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We study the automorphism groups of cyclic extensions of the rational function
fields. We give conditions for the cyclic Galois group to be normal in the whole
automorphism group, and then we study how the ramification type determines the
structure of the whole automorphism group. Q 1999 Academic Press

1. INTRODUCTION

A hyperelliptic function field, contains in the center of its group of
automorphisms an involution j whose fixed field F Ž j. is rational. Moti-

w xvated by this observation Brandt and Stichtenoth B-S studied the group
G of automorphisms of hyperelliptic function fields, by projecting the

Ž .automorphism group into the known finite subgroups of PGL 2, q , that
constitutes the automorphism group of the rational function field:

G
G ª - PGL 2, k .Ž .² :j

As a natural generalization of this we consider cyclic extensions of the
rational function field. Let F be such an extension of the rational function

Ž .field F . When n ) 2 the cyclic group Gal FrF is not always a normal0 0
subgroup of the automorphism group G. For instance, consider the family

n m <of function fields of the curves x q y q 1 s 0, where n ) 4, m n, and
Ž . Ž . Ž . Ž Ž ..p, n s p, m s 1, m, 2 s 2, p ¦ n y 1. The group C s Gal Frk yn

w xis not a normal subgroup of G Ko .
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w xR. Brandt Br studied the group of automorphisms of function fields
Ž .which are cyclic central extensions of the rational function field k x with

Ž Ž ..Gal Frk x s C , where C is a cyclic group of prime order q, prime toq q
the characteristic p of the algebraic closed field k.

Here we generalize further his results to include automorpism groups G
of function fields which are cyclic extensions of order n of the rational
function field F . The constant field k of both function fields F and F is0 0
assumed to be algebraically closed of characteristic p, prime to n. We also
assume that all ramified places in the Galois extension FrF are ramified0

Ž .completely and that Gal FrF is normal in G.0
w xMoreover, following Accola’s ideas Ac on strongly branched covers, we

are able to obtain conditions on the number of ramified places in exten-
Ž .sion FrF , sufficient for the Galois group Gal FrF to be normal in the0 0

whole automorphism group G. Furthermore, we determine the structure
of all such groups of automorphisms in terms of generators and relations
when GrC is isomorphic to C , D , A , A , S or a semidirect productn n n 4 5 4
of an elementary Abelian Group by a cyclic one, and in terms of the
cohomology class of the group extension in all other cases. The structure
of G depends on the ramified places in extensions FrF and F rF G in0 0

� 4the following way: Let A s P , . . . , P be the set of places of F that are1 f 0
ramified in the extension F rF G 0 and A ; A be the set of places of A0 0 R

Ž .which are ramified in FrF . The pair G , A ; A is called the ramifica-0 0 R
tion type of the extension FrF . It turns out that in most cases the0
ramification type determines the group structure of the extension G; there
are however function fields which are cyclic extensions of the rational
function field with the same ramification type, but different automorphism
groups.

Finally we are able to prove that for every finite subgroup G of0
Ž . X Ž .PGL 2, k we can find a subgroup G of PGL 2, k , isomorphic to G and0 0

a cyclic Kummer extension F which realizes every possible ramification
Ž X .type G , A ; A . We also provide a method to write down an equation0 R

n Ž .y s f x realizing every possible automorphism group.

2. CONDITIONS FOR NORMALITY

Every cyclic cover of the projective line, after a birational transforma-
tion, can be written in the form,

s
dn iy s x y r , d g Z,Ž .Ł i i

is1
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where 0 - d - n and d [ Ýs d ' 0 mod n. If the radicandi is1 i
s Ž .di < Ž .Ł x y r is not a d n power; i.e., n, d , . . . , d s 1, then F is ais1 i 1 s

Kummer extension of F of order n. We study extensions for which the0
Ž .stronger condition n, d s 1 for all i s 1, . . . , s, holds.i

The function field F is a cyclic Kummer extension of F . Denote by ¨0 P
the valuation of F corresponding to place P. We have0

yd if P s P ,¡ xs`s
di ~d if P s P ,¨ f x s ¨ x y r sŽ . Ž .Ž . Ł i xsrP P i iž /is1 ¢

1 otherwise

Žw x x.and the ramification index e is given by the tables: St , III.7.3 p. 110P

n¡ if P s Pxs`¡ n , d if P s P n , dŽ . Ž .xs` ~~ nr [ e s .n , d if P s P ,Ž .P Pi xsr i if P s Pxsr¢ in , dŽ .in otherwise ¢
1 otherwise

Ž .The conditions n, d s 1 imply that all ramified places in extension FrFi 0
are ramified completely. Notice also that we have chosen a curve model

<such that there is no ramification at infinity, because n d. The genus of the
function field F can be computed with the aid of the Riemann]Hurwitz
formula:

n y 1 s y 2Ž . Ž .
g s .

2

If n is a prime number, then under the assumption s ) 2n we have that
the extension FrF is strongly branched and, because the group C [0 n

Ž . w xGal FrF is simple, we can use Corollary 3 of Ac, p. 321 , to deduce that0
C eG. We will modify the ideas of Accola to prove:n

PROPOSITION 1. Suppose that a cyclic extension FrF of the rational0
< Ž . <function field F is ramified completely at s places and n s Gal FrF . If0 0

Ž .2n - s then Gal FrF eG, where G is the whole automorphism group.0

Proof. Let T be a generator of C and Q , . . . , Q be the places of Fn 1 s
˜ y1which are fixed under the action of C . Denote by T s s Ts ann

˜² : Ž . Ž .arbitrary conjugate of T. The fixed places of T are s Q , s Q ,1 2˜²T :˜ ˜ ˜Ž . ² :. . . , s Q . Let F [ F be the fixed field of T . F is rational becauses 0 0
Ž .it is a conjugate field of F . Denote by q i s 1, . . . , s , the restrictions of0 i

˜ ˜Ž .the places s Q in F . Because F is rational, there are elements f ini 0 0 i
F̃ , with only one pole at the place q , of pole order 1, and moreover0 i
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˜ ˜Ž .k f s F . F is a subfield of F and we can consider f as an element ofi 0 0 i
F. The divisor of f in F isi

f s f y ns Q .Ž . Ž . Ž .i i i0

Set h [ f y T ( f . If h is not a constant function theni i i i

deg h F 2 deg f y r s 2n y r ,i i i i

Ž .where 0 F r F deg f r s 0 or n is the number of poles of f , countingi i i i
multiplicity, fixed by T. Indeed, for a place P of F, we have

¨ h s ¨ f y T ( f G min ¨ f , ¨ T ( f ,� 4Ž . Ž . Ž . Ž .P i P i i P i P i

so if P is a pole of h then P is a pole of f or T ( f . Moreover if P is ai i i
common pole of f , T ( f then it is not a pole of h .i i i

On the other hand, every fixed place of T which is not a pole of f is ai
root of h . So the function h has s y r roots. Because 2n - s, we havei i i

deg h F 2n y r - s y r F deg h ,i i i i

a contradiction. Therefore h g k and because T fixes places which arei
not poles of f we have that h s 0. This implies thati i

� 4f s T f , ; i g 1, . . . , s .Ž .i i

˜Hence, f g F , F s F , and C eG.i 0 0 0 n

Using the Riemann]Hurwitz formula we find that the above condition is
equivalent to

2n y 1 - g ,Ž . F

where g is the genus of the function field F.F
In the case k s C and n s p is prime, then Victor Gonzalez and Rubi

w xRodriguez G-R have given a better condition. A curve C is a p-cyclic
cover of the projective line if and only if it has a g1 base point free linearp
system. The automorphism group permutes all linear systems of the above
form and if the linear system g1 is unique, then the Galois cyclic groupp

Ž 1. 1Gal CrP is normal in G. A sufficient condition for a linear system g top
be unique is the inequality:

g
2 F p F q 1. 1Ž .

2
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w x Ž .A-C , so if 1 holds then C eG.p

3. CALCULATION OF THE GROUPS

Let FrF be a cyclic extension with cyclic Galois group C of order n0 n
Ž .prime to the characteristic p and C s Gal FrF eG. We form then 0

following short exact sequence,

p
1 ª C ª G ª G ª 1n 0

Ž .where G [ GrC is a finite subgroup of PGL 2, k . The group G actsn 0
on C in the following way: We choose a section of G in G; i.e., for everyn 0

Ž .s g G we choose an element S g G, such that p S s s and define0

T s s STSy1 ,

where T is a generator of the cyclic group C . Because C eG this actionn n
b Žs . s Ž .is well defined. Setting T s T for an integer b s we can define a

homomorphism

G ª Aut C ( ZUŽ .0 n n
b : 2Ž .½ s ¬ b s mod nŽ .

We can interpret the action homomorphism b in terms of the generating
elements x, y. Notice first that y is a generator of F over F , i.e.,0

Ž . lF s F y . Any other generator of F over F is of the form y B where0 0
Ž . w xl, n s 1 and B g F Ha, p. 38 . Because C e F we have that for every0 n

Ž . Ž .S g G, S F s F so S y is a generator of F over F, hence of the form0 0 0
Ž . lŽS . Ž . Ž . <S y s y B . By calculation b s s l S , where s s S .FS 0

Let us consider now the inverse situation: G is an arbitrary finite0
subgroup of automorphisms of the rational function field F . Is it possible0
to extend every element in G , to an automorphism of F? The following0
proposition gives us a necessary and sufficient condition.

w x Ž Ž ..PROPOSITION 2 Na . Let D s div f x be the root dï isor of the0
Ž . n Ž .polynomial f x s y in the field F . Suppose that deg D s d ' 0 mod n0

Ž Ž . . Ž .and that ¨ D , n s 1 for all P g supp D . Let s g G be an automor-P 0
phism of F .0

Ž .a The following are equï alent:

v For e¨ery element s in G we ha¨e that0

s D ' b s D mod n.Ž . Ž .
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v There is an automorphism s 9 of the function field F such that
<s 9 s s .F0

Ž .b The following are equï alent:

v There is an automorphism s 9 of the function field F such that
<s 9 s s and s 9T s Ts 9 where T is the generator of the cyclic groupF0

Ž .Gal FrF .0

v Ž .s D s D,

where by writing D ' D9 mod n, for two dï isors with the same support, we
Ž . Ž . <mean that ¨ D ' ¨ D9 for e¨ery P D, D9.P P

Ž .Proof. Let s g G and S be an extension of s to F. Setting S y s0
b Žs . n Ž .y B in the defining equation y s f x of F we gets

s fŽ .
ns B . 3Ž .sb Žs .f

Ž .Equation 3 is equivalent to

s div f y b s div f ' 0 mod n ,Ž . Ž . Ž .Ž . Ž .0 0

Ž . Ž .because we have assumed that n N deg f , i.e., div f s n ? P . Conversely,` `

Ž Ž .. Ž . Ž .if s div f y b s div f ' 0 mod n then there is a function B g F ,0 0 s 0
Ž . Ž Ž Ž .. Ž . Ž ..satisfying 3 because the divisor 1rn s div f y b s div f is of de-

gree zero, hence principal.
The second assertion of the proposition is a consequence the first one,

Ž .because s , and T are commuting if and only if b s s 1.

