\documentclass[11pt]{article} %\usepackage[greek]{babel} %\usepackage[iso-8859-7]{inputenc} \begin{document} \centerline{\LARGE $\mathcal{UNIVERSITY\ OF\ THE\ AEGEAN}$} \bigskip \begin{center} \mathversion{bold} Compare $\sqrt{x^2 + y^2}=0$ \mathversion{normal} with $\sqrt{x^2 + y^2}=0$. \begin{verbatim} \mathversion{bold} Compare $\sqrt{x^2 + y^2}=0$ \mathversion{normal} with $\sqrt{x^2 + y^2}=0$. \end{verbatim} \end{center} \bigskip \centerline{Binary relations} $\cap$ \verb+\cap+ \quad $\cup$ \verb+\cup+ \quad $\times$ \verb+\times+ $\pm\ \mp\ \otimes\ \oplus\ \uplus\ \wr\ \ast\ \star$ et.c. \medskip \centerline{Common symbols} $\leq$ \verb+\leq+ \quad $\geq$ \verb+\geq+ \quad $\in$ \verb+\in+ \quad $\subset$ \verb+\subset+ \quad $\supset$ \verb+\supset+ $\equiv\ \subseteq\ \supseteq\ \Vert\ \neq\ \sim \ni$ et.c. \medskip \centerline{Arrows} $\leftarrow$ \verb+\leftarrow+ \quad $\rightarrow$ \verb+\rightarrow+ $\mapsto$ \verb+\mapsto+ \quad $\Leftrightarrow$ \verb+\Leftrightarrow+ $\hookrightarrow\ \uparrow\ \downarrow\ \rightharpoonup\ \searrow$ et.c. \medskip \centerline{Other symbols} $\ldots$ \verb+\ldots+ \quad $\cdots$ \verb+\cdots+ \quad $\vdots$ \verb+\vdots+ \quad $\ddots$ \verb+\ddots+ $\partial$ \verb+\partial+\quad $\nabla$ \verb+\nabla+\quad $\forall$ \verb+\forall+ \quad $\emptyset$ \verb+\emptyset+ $\exists$ \verb+\exists+ \quad $\infty$ \verb+\infty+ et.c. \medskip \centerline{Variable size symbols} $\sum$ \verb+\sum+ \quad $\prod$ \verb+\prod+ \quad $\int$ \verb+\int+ \quad $\oint$ \verb+\oint+ \quad $\bigcup$ \verb+\bigcup+\quad $\bigcap$ \verb+\bigcap+ $\coprod\ \bigwedge\ \bigoplus$ et.c. \medskip \centerline{Functions} $\lim, \cos, \sin, \log, \sup, \inf, \min, \max$ et.c. \medskip \centerline{Math spacing} \begin{center} \begin{tabular}{cc} $x \qquad x$ & \verb+$x \qquad x$+\\ $x \quad x$ & \verb+$x \quad x$ +\\ $x \; x$ & \verb+$x \; x$ +\\ $x \: x$ & \verb+$x \: x$ +\\ $x \, x$ & \verb+$x \, x$ +\\ $x x$ & \verb+$x x$ +\\ $x \! x$ & \verb+$x \! x$ +\\ \end{tabular} \end{center} \medskip \centerline{Variable size symbols No2} $\{$ \verb+\{+ \quad $\}$ \verb+\}+\quad $\langle$ \verb=\langle=\quad $\rangle$ \verb=\rangle=\quad $(\ ) [\ ]$ \quad $\Vert$ \verb=\Vert= et.c. \medskip {\it Forcing other sizes} $\Biggl( \biggl( \Bigl( \bigl( \bigr) \Bigr) \biggr) \Biggr)$ was created with \verb=$\Biggl( \biggl( \Bigl( \bigl( \bigr) \Bigr) \biggr) \Biggr)$= \smallskip $3 \Biggm/4 \biggm/ 5 \Bigm/ 6 \bigm/ 7 $ was created with \verb=$3 \Biggm/4 \biggm/ 5 \Bigm/ 6 \bigm/ 7 $= \bigskip \bigskip \centerline{\Large Exercises} \medskip $$\nabla^2 =\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} $$ $${\frac{a}{b} \above1pt \frac{c}{d}}$$ $$\sqrt{abc}\qquad \sqrt[n]{abc}$$ $$f(x)\stackrel{def}{=} \int_0^\pi \sin (xt) dt$$ $$\sum_{{n\in A \atop m\in B} \atop k\in C} a_{nmk}$$ $$\overline{{\overline{x}}^2} \qquad \underline{\underline{x}+\underline{y}}$$ $$\overbrace{a,\ldots,z}^\mathrm{26\ letters} \qquad \underbrace{a,\ldots,z}_\mathrm{26\ letters}$$ $$\left( {p \atop 2}\right) x^2 y^{p-2} -\frac1{1-x}\frac1{1-x^2}$$ $$\sqrt[3]{ 1+\sqrt[4]{ 1+\sqrt[5]{ 1+\sqrt[6]{1+\sqrt[7]{1+x}}}}}$$ $$S\subseteq \Sigma \Rightarrow S\in S^\prime$$ $$(T\mathbf{y}, \mathbf{z}) \langle\sum_{i=1}^n y_i \sum_{k=1}^n \mathbf{t}_{i,k} \mathbf{x}_k , \sum_{j=1}^n z_j \mathbf{x}_j \rangle $$ $$\int_a^b K(x,y)p(y)dy =\sum_{i,j=1}^n c_{i,j} \int_a^b h_j (y) p(y) dy h_i (x)$$ $$G_3 (x) =\frac{F_3 (x)}{\Vert F_3 (x)\Vert} =\frac1{\sqrt{2\pi}}$$ $$\int_{-T}^T \int_0^{T-|u|} \Bigl\{ p_N \delta (u) + q_{NN} (u) \Bigr\} e^{-i\lambda u} dudv$$ $$\left[ \left(\frac{\int_1^\infty f(x) dx}{\int_1^\infty g(y)dy} \right)^2 +1 \right]^2 +1$$ $$\lim_{n\rightarrow\infty} \left\{ \int_D \left[ \langle G(P,Q)\rangle -\left| \biggl\lfloor \sum_{n=1}^m \frac{u_n(P)}{\lambda_n} \biggr\rfloor \right|^2 \right] dr_q =0\right\}+1=0$$ $$\left[ \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right] $$ \end{document}