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Abstract. We study the automorphisms of some nice hypersurfaces and complete inter-
sections in projective space by reducing the problem to the determination of the linear
automorphisms of the ambient space that leave the algebraic set invariant.

1. Introduction

H. W. Leopoldt [12] (in characteristip) and P. Tzermias [16] (in characteristic
zero) studied the automorphism group of the Fermat curves, given as the zero
locus of the homogeneous polynomigl + x7 + x; = 0, wheren > 3 and the
characteristicy does not divide:. The author [11] generalized the above result
by studying the group of automorphisms of a projective non-singular model of the
affine curves 1 x7' + x5 = 0 forn # m.

The aim of this paper is to study the group of automorphisms of similar algebraic
sets in higher dimensions. By the group of automorphismgXuof the projective
variety X C P” we mean the group of biregular transformationXofll varieties
are defined over an algebraically closed fielof characteristigpp > O.

For a complete intersectiok in P” of dimension> 3, the study of the au-
tomorphism group is reduced to the study of the linear automorphism Lin
i.e, to automorphisms of the ambient spaethat leaveX invariant. This is a
known theorem based on the generalization of the Lefschetz theorem, due to A.
Grothendieck and P. Deligne.

Using this method, T. Shioda [15] was able to compute the grougX3ubf
automorphisms for the Fermat hypersurfaces (also for the Fermat curves), given by
equations

xg+xf+---+x'=0,

where the characteristijg does not divide:, andn > 3. It is clear that the group
of automorphisms of the above equations contains the semidirect prafluct
S,+1 of the abelian grougZ; and the symmetric group,$;. This is the whole
automorphism group i — 1 is not a power of the characteristicilf- 1 = p” is
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a power of the characteristic then the automorphism group is the projective unitary
group PGUr + 1, p?").

In this paper we simplify the computations of Shioda and we generalize his
results by studying the automorphism group of a hypersurface defined as the zero
locus of a hermitian form

E xKaKAxg =0,
K A

whereg is a power of the characteristic aq;) is an(r 4+ 1) x (» + 1) matrix with
elements ink. We also study the case of different exponents, automorphisms
of the projective closure of affine hypersurfaces of the form

-
in"" +1=0.
i=1

Namely we prove the following:

Theorem1.1. Letn = nyy = ... = ny—1 > ny > ... > n, > 1beadecreasing
sequence of integers, where 1 = 19 < 11 < --- < t; such that n; is constant for
tr <i < fry1, 7 > t1—1andthecharacteristic p doesnot dividen; for all i. (Notice
thatingeneral r > 11 — 1andif r = 71 — 1 then the hypersurfaceis Fermat). Let X
be the proj ective hypersurface defined by the homogeneousirreducible polynomial

r

n;i _n—n; n
in X + xg-
i=1

We have assumed that 2, > 1 because otherwise the defining polynomial will have
as summand a linear polynomial, forcing the automorphism group to be infinite.
Denote by di = ;41 — tx. The group of automorphisms G of X isgiven by adirect
sum

s—1
G .= Gy,
k=0
where
1 ifdp = 1
o= |7 if dj = 2
K= Z, xSy, if d, > 2andnx — lisnota p — power

PGUdy, p?*) if dy > 2andny — 1 = p/*

We also study automorphisms of intersections of Fermat hypersurfaces and prove
the following theorems:

Theorem 1.2. Let n, m be integers not divisible by the characteristic p of the al-
gebraic closedfieldk and let r > 4 or n +m # 5for r = 4. Thevariety X defined
by the homogeneous ideal (" x!", > x!") is reduced and irreducible. The group
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Aut(X) of automorphisms of X is the intersection of the group of automor phisms
of the hypersurfaces )" x" = 0and ) x' =0, i.e,

Aut(X) = Aut(V (Y x) N Aut(v (Y x!h).

Theorem 1.3. Let X be the algebraic set given as intersection of the weighted
Fermat hypersurfaces

q+1 q+1

X1 = VI 4 4 g+t

), X2 = Vicoxd ™+ .+ exf ™,

where ¢ is a power of the characteristic and ¢; # c; for i # j. X is reduced
and irreducible. Let G be the automorphism group of X and A = Ly be the
subgroup of G given by {x; — ¢%x;} where¢ isan ¢ + 1 root of unity and a; runs
over the set {0, ..., ¢}. Thegroup A isa normal subgroup of G, and G isgiven as
an extension of groups

1—A—G—H— 1

The group H acts on the set {co, ..., ¢,} as a group of linear fractional transfor-
mations and is one of the following groups Zj, Z,, Z} x Z, where s | r + 1
ors | r,pt =vr piain | r +1or pitin | r. Moreover G is a subgroup of
Aut(X1) = PGU(r + 1, ¢?).