Ž .The supp D is the set of places of F which are ramified in the0
extension FrF . Because C eG, every automorphism s permutes the0 n

Ž . Ž .places in supp D . The fixed places of supp D under the action of G are0
ramified in the extension F rF G 0.0 0

DEFINITION 1. Let G be a finite group of automorphisms of the0
� 4rational function field F and A [ P , . . . , P be the set of places of F0 1 f 0

which are ramified in F rF G 0. Let also A ; A be a G invariant subset0 0 R 0
of A and b : G ª ZU a homomorphism. We will denote by0 n

DD G , A ; A , b ; Div F ,Ž . Ž .n 0 R 0

the set of effective divisors D of F such that0

v Ž .G leaves supp D invariant,0

v Ž .A l supp D s A ,R

v Ž Ž . . Ž .¨ D , n s 1 for all places P g supp D ,P

v Ž . Ž .s D ' b s D mod n for all s g G .0
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Ž .Remark 1. Let D g DD G , A ; A, b . If s g G fixes a placen 0 r 0
Ž . Ž . Ž . Ž .P g supp D then b s ' 1 mod n. Indeed, s D ' b s D mod n and

Ž . Ž . Ž . Ž . Ž . U¨ D ' b s ¨ D mod n, so b s ' 1 mod n because ¨ D g Z .P P P n

Ž .LEMMA 3. If for all s g G and for all P such that s P s P we ha¨e0
Ž . Ž .b s ' 1 mod n, then the set DD G , A ; A, b is not empty. Moreo¨ern 0 R

Ž .if DD G , A ; A, b / B then we can find an effectï e dï isor D inn 0 R
Ž .DD G , A ; A, b with arbitrary high degree.n 0 R

Ž .Proof. We will first construct the supp D . Pick a place Q of F and1 0
Ž .consider the orbit O Q , G of Q under the action of G . Choose Q not1 0 1 0 2

Ž . Ž .in O Q , G and consider the orbit O Q , G . Continuing this way we1 0 2 0
Ž .can construct a set of orbits O Q , G such thati 0

O Q , G l O Q , G s B for i / j,Ž . Ž .i 0 j 0

s Ž .and A ; D O Q , G . Define the support of DR is1 i 0

s

supp D [ O Q , G .Ž . Ž .D i 0
is1

Ž . Ž . Ž . Ž .For all P g O Q , G define ¨ D [ l Q ? b s , where s is thei 0 P i
Ž . Ž .element of G such that s Q s P, and 1 F l Q - n is an integer0 i i

Ž . Ž .prime to n. We will later select a suitable l Q so that deg D ' 0 mod n.i
Ž .The divisor D is well defined because if s , s 9 g G such that s Q s0 i

y1Ž . Ž . Ž . Ž .s 9 Q s P then s 9 ? s Q s Q , so b s 9 ' b s mod n.i i i

DEFINITION 2. Let G be a finite group of automorphisms of the0
� 4rational function field F and let A s P , . . . , P , A ; A be as in0 1 f R

Ž .Definition 1. We say that the ramification type G , A ; A, b is realiz-0 R
able if there exists a cyclic extension F of F defined as at the beginning0

Ž .of Section 2, such that C s Gal FrF is a normal subgroup of the wholen 0
automorphism group G, GrC > G and the set A consists of the placesn 0 R
of A which are ramified in the extension FrF .0

Ž .PROPOSITION 4. If the dï isor D g DD G , A ; A, b can be con-n 0 R
structed so that

deg D ' 0 mod n ,

Žand the infinite place P f supp D, then the ramification type G , A ;` 0 R
.A, b is realizable.

Ž .Proof. We set F s F y , where0

Ž .¨ Dn py s x y x P ,Ž .Ž .Ł
Ž .Pgsupp D



ARISTIDES KONTOGEORGIS672

Ž . 1Ž .and x P g k denotes the finite point of P k corresponding to the
place P. The assertion follows by Proposition 2. Notice that, in order to

Ž . w xensure G eG we can take asupp D ) nr2 q 1.0

In case deg D ' 0 mod n but P g supp D, we can find a Mobius¨`

Ž . Ž .transformation A g PGL 2, k such that P f Q supp D , so the ramifica-`

Ž y1 Ž . Ž . .tion type QG Q , Q A ; Q A , b is realizable.0 R
Ž .We will now compute the degree of D g DD G , A ; A, b . Let sn 0 R 0

Ž .be an arbitrary element in G of order m. The set supp D splits into0
orbits under the action of s :0

ks0

² :supp D s O P , s .Ž . Ž .D i 0
is1

Ž .Let P be an element of supp D , which is not fixed by s . The orbit of P0
² : Ž ² :. � Ž . my 1Ž .4 Žunder the action of s is O P, s s P, s P , . . . , s P . Ob-0 0 0 0

serve that if P is not fixed by the Mobius transformation s it is not fixed¨ 0
.by any power of s . This orbit corresponds to a divisor,0

my1
i ilb s s PŽ .Ž .Ý 0 0

is0

of degree modulo pa:

m¡ b s y 1Ž .0my1 a al ' 0 mod p if b s k 1 mod p ,Ž .0i ~ b s y 1lb s s Ž .Ž .Ý 00
is0 a a¢lm mod p if b s ' 1 mod p ,Ž .0

4Ž .

for every pa N n, paq1 ¦ n.

Ž .Remark 2. Consider a realizable divisor D g DD G , A ; A, b ,n 0 R
hence of degree ' 0 mod n. If P g supp D is a fixed place of s g G ,0

Ž . Ž .then b s ' 1 mod n. If s has two fixed places P , P and P g supp D ,1 2 1
Ž . Ž .P f supp D , then necessarily we have n, m s 1, where m is the order2

of s . Indeed, the degree of D is

deg D s ¨ D q l m ' 0 mod n.Ž . Ž . ÝP i1

Ž . < Ž . Ž .So n, m ¨ D , a contradiction unless n, m s 1.P1

Ž . aLEMMA 5. If there is a s g G such that b s k 1 mod p , for e¨ery0
a aq1 Ž .prime p N n, p ¦ n, then e¨ery dï isor D g DD G , A ; A, b hasn 0 R

degree 0 mod n.
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Ž . Ž .Proof. s acts on supp D without fixed points, because b s k
Ž .1 mod n. The desired result follows by Eq. 4 .

LEMMA 6. In case A s B; i.e., none of the ramified places in F rF G 0 isR 0 0
Ž .ramified in FrF then we can construct a dï isor D g DD G , A ; A, b of0 n 0 R

degree 0 mod n.

Ž .Proof. Notice that G acts without fixed points on supp D , because0
Ž .A s B, so we take even number of orbits O Q , G i s 1, . . . , r and putR i 0

Ž . Ž .l Q ' yl Q mod n. This construction implies that deg D ' 0 mod n.i ryi

Ž .4. FINITE SUBGROUPS OF PGL 2, k AS
QUOTIENT GROUPS

All finite subgroups of the group of automorphisms of a rational
function field are given by:

w xTHEOREM 7 V-M . Let F be a rational function field with an alge-0
braically closed field of constants k of characteristic p G 0. Suppose that G is0
a nontrï ial finite group of automorphisms of F and F [ F G 0 is the fixed0 1 0
field of G . Let r be the number of ramified places of F in the extension0 1
F rF and e , . . . , e the corresponding ramification indices. Then G is one0 1 1 r 0
of the following groups, with F rF ha¨ing one of the associated ramification0 1
types:

< <1. Cyclic group of order relatï ely prime to p with r s 2, e s e s G1 2 0

< <2. Elementary Abelian p-group with r s 1, e s G0

Ž .3. Dihedral group D of order 2m with p s 2, p, m s 1, r s 2,m
Ž .e s 2, e s m, or p / 2, p, m s 1, r s 3, e s e s 2, e s m.1 2 1 2 3

4. Alternating group A with p / 2, 3, r s 3, e s 2, e s e s 3.4 1 2 3

5. Symmetric group S with p / 2, 3, r s 3, e s 2, e s 3, e s 4.4 1 2 3

6. Alternating group A with p s 3, r s 2, e s 6, e s 5, or p /5 1 2
2, 3, 5, r s 3, e s 2, e s 3, e s 5.1 2 3

7. Semidirect product of an elementary Abelian p-group of order q with
Ž . < <a cyclic group of order m with m N q y 1 , r s 2, e s G , e s m.1 0 2

q q y 1 q q 1Ž .mŽ .8. PSL 2, q with p / 2, q s p , r s 2, e s , e s .1 22 2

Ž . m Ž .9. PGL 2, q with q s p , r s 2, e s q q y 1 , e s q q 1 where r1 2
is the number of places of the field F ramified in FrF .1 0

Remark 3. Because k is algebraically closed, for every place Q of F ,0
the inertia group is equal to the decomposition group.
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4.1. Some Cohomology Calculations

It is well known that the set of all equivalent extensions of the form

p
1 ª C ª G ª G ª 1n 0

2Ž .are classified in terms of the second cohomology group H G , C where0 n
G acts on C by conjugation of an arbitrary section of G . If C is a0 n 0 n

Ž .trivial G module; i.e., the function b defined in 2 is trivial, then it is0
easy to compute this cohomology group employing the universal coefficient

w xtheorem. Namely, the following formula holds Br :

H 2 G , C ( Hom H G , Z , C [ Ext H G , Z , C , 5Ž . Ž . Ž . Ž .Ž . Ž .0 n 2 0 n 1 0 n

Ž .where the G acts trivially on Z. The homology group H G, Z is the0 2
Ž .Schur multiplier which is known for all the finite subgroups of PGL 2, k

Ž .appearing in Theorem 7. The homology group H G , Z is the Abelianiza-1 0
w xtion G r G , G of G . Using these results we are able to compute the0 0 0 0

cohomology table, Table I. Notice that two nonequivalent extension se-
quences might have isomorphic middle groups. For example, all extensions
of C by C , where p is prime are of order p2, hence Abelian. So therep p
are only two possible middle groups for the extension sequence, namely,

2Ž .C and C = C . On the other hand H C , C ( Z .2 p p p p p p
Ž .Denote by i G , C the number of nonisomorphic middle groups ob-0 n

tained by extending the group G by C . We have0 n

2i G , C F H G , C .Ž . Ž .0 n 0 n

We state also the proposition which we use later.

TABLE I

2Ž .Group G H G , C0 0 n

C Zm Žn, m.
Ž .0 if n, 2 s 1
Ž . Ž .D Z if n, 2 s 2, m, 2 s 1m 2½
Ž . Ž .Z = Z = Z if n, 2 s m, 2 s 22 2 2

A Z = Z4 Žn, 2. Žn, 3.
A Z5 Ž2, n.
S Z = Z4 Ž2, n. Ž2, n.

f1 if p s 2, p / 4
f f fŽ .PSL 2, q Z if p ) 2, p / 9, p s 4, where q s pŽ2, n.½ fZ if p s 9Ž6, n.

