The Group of A utomorphisms of Cyclic Extensions of R ational Function Fields

A ristides K ontogeorgis
Max-Planck-Institut für Mathematik, Gottfried-Claren Strasse 26, D-53225 Bonn, Germany and Department of Mathematics, University of Crete, Heraclion 71409, Crete, Greece
E-mail: kontogeo@mpim-bonn.mpg.de
Communicated by Walter Feit

R eceived A ugust 7, 1998

Abstract

We study the automorphism groups of cyclic extensions of the rational function fields. We give conditions for the cyclic Galois group to be normal in the whole automorphism group, and then we study how the ramification type determines the structure of the whole automorphism group. © 1999 A cademic Press

1. INTRODUCTION

A hyperelliptic function field, contains in the center of its group of automorphisms an involution j whose fixed field $F^{(j)}$ is rational. M otivated by this observation Brandt and Stichtenoth [B-S] studied the group G of automorphisms of hyperelliptic function fields, by projecting the automorphism group into the known finite subgroups of $\operatorname{PGL}(2, q)$, that constitutes the automorphism group of the rational function field:

$$
G \rightarrow \frac{G}{\langle j\rangle}<P G L(2, k) .
$$

A s a natural generalization of this we consider cyclic extensions of the rational function field. Let F be such an extension of the rational function field F_{0}. When $n>2$ the cyclic group $\mathrm{Gal}\left(F / F_{0}\right)$ is not always a normal subgroup of the automorphism group G. For instance, consider the family of function fields of the curves $x^{n}+y^{m}+1=0$, where $n>4, m \mid n$, and $(p, n)=(p, m)=1,(m, 2)=2, p+n-1$. The group $C_{n}=\operatorname{Gal}(F / k(y))$ is not a normal subgroup of G [Ko].
R. Brandt [Br] studied the group of automorphisms of function fields which are cyclic central extensions of the rational function field $k(x)$ with $\mathrm{Gal}(F / k(x))=C_{q}$, where C_{q} is a cyclic group of prime order q, prime to the characteristic p of the algebraic closed field k.

H ere we generalize further his results to include automorpism groups G of function fields which are cyclic extensions of order n of the rational function field F_{0}. The constant field k of both function fields F_{0} and F is assumed to be algebraically closed of characteristic p, prime to n. We also assume that all ramified places in the Galois extension F / F_{0} are ramified completely and that $\mathrm{Gal}\left(F / F_{0}\right)$ is normal in G.

M oreover, following A ccola's ideas [A c] on strongly branched covers, we are able to obtain conditions on the number of ramified places in extension F / F_{0}, sufficient for the G alois group $\mathrm{Gal}\left(F / F_{0}\right)$ to be normal in the whole automorphism group G. Furthermore, we determine the structure of all such groups of automorphisms in terms of generators and relations when G / C_{n} is isomorphic to $C_{n}, D_{n}, A_{4}, A_{5}, S_{4}$ or a semidirect product of an elementary Abelian Group by a cyclic one, and in terms of the cohomology class of the group extension in all other cases. The structure of G depends on the ramified places in extensions F / F_{0} and F_{0} / F^{G} in the following way: Let $A=\left\{P_{1}, \ldots, P_{f}\right\}$ be the set of places of F_{0} that are ramified in the extension $F_{0} / F_{0}^{G_{0}}$ and $A_{R} \subset A$ be the set of places of A which are ramified in F / F_{0}. The pair ($G_{0}, A_{R} \subset A$) is called the ramification type of the extension F / F_{0}. It turns out that in most cases the ramification type determines the group structure of the extension G; there are however function fields which are cyclic extensions of the rational function field with the same ramification type, but different automorphism groups.

Finally we are able to prove that for every finite subgroup G_{0} of $\operatorname{PGL}(2, k)$ we can find a subgroup G_{0}^{\prime} of $\operatorname{PGL}(2, k)$, isomorphic to G_{0} and a cyclic Kummer extension F which realizes every possible ramification type ($G_{0}^{\prime}, A_{R} \subset A$). We also provide a method to write down an equation $y^{n}=f(x)$ realizing every possible automorphism group.

2. CONDITIONS FOR NORMALITY

E very cyclic cover of the projective line, after a birational transformation, can be written in the form,

$$
y^{n}=\prod_{i=1}^{s}\left(x-\rho_{i}\right)^{d_{i}}, \quad d_{i} \in \mathbb{Z},
$$

where $0<d_{i}<n$ and $d:=\sum_{i=1}^{s} d_{i} \equiv 0 \bmod n$. If the radicand $\prod_{i=1}^{s}\left(x-\rho_{i}\right)^{d_{i}}$ is not a $\delta \mid n$ power; i.e., $\left(n, d_{1}, \ldots, d_{s}\right)=1$, then F is a Kummer extension of F_{0} of order n. We study extensions for which the stronger condition $\left(n, d_{i}\right)=1$ for all $i=1, \ldots, s$, holds.
The function field F is a cyclic Kummer extension of F_{0}. Denote by v_{P} the valuation of F_{0} corresponding to place P. We have

$$
v_{P}(f(x))=v_{P}\left(\prod_{i=1}^{s}\left(x-\rho_{i}\right)^{d_{i}}\right)= \begin{cases}-d & \text { if } P=P_{x=\infty}, \\ d_{i} & \text { if } P=P_{x=\rho_{i}} \\ 1 & \text { otherwise }\end{cases}
$$

and the ramification index e_{P} is given by the tables: ([St], III.7.3 p. 110])

$$
r_{P}:=\left\{\begin{array}{ll}
(n, d) & \text { if } P=P_{x=\infty} \\
\left(n, d_{i}\right) & \text { if } P=P_{x=\rho_{i}}, \\
n & \text { otherwise }
\end{array} \quad e_{P}=\left\{\begin{array}{ll}
\frac{n}{(n, d)} & \text { if } P=P_{x=\infty} \\
\frac{n}{\left(n, d_{i}\right)} & \text { if } P=P_{x=\rho_{i}} \\
1 & \text { otherwise }
\end{array} .\right.\right.
$$