2. Automor phisms of complete inter sections

In this section we reduce the study of the automorphism group of a complete
intersectionX C IP" to the study of linear automorphismsXfi.e., automorphisms

of the ambient spac®” that leaveX invariant. This theorem is proved in the
literature for hypersurfaces, using the Grothendieck-Deligne version of Lefschetz
theorem [2, par. 16]. For the sake of completeness we present a proof for the case
of complete intersections, which essentially follows the hypersurface proof.

Proposition 2.1. Leti : X — P" beaclosed subvariety of the projective space P,

such that the map HO(P", Opr (1)) LN HO(X, Ox (1)) isan isomorphism. If ¢ is
an automorphism of X preserving Ox (1) = i*Opr (1), then ¢ can be extended to
an automor phism of P".

Proof. The homogeneous coordinate rifigof P” is given as a direct sum [8, ex.
5.14a p.126]

S = @ HO®", Opr (n)),

n>0
ands is generated byf%(P", Opr (1)) as ak-algebra (The-vector space

HO(P", Opr (n))
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can be identified with the vector space of homogeneous polynomials of dégree
Everyk linear automorphism off°(P", Op- (1)) can be extended to an automor-
phism ofS. Every automorphisrp of X that preserve®y (1) induces a linear map
acting onH%(X, Ox (1)); since the map

HOP', Opr () 5 HO(X, Ox(D)),
is an isomorphismyp acts onH2(P", Opr (1)) as well.

A complete intersectiorX in P” is a projective algebraic variety,e., reduced
and irreducible, whose homogeneous ide# generated by = codim(X, P")
polynomials.

Theorem 2.1. Let X be a complete intersection in ", of dimension > 2. Then the
group Pic(X) istorsion free. If moreover dim(X) > 3, then the group Pic(X) isthe
free group generated by the class of Ox (1).

Proof. [1, Th. Il.1.8] and [7, Exp. XII Corollary 3.7].
Theorem 2.1 can also be expressed in the following form:

Corollary 2.1. Let X be a complete intersection in P" of dimension > 3. Every
Cartier divisor on X comes from an intersection of X by a hypersurface of P".
In particular, the semigroup of effective divisors on X is generated by the linear
systems of intersections by hyperplanes.

Proof. Leti : X — P" denote theinclusion map. By definitidhy (1) = i*Opr (1).
Since Pi¢X) is generated byx (1) the result follows.

Coroallary 2.2. Let X be a complete intersection of dimension X > 3, or a non-
singular complete intersection of dimension 2, such that wy is not the identity in
Pic(X). Then for every automorphism ¢ we have that ¢*(Ox (1)) = Ox(1). In
particular, if the surface X isnon-singular, given by the inter section of two Fermat
hypersurfaces xg + ... + x; = 0and xg' + ... + x;' = 0suchthatn +m —5# 0,
then ¢*(Ox (1)) = Ox (1) for every automorphism of X.

Proof. If dim X > 3 then by corollary 2.1, we have that the linear system

of intersections with hyperplanes Bf is complete and is the unique base of the
additive semigroup of equivalent positive divisors. Thereforés invariant under
the action of automorphisms. (See also [13].) In the second case, ¥inca
nonsingular intersection 4, one can compute [8, Exer. 8.4 chap. 1], that the
canonical invertible sheaby = AYMXQy/, = Ox(n +m — 5). The desired
result follows sincey* preservesy and Pi¢X) is torsion free.

We have thus proved the following:

Proposition 2.2. If the variety X given by the intersection of two Fermat hyper-
surfaces xg + ... + x7 = 0 and xg' + ... + x* = 0 is a complete intersection
and dim X > 3then Aut(X) = Lin(X). The same result holds for dim(X) = 2,
i.e., when r = 4, under the additional hypotheses that X is non-singular and that
n—m—5%#0.
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3. Linear automor phisms

Let X € IP” be a projective algebraic variety which is the zero locus of a homoge-
neous ideal, such that there is a homogeneous bégj$ of the ideall consisting

of polynomialsf, of degree prime to the characterisgicIn this section we will
study the linear automorphisms &f i.e., automorphisms of the form

o(xi) =Y ayxj. (a;j) € PGLGr +1,k)
j

such that

Vfel, f(o(x0),...0()) €l

Computing the automorphism group this way is in general quite difficult, but in
several cases can be carried out in a straightforward manner. For example T. Shioda
[15] uses this method to study the automorphism group of Fermat hypersurfaces
given as the zero locus of polynomials of the fopm) x7".

In order to simplify the presentation we will assume that the idéabenerated
by ¢ = 1, 2 homogeneous polynomials. We have

o(fy) = ngu(a)fu
nw

whereg,, (o) are homogeneous polynomials of degieen, andny is the degree
of Sk

3.1. The case of hypersurfaces (¢ = 1)

In this case the ideal is generated by a single homogeneous polynoryiiaif
degreen, prime to the characteristie. For a linear automorphis, represented
by a matrixA, we have

o(f) =x(o)f, .1

wherey is a character of the automorphism group.