Ž .PGL 2, q Z = ZŽ2, n. Ž2, n.
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w xPROPOSITION 8 Wei, p. 93 . Let s be the order of G . There is an0
injection

F2 2 2H G , A s H G , A ª H G , AŽ . Ž . Ž .[ [p0 0 0 p
< <p s p s

as a ¬ res a ,Ý Ýp ŽG ª G . p0 0 p
< <p s p s

2Ž .where G ranges o¨er the p-Sylow subgroups of G . Here H G , A is the0 p 0 0 p
2Ž .p-part of the finite Abelian group H G , A .0

4.2. Cyclic Groups

We begin our examination of the possible finite groups of the rational
function field given in Theorem 7, with the cyclic group. In this section we
will prove:

THEOREM 9. Let G s GrC be isomorphic to a cyclic group C of0 n m
order m, prime to the characteristic of the field k. The set A of fixed places of

� 4F under the action of G is A s P , P . The group of automorplhisms G is0 0 1 2
then isomorphic to

Ž .a C is one, at least, of the places P , P , say P , is ramifiednm 1 2 1
completely in the extension FrF , i.e., when A / B0 R

Ž .b C i C if no place in A is ramified in FrF , i.e., A s B.n m 0 R

Ž .Proof. a In this case, one of the places P , P , say P , is ramified1 2 1
completely in the extension FrF . If Q is the unique place of F lying over0

Ž . w xP , then the decomposition subgroup G Q is cyclic Se, p. 68 and equal1
to G. The group G is Abelian and the map b : C ª ZU is trivial.m n
Ž .b In this case none of the two places P , P is ramified in FrF .1 2 0

Denote by p the natural map p : G ª G . Let T be a generator of C ,0 n
Ž .and S an element of G such that p S is a generator of the quotient

subgroup C . The group G is a metacyclic group generated by T , S.m
Ž .mBecause p S s 1 we have that

Sm s T t ,

for an element T t g C . The function b is determined by its value at then
Ž . Ž Ž ..generator p S of C . Let l [ b p S . Thenm

Tp ŽS . s STSy1 s T b Žp ŽS .. s T l .
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y1Ž .Consider the subextension diagram, where G [ p ker b1

1 ªC ªG ªker b ª1n 1

5 x x .
p

1 ªC ª G ª C ª1n m

Ž . r <Let p S , r m be a generator of the cyclic group ker b. Then

l r s b p Sr ' 1 mod n ,Ž .Ž .

and SrTSyr s T l r s T so the group G - G, which is generated by T and1
Sr, is Abelian.

We claim that all p-Sylow subgroups of G are isomorphic to C ¨ = C ¨ ,1 21 p p
where ¨ , ¨ are the exponents of p in the decomposition of n and mrr1 2

Ž .into prime factors. Indeed, let p be a prime divisor of n, mrr . Denote by
G p a p-Sylow subgroup of G . Consider the tower of fields1 1

F

C ¨n r p 1 ¨A , . . . , A 1L [ F 1 p

decomposes completely¡
p~ F PG ,0 11¢ ramifies completely

pC ¨ 1p 2F0

G1F

where p is the restriction of the place P in F C p¨ 2 , and A , . . . , A ¨ are11 1 0 1 p
the extensions of the place P of F in F Cn r p¨1 \ L. The Galois group1 0

Ž . p Ž .¨Gal LrF s C . If C is a cyclic subgroup of G containing Gal LrF ,10 p 1 0

Gal LrF F C F G p ,Ž .0 1

Ž .then C s Gal LrF . Otherwise, there is an intermediate field0

LC - L A - LŽ .T 1

Ž .corresponding to the decomposition group C A such that A decom-1 1
Ž . Cposes in the extension L A rL and ramifies in the extensionT 1

Ž .LrL A . This is impossible, because the subgroups of a cyclic p-group CT 1
are completely ordered with respect to inclusion. This remark together
with the classification theorem of Abelian groups gives us that G p s1
C ¨ = C ¨ . Using the classification theorem of Abelian groups once more,1 2p p
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we get G s C = ker b. This implies1 n

² : ² r: � 4T l S s 1 . 6Ž .

m t Ž r .m r r t ² : ² r: m Ž .If S s T then S s T g T l S so S s 1 by 6 . Hence the
group G is given by generators and relations as

� m n y1 l 4G s S, T N S s 1, T s 1, STS s T ,

Ž . rwhere l, n s 1, l ' 1 mod n. We have proven that G is the semidirect
product of the groups C i C with action given by b.n m

Remark 4. Notice that if P decomposes in FrF and the other fixed0
< Ž . <place of G ramifies in FrF then G is cyclic of order n ? G P . This is0 0 0

Ž .possible because in this case n, m s 1 and C = C ( C .n m nm

COROLLARY 10. Let G be the group of automorphisms of the function
field F and let G s GrC be the quotient finite subgroup of F . Let also0 n 0

Ž . Ž .G P be the decomposition group of a place P of F . If G P is cyclic of0 0 0
Ž .order prime to the characteristic p, then the group G P defined asp

G P [ S g G: p S P s P ,� 4Ž . Ž .p

< Ž . <is cyclic of order n ? G P in case P is ramified in FrF . Otherwise, i.e., in0 0
Ž . Ž .case P is decomposed in FrF , G P is the semidirect product of C i G P0 p n 0

with action gï en by T s s T b Žs ., where s is a generator for the cyclic group
Ž . Ž .G P . In first case b s ' 1 mod n.0

We now prove that the following ramification types are realizable by
Ž . Ž .finding a divisor in DD C , A ; A, 1 such that deg D ' 0 mod n. Wen m R

have to consider

Ž . � 4 Ža A s P , b is trivial. The arbitrary divisor in DD C , A ;R 1 n m R
.A, 1 has the form

r

D s l P P q l Q P .Ž . Ž .Ý Ý1 1 i
is0 Ž .PgO Q , Ci m

Ž .We have seen that this situation happens only in case n, m s 1, so there
are integers k , l such that k n q lm s 1. We take r even, and we set
Ž . Ž . Ž . Ž .l P s 1, l Q s l, and l Q ' yl Q mod n, i s 1, . . . , r. This1 0 i ryiq1

gives us that deg D ' 0 mod n.
Ž . � 4 Ž . � 4b A s P , P , b is trivial. The two orbits O P , C s P ,R 1 2 i m i

� 4i s 1, 2 of the fixed places P , P , are in A and A s A s P , P . The1 2 R R 1 2
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Ž .arbitrary divisor D g DD C , A ; A, 1 is of the formn m R

r

D s l P P q l P P q l Q P ,Ž . Ž . Ž .Ý Ý1 1 2 2 i
is1 Ž .PgO Q , Ci m

where Q f A for all i s 1, . . . , r. In order to assure that the above divisori
Ž . Ž .has degree 0 mod n, we set l P ' yl P mod n, r to be even and1 2

Ž . Ž .l Q ' yl Q mod n.i ryiq1

Ž .c A s B. This case is realizable by Lemma 6.R

4.3. Elementary Abelian Groups

THEOREM 11. Let G s GrC be isomorphic to an elementary Abelian0 n
Ž . tgroup EE t of order p , where p is the characteristic of k. The group G isp

isomorphic to C i G . Moreo¨er if the unique fixed place P of G isn 0 1 0
ramified in the extension FrF then G is isomorphic to C = G .0 n 0

Ž < <.Proof. Because n, G s 1 the group G is a semidirect product,0
G s C i G . The action is given by the function b.n 0

Suppose now that the unique fixed place P of G is ramified in FrF .1 0 0
Let Q be the unique place of F lying over P . The decomposition group1
Ž .G Q s G is equal to the inertia group, because k is algebraically closed.

Ž .So G Q is the semidirect product of a cyclic group of order prime to p
Ž .with a normal p-group G Q s G . Therefore the product is direct.1 0

Ž � 4 .The arbitrary divisor in DD G , A ; P , b is given byn 0 R 1

s

D s l P P q l Q P ,Ž . Ž .Ý Ý Ýi
PgA is1 Ž .PgO Q , GR i 0

where Q f A, i s 1, . . . , s. To prove that both ramification types arei
realizable we must select the above divisor to have degree 0 mod n. In the

� 4 Ž .first case A s P and b is trivial, so we take s orbits O Q , G withR 1 i 0
Ž . Ž .l P s l Q s 1, such that1 i

deg D s 1 q spa ' 0 mod n ,Ž .
a Ž .where p is the order of G . This is always possible, because n, p s 1. In0

the second case, A s B and the desired result follows from Lemma 6.R

4.4. Semidirect Products of Cyclic Groups with Elementary Abelian Groups

In this case G s GrC is isomorphic to the semidirect product of an0 n
Ž . telementary Abelian group EE t of order p , where p is the characteristicp

Ž t .of k, with a cyclic group C of order m, and m N p y 1 . In the extensionm
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F rF G 0 , two places p , p of F G 0 are ramified with ramification indices0 0 1 2 0
< <e s G and e s m, respectively.1 0 2

THEOREM 12. Let G s GrC be isomorphic to the semidirect product of0 n
Ž . tan elementary Abelian group EE t of order p , where p is the characteristic ofp

Ž t .k, with a cyclic group C of order m, and m N p y 1 . The group ofm
Ž .automorphisms G is isomorphic to C i G if A s B and EE t i C ifn 0 R p nm

A / B.R

Proof. Although in this case we are interested in elementary Abelian
groups of order a power of the characteristic, we prove a more general
lemma allowing p to be other than the characteristic.

Ž . tLEMMA 13. Denote by EE t an elementary Abelian p group of order p ,p
Ž .where p is not necessarily the characteristic. Consider the group G s EE t i0 p

Ž .C , with m, p s 1, acting on the rational function field F . Suppose that them 0
subextension

1 ª C ª py1 EE t ª EE t ª 1, 7Ž . Ž . Ž .Ž .n p p

of the extension

p
1 ª C ª G ª EE t i C ª 1 8Ž . Ž .n p m

y1Ž Ž .. Ž . Ž Ž .splits, i.e., p EE t s C i EE t . Then G is isomorphic to C i EE t ip n p n p
.C if both fixed places of F , under the action of C , are decomposed inm 0 m

Ž .FrF or to G ( EE t i C if one of the fixed places of F , under the action0 p nm 0
of C , is ramified in FrF .m 0

Proof. According to the study of cyclic extensions, we have two possibil-
y1Ž .ities for the group p C . Thusm

py1 C ( C i C or py1 C ( C .Ž . Ž .m n m m nm

y1Ž .If p C ( C i C then using the injection F defined in Proposi-m n m
tion 8:

F2 2H EE t i C , C ª H H , C ,Ž . Ž .Ž . [p m n q n
< < <q G0

where H ranges over the q-Sylow subgroups of G , we have that theq 0
Ž . Ž .whole extension 8 splits, because H is either a subgroup of EE t or C .q p m

y1Ž . Ž .If p C ( C then we will show that G ( EE t i C . Indeed, inm nm p nm
this case there is an element R g G of order nm, which generates a

Ž .subgroup of G isomorphic to C . Because the extension 7 splits wenm



ARISTIDES KONTOGEORGIS680

have an embedding

j: EE t ¨ py1 EE t ¨ G.Ž . Ž .Ž .p p

Ž . Ž Ž .. y1Ž Ž .. Ž .Moreover EE t ( j EE t and p EE t eG. Because C l EE t s 1 wep p p n p
Ž Ž .. Ž Ž ..have that j EE t eG. On the other hand j EE t l C s 1. Indeed ifp p nm

Ž Ž .. m Ž Ž .. mx g j EE t l C then x g j EE t l C s 1 so x s 1, and x s 1p nm p n
Ž .because p, m s 1. This implies the desired assertion.

