, e_{m}\right]^{H}$. Select the vector space V_{n} of invariant polynomials of given degree n.

Invariant Theory

Select a basis e_{1}, \ldots, e_{m} of V
Classical invariant theory provides us with effective methods (Reynolds operator method,linear algebra method) in order to compute the ring of invariants $\mathbb{Q}\left(\zeta_{N}\right)\left[e_{1}, \ldots, e_{m}\right]^{H}$.
Select the vector space V_{n} of invariant polynomials of given degree n.
The action of G / H on V_{n} gives rise to a cocycle

$$
\left.\rho^{\prime} \in H^{1}\left(\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right)\right) / \mathbb{Q}\right), V_{n}\right)
$$

The multidimensional Hilbert 90 theorem asserts that there is an element $P \in \mathrm{GL}\left(V_{n}\right)$ such that

$$
\begin{equation*}
\rho^{\prime}(\sigma)=P^{-1} P^{\sigma} . \tag{4}
\end{equation*}
$$

Computation of P

Constructing Elliptic Curves

Use a version of Glasby-Howlett probabilistic algorithm

Computation of P

Use a version of Glasby-Howlett probabilistic algorithm

$$
\begin{equation*}
B_{Q}:=\sum_{\sigma \in G / H} \rho(\sigma) Q^{\sigma} \tag{5}
\end{equation*}
$$

If we manage to find a 2×2 matrix in $\operatorname{GL}\left(2, \mathbb{Q}\left(\zeta_{N}\right)\right)$ such that B_{Q} is invertible then $P:=B_{Q}^{-1}$.

Computation of P

Use a version of Glasby-Howlett probabilistic algorithm

$$
\begin{equation*}
B_{Q}:=\sum_{\sigma \in G / H} \rho(\sigma) Q^{\sigma} \tag{5}
\end{equation*}
$$

If we manage to find a 2×2 matrix in $\mathrm{GL}\left(2, \mathbb{Q}\left(\zeta_{N}\right)\right)$ such that B_{Q} is invertible then $P:=B_{Q}^{-1}$.
Non invertible matrices are rare (they form a Zariski closed subset in the space of matrices) our first random choice of Q always worked!

Example

Constructing

Generalised Weber functions $\mathfrak{g}_{0}, \mathfrak{g}_{1}, \mathfrak{g}_{2}, \mathfrak{g}_{3}$

Example

Generalised Weber functions $\mathfrak{g}_{0}, \mathfrak{g}_{1}, \mathfrak{g}_{2}, \mathfrak{g}_{3}$

$$
\begin{aligned}
& \mathfrak{g}_{0}(\tau)=\frac{\eta\left(\frac{\tau}{3}\right)}{\eta(\tau)}, \mathfrak{g}_{1}(\tau)=\zeta_{24}^{-1} \frac{\eta\left(\frac{\tau+1}{3}\right)}{\eta(\tau)} \\
& \mathfrak{g}_{2}(\tau)=\frac{\eta\left(\frac{\tau+2}{3}\right)}{\eta(\tau)}, \mathfrak{g}_{3}(\tau)=\sqrt{3} \frac{\eta(3 \tau)}{\eta(\tau)}
\end{aligned}
$$

where η denotes the Dedekind eta function:

$$
\eta(\tau)=e^{2 \pi i \tau / 24} \prod_{n \geq 1}\left(1-q^{n}\right) \tau \in \mathbb{H}, q=e^{2 \pi i \tau}
$$

These are modular functions of level 72.

Example

For $n=-571$ the group H has order 144 and G has order 3456. We find that the polynomials

$$
I_{1}:=\mathfrak{g}_{0} \mathfrak{g}_{2}+\zeta_{72}^{6} \mathfrak{g}_{1} \mathfrak{g}_{3}, \quad I_{2}:=\mathfrak{g}_{0} \mathfrak{g}_{3}+\left(-\zeta_{72}^{18}+\zeta_{72}^{6}\right) \mathfrak{g}_{1} \mathfrak{g}_{2}
$$

are invariants of the action of H.