Assume for a moment that is a nonsingular hypersurface. We consider the
dual varietyX™ of the hypersurface. For nonsingular hypersurfaces, that are not hy-
perplanes, itis known th&t* is also a hypersurface [5, 7.2, p.58 Zak Theorem][9],
and every automorphism of X induces an automorphisen® of X*. Since X*
is a hypersurface of the same dimensionXass* is also linear. We will give a
direct proof for the following proposition, not based on projective duality, and by
not assuming thaX is non singular.

Proposition 3.1. Let X be an irreducible projective hypersurface of dimension
> 3, which might be singular. Let f (xg, ..., x,) be the defining polynomial of X.
Every automorphism of X induces a linear automorphismon Y; := af/dx;, i.e.
3f/3xi(a(P)) = X, hydf /0x;(P).
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Proof. Denote byV f the vector(df/dxo, ..., 3f/9x,). Let A = (a;;) be a matrix
representing the automorphisnof Y. By differentiation of (3.1) we obtain

Vilewr) A=V(fA)lp=x©)V[lp,
foreveryP = (xp : ...x;). SO

Vflotry = V(U Alp = x @)V [flp A7
and the action of on the partial derivatives is linear as well.

In order to compute the automorphism group of some interesting examples we will
need the following

Lemma 3.1. The binomial coefficient () is not divisible by the characteristic p,
if and only if k; < n; for all i, wheren = Y n;p', k = > k;p' are the p-adic
expansions of n and m.

Proof. [4, p. 352]

Example 1. In this example we simplify Shioda’s [15] calculation of the group
of automorphisms of the Fermat hypersurfages= Y ;_x!", defined over an
algebraically closed fieltl, of characteristip > 0, p { n. The partial derivatives of
f arey; = nx{"l. If » > 4, then every automorphism of the Fermat hypersurfaces
is linear. LetA = (a;;) € PGL(r + 1, k) be such an automorphism.

For a pointP = (xp : ... : x,) we compute the coefficients &f(A(P)) :

Yi(A(P) i=n(Y ajxp)" P =nY_ a7 ¥ (xo, .o )+
j j

n—1
+n > (vo v>a;}8"'aiv;x6}0"'xrv’- (3.2)
vw+..+v,=n-1 e
vi<n-—1

By proposition 3.1 we have that modulo the defining polynonfiaivhich is of
degreen, the right hand side of (3.2) is linear Ir}, and since no polynomial of
degreen — 1 can be equal to a polynomial of degree:, we finally arrive at

(Z ai.;xj)”fl = Z a;’j_lx;’_l, (3.3)
J J

so if there are more than twg; # 0 in some column, then by lemma (34)- 1
is a power of the characteristic. Afis the matrix(a;;), then byA@ we denote the
matrix (al.qj). Letg :=n — 1 = p" then equation (3.3) implied @ A" = Id, hence
the automorphism group is PG+ 1, p?).

If, on the other hand, there is only one non-zero element in every column of
(a;j), then after a permutatioty;;) is diagonal, so the automorphism group is
isomorphic toZ], x S.41.
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Example 2. Let A = (a;;) be ann x m matrix with elements in the algebraically
closed fieldk. We consider the hypersurface defined by the equation

AglX]:=) xeanx] =0, (3.4)
K\

whereg is a power of the characteristic. By the theory of Jordan forms, the matrix
can be decomposed after a linear change of coordinates in block diagonal matrices
of the form:

A1 0 O
A~1 0. 0|
0 0 A,

whereA; are square matrices of the forla = diag(Aq, ..., A;) or

2100
Or 10

R
00 0 A

A; =

This proves that after a linear change of coordinates, the hypersurface defined in
equation (3.4) can be decomposed as a product of hypersurfaces defined by Fermat
polynomials @A; diagonal), and polynomials of the form

r—1
3w + 21 + A =0, (3.5)
k=0

Hence, AutV (A4[X])) = @;Aut(V (A; ,[X])). The automorphism group of Fer-
mat hypersurfaces is studied in the previous example. We are left with the study of
A1 00

or10
non diagonal case. Let be the non diagonal x r matrix . , and let
. . 1

0004
f be the polynomial defined by equation (3.5). The partial derivatives are given by

Ax; ax ifi=r"

%_{Ax;’—i—xﬂ_l ifi <r

We observe that after every linear change of coordinates given byanmatrix
B = (b;}), the partial derivatives change linearly. Moreougis an automorphism
of V(f) ifand only if :

0 0
(x0, ...., xr)B'(B(a—){O), e B(af

) = (X0, s X)) BT BD (), .o x) = U,
(3.6)
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whereB@ is the matrix(b,.qj). Let B* be the matrix defined bg*J = JBY, i.e.
B* = JBW J~1 By (3.6) the matrixB satisfies

B'B* = B'JBY J~1 = Imodz,

whereZ denotes the centre of G+ 1, k). Therefore AutV (f)) is the subgroup
of PGL(r + 1, k) consisting of matrices of the form

B = (J (B@)_ljl)t.