We return now to our case, where p is the characteristic of k. Because
Ž . Ž .p, n s 1, the extension 7 splits. If moreover one of the places fixed

Ž .by C ramifies in FrF , then G ( EE t i C . Otherwise G ( C im 0 p nm n
Ž Ž . .EE t i C .p m

To prove the realization of the ramification type we have to select the
arbitrary divisor

s

D s l P P q l P P ,Ž . Ž .Ý Ý Ýi
PgA is1 Ž .QgO P , GR i 0

Ž .of DD G , A ; A, b to have degree 0 mod n. Denote by Q the uniquen 0 R
place of F above p and by Q , . . . , Q t the places of F above p . Notice0 1 1 p 0 2

Ž . � 4 Ž . � 4talso that O Q, G s Q , O Q , G s Q , . . . , Q .0 1 0 1 p
We have the following cases for AR

Ž .a A s B. This ramification type is realizable by Lemma 6.R

Ž . Ž . � 4b A s O Q, G s Q . In this case the function b must beR 0
trivial. Observe that the fixed places of C are Q, Q9 where Q9 gm
Ž . Ž .O Q , G . Therefore, by Remark 2 we have that n, m s 1. We set1 0
Ž .l P s 1, and we choose the number s so thati

< <deg D s 1 q s ? G ' 0 mod n.Ž . 0

Ž < < . Ž .This is possible because G , n s n, m s 1.0

Ž . Ž . � 4tc A s O Q , G s Q , . . . , Q . Notice that C - ker b. As be-R 1 0 1 p m
Ž .fore we have n, m s 1 as a necessary condition for this ramification type

to be realizable. The degree of the divisor corresponding to the orbit
Ž .O P ,G isi 0

0 mod pa if b s k 1 mod pa ,Ž .
¨ D 'Ž .Ý P a a½ < <l G mod p if b s ' 1 mod pŽ .0Ž .PgO Q , Gi 0

where pa N n, paq1 ¦ n. Let n s Ł a pa. We have to choose0 p < n, b Žs .'1 mod p
Ž . Ž . Ž .an s such that deg D ' 0 mod n . We take l P s 1 for all P g supp D ,0
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Ž < <. Ž . Ž .and because n , G divides n, mp s n, m s 1 the equation0 0

t < <deg D s p q s ? G ' 0 mod n ,Ž . 0 0

has a solution mod n .0

Ž . Ž . Ž .d A s O Q, G j O Q , G . In this case b must be trivial. WeR 0 1 0
Ž . Ž . Ž .set l Q ' y1 mod n, l P s l Q ' 1 mod n, and we take s, so thati 1

t < <deg D s y1 q p q s ? G ' 0 mod n.Ž . 0

Ž < <. Ž t .This is possible because n, G N m and m N p y 1 .0

4.5. Dihedral Groups

In this section we consider the case G s GrC ( D . The dihedral0 n m
group D admits the presentation in terms of generators and relations:m

² m 2 y1:D s a, b N a s 1, b s 1, ab s ba .m

The action homomorphism b : D ª ZU is determined by its values on them n
generators a and b. Thus

a ¬ b aŽ .
b : .½ b ¬ b bŽ .

Because b is a group homomorphism we have that

m 2
b a ' 1 mod n , b b ' 1 mod n ,Ž . Ž .

y1
b a b b ' b b b a mod n.Ž . Ž . Ž . Ž .

Ž Ž .. Ž Ž .. Ž Ž ..We claim that ord b a F 2. Indeed, if ord b a ) 2 then ord b b s
1, because the multiplicative group ZU is Abelian and cannot contain then

Ž . Ž . Ž . Ž .dihedral group D . But then b ab s b a b b s b a a contradic-ordŽ b Ža..
Ž . Ž Ž ..tion, because the order of b ab is at most 2. Furthermore if ord b a s 2

< Ž m. Ž .mthen 2 m because 1 s b a s b a .
Ž .There are three cases for Im b .

� 4Im b s 1 or Im b ( Z or Im b ( V .Ž . Ž . Ž .2 4

The third case appears only when m ' 0 mod 2. We will need:

LEMMA 14. Let n g N and l an integer such that

l 2 y 1 ' 0 mod n.
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qŽ . yŽ .There are integers n l , n l such that

nq l ? ny lŽ . Ž .
n s ,q yn l , n lŽ . Ž .Ž .

where

2 if n ' 0 mod 2q yn l , n l s ,Ž . Ž .Ž . ½ 1 if n ' 1 mod 2

with the additional property:

l ' 1 mod nq l and l ' y1 mod ny l .Ž . Ž .

Ž 2Proof. We simply notice that if p is a prime divisor of n then p N l y
. Ž .Ž .1 s l y 1 l q 1 and p divides both l y 1 and l q 1 if and only if

p s 2.

Remark 5. Because the extensions FrF and F rF D m are both Galois,0 0 0
the places P of F above a common p g F G 0 are either all ramifiedi 0 0
completely or all decomposed completely in the extension FrF .0

According to Theorem 7 there are two cases for the ramification type in
the extension F rF G 0. We will handle them separately.0 0

Ž .Case A. The characteristic of the field k is p / 2 p, m s 1. There
are three distinct places of F [ F G 0 , namely, p , p , p , which are1 0 1 2 3
ramified in F rF G 0 with ramification indices 2, 2, m, respectively. Denote0 0
by P , P , P , where i s 0, . . . , m y 1, j s 0, 1 the places of F which1, i 2, i 3, j 0
extend p , p , p .1 2 3

THEOREM 15. Let G s GrC be isomorphic to the dihedral group D ,0 n m
p ¦ m and p / 2. There are the cases for the structure of the automorphism
group G.

Ž . � 4 � 4 Ž .1 . Suppose that P j P ; A . Then n, m N 2 and1, i 0 F i- m 3, j js0, 1 R
the group of automorphisms G admits the presentation in terms of generators
and relations,

² 2 m nm y1 r:G s R , S N R s S , S s 1, RSR s S ,

where r is a solution of the system of equations

r ' 1 mod n , r ' y1 mod m. 9Ž .
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Ž . Ž .If n, m s 1 there is only one solution r. If n, m s 2 there are two cases:

v Ž .n ' 2 mod 4. In this case, one solution of 9 appears when
� 4 � 4P l A s B and the other when P l A / B.2, i 0 F i- m R 2, i 0 F i- m R

v � 4n ' 0 mod 4. In this case, P l A s B and we ha¨e2, i 0 F i- m R
two possible nonisomorphic groups corresponding to the same ramification
type.

Ž . � 42 A s P . The group G is isomorphic to the semidirectR 3, j js1, 2
product C i C .nm 2

Ž . � 4 � 43 A s P j P . In this case, b is trï ial and GR 1, i 0 F i- m 2, i is1, . . . , m
Ž .is isomorphic to C = D if n, 2 s 1 and G is gï en byn m

² 2 n m y1 y1:G s R , S N R s 1, S s 1, RSR s S ,

Ž .if n, m s 2.
Ž .4 A s B. In this case G is isomorphic to C i D , where theR n m

action of D into C is gï en by b.m n

Ž . � 45 A s P . In this case G admits the presentation:R 1, i 0 F i- m

22 n m² :G s R , S N R s 1, S s 1, RS s 1 .Ž .

Proof. We begin with:

Remark 6. Suppose that b g D fixes the place P . The other placesm 1, 0
P can be enumerated so that P s aiP . The decomposition groups1, i 1, i 1, 0

Ž .D P of each place P are of the formm 1, i 1, i

i i yi ² 2 i :D P s D a P s a D P a s a b .Ž . Ž .Ž .m 1, i m 1, 0 m 1, 0

Every automorphism bak g D has two fixed places. A place of the formm
k k ² 2 i : Ž 2 i .P is fixed by ba / 1, if and only if ba g a b and because ord a b1, i

s 2 this is equivalent to

a2 ib s bak s ayk b m 2 i ' yk mod m. 10Ž .

Ž . Ž .If m, 2 s 2 then 10 has two solutions if k is even, and no solution if k
is odd. This implies that the two fixed places of the automorphism bak

Ž . Ž .restrict to the same place p if k ' 0 mod 2 or p if k ' 1 mod 2 . If1 2
Ž . Ž .m, 2 s 1 then 10 has a unique solution, so one of the two fixed places
of bak restrict to p and the other to p .1 2

Suppose that one of the places P , say P is ramified in extension3, j 3, 1
Ž .FrF . Let Q be the unique place of F over P . Because m, p s 1 we0 3, 1 3, 1

Ž .have that the decomposition group G Q is cyclic of order nm. Hence3, 1
Ž . < Ž . < Ž .b a ' 1 mod n. Notice that the index G : G Q s 2 so G Q eG and G
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Ž . Ž .is a metacyclic group. Let S, R be in G, such that p R s b, p S s a.
y1Ž . ² : Ž . Ž .We may choose S g p a such that S s G Q . Because G Q eG,

there is an integer r such that

RSRy1 s Sr . 11Ž .

² m: Ž .Observe that the group C is generated by S . So from 11 and then
action of b on C , we haven

S b Žb.m s RSmRy1 s Sr m ,

which gives us the relation

r ' b b mod n. 12Ž . Ž .

Ž .Because GrC ( D , 11 impliesn n

y1 rq1 ² m:RSR S s S g S ,

and this, in turn, gives us the relation

r ' y1 mod m. 13Ž .

Ž . Ž . Ž . <The system of equations 12 , 13 has solutions if and only if n, m
Ž Ž . .b b q 1 . We distinguish the cases:

� 4 � 41. P j P ; A so one of the places P , i s 0,1, i 0 F i- m 3, j js0, 1 R 1, i
. . . , m y 1, say P is ramified completely in extension FrF . Denote by1, 0 0
Q the place above P . As in Remark 6, we may suppose that P is1, 0 1, 0 1, 0

Žfixed by b g D select as generator b of D another element of orderm m
. Ž .two if necessary . The decomposition group G Q is cyclic of order 2n.1, 0

y1Ž . Ž .Select a generator R g p b of G Q .1, 0
The group C is the unique subgroup of order n of the cyclic groupn

² : 2 2 mi Ž .R , so it is generated by R . Hence R s S for some i, n s 1. We
simplify the notation by rechoosing a suitable generator S for the group
Ž . 2 m Ž .G Q such that R s S . Notice also that b b ' 1 mod n.3, 1
The group G as a metacyclic group is given by the generators and

relations

² 2 m nm y1 r:G s R , S N R s S , S s 1, RSR s S , 14Ž .

where r is defined as a solution of the system

r ' 1 mod n ,
15Ž .

r ' y1 mod m.
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Ž . Ž .This system admits n, m solutions if and only if n, m N 2. In case
Ž . Ž .n, m s 1 the solution r is uniquely determined mod nm. In case n, m
s 2 we have two solutions mod nm, namely,

nm
r , r s r q .0 1 0 2

We have already assumed that the places in the orbit of P are ramified1, 0
completely in FrF . It is interesting to see how the ramification type of0
the places P determines the selection of the root r .2, i 0

Let P s P be a place of F in the orbit of P , hence, according to2, k 0 2, 0
i Ž < .Remark 6, fixed by ba g D , for some i ' 1 mod 2 recall that 2 m .m

Ž . Ž .According to Corollary 10, P is decomposed resp., ramified if G P sp

Ž .C = C resp., C . The function2 n 2 n

G P ª G PŽ . Ž .p p
F :P ½ 2x ¬ x

<is a group homomorphism. Because 2 n, ker F s C = C if P is decom-P 2 2
Ž .posed otherwise i.e., if P is ramified ker F s C . By computation,P 2

� iqsm sm 4G P s RS , S N s s 0, . . . , n y 1 for some i ' 1 mod 2.Ž .p

� nm r24 Ž .The elements 1, S are in ker F . Moreover, using 14 we haveP

2iqsm mŽ1qŽŽ rq1.r m.Ž iqsm..RS s S .Ž .