Example

For $n=-571$ the group H has order 144 and G has order 3456. We find that the polynomials

$$
I_{1}:=\mathfrak{g}_{0} \mathfrak{g}_{2}+\zeta_{72}^{6} \mathfrak{g}_{1} \mathfrak{g}_{3}, \quad I_{2}:=\mathfrak{g}_{0} \mathfrak{g}_{3}+\left(-\zeta_{72}^{18}+\zeta_{72}^{6}\right) \mathfrak{g}_{1} \mathfrak{g}_{2}
$$

are invariants of the action of H.

$$
\begin{gathered}
e_{1}:=\left(-12 \zeta_{72}^{18}+12 \zeta_{72}^{6}\right) \mathfrak{g o g}_{3}+12 \zeta_{72}^{6} \mathfrak{g o g}_{3}+12 \mathfrak{g}_{1} \mathfrak{g}_{2}+12 \mathfrak{g}_{1} \mathfrak{g}_{3}, \\
e_{2}:=12 \zeta_{\mathbf{7 2}}^{6} \mathfrak{g}_{1} \mathfrak{g}_{2}+\left(-12 \zeta_{\mathbf{7 2}}^{18}+12 \zeta_{\mathbf{7 2}}^{6}\right) \mathfrak{g o g}_{3}+\left(-12 \zeta_{72}^{12}+12\right) \mathfrak{g}_{1} \mathfrak{g}_{3}+12 \zeta_{72}^{12} \mathfrak{g}_{1} \mathfrak{g}_{3}
\end{gathered}
$$

Examples

Invariant	polynomial
Hilbert	$t^{5}+400497845154831586723701480652800 t^{4}+$
	$818520809154613065770038265334290448384 t^{\mathbf{3}}+$
	$4398250752422094811238689419574422303726895104 t^{\mathbf{2}}$
	$-16319730975176203906274913715913862844512542392320 t$
	+15283054453672803818066421650036653646232315192410112
	$t^{\mathbf{5}}-5433338830617345268674 t^{4}+90705913519542658324778088 t^{\mathbf{3}}$
	$\mathfrak{g}_{\mathbf{0}}^{\mathbf{1 2}} \mathfrak{g}_{\mathbf{1}}^{\mathbf{1 2}}+\mathfrak{g}_{\mathbf{2}}^{\mathbf{1 2}} \mathfrak{g}_{\mathbf{3}}^{\mathbf{1 2}}$
	$-3049357177530030535811751619728 t^{\mathbf{2}}$
	$-390071826912221442431043741686448 t$
	-12509992052647780072147837007511456
$e_{\mathbf{1}}$	$t^{\mathbf{5}}-936 t^{4}-60912 t^{\mathbf{3}}-2426112 t^{2}-40310784 t-3386105856$
$e_{\mathbf{2}}$	$t^{\mathbf{5}}-1512 t^{4}-29808 t^{\mathbf{3}}+979776 t^{\mathbf{2}}+3359232 t-423263232$

Questions:

Constructing Elliptic Curves
(1) Select the most efficient class invariants.

Questions:

(1) Select the most efficient class invariants. This is equivalent to minimizing a height function on a lattice. Out of reach for now.

Questions:

(1) Select the most efficient class invariants. This is equivalent to minimizing a height function on a lattice. Out of reach for now.
(2) By computations we see that the best invariants occur when the class invariants are monomials of the Weber functions.

Questions:

(1) Select the most efficient class invariants. This is equivalent to minimizing a height function on a lattice. Out of reach for now.
(2) By computations we see that the best invariants occur when the class invariants are monomials of the Weber functions.
(3) There are classes $n \bmod 24$ where no monomial invariants of the Weber functions exists. Then our method provides the best invariants.

Thank you!

Constructing Elliptic Curves

Modular functions

Galois
Cohomology

[^0]: ${ }^{1}$ This work was supported by the Project "Thalis, Algebraic modeling of topological and Computational structures". The Project "THALIS" is implemented under the Operational Project "Education and Life Long Learning is co-funded by the European Union (European Social Fund) and National Resources (ESPA)