Example 3. We consider now the hypersurfagegiven as the zero locus of the
irreducible polynomialf := >;_; x;’fxg—”" + xg, defined over an algebraically
closed field of characteristje > 0. We assume that form a decreasing sequence,
and we consider the set of indicEs=1 <ty =t < --- < t,}, such thats; is
constant for, <i < txy1, i.€

=Ny =..=Ny_1>Ny > ...>n > 1

We wantf to be irreducible, so at least ongis equal to:. Moreover, we assume
that p { n; for all i. For technical reasons we also assume thatz. In order to
use proposition 3.1, we also assume 4.

The partial derivative®; = 9; f of f are:

,
Yo = Z(n — ni)x;’ixg_"i_l + nxg_l
i=t1

nix:”_l if 0<i<n

1 n—n: - .
nixin’ xg M <

Y =

The action of the automorphism = (a;;) is, by proposition, 3.1 linear on the
partial derivative¥;. For 0 < i <t we compute:

ni—1

,
oY) =ni | Y aijx; =

j=0

-
. ni—1 _n;—1 . nj -1 ) Ve Vo )
> s ooy Uy
j=1 vw+..+v,=n-1
O<vi<n —1

= Z riYi modf

As in the previous example, every summand of the above sum that does not fit in
a linear combination o¥; is zero, since no no-zero polynomial of degree 1
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belongs to the principal ideal generated By comparing coefficients we have
ajj=0forj>rand0<i <.
Fort < i we compute:

n,-—l

r r n—n;
o(Y;) =n; Zai/x/ (Z aokxk) . 8.7
j=0 k=0

The termn;a;; i 1a8k "'x;‘l L + " that appears in the above equation can not be
canceled out by linear comblnatlonsqu fork # j,k # 0, j # 0. This proves
thata;jaogr = Ofork # j, k # 0, j # 0. Ifthere is ak # 0 such thakg, # 0, then

ajj =0fort <iandj # 0, k for i # 0. Therefore for ali > ¢ we have

o (x;) = ajoxo + aikX. (3.8)

Assume that;; = 0 for alli > #1. Sincer — #1 > 0 there are at least twq,, x;,
with i1, i > t1 such that

o(xi)) =a-o(x;,),

wherea € k. Taking the inverse ob of both hand sides we arrive af, =
a - xi,, a contradiction. So there is an > r; such thata;y # 0. The term
aps" a1kt appears in (3.7), thereforgo = 0 ork > t. In the first
case,i.e. whenagg = 0, o(Y;) in (3.7) could not be linear sum df;, unless
r=t—1,i.ewe are studying the case of a Fermat hypersurface. Henee, On
the other hand;, 1a8k "’x,’: Lis also aterm i (Y;), and since > 1, it can-
not be canceled out by a linear sumi®f This proves that the original assumption
aor # 0, for somek £ 0 is false.

We have proved so far that

o (x0) = agoxo.
Equation (3.7) is now transformed to

n,-—l

-

n—m; n—n;

o(Y;) =n; Za,-jxj agy ‘Xg s
Jj=0

and by comparing coefficients, we arriveaf = 0, fori > 71, j < 1. Let

us write the polynomialf as a sum of two ponnomiaI;" f1+ f2, where
n—ny

fim T andf = " (S L ) o
the arbitrary automorphisim we have

o(f)=x)f =0(f1)—x)fr=x)f2—0c(f2). (3.9)

Sincea;; = 0fori <t andj > #; the polynomial

o(f1) — x(o) f1 € k[x1, ..., xy—1].
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Moreover, sincar;; = 0 fori > 11, j < 11 ando(xg) = agoxo, We have that
x(0) f2— o (f2) € k[xg, x4, ..., x,], and finally we arrive at

o(f1) = x(o) frando (f2) = x (o) fa.