Hence P is decomposed in the extension FrF if and only if the equation0

r q 1
y r q 1 s ' 1 q i mod nŽ .

m

Ž .has a solution s. This equation has r q 1, n s 2 different mod n solu-
r q 1Ž . Ž .tions if and only if r q 1, n s 2 N 1 q i . Because i ' 1 mod 2 we

m

have the equivalence

r q 1 r q 1
1 q i ' 0 mod 2 m k 0 mod 2.

m m

Ž .If n ' 2 mod 4 then nr2 is odd, so 2 divides either r q 1 rm or0
Ž . Ž .r q 1 rm s r q 1 rm q nr2. Hence, if n ' 2 mod 4 the two solutions1 0

Ž .of system 15 correspond to the two different ramification types of the
places P in extension FrF .2, i 0

Ž . Ž .If n ' 0 mod 4 then r q 1 rm k 0 mod 2 for both solutions of 15 . For
ŽŽ . . Ž . Ž < . < Ž .if 2 N r q 1 rm then 4 N r q 1 recall that 2 m and 4 n N r y 1 so
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ŽŽ . Ž ..4 N r q 1 y r y 1 s 2, a contradiction. Therefore, if n ' 0 mod 4
Ž .then for both solutions of 15 all places P are decomposed in FrF .2, i 0

� 42. A s P . In this case the places P , i s 1, 2, j s 0, . . . ,R 3, j js1, 2 i, j
m y 1 of F are all decomposed in the extension FrF . According to0 0
Corollary 10,

G P ( C i C .Ž .p i , j n 2

y1Ž . 2We may select a R g p b such that R s 1. The group G is given by

² nm 2 y1 r:R , S N S s 1, R s 1, RSR s S ,

Ž . Ž .where r is the solution of the system of Eqs. 11 , 12 , namely,

r ' b b mod n , r ' y1 mod m , 16Ž . Ž .

Ž . Ž Ž . .therefore n, m N b b q 1 . The group G is a semidirect product

C i C ,nm 2

Ž . Ž .with action defined by r. If n, m ) 1 then the system 16 may have more
than one solution mod nm which lead to more than one nonisomorphic
automorphism group G.

Suppose now that the places P , j s 1, 2 are not ramified in the3, j
extension FrF . Then Corollary 10 implies that,0

G P ( C i C ,Ž .p 3, 1 n m

Ž . ² : Ž .because D P s a is a cyclic group. G P has index 2 in G som 3, i p 3, 1
C i C eG. Let T be a generator of the cyclic group C , and S an m n

Ž . y1Ž . < <generator of C such that p S s a. If R g p b because G : C i Cm n m
2 2 m z Ž 2 . zs 2 the element R g C i C so R s T S . But p R s a so z 'n m

0 mod m and R2 s T m. This gives us

R2SRy2 s T mSTym s T mŽ1yb Ža..S. 17Ž .

Ž .We may compute the left-hand side of 17 in another way. Because
C i C eG we haven m

RSRy1 s T lSr ,

and this gives us

R2SRy2 s RT lSy1Ry1 s T lŽ b Žb.yb Ža..S. 18Ž .
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Ž . Ž .Combining 17 and 18 we get

m 1 y b a ' l b b y b a mod n. 19Ž . Ž . Ž . Ž .Ž . Ž .

² :Moreover because Gr T ( D we havem

y1 l rq1 ² :RSR S s T S g T so r ' y1 mod m. 20Ž .

Among T , R, S g G there are the relations,

Sm s 1, T n s 1, R2 s T m , RTRy1 s T b Žb. , 21Ž .y1 b Ža. y1 l y1STS s T , RSR s T S ,

Ž .for some l, m satisfying 19 . Observe that there are no other relations in
Ž .the definition of the group G, because the relations 21 define a group of

order 2nm.
We want to simplify the relation RSRy1 s T lSy1 by choosing another

generator S s T xS. We calculate1

RS Ry1 s RT xSRy1 s T x b Žb.qlSy1 s T xŽ b Ža.qb Žb..qlSy1 . 22Ž .1 1

LEMMA 16. Let P be a place of F which is fixed by ba. Suppose also that0
2 m <R s T . If 2 n then

n , b b b a q 1 N l q mb a , 23Ž . Ž . Ž . Ž .Ž . Ž .

Ž . Ž .if and only if P is decomposed in FrF . If 2, n s 1 then 23 holds in all0
cases.

< Ž .Proof. Suppose first that 2 n. By Corollary 10 we have

C if P ramifies in FrFŽ .2 n 0²b a:G P s Gal FrF s .Ž . Ž .p 0 ½ C i C if P decomposes in FrFŽ .n 2 0

Ž ²b a:.In the first case there is only one element of order 2 in Gal FrF and0
Ž .in the second there are more elements of order 2 in G P . Recall thatp

� k k 4G P s s g G N p s P s P s RST , T N k s 0, . . . , n y 1 .� 4Ž . Ž .p

Because n is even, one element of order 2 is T n r2. If RST k is of order 2
then

2k kŽ b Žb.b Ža.q1.qlqmb Ža.1 s RST s T , 24Ž . Ž .
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� 4so for some k g 0, . . . , n y 1 ,

k b b b a q 1 q l q mb a ' 0 mod n. 25Ž . Ž . Ž . Ž .Ž .
Ž . Ž Ž . Ž . . ŽBut Eq. 25 has solutions in k if and only if n, b b b a q 1 N l q

Ž ..mb a .
Ž . Ž ²b a:.If n, 2 s 1, then the unique element of order 2 in Gal FrF is of

k Ž .the form RST so 24 has a solution, which gives us the desired result as
in the case that n is even.

We consider now the three last cases of Theorem 15:

� 4 � 43. A s P j P . All places P are ramified inR 1, i 0 F i- m 2, i is1, . . . , m i, j
Ž . ² :the extension FrF . Suppose as in Remark 6 that D P s b . In view0 m 1, 0

y1Ž . 2of Corollary 10 we may select a R g p b such that R s T , i.e., m s 1.
Moreover the extension is central in this case, i.e.,

b a ' b b ' 1 mod n.Ž . Ž .

We consider two more subcases

v
2Ž . Ž .n, 2 s 1. Because the extension is central we have H D , C sm n

1, so there is only one extension of D by C , namely,m n

G ( C = D .n m

v Ž . Ž .n, 2 s 2. In this case Eq. 22 becomes

RS Ry1 s T 2 xqlSy1 . 26Ž .1 1

Ž Ž . Ž . . <By Lemma 16 we have that n, b a b b q 1 s 2 ¦ l q 1, therefore 2 l
and the equation

2 x q l ' 0 mod n

Ž .has a solution x. Relation 26 for this solution x can be written as

RS Ry1 s Sy1 .1 1

Let t be the order of S . The group G in this case is a metacyclic group1
given by the relations,

² 2 n t y1 y1:R , S N R s 1, S s 1, RS R s S ,1 1 1 1

< <but then G s 2nt, so t s m.
4. A s B. All places P are decomposed in the extension FrF .R i, j 0

Ž . ² : y1Ž .Suppose that D P s b . By Corollary 10 we may select R g p bm 1, 0
such that R2 s 1, and m s 0. Because all places of F which are above0
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Ž Ž . Ž . . <p , p are decomposed in FrF , Lemma 16 gives us n, b b b a q 1 l.1 2 0
Ž Ž . . Ž Ž . . Ž Ž . Ž . Ž . Ž ..But b b , n s 1, so n, b ba q 1 s n, b b b b b a q b b s

Ž Ž . Ž .. <n, b a q b b l. Therefore there is an x such that

x b a q b b q l ' 0 mod n ,Ž . Ž .Ž .

Ž .and for this x, 22 becomes

RS Ry1 s T xŽ b Ža.qb Žb..qlSy1 s Sy1 .1 1 1

Denote by t the order of S s T xS. The group is given by the generators1
and relations

² 2 y1 b Žb. y1 b Ža. y1 y1R , T , S N R s 1, RTR s T , S TS s T , RS R s S ,1 1 1 1 1

t n :S s 1, T s 1 .1

The group defined by the above generators and relations is a group of
order 2nt, therefore t s m and the group G is isomorphic to the semidi-
rect product

C i D ,n m

where the action of D on C is determined by the function b.m n

� 45. A s P . In this case the set of places P , above p areR 1, i 0 F i- m 1, i 1
ramified in FrF and the set of places P above p are decomposed. We0 2, i 2

y1Ž . 2 Ž .may select an R g p b such that R s T so m s 1. Moreover b b '
1 mod n.

Ž Ž . Ž . . Ž Ž . . <From Lemma 16 we have that b b b a q 1, n s b a q 1, n
Ž Ž ..l q b a . So there is an x such that

x b a q 1 q l ' yb a mod n ,Ž . Ž .Ž .

Ž .and for this x Eq. 22 becomes

RS Ry1 s T xŽ b Ža.qb Žb..qlSy1 s Tyb Ža.Sy1 s Sy1Ty1 .1 1 1 1

Because T s R2, this relation is equivalent to

2RS s 1.Ž .1

Denote by t the order of S . The group G admits the presentation:1

22 n t² :G s R , S N R s 1, S s 1, RS s 1 .Ž .1 1 1
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2 Ž .Observe that the group generated by R is the Galois group Gal FrF0
which is a normal subgroup of G. The quotient

G 22 t² :G [ s R , S N R s 1, S s 1, RS s 1Ž .11 12² :R

is clearly isomorphic to a dihedral group of order 2 t. Hence the group G
has order 2nt and t s m.

We now show that those cases are realizable; i.e., we can select the
Ž .divisor D g DD G , A ; A, b to have degree 0 mod n. We will considern 0 R

the cases:

1. We distinguish the subcases

v n ' 2 mod 4, m ' 0 mod 2. In this case, we must have the set
A of fixed places of D in the support of DR m

A s P , P , P , P , . . . , P , P , P , . . . , P ,� 4Ž .R 3, 1 3, 2 1, 0 1, 1 1, iy1 2, 0 2, 1 2, iy1

Ž .and of course s orbits O P , D where P are not fixed by D . Recall thatj m j m
Ž . Ž .the action function b is trivial, so by taking l Q s 1 for all Q g supp D ,

we have

deg D s 2 q m q 2ms qm .Ž . Ž .

Ž . Ž .Because 2m, n s 2 which divides 2 q m qm , we can choose s so that
Ž .deg D ' 0 mod n.

v n ' 0 mod 4, m ' 0 mod 2. In this case, we have the set A ofR
fixed places of D in the support of Dm

� 4A s P , P , P , P , . . . , P ,R 3, 1 3, 2 1, 0 1, 1 1, iy1

Ž .and s orbits O P , D where P are not fixed by D . We take againj m j m
Ž . Ž .l Q s 1 for all Q in supp D , so

deg D s 2 q m q 2ms.Ž .

Ž . ŽIn this case 2m, n s 4 which divides 2 q m recall that because
Ž . . Ž .n, m s 2, m ' 2 mod 4 , so we can choose s so that deg D ' 0 mod n.

Ž .We can show similarly that we can choose deg D ' 0 mod n in the case
Ž .n, m s 1.

