\documentclass[11pt]{article}
%\usepackage[greek]{babel}
%\usepackage[iso-8859-7]{inputenc}
\begin{document}
\centerline{\LARGE $\mathcal{UNIVERSITY\ OF\ THE\ AEGEAN}$}
\bigskip
\begin{center}
\mathversion{bold}
Compare $\sqrt{x^2 + y^2}=0$ \mathversion{normal} with $\sqrt{x^2 + y^2}=0$.
\begin{verbatim}
\mathversion{bold}
Compare $\sqrt{x^2 + y^2}=0$
\mathversion{normal} with $\sqrt{x^2 + y^2}=0$.
\end{verbatim}
\end{center}
\bigskip
\centerline{Binary relations}
$\cap$ \verb+\cap+ \quad $\cup$ \verb+\cup+ \quad $\times$ \verb+\times+
$\pm\ \mp\ \otimes\ \oplus\ \uplus\ \wr\ \ast\ \star$ et.c.
\medskip
\centerline{Common symbols}
$\leq$ \verb+\leq+ \quad $\geq$ \verb+\geq+ \quad $\in$ \verb+\in+ \quad $\subset$
\verb+\subset+ \quad $\supset$ \verb+\supset+
$\equiv\ \subseteq\ \supseteq\ \Vert\ \neq\ \sim \ni$ et.c.
\medskip
\centerline{Arrows}
$\leftarrow$ \verb+\leftarrow+ \quad $\rightarrow$ \verb+\rightarrow+
$\mapsto$ \verb+\mapsto+ \quad $\Leftrightarrow$ \verb+\Leftrightarrow+
$\hookrightarrow\ \uparrow\ \downarrow\ \rightharpoonup\ \searrow$ et.c.
\medskip
\centerline{Other symbols}
$\ldots$ \verb+\ldots+ \quad $\cdots$ \verb+\cdots+ \quad $\vdots$ \verb+\vdots+ \quad
$\ddots$ \verb+\ddots+
$\partial$ \verb+\partial+\quad $\nabla$ \verb+\nabla+\quad $\forall$ \verb+\forall+
\quad $\emptyset$ \verb+\emptyset+ $\exists$ \verb+\exists+ \quad $\infty$ \verb+\infty+
et.c.
\medskip
\centerline{Variable size symbols}
$\sum$ \verb+\sum+ \quad $\prod$ \verb+\prod+ \quad $\int$ \verb+\int+
\quad $\oint$ \verb+\oint+ \quad $\bigcup$ \verb+\bigcup+\quad $\bigcap$ \verb+\bigcap+
$\coprod\ \bigwedge\ \bigoplus$ et.c.
\medskip
\centerline{Functions}
$\lim, \cos, \sin, \log, \sup, \inf, \min, \max$ et.c.
\medskip
\centerline{Math spacing}
\begin{center}
\begin{tabular}{cc}
$x \qquad x$ & \verb+$x \qquad x$+\\
$x \quad x$ & \verb+$x \quad x$ +\\
$x \; x$ & \verb+$x \; x$ +\\
$x \: x$ & \verb+$x \: x$ +\\
$x \, x$ & \verb+$x \, x$ +\\
$x x$ & \verb+$x x$ +\\
$x \! x$ & \verb+$x \! x$ +\\
\end{tabular}
\end{center}
\medskip
\centerline{Variable size symbols No2}
$\{$ \verb+\{+ \quad $\}$ \verb+\}+\quad $\langle$ \verb=\langle=\quad
$\rangle$ \verb=\rangle=\quad $(\ ) [\ ]$ \quad $\Vert$ \verb=\Vert= et.c.
\medskip
{\it Forcing other sizes}
$\Biggl( \biggl( \Bigl( \bigl( \bigr) \Bigr) \biggr) \Biggr)$ was created with
\verb=$\Biggl( \biggl( \Bigl( \bigl( \bigr) \Bigr) \biggr) \Biggr)$=
\smallskip
$3 \Biggm/4 \biggm/ 5 \Bigm/ 6 \bigm/ 7 $ was created with
\verb=$3 \Biggm/4 \biggm/ 5 \Bigm/ 6 \bigm/ 7 $=
\bigskip
\bigskip
\centerline{\Large Exercises}
\medskip
$$\nabla^2 =\frac{\partial^2}{\partial x^2} +
\frac{\partial^2}{\partial y^2} +
\frac{\partial^2}{\partial z^2} $$
$${\frac{a}{b} \above1pt \frac{c}{d}}$$
$$\sqrt{abc}\qquad \sqrt[n]{abc}$$
$$f(x)\stackrel{def}{=} \int_0^\pi \sin (xt) dt$$
$$\sum_{{n\in A \atop m\in B} \atop k\in C} a_{nmk}$$
$$\overline{{\overline{x}}^2} \qquad \underline{\underline{x}+\underline{y}}$$
$$\overbrace{a,\ldots,z}^\mathrm{26\ letters} \qquad \underbrace{a,\ldots,z}_\mathrm{26\ letters}$$
$$\left( {p \atop 2}\right) x^2 y^{p-2} -\frac1{1-x}\frac1{1-x^2}$$
$$\sqrt[3]{ 1+\sqrt[4]{ 1+\sqrt[5]{ 1+\sqrt[6]{1+\sqrt[7]{1+x}}}}}$$
$$S\subseteq \Sigma \Rightarrow S\in S^\prime$$
$$(T\mathbf{y}, \mathbf{z}) \langle\sum_{i=1}^n y_i \sum_{k=1}^n \mathbf{t}_{i,k}
\mathbf{x}_k , \sum_{j=1}^n z_j \mathbf{x}_j \rangle $$
$$\int_a^b K(x,y)p(y)dy =\sum_{i,j=1}^n c_{i,j} \int_a^b h_j (y) p(y) dy h_i (x)$$
$$G_3 (x) =\frac{F_3 (x)}{\Vert F_3 (x)\Vert} =\frac1{\sqrt{2\pi}}$$
$$\int_{-T}^T \int_0^{T-|u|} \Bigl\{ p_N \delta (u) + q_{NN} (u) \Bigr\} e^{-i\lambda u} dudv$$
$$\left[ \left(\frac{\int_1^\infty f(x) dx}{\int_1^\infty g(y)dy} \right)^2 +1 \right]^2 +1$$
$$\lim_{n\rightarrow\infty} \left\{ \int_D \left[ \langle G(P,Q)\rangle
-\left| \biggl\lfloor \sum_{n=1}^m \frac{u_n(P)}{\lambda_n} \biggr\rfloor
\right|^2 \right] dr_q =0\right\}+1=0$$
$$\left[
\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{array} \right]
$$
\end{document}