The polynomialfz/x, ' is of the same form as the original polynomiél so
proceeding inductively we have that the matrix representatign of o is a block
diagonal matrix of the form:

ap 0 --- 0

0 A1 O

. A ,
0

whereAy are(f11 — 1) X (tx4+1 — tx) square invertible matrices. Moreover, the
study of automorphisms of Fermat hypersurfaces, gives us that if in a column of the
block matrixA; there are more than one non zero elements, thenl is a power

of the characteristic. Let;, := 7.1 — ;. There is a direct sum decomposition of
the group of automorphisms &f :

s—1
Aut(X) := P Gr.
k=0
where
1 if dp =1
. it di =2
K= Zy, » Sa, if di > 2 andngx — 1 is not ap — power

PGU(dy, thk) if dp >2andn; —1= phk

Remark 3.1. Let X be a variety inP"*+1, let XS™ be the smooth locus of and let
P"*+1* be the dual projective space. The conormal varigkyof X is defined as the
closure ofC X5™ ¢ Pr+1 x Pr+1* whereC XSMis the se( P, H) € P+l x prtl*
forall P € XS™ andH e P"t1* with Tp X c H.The dual varietyX* is the image
of CX inP"t1* If X = V(f)isahypersurface, then the Gauss majs defined as
the map sending every poifitin the smooth locus aoX, to the tangent hyperplane
TpX € P"t1" ie, in terms of the defining equatiofi of the hypersurface, the
Gauss map is given by

0 a
X>P— (—f(P), f
9x0 0xy,

(P)) e X*.

Let CX* be the conormal variety of the dual variety. It is natural to expect that
CX = CX* and as a matter of fact this is true in characteristic zero. In positive
characteristic the Monge-Segre-Wallace criterion [10] asserttiat= C X* if

and only if the extension of function fields, that is induced by the Gidp— X*,

is separable.
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Inour examples, itis nice to point out that there are extra automorphismsin char-
acteristicp exactly whenCX # CX*. For example wheX is the Fermat hyper-
surface, then the Gauss map is the Frobenius map and the exte@GXyy k(X*)
is purely inseparable. For more information about projective duality we refer to the
literature [6],[9],[10].

3.2. Thecasec =2

LetX C P" be acomplete intersection corresponding to the idleahich is gener-
ated by two homogeneous polynomigisand f> of degrees: andn respectively.
Every linear automorphismdefines polynomialg;; (o) of degrees defj —degf;,
such that

2
o(f) =) 8ij©)f
=1

(by assumption polynomials of negative degree are zero). Le{BG[x]) be the
group of invertible matrices modulo diagonal matrices with coefficientsTinere
is a group morphism

p 1 Aut(X) — PGL(2, k[x])

o —> (gij(a)) .

The automorphisna can be extended to an automorphism of the hypersurfaces
V(f1) andV (f2) if and only if (g;; (o)) is a diagonal matrix. In case = m, the
morphismp defines a representation of At) in PGL(2, k), and ifn > m then

p(o) is a lower triangular matrix of the form

g11(o) O

= , 3.10
P(@) <g21<o) g22(0)> (3.10)

whereg;; (o) € k andgz1(o) is a polynomial of degree — m. Moreover, in this

case every automorphism can be extended to an automorphism of the hypersurface

V(f1).
As in the case of hypersurfaces, the automorphisqreserves the normal

bundleNpX = TpPP"/Tp X, and acts on the base &fp X = (V fi|p, V f2|p)k @S
follows:

V falo(py - 0 = Vg21(0) f1(P) + g22(0)V f2(P) + g21(0)V f1(P).  (3.11)

Remark 3.2. In casern > m every automorphism ok is the restriction of an
automorphism ot (f1). We considerX as a divisor ofV ( f1) so Aut(X) can be
interpreted as the decomposition groupXgfin the cover

V(f1) — V() e),

Hence, AutX) is the identity, unlesX is ramified in the above cover.
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Remark 3.3. If degf1 = degf>, then there is a basg], f; generating the ideal
such that

Aut(X) = Aut(V (f1)) NAUt(V (f3)),
if and only if the representation
o Aut(X) — PGL(2, k)

can be decomposed as a direct sum of one dimensional characters.

3.2.1. Complete Intersections of Fermat hypersurfaces Denote byf; = xg' +
o+ x", f2 = xp + ...+ x;' two Fermat polynomialsp { n, m, andn # m. We
will prove that the ideal = ( f1, f2) is prime of codimension two. Thehdefines
a complete intersectiok, which is a varietyi(e. reduced and irreducible).

For this we observe first théfi, f>} form aregular sequence in the polynomial
ring k[xo, ..., x,]. Indeed, f1, f2 are irreducible so iff; is a zero divisor in the
guotient ringk[xo, ..., x,]/{f2) then f1 € (f2), a contradiction, since the degree of
f1in xg is strictly less than the degree @f in xg. Sincek|[xo, ..., x,] is Cohen-
Macaulay, the codimension éfis two.

Proposition 3.2. Theideal I isprime.

Proof: Sincd f1, f2}isaregular sequence inthe Cohen-Macaulaykirg, ..., x,],
proposition 18.13 in [4] implies thak /I is a Cohen-Macaulay ring. We will use
now the following

Theorem 3.1. Let R = k[xo, ..., x,]/I where I = (f1, ..., fs) iSa homogeneous
ideal of codimension c. Let J C R be the ideal generated by the ¢ x ¢ minors
of the Jacobian matrix 7 = (3f;/dx;), taken modulo /. Suppose also that R is
Cohen-Macaulay.