� 42. In this case we have A s P , P . Decompose n into primeR 3, 1 3, 2
a1 at qŽ Ž ..factors n s p ??? p . According to Lemma 14 we write n s n b b ?1 t

yŽ Ž .. Ž qŽ Ž .. yŽ Ž ... Ž .n b b , and n b b , n b b s 1 or 2. Equation 4 , gives us
Ž . ai yŽ Ž .. <deg D ' 0 mod p for every prime divisor p of n b b , p / 2. If 2 n,i i i
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Ž . aX
i X Ž y Ž ..0and p s 2, then deg D ' 0 mod p , where a s ¨ n b b - a .i i i 2 i0 0 0 0

Ž .The arbitrary divisor D g DD G , A ; A, b can be written in the formn 0 R

s

D s l P q P q l P P .Ž . Ž .Ý Ý3, 1 3, 2 i
is1 Ž .PgO P , Di m

Ž . qŽ .We have to choose a D such that deg D ' 0 mod n b . We set l s
Ž .l P ' 1 mod n. We can choose the number s and the divisor D gi
Ž .DD G , A ; A, b , so thatn 0 R

deg D s 2 q ms ' 0 mod nq b ,Ž . Ž .
Ž qŽ . . Ž Ž . Ž . .because n b , m N 2 recall that n, m N b b q 1 .

� 43. We have A s P N i s 1, 2, j s 0, . . . , m y 1 . In view of thisR i, j
Ž .we choose D to have s orbits O P , D where P is not fixed by D , and,i m i m

Ž .by taking l Q ' 1 mod n, we computei

deg D s 2m q s2m.Ž .
We can choose an appropriate s so that the above degree is 0 mod n.

4. In this case, A s B and the realization follows by Lemma 6.R

� 4 Ž .5. In this case, A s P , . . . , P . Notice first that b b 'R 1, 0 1, my1
qŽ Ž .. yŽ Ž ..1 mod n. We decompose n into n b a , n b a as in Lemma 14.

Ž . Ž . ai < yŽ Ž ..By Eq. 4 , we have deg D ' 0 mod p for p n b a and all divisorsi i
Ž .D g DD G , A ; A, b . So, we have to choose a D such thatn 0 R

deg D ' 0 mod nq b a as well.Ž .Ž .
By computation,

deg D s m q 2ms mod nq b a . 27Ž . Ž .Ž .
Ž . Ž qŽ Ž .. .From Eq. 27 we obtain the necessary condition n b a , 2m N m, for

case 5 to be realizable.

Case B. In this case, the characteristic of the field k is 2. We have that
Ž .GrC s D , 2, m s 1. By the characterization of the finite automor-n m

phism groups of the rational function field in Theorem 7, we deduce that
two places p , p of F G s F D m are ramified in F rF D m, with ramification1 2 0 0 0

Ž .indices 2 and m, respectively. Let P , i s 1, . . . , m P , j s 1, 2, resp.1, i 2, j
Ž .be the set of places of F above p p , resp. .0 2

THEOREM 17. Let G s GrC be isomorphic to the dihedral group D ,0 n m
p ¦ m, p s 2. There are the following cases for the structure of G:

� 41. A > P . Then b is trï ial and G ( C = D .R 1, i 0 F i- m n m

� 42. A s P . Then G ( C i C .R 2, j js1, 2 nm 2

3. A s B. Then G ( C i D .R n m
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� 4Proof. 1. A > P , so the places P i s 1, . . . , m above pR 1, i 0 F i- m 1, i 1
are ramified in the extension FrF . Observe also that the Galois group0

Ž ²b ai:. ²b ai:Gal FrF of the extension FrF is a group extension of the group0 0
² i:ba ( C . By the study of extensions of elementary Abelian groups, we2

Ž i.have that b ba ' 1 mod n, for all i s 0, . . . , m y 1 because the unique
fixed point of bai is ramified in FrF . This holds for all i so the group G0
is a central extension of D by C . Because n ' 1 mod 2, we have thatm m

2Ž .H D , C s 1, thereforem n

G ( C = D .n m

� 42. A s P . In this case the places P above p are allR 2, j js1, 2 1, i 1
decomposed in FrF , and the two places P of F above p are ramified0 2, j 0 2

Ž . ² : Ž .completely in FrF . D P s a , so by Corollary 10 we may find0 m 2, j
y1Ž . Ž . ² m:S g p a , which has order nm. The action of a on Gal FrF ( S0

Ž . y1Ž . < ² : <is trivial, i.e., b a ' 1 mod n. Let R g p b . Observe that G : S s 2
² :so S eG. Therefore there is an r such that,

RSRy1 s Sr .

m Ž .Observe that S generates the group Gal FrF ( C , so0 n

S b Žb.m s RSmRy1 s Sm r ,

therefore

b b s r mod n. 28Ž . Ž .

On the other hand we have

RSRy1S s Srq1 « 1 s p RSRy1S s p Srq1 ,Ž . Ž .

so

r ' y1 mod m. 29Ž .

Ž . Ž . Ž . Ž Ž . .The system of 28 , 29 has a solution r if and only if n, m N b b q 1
and the group is given by the relations:

² 2 nm y1 r:R , S N R s 1, S s 1, RSR s S .

Notice that G is isomorphic to

G ( C i C .nm 2

3. In this case, all places, P , P of F above p and p , respectively,1, i 2, j 0 1 2
Ž . Ž .are decomposed in FrF . Observe that n, 2 s m, 2 s 1. We will use0
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the injection map of Proposition 8, namely, the map

H 2 D , C s H 2 D , C ª H 2 H , CŽ . Ž . Ž .[ [pm n m n p n
pN2 m pN2 m

as a ¬ res a .Ž .Ý Ýp D ª H pm p

Ž . 2Ž .Because n, 2 s 1 we have H H , C s 1 by Zassenhaus theorem. If2 n
<p / 2, p m then the p-Sylow subgroup is a subgroup of the cyclic subgroup

² : ² :a ( C of D . Because a fixes P , which decomposes in FrF , them m 2, j 0
subextension

y1 ² : ² :1 ª C ª p a ª a ª 1,Ž .n

² :splits. All subextensions corresponding to the p-Sylow subgroups of a
2Ž . 2Ž .split as well, so H H , C s 1 for p / 2. This implies that H D , Cp n m n

s 1 and finally

G ( C i D ,n m

where the semidirect action of D onto C is determined by the func-m n
tion b.

To prove that the above three ramification types are realizable we have
Ž .to select a D g DD G , A ; A, b of degree 0 mod n. We will distinguishn 0 R

the cases:

Ž .1. We take s orbits O P , D , such that P are not fixed by D andi m i m
Ž . � Ž .4l P ' 1 mod n. We have A s P , . . . , P , P , P so the degreei R 1, 1 1, m 2, 1 2, 2

of D is

deg D s m q q2 q 2ms.Ž .

Ž . Ž .Obviously, because 2m, n s n, m we can find an s such that deg D '
� 4 �0 mod n in the case A s P , . . . , P . If A s P , . . . , P ,R 1, 1 1, m R 1, 1 1, m

4 Ž .P , P , we arrive at n, m N 2 as a necessary condition for this type to2, 1 2, 2
Ž . Ž .be realizable. Notice that the condition n, m N 2 is equivalent to n, m s

Ž . Ž .1 because n, 2 s m, 2 s 1.
2. By Lemma 5, it is enough to construct a D of degree 0

qŽ Ž .. Ž .mod n b b . We take s orbits O P , D , where P are not fixed by Di m i m
Ž . Ž .and we set l P ' 1 mod n for all P in supp D . We have then

deg D s 2 q 2ms mod nq b .Ž . Ž .

Ž . qŽ . Ž .We can take s such that deg D ' 0 mod n b , because n, 2 s
Ž qŽ . .n b , 2 s 1.
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3. The ramification type of this case is realizable by Lemma 6,
because A s B.R

4.6. The Group A as Quotient Group4

In this section suppose that GrC ( A . From the classification theo-n 4
rem 7 we have that three places of F [ F G s F A4 are ramified in F rF ,1 0 0 1
namely, p , p , p with ramification indices e s 2, e s e s 3, respec-1 2 3 1 2 3
tively. Moreover the characteristic is not 2 or 3. Denote by P , i s 1, . . . , 6,1, i
P , P , j s 1, . . . , 4 the set of places of F lying over p , p , p ,2, j 3, j 0 1 2 3
respectively.

The group A admits the presentation in terms of generators and4
relations:

32 3² :A s a, b N a s b s 1, ab s 1 .Ž .4

Notice also that the group A has a normal 2-Sylow subgroup isomorphic4
to the Klein group V , which, as a subgroup of A , can be expressed in4 4
terms of the generators of A as4

� y1 2 y2 4V s 1, a, bab , b ab .4

² :The group A can be written as a semidirect product A ( V i b . The4 4 4
action map

b : A ª ZU
4 n

cannot be injective, because A is not Abelian. We have two possibilities4
for ker b :

ker b s V , or ker b s A central extension .Ž .4 4

In any case, because A rV ( Z and a has order 2 in A , we have that4 4 3 4
Ž .b a ' 1 mod n.

THEOREM 18. If G s GrC ( A then the group of automorphisms G0 n 4
is isomorphic to:

Ž .a G ( C i A if A s B.n 4 R

Ž . � 4b G ( V i C if A s P4 3n R 2, j 1F jF 4

Ž . � 4c G ( G9 i C if A s P . Here G9 is defined in terms of3 R 1, i 1F iF 6
generators and relations

² 2 2 2 n y1 t :G9 [ R , S N R s S , S s 1, RSR s S .

Ž .d G admits the following representation in terms of generators and
relations:

32 n 2 3 2 k² :G s R , S N R s 1, R s S , RS s R ,Ž .
� 4 � 4for some integer k g 1, . . . , n , if P  A .1, i is1, . . . , 6 R
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Ž .a A s B; i.e., all places of F above p , p , p are decomposedR 0 1 2 3
in FrF . We claim that in this case0

G ( C i A ,n 4

where the action of A on C is determined by b. To prove this we4 n
² :observe that A is the semidirect product of V i b and obviously V is4 4 4

Ž .an elementary Abelian group of the form EE 2 . Now according to the2
study of the dihedral case, because the fixed places of V s D are4 2
decomposed, we have that the subextension

1 ª C ª py1 V ª V ª 1 30Ž . Ž .n 4 4

splits, so by Lemma 13 G ( C i A .n 4

Ž . � 4 � 4b A s P or A s P , hence the set of sixR 2, j 1F jF 4 R 3, j 1F jF 4
places P , i s 1, . . . , 6 are decomposed and at least one of the set of the1, i
places P , P , say P , j s 1, . . . , 4 is ramified in FrF . According to2, j 3, j 2, j 0
Corollary 10, because the fixed places of b are ramified, we have that
Ž .b b ' 1 mod n so the extension is central. A is a semidirect product of4

² : Ž . Ž .V i b and as in case a we have that the short exact sequence 304
splits. Using Lemma 13 we have that

G ( V i C .4 3n

Let R be the generator of the cyclic group C . The conjugation action of3n
R on V induces a homomorphism r : C ª S . Because Rn s b, and4 3n 3
Ž . Ž .r b is cycle of order 3 in S , we have that r R must be also a cycle of3

Ž .order 3, therefore n, 3 s 1.
Ž . � 4c A s P , hence the set of places P , i s 1, . . . , 6 areR 1, i 1F iF 6 1, i

ramified and the set of places P , i s 1, 2, j s 1, . . . , 4 are decomposed.i, j
Then by the study of dihedral extensions we have that the group G9 [

y1Ž .p V is given in terms of generators and relations by4

² 2 2 2 n y1 r:G9 s R , S N R s S , S s 1, RSR s S .