— R isreduced if and only if J has codimension > 1in R.
— R isadirect product of normal domainsif and only if J has codimension > 2
inR.

Noticethat since R isagraded ring, if itisa direct product of normal domains, R
isa domain, therefore I is prime.

Proof. [4, Th. 18.15]

Remark 3.4. In geometric terms the above theorem ensures that if the codimension
of the singular locus is big enough, théns prime. In particular, if the algebraic

set corresponding td is non singular, then codifd) = dim X and the theorem
holds, provided that dinY > 2.

The Jacobian matrix in our case is

m—1 m—1 m—1
_ (mxo mxy e mx) ) ,

n—1 n—1 n—1
nxo nxl R
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and the 2x 2 minors are of the form:
mnxim_lx;"_l H(xi — X)),

where¢ runs over the: — m roots of one. Since the characteristidoes not divide
m, n the singular locuX\ XM of X is contained in the intersection of a finite union
of lines L, with X, wherev runs over a finite index set. For example one such line
is given byx; = ¢x; for all i, j, where¢ is an — m root of one. In general we
will have all the combinations for different values of zeta, and also for some
the equationx; — ¢ x; might be replaced by; = 0.

In the algebraic setting,

rad(#) =I(X5™ > I(U;(L; N X)) = NI,
wherel; ;= I(L; N X). Therefore,
. J+1 . . . .
codm(rad(T)) > codim(N/;) = min;(codim(/;)) > dimX — 1.

Since the ringk[xo. ..., x,]/1 is Cohen-Macaulay, we have that codif!) =
depth(Z+£) , and by [4, Corollary 17.8] deptrad (£+£)) = depth(£+). Hence,
if dim X > 2, X isreduced, and if dinX > 3, thenX is also irreducibled

According to proposition 2.2 every automorphisnXo linear,.e. itis induced
by a matrixA = (a;;) € PGL(r + 1, k), such that for everyf e I, fA e I.
We apply this tof; = xg' + ... + x,", first. The polynomial

r r "
hA=)" aijXx;
i=0 \ j=0

is an element of the idedl i.e.

f1A = g11(A) f1 + g12(A) f2,

for two suitable polynomialgi1(A), g12(A). Since the degree gf A ism, we have
thatg12(A) = 0andgy1is acharacter of AiX). This proves that the group Lix),

of linear automorphisms of, is a subgroup, of the group of automorphisms of the
Fermat hypersurface given bfff + ... +x" = 0.

If m is not a power of the characteristic, then the automorphism gtbofthe
Fermat hypersurfacgy +- - - +x/" = 0isZ;, x S, 1, and the group AutX) is the
subgroup ofG, consisting of elements that kegpin 7, and a simple calculation
shows that

AUL(X) = AUL(V (f1) N AUV (f2) = Zfy y X S

We assume now that — 1 = ¢ hence AutV (f1)) = PGU(r +1, ¢?). Let A be an
automorphism o represented by the matrix;;). If the ideally := (f2, f2A) is
prime thergz; f1 € I1, hence eitheg,s or f1isin I, and since de@), deqg21) <
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n, the polynomialg21 is zero, equivalenthd can be extended to an automorphism
of V(f2).

Assume now that the automorphistrcannot be extended to an automorphism
of V(f2), and the ideal; is not prime. Therefore, the polynomigl A is not in the
ideal generated byb, so{ f2, f2A} is a regular sequence.

We will use the following generalization of the division algorithm in polyno-
mials rings

Lemma3.2. Let > be a fixed monomial order on Z” ;, and g1, g2 be an ordered
pair of polynomialsin k[xo, ..., x,]. Every f ink[xo, ..., x,] can bewritten as

f=aig1+azxgo+r,

wherea;, r € k[xo, ..., x,] and either r = 0, or r isak-linear combination of mono-
mials, none of which isdivisible by any of theleading termsof g1, g2. Furthermore,
if a;jg; # 0, then multidegf) > multidegag;).

Proof. [3, Thm. 3 p.63]

Since we have assumed that the idgak ( f2, f2A) is not prime, 3.1 implies that
the codimension of the idedlgenerated by the 2 2 minors of the Jacobian matrix
is zero or one. The 2 2 minors of the Jacobian matrix are computed as follows

—_ -1
D, . = nxir; ! Z:;o QAyiq (Zgzo asilxs)n
1,12 = n—1 r . r ) n—=1]"
nxiz v=0 iy (ZSZO aSleS)

Assume first that the codimension bfs zero. Then all the 2 2-minors are zero
divisors,i.e. there are polynomials;, ;,, u, i,, Vij,i, Such that

Riyin Digin = Uiy ip f2 + Vigip f2A. (3.12)
By dividing k;, i, by f2, f2A, according to lemma 3.2 we can assume that
degcj hiyi, < degx; f2A, wherej # i1, iz (3.13)

For a polynomialw € k[xo, ..., x,] we denote by sp;, (w), the polynomial de-
fined by sp, ;,(w) = w|xi1=xi2=0' Similarly, we will denote by sp ;. ;.(w) the

polynomial defined by sp;, ;,(w) = W xj, =x;)=xiy =0-

We specialize equation (3.12) fan, i2) = (1, 2).
0 = spy 2(u1,2)SPy 2(f2) + SPy 2(V)SPy 2 f2A.

The polynomial sp,( f2) is irreducible, hence either gp(v1,2) or sp »(f2A) are
multiples of s ,(f2). Butif sp; »(v1,2) € (Spy 2(f2)) then (3.13) implies that

multidegus 2f2A) > multideghy 2D1 2),

with respect to the lexicographic order, a contradiction. Hencgy(SbA) =
spy 2(f2), equivalently

f2A = fo+dip,
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whereds > is a polynomial, such thai; »|y,=x,=0 = 0. We arrive at the same
conclusion for all 2x 2 minors, so

f2A = f2+a,

wherea is a polynomial such that gp, (@) = 0. Assume that for a fixegh there
are more than one elememnis,, with g;;, # 0, saya;, ;, anda;,, j,- By comparing

coefficients of the termsl.’ixl.”z_l_” in f2A = goof1 + g21f2, We obtain

n—1 d m ”_1_1“_8..
M Zaviavj = 9ij,
v=0

forall x = 1, ...,n — 1, and this gives that — 1, is a power of the characteristic
and A is an automorphism of>, a contradiction to our assumptiohis not an
automorphism off.

Therefore not all minor determinants are zero divisorkl|ixp, - -+ , x,1/11
and without restriction of generality, assume tifigt; is not a zero divisor. Then
the polynomialg Do 1, f2, f2A} form a regular sequence, and if the codimension
of J is 1 then all other minor®d;, ;,, for {i1, i} # {0, 1} are zero divisors on
(Do1, f2, f2A),1.e there are polynomials; , ,u; ... v; .. w; ; suchthat

1 I ’ l
hil,izDilviZ - wiLizDO’l + uil,izfz + vil,izsz'

We consider the above equation fer= 0, andi> # 0, 1, and evaluate afy =
x1 = x;, = 0. By a similar argument we obtain that

f2A = fa+a,
where sp 1 ;,(a) = 0. Again this proves that no monomial term of the fox;‘hc;?‘”
can appear as summandgprovided- > 4,i.e. (”:1) Yo aﬁ(a;;_l_” = 845, and

the automorphism can be extended to an automorphisn¥@ff2), a contradiction.

3.3. Intersection of Fermat hypersurfaces of the same degree

The Fermat polynomial§” xl.q+1 over a field of characteristip, behave like the
quadratic form$)_ x2. Indeed, we can define the bilinear form

(x,y) = inaijyiq,
i.j

wherex = (xo, ..., x-), ¥ = (Yo, ..., ¥r) @and(a;;) is anonzero matrix. Lef : x —
x4 be the Frobenius involution in the finite fie]R;{z. If F(a;;) = (a;j) then(, )
is a hermitian inner product with respect to the Frobenius involut®n

(. y) = F({y, x)).
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Moreover, we observe that with respect to the theory of projective duality, the
guadratic and the Fermat hypersurfaces as above are the only nonsingular hyper-
surfaces such that the dual variety is nonsingular.[14]

Since the field of definitiort is assumed to be algebraically closed, the inter-
section of two hypersurfaces of the form

ina,‘jx;l =0, and inbijxj
i,j i.j

can be normalized, after a (not-necessary linear) change of coordinates, to the
intersection of the hypersurfaces

r r
q+1 gt
in _Oanch,xi =0
i=0 i=0
for suitablec; € k.

Remark 3.5. It is known that the intersection of two quadratic surfaces is an ellip-
tic curve with infinitely many automorphisms. It seems to be interesting to study
automorphism groups, of intersections of two Fermat hypersurfaces of the form:

Z x?+1 and Z c,-xf”l.
Using the Jacobian criterion 3.1 we can prove the following
Lemma 3.3. Theintersection of the Fermat hypersurfaces
v xhand vy et
isa complete nonsingular intersection if and only if ¢; # ¢; for i # j.

Let X (co, ..., ¢/) be the projective variety corresponding to the ideal

I = <inq+l’ Zcix?+l>v

Ci ;ﬁcj' fori #* J.
The normal space of (co, ..., ¢;) at a pointP = (xg : ... : x,) is generated
by the vectorsr = (x§ : ... 1 x/), Z := (coxg : ... : ¢x). Leto be a linear

automorphism ofX represented by a matrix;;). By comparison of coefficients
in (3.11) we obtain

> aial, = (b11+ b1aci) 8k
i

Z aikal c; = (ba1 + baack)dky (3.14)

Denote bye; = (aix)i=o0 +. By (3.14) we have

..........