Here r is the unique solution of the system r ' 1 mod n, r ' y1 mod 2
Ž .if n, 2 s 1, and the unique solution of the system r ' 1 mod n, r '

Ž .y1 mod 2 such that r q 1 r2 is even, otherwise. Notice also that in the
Ž .case n, 2 s 2 this ramification type appears only if n ' 2 mod 4. We

² :claim that G ( G9 i b ( G9 i C . Observe that G9eG because3
V e A . On the other hand, by Corollary 10 the subextension4 4

y1 ² : ² :1 ª C ª p b ª b ª 1 31Ž . Ž .n
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splits, therefore there is a homomorphism

² : ² :j: b ¨ C i b ¨ G,n

Ž² :. � 4such that j b l C s 1 . To prove our claim we have to show thatn
Ž² :. Ž² :. Ž² :.j b l G9 s 1. Let x g j b l G9. If x / 1 then x g j b has order

3. On the other hand notice that the square of every element in G9 is in
² : i jS . This implies that for x, which is written in the form R S , we have

3 2 i j k ² : 2 Ž² :. � 4x s xx s R S S so x g S and x g C . Because j b l C s 1n n
2 Ž .we have x s 1 and x s 1 because 2, 3 s 1.

Ž . � 4d P  A , hence all places P , i s 1, . . . , 6 and at least1, i is1, . . . , 6 R 1, i
one set of places among the P and P , j s 1, . . . , 4 are ramified in the2, j 3, j

Žextension FrF . Recall that the set of places P and P have different0 2, j 3, j
Ž . .ramification type if and only if 3, n s 1. Moreover from the study of

Ž .dihedral extensions, if n, 2 s 2 then n ' 2 mod 4. Assume that P is1, 1
fixed by a and that P is fixed by b. Using Corollary 10, we deduce that2, 1
the function b is trivial, so the extension is central, and moreover there

y1Ž . y1Ž .are elements R g p a and S g p b such that

² : ² :R ( C , S ( C .2 n 3n

Ž . ² : ² :The group Gal FrF ( C is a common subgroup of R , S so by0 n
choosing suitable generators R, S we have the relations between R, S

R2 n s 1, R2 s S3.

Ž .Denote by p the projection G ª GrC . Because p RS s ab has order 3n
Ž .3 2 kin A we have the additional relation RS s R between R, S. Let G4 1

be the group

32 n 2 3 2 k² :G [ R , S N R s 1, R s S , RS s R . 32Ž . Ž .1

² 2: ² 2:Obviously R is a normal subgroup of G and G r R ( A so1 1 4
G ( G. We prove that there is only one solution to the extension problem1

Ž .with the ramification type of case d , so there is only one group defined by
Ž .the relations of 32 . Unfortunately we could not find a neat formula for k.

w xHowever, using the computer algebra package MAGMA Ma we can then
compute k for several values of n. Thus,

n 2 3 5 6 7 9 10 11 13 14 15 17 18 19
.

k 1 1 5 1 6 7 5 8 9 6 10 11 7 12
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In order to prove that there is only one solution to the extension
Ž . Ž .problem in case d , we count the number i A , C of nonisomorphic4 n

groups G, obtained by extending the group A by C . Because the4 n
Ž .extension in case d is central we have

H 2 A , C ( Z = Z .Ž .4 4 Žn , 2. Žn , 3.

Ž . Ž .In case n, 3 s n, 2 s 1, the above formula implies that the extension
Ž .splits and the group G is isomorphic to C = A . In case n, 2 s 1,n 4

Ž .n, 3 s 3, the subextension

1 ª C ª py1 V ª V ª 1Ž .n 4 4

splits by Zassenhaus theorem, so according Lemma 13, we have two
possibilities for G, namely,

G ( C i A or G ( V i C .n 4 4 3n

Ž . Ž . 2Ž .In case that n, 2 s 2, n, 3 s 1, we have H A , C ( Z . The two4 n 2
Ž .groups appearing here are isomorphic to the two groups of case c .

Ž . Ž .Suppose now that n, 2 s 2, n, 3 s 3. We prove that the number of
Ž .nonisomorphic central extensions of A by C is i A , C s 4. Let us4 4 4 4

a b Ž . Ž .write n s 2 3 m with m, 2 s m, 3 s 1. There are only two nonisomor-
phic extensions GX, i s 1, 2 of the formi

1 ª C b ª GX ª A ª 1,3 m i 4

Ž . Ž .as we have seen in the case that n, 2 s 1, n, 3 s 3. The group G is
given by an extension of GX, namely,i

1 ª C a ª G ª GX ª 1.2 i

We claim that G has two possibilities for each selection of GX, i s 1, 2.i
Indeed,

H 1 C b , C a s Hom C b , C a ( 0,Ž . Ž .3 m 2 3 m 2

Ž .so the sequence restriction-inflation is exact

GX
i X2 2 2

a a b a0 ª H , C ª H G , C ª H C , C ( 0,Ž . Ž .2 i 2 3 m 2ž /bC3 m
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2Ž X .awhich implies that H G , C ( Z becausei 2 2

GX
i2 2

a aH , C s H A , C ( Z .Ž .2 4 2 2ž /bC3 m

Ž .In order to prove that the ramification type of case b is realizable we
Ž .have to find a divisor D g DD A , A ; A, b of degree 0 mod n. Wen 4 R

consider the cases:

Ž .a A s B. The ramification type of this case is realizable byR
Lemma 6.

Ž . � 4 Ž .b If A s P , . . . , P , P , . . . , P we take s orbits O P , AR 2, 1 2, 4 3, 1 3, 4 i 4
Ž . Ž .where P is not fixed by A and we set l P ' 1 mod n, l P 'i 4 i 2, j

Ž . Ž .yl P mod n. So, deg D s 12 s and we can select an s such that3, j
Ž . � 4 Ž .deg D ' 0 mod n. If A s P , . . . , P we take s orbits O P , AR 2, 1 2, 4 i 4

Ž .where P is not fixed by A and we set l P ' 1 mod n for all P gi 4
Ž .supp D . The degree of D is

deg D s 4 q 12 s.Ž .

Ž . Ž .Therefore, because n, 3 s 1 we have that n, 12 N 4, so we can find an s
such that D ' 0 mod n.

Ž . � 4c In this case A s P , . . . , P . Let n be the part of n suchR 1, 1 1, 6 0
that

b b ' 1 mod n .Ž . 0

Ž .By Lemma 5 it is enough to prove that deg D ' 0 mod n . Take s orbits0
Ž . Ž .O P , A where P is not fixed by A and put l P ' 1 mod n for alli 4 i 4

Ž .P g supp D . By computation

deg D s 6 q 12 s.Ž .

Ž .Because n ' 2 mod 4 or n ' 1 mod 2 we have that n , 12 N 6, so we can0
Ž .find an s such that deg D ' 0 mod n .0

Ž . Ž .d We take s orbits O P , A where P are not fixed by D . Ifi 4 i m
� 4 Ž .A s P , . . . , P , P , . . . , P then we set l P ' 1 mod n for i sR 1, 1 1, 6 2, 1 2, 4 1, i

Ž .1, . . . , 6, and l P ' y1 mod n for j s 1, . . . , 4. If2, j

� 4A s P , . . . , P , P , . . . , P , P , . . . , P ,R 1, 1 1, 6 2, 1 2, 4 3, 1 3, 4

Ž . Ž . Ž .then we set l P ' 1 mod n and l P ' yl P mod n, i s 1, . . . , 6,1, i 2, i 3, i
j s 1, . . . , 4. The degrees of the above divisors are

deg D s 2 q 12 s and deg D s 6 q 12 s.Ž . Ž .
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Ž . Ž .We can select an s such that deg D ' 0 mod n. Indeed, as in cases b
Ž .and c we notice that n ' 2 mod 4 or n ' 1 mod 2 and, if the places

Ž .P , . . . , P are not ramified in FrF then n, 3 s 1 by Remark 2.3, 1 3, 4 0

4.7. The Group A as a Quotient Group5

The group A appears as a group of automorphisms of the rational5
function field with the following ramification types, which we handle
together:

Ž . A5 A5a In F rF three places p , p , p of F are ramified, with0 0 1 2 3 0
ramification indices e s 2, e s 3, e s 5, respectively. The characteristic1 2 3
is p / 2, 3, 5.

Ž . A5b In F rF two places p , p are ramified with ramification0 0 1 2
indices e s 6, e s 5, respectively. In this case the characteristic p s 3.1 2

In this section we will prove:

THEOREM 19. Let G s GrC be isomorphic to A . The cohomological0 n 5
2Ž .class a g H A , C describing G can be determined by the cohomology5 n

class corresponding to the subextension of a 2-Sylow subgroup H .2
Ž .If n, 2 s 1 or all places of F abo¨e p are decomposed in FrF then0 1 0

G ( C = A . Otherwise G admits a presentation in terms of generators andn 5
relations as:

3 3n 3 2 2 l oX , Y , Z, T N T s X s1, Y sT , Z sT , XY sT , YZ sT ,² Ž . Ž .
2 m y1 y1 y1XZ sT , XTX sT , ZTZ sT , YTY sT ,:Ž .

� 4for some integers m, l, o g 1, . . . , n .

Proof. A is a simple non-Abelian group so the action homomorphism5

b : A ª ZU
5 n

is trivial and the extension

p
1 ª C ª G ª A ª 1 33Ž .n 5

2Ž .central. We have computed that H A , C ( Z . If n is odd then5 n Žn, 2.

G ( C = A .n 5

Suppose now that n is even. By Proposition 8 the restriction map

1y12 2 2Z (H A , C sH A , C ª H H , C ( Z [ Z [ Z ,Ž . Ž . Ž .Ž .22 5 n 5 n 2 n 2 2 2

a ¬ res a 34Ž . Ž .A ª H5 2
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is injective, where H ( V is the 2-Sylow subgroup of A . This proves2 4 5
that we can determine the structure of the extension of A , by computing5
the structure of the subextension of a 2-Sylow subgroup. The 2-Sylow
subgroup of A is isomorphic to V . We consider the two cases:5 4

1. All places above p are decomposed in the extension FrF . By1 0
the study of extensions of dihedral groups we have that, py1 ( C = V ,n 4
hence G ( C = A .n 5

2. All places above p are ramified in extension FrF . By the study1 0
of dihedral extensions, this is possible only if n ' 2 mod 4. We would like
to write a presentation for G in terms of generators and relations. The

w xgroup A admits the presentation Hu, p. 138 :5

3 3 23 2 2² :A s x , y , z N x s y s z s xy s yz s xz . 35Ž . Ž . Ž . Ž .5

Let T be a generator of the cyclic group C . The decomposition group ofn
all places of F which extend p have a cyclic subgroup of order 2n. Let1

Ž . Ž .X,Y be elements of order 2n, such that p X s x, p Y s y. We can
select X, Y such that Y 2 s X 2 s T. By applying p to products of X, Y

Ž .and using the relations of A given in 35 we arrive at the presentation5
of G:

3 3n 3 2 2 l oX , Y , Z, T N T s X s1, Y sT , Z sT , XY sT , YZ sT ,² Ž . Ž .
2 m y1 y1 y1XZ sT , XTX sT , ZTZ sT , YTY sT ,:Ž .

� 4where m, l, o g 1, . . . , n . One can compute m, l, o using the presentation
y1Ž .of p V in terms of generations and relations. It is difficult to do this4

w xsort of computation generically. However, using MAGMA Ma symbolic
algebra package we can calculate the values of m, l, o for certain n: For all
values of n we have tried it turns out that we can take m s 1 s l s 1 for

Ž .n s 2 and m s 1, o s 3, l s 2 q n y 2 r4 for n ) 2, n ' 2 mod 4.