(e, ev) = (b11+ b12ck)Sky (3.15)
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(e, ev) = (b21+ b22ck) Sk
On the other hand, =}, A;¢;, and (3.15) implies
(€}, ei) = Aj(b11 + b12ck) ki,

hencex; = %5“ (notice that ifb11 + b12c; = 0 thenbo1 + boocy = 0 hence

the 2 x 2 matrix (b;;) is singular, a contradiction). The above expressionifor
allows us to write

o — b21+ baock )
* 7 big + biock

therefore for all, k

b1+ baoc
—ajk.-
b11 + b1ock

If, for a fixed k, there are more than one (sayi,) such that;;x # 0, aj,x # O,
then (3.16) implies that;, = ¢;,, a contradiction. This proves that

(3.16)

Cidjk =

aij = 8i,z(j)Mi

wherer is an element of the symmetric grodp;1 andu; € k. Equation (3.14)
implies now that

+1
Zaika?‘, = ZBi,f(k)SZT(U)mM? = ! = (b11 + b21cy).
; i

We have proved so far that := Imp is a subgroup of S 1 acting onc; by a linear
fractional transformations, and that kee Z; _ ;.

Let (x;;), (y;;) be the images of two elements;;), (b;;) € G underp. We
write

aij = Widi,o(j)» bij = Xidi z(j)-
Consider the product

cij = Zaivbvj = Zui/\uf?i,a(u)rsv,r(j) = Wk AkSy—1(iyr(j)-
v vV

Letk := o~ 1(i) = t(j) for suitablei, j. We have

MZH = x11 + X12¢k (3.17)
and

)»ZH = y11+ Yy12ck (3.18)

By computing(zxAx)? 1 in two ways ( by multiplying the matrices;; ) with (y;;)
and by multiplying equations (3.17),(3.18)) we obtain:

—x12y12¢2 + (¥12Y11 — *¥12Y22)C* + X12y21 = O. (3.19)
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For everyk there are, j such that~1(i) = 7(j) = k and (3.19) holds for alt;,
hence the corresponding quadratic polynomial is identically zero. This implies that

x12y12 = 0 andx12(y11 — y22) = 0 andx12y21 = 0,

Ss0x12 = 0 or (y12 = y21 = O andy11 = y22) S0 (y;;) is the identity. Therefore,
Aut(X) is a subgroup of AL('[V()CS+1 + o4+ = PGUE + 1, ¢2).

Moreover, Inp is a finite subgroup of PGI2, k). The finite subgroups of
PGL(2, k) in positive characteristic are classified in ([17]), and there are the follow-
ing possibilities: A, Aa, Su, Z,, Z!,, 2!, x Z,, PSL2, ph), PGL(2, p'). We have
proved that all automorphisms in jprare upper triangular, hence

Imp € (Z!,, Zy, 7%, % Z,}. (3.20)

Moreover, the fixed points of Imare{oo}, {0, oo}, {0, co}respectively. The set of
r 4+ 1 points{(1, cp), ..., (1, ¢,)} acted by Inp is divided in orbits. This proves that
s|r+2lors|r,pt =r, pitin | r + 1 0or p1tan | r. The proof of theorem 1.3 is
now complete.

Remark 3.6. As in the the theory of intersections of quadratic forms, the set of iso-
morphism classes dof (co, ..., ¢,) are in one to one correspondence with elements
((1:cp), ..., (1 : ¢r)) of the configuration space

X{2,r + 1} i= (GL2, O\M*©2, r + 1)/H,41) /S11

where M*(2, r+1) isthe space of  r+1 matrices, for which no 2-minor vanishes,
and H, = (k*)"*1 is the subgroup of Glr + 1, k) consisted of diagonal matrices.
If the » + 1 points ofP* are in orbits of one group mentioned in (3.20), therplm
is not the identity.

Example 3.1. Automorphisms of the curves(co, c1, c2, c3). The setof such curves
corresponds to the configuration spa€g, 4}, which is isomorphic to the affine
line, and the isomorphism is given in terms of thénvariant defined as

(D(122D (342 + D(132D (242 + D(142D(232)°
D(12)2D(34)2D(13)2D(24)2D(14)2D(23)2 ’

where Oij) = ¢; — ¢;. By theorem (1.3) the only possibilities for prare given
in the following table:

Imp | (co.crec3) | T |

73 (0, ¢, we, w?c) 0 @?+w+1=0, chak #3

Za (c, Ce, £2¢, £3¢) 291522137 3+¢2+¢+1=0,chak #2
ZoxZp | (c,c+1,d,d+1) 0 chak = 2
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