Ž .Let D be an arbitrary divisor in DD A , A ; A, bn 5 R

3 s

D s a P q l P P ,Ž .Ý Ý Ý Ýi i
is1 PNp is1 Ž .PgO P , Ai i 5

Ž .where a s 0 if the places above p are not in A and 0 - a s l P - ni i R i i, j
if the places of F above p are in A , P is an arbitrary place over p .0 i R i, j i

Ž .The degree of D in case a is

s

deg D s a 30 q a 20 q a 12 q 60 l P .Ž . Ž .Ý1 2 3 i i
is1
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This gives us

60, n N a 30 q a 20 q a 12 ,Ž . Ž .1 2 3

as a necessary and sufficient condition for the ramification type A to beR
Ž .realizable. Similarly in case b we have the condition

60, n N a 10 q a 12 ,Ž . Ž .1 2

as a necessary and sufficient condition for the ramification type A to beR
realizable.

4.8. The Group S as a Quotient Group4

In this section suppose that GrC ( S . This case appears in character-n 4
istics p / 2, 3. In the extension F rF S4 three places q , q , q of F are0 0 1 2 3 0

� 4ramified, with ramification indices e s 2, e s 3, e s 4. Let P ,1 2 3 1, i 1F iF12
� 4 � 4P , P be the sets of places of F which are above2, j 1F jF 8 3, k 1F k F 6 0
q , q , q , respectively. S admits the presentation in terms of generators1 2 3 4
and relations,

32 4 y1² :S s x , y N y , x , x y s 1 , 36Ž .Ž .4

and as one checks A is the subgroup of S generated by x 2, yx.4 4
The ramification of S compared to the ramification of A is given in4 4

the diagram:

F P , . . . , P P , . . . , P P , . . . , P0 1, 1 1, 12 2, 1 2, 8 3, 1 3, 6

< _r 3_r _r3 _r2

A4F ) p p p0 2 3 1

< < <2 _r 2

S4F q q q0 1 2 3

THEOREM 20. Let GrC s G be isomorphic to the symmetric group S .n 0 4
Then there are the cases for the group of automorphisms of G.

Ž . � 4 � 4a P j P ; A . The action of S on C is trï -1, i 1F iF12 3, k 1F k F 6 R 4 n
Ž . Ž .ial. If n, 2 s 1 then G ( C = S and if n, 2 s 2, n ' 2 mod 4 then Gn 4

admits the presentation in terms of generators and relations

² n 2 4 y1 y1G s X , Y , T N T s 1, Y s X s XTX s YTY s T ,
3y1 k:X Y s T ,Ž .

� 4for some k g 1, . . . , n .
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Ž .b G ( C i S in all other cases.n 4

Proof. The map F of Proposition 8:

F2 2 2 2H S , C s H S , C ª H H , C [ H H , CŽ . Ž . Ž . Ž .[4 n 4 n 2 n 3 n
ps2, 3

asa qa ¬ res a q res aŽ . Ž .2 3 S ª H 2 S ª H 34 2 4 3

Ž . Ž .is injective, where H resp., H is any 2-Sylow subgroup resp., 3-Sylow .2 3
We will prove

LEMMA 21. If GrC ( S , then the map,n 4

H 2 S , C ª H 2 H , CŽ . Ž .4 n 2 n

asa qa ¬ res aŽ .2 3 S ª H 24 2

is injectï e.

� 4 � 4 � 4Proof. If A > P j P or A > P thenR 2, j 1F jF 8 3, k 1F k F 6 R 1, i 1F iF12
2Ž .the action of S on C is trivial, so H S , C s Z = Z . If4 n 4 n Ž2, n. Ž2, n.

� 4A l P s B then by the study of extensions of cyclic groups, weR 2, j 1F jF 8
Ž . � 4 � 4have res a s 0. Finally if A > P and A l PS ª H R 2, j 1F jF 8 R 3, k 1F k F 64 3

Ž .s B, then by the study of case b of extension of A we have that4
2Ž . Ž .n, 3 s 1, so H H , C s 0.3 n

This proves that the structure of G is determined by the structure of the
subextension

1 ª C ª py1 D ª D ª 1.Ž .n 4 4

We have the tower of field extensions:

F P , . . . , P P , . . . , P P , . . . , P0 1, 1 1, 12 2, 1 2, 8 3, 1 3, 6

< < < < <2_ r _r 2_ 4 r
X X XD4F p ) ) p p .0 1 2 3

< <3 1_r2 3 2_r1

S4F q q q0 1 2 3

The ramification of q of the extension F rF S4 does not affect the2 0 0
ramification type in the extension F rF D4. We have to consider the cases:0 0

Ž . � 4 � 41 A l P s B and P ; A or A lR 1, i 1F iF 12 3, k 1F k F 6 R R
� 4 � 4P s B and P ; A .3, k 1F k F 6 1, i 1F iF12 R
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In both of the above cases, the action of S on C is trivial. Moreover4 n
y g S fixes a place of F above q and a place of F above q . Hence4 0 1 0 3

Ž . 2Ž .by Remark 4 we have that n, 2 s 1. Therefore, H S , C s 0, so G (4 n
C = S .n 4

Ž . � 4 � 42 A l P s A l P s B. In this case by theR 1, i 1F iF12 R 3, k 1F k F 6
Ž .study of dihedral extensions we have res a s 0, hence a s 0 andS ª D4 4

G ( C i S .n 4

Ž . � 4 � 43 P j P ; A . In this case the action of S1, i 1F iF12 3, k 1F k F 6 R 4
Ž . Ž .on C is trivial. Hence if n, 2 s 1 then G ( C = S . If n, 2 s 2 thenn n 4

by the study of dihedral extensions, this case appears only if n ' 2 mod 4.
Let T be a generator of the cyclic group C . Consider elements X, Y in Gn

Ž . Ž .of orders 4n and 2n, respectively, such that p X s x and p Y s y. We
can choose X, Y such that X 4 s T and Y 2 s T. Moreover we have the
relations XTXy1 s T and YTYy1 s T. Applying p to the products of

Ž .X, Y and using the presentation 36 we arrive at the presentation of G,

² n 2 4 y1 y1G s X , Y , T N T s 1, Y s X s XTX s YTY s T ,
3y1 k:X Y s T ,Ž .

� 4for some k g 1, . . . , n . Although the structure of G can be determined by
y1Ž .the structure of p V it is very difficult to compute k generically. Using4

w xMAGMA Ma we can compute k for several n, n ' 2 mod 4. It turns out
Ž .that k s 2 q n y 2 r4.

In order to prove that the above ramification types are realizable we
Ž .have to find a divisor D g DD S , A ; A, b with deg D ' 0 mod n. As inn 4 R

the A case we have that the condition5

n , 24 N a 12 q a 8 q a 6Ž . Ž .0 1 2 3

Ž .is sufficient and necessary for deg D ' 0 mod n , where a s 0 if the0 i
places P of F which are above p do not ramify in extension FrF andi, j 0 i 0

Ž .a s l P / 0, otherwise.i i, j

Ž . Ž .4.9. The Matrix Groups PSL 2, q and PGL 2, q as a Quotient Group

Ž . Ž .In this case G s GrC is isomorphic to PSL 2, q or to PGL 2, q . In0 n
extension F rF G 0 only two places p , p are ramified. It is very compli-0 0 1 2
cated to give a presentation of G in terms of generators and relations
because as far as the author knows, there is no general presentation of the

Ž . Ž .matrix groups PSL 2, q and PGL 2, q in terms of generators and rela-
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tions. However, we can prove:

Ž . Ž .THEOREM 22. Let G s GrC be isomorphic to PSL 2, q or PGL 2, q ,0 n
2Ž .where q is a power of the characteristic. The cohomology class a g H G , C0 n

Ž .is determined by the restriction res a to a 2-Sylow subgroup H . InG ª H 20 2
Ž .particular, when n, 2 s 1, or when the places of F which extend p , p are0 1 2

decomposed in extension FrF then G ( C i G .0 n 0

Proof. We need:

Ž . Ž . 2Ž .LEMMA 23. For G s PSL 2, q , PGL 2, q , H G , C is a 2-group.0 0 n

Proof. We have the two cases:

Ž . Ž . Ž f . Ž f .Case 1. G s PSL 2, q , q, 2 s 1 or G s PGL 2, 2 s PSL 2, 2 .0 0
Ž . fBecause PSL 2, q , where q s p is a power of the characteristic, is

simple, the action of G on C is trivial. We have0 n

Z if p f / 9Ž2, n.2H PSL 2, q , C (Ž .Ž .n f½ Z if p s 9.Ž6, n.

f Ž . Ž .Observe that if p s 9 then n, 6 s n, 2 because we have assumed that
2Ž Ž . .the characteristic p does not divide n, so H PSL 2, q , C s Z .n Ž2, n.

Ž . Ž .Case 2. G s PGL 2, q , q, 2 s 1. The kernel of the action homo-0
morphism

b : PGL 2, q ª ZUŽ . n

Ž . Ž .is either ker b s PGL 2, q or ker b s PSL 2, q . In the first case the
2Ž Ž . .extension is central and H PGL 2, q , C s Z = Z . Observe thatn Žn, 2. Žn, 2.

H 1 PSL 2, q , C ( Hom PSL 2, q , C s 0,Ž . Ž .Ž . Ž .n n

Ž .because PSL 2, q is simple and non-Abelian. We write the inflation-re-
striction sequence

PGL 2, qŽ .
2 20 ª H , C ª H PGL 2, q , CŽ .Ž .n nž /PSL 2, qŽ .

ª H 2 PSL 2, q , C ( Z ,Ž .Ž .n Ž2 , n.

Ž . Ž .and because PGL 2, q rPSL 2, q ( Z we deduce that2
2Ž Ž . .H PGL 2, q , C is a 2-group.n
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We return now to the proof of Theorem 22. The monomorphism F of
Proposition 8:

F2 2 2H G , C s H PGL 2, q , C ª H H , C ,Ž . Ž . Ž .Ž .[ [Ž .t0 n n t n
2 t-Sylow< Ž .t q q y1

where H runs over the t-Sylow subgroups of G is injective so thet 0
restriction map

H 2 G , C ª H 2 H , CŽ . Ž .0 n 2 n

a ¬ b s res aŽ .G ª H0 2

is injective as well. The 2-Sylow subgroup H is isomorphic to a dihedral2
Kq1 � Ž . Ž .4Kgroup D , of order 2 , where K s max ¨ e , ¨ e .2 2 1 2 2

Ž .Moreover, if n, 2 s 2 then the cohomology group vanishes, so G (
C i G , and by the study of dihedral extensions we have that if all placesn 0
of F above p , p are decomposed in the extension FrF , then b s0 1 2 0

Ž .res a s 1, so G ( C i G as well.G ª H n 00 2

Ž .Let D be a divisor in DD G , A ; A, b , and n the greatest divisorn 0 R 0
Ž .of n, such that b s ' 1 mod n . According to Lemma 6 we have that0

Ž . Ž .deg D ' 0 mod n m deg D ' 0 mod n . Therefore the condition0

n , q q y 1 q q 1 N a q q y 1 q a q q 1Ž . Ž . Ž . Ž .Ž . Ž .0 1 2

Ž .is necessary and sufficient for deg D to be congruent to 0 mod n , where0
Ž . <a s 0 if the places of F above p are in A and a s l P , P pi 0 i R i i

otherwise.
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