The conditions (n, d_{i}) $=1$ imply that all ramified places in extension F / F_{0} are ramified completely. Notice also that we have chosen a curve model such that there is no ramification at infinity, because $n \mid d$. The genus of the function field F can be computed with the aid of the Riemann-Hurwitz formula:

$$
g=\frac{(n-1)(s-2)}{2}
$$

If n is a prime number, then under the assumption $s>2 n$ we have that the extension F / F_{0} is strongly branched and, because the group C_{n} := $\mathrm{Gal}\left(F / F_{0}\right)$ is simple, we can use Corollary 3 of [Ac, p. 321], to deduce that $C_{n} \triangleleft G$. We will modify the ideas of A ccola to prove:

Proposition 1. Suppose that a cyclic extension F / F_{0} of the rational function field F_{0} is ramified completely at s places and $n=\left|\mathrm{Ga\mid}\left(F / F_{0}\right)\right|$. If $2 n<s$ then G al $\left(F / F_{0}\right) \triangleleft G$, where G is the whole automorphism group.

Proof. Let T be a generator of C_{n} and Q_{1}, \ldots, Q_{s} be the places of F which are fixed under the action of C_{n}. Denote by $\tilde{T}=\sigma T \sigma^{-1}$ an arbitrary conjugate of T. The fixed places of $\langle\tilde{T}\rangle_{\tilde{\tilde{N}}}$ are $\sigma\left(Q_{1}\right), \sigma\left(Q_{2}\right)$, $\ldots, \sigma\left(Q_{s}\right)$. Let $\tilde{F}_{0}:=F^{\langle\tilde{T}\rangle}$ be the fixed field of $\langle\tilde{T}\rangle . \tilde{F}_{0}$ is rational because it is a conjugate field of F_{0}. Denote by $q_{i}(i=1, \ldots, s)$, the restrictions of the places $\sigma\left(Q_{i}\right)$ in \tilde{F}_{0}. Because \tilde{F}_{0} is rational, there are elements f_{i} in \tilde{F}_{0}, with only one pole at the place q_{i}, of pole order 1 , and moreover
$k\left(f_{i}\right)=\tilde{F}_{0} . \tilde{F}_{0}$ is a subfield of F and we can consider f_{i} as an element of F. The divisor of f_{i} in F is

$$
\left(f_{i}\right)=\left(f_{i}\right)_{0}-n \sigma\left(Q_{i}\right)
$$

Set $h_{i}:=f_{i}-T \circ f_{i}$. If h_{i} is not a constant function then

$$
\operatorname{deg} h_{i} \leq 2 \operatorname{deg} f_{i}-r_{i}=2 n-r_{i},
$$

where $0 \leq r_{i} \leq \operatorname{deg} f_{i}\left(r_{i}=0\right.$ or $\left.n\right)$ is the number of poles of f_{i}, counting multiplicity, fixed by T. Indeed, for a place P of F, we have

$$
v_{P}\left(h_{i}\right)=v_{P}\left(f_{i}-T \circ f_{i}\right) \geq \min \left\{v_{P}\left(f_{i}\right), v_{P}\left(T \circ f_{i}\right)\right\},
$$

so if P is a pole of h_{i} then P is a pole of f_{i} or $T \circ f_{i}$. M oreover if P is a common pole of $f_{i}, T \circ f_{i}$ then it is not a pole of h_{i}.

On the other hand, every fixed place of T which is not a pole of f_{i} is a root of h_{i}. So the function h_{i} has $s-r_{i}$ roots. Because $2 n<s$, we have

$$
\operatorname{deg} h_{i} \leq 2 n-r_{i}<s-r_{i} \leq \operatorname{deg} h_{i},
$$

a contradiction. Therefore $h_{i} \in k$ and because T fixes places which are not poles of f_{i} we have that $h_{i}=0$. This implies that

$$
f_{i}=T\left(f_{i}\right), \quad \forall i \in\{1, \ldots, s\} .
$$

Hence, $f_{i} \in F_{0}, F_{0}=\tilde{F}_{0}$, and $C_{n} \triangleleft G$.
U sing the R iemann-H urwitz formula we find that the above condition is equivalent to

$$
(n-1)^{2}<g_{F},
$$

where g_{F} is the genus of the function field F.
In the case $k=\mathbb{C}$ and $n=p$ is prime, then Victor Gonzalez and R ubi Rodriguez [G-R] have given a better condition. A curve C is a p-cyclic cover of the projective line if and only if it has a g_{p}^{1} base point free linear system. The automorphism group permutes all linear systems of the above form and if the linear system g_{p}^{1} is unique, then the G alois cyclic group $\mathrm{Gal}\left(C / \mathbb{P}^{1}\right)$ is normal in G. A sufficient condition for a linear system g_{p}^{1} to be unique is the inequality:

$$
\begin{equation*}
2 \leq p \leq \frac{g}{2}+1 . \tag{1}
\end{equation*}
$$

[A-C], so if (1) holds then $C_{p} \triangleleft G$.

3. CALCULATION OF THE GROUPS

Let F / F_{0} be a cyclic extension with cyclic G alois group C_{n} of order n prime to the characteristic p and $C_{n}=\mathrm{Gal}\left(F / F_{0}\right) \triangleleft G$. We form the following short exact sequence,

$$
1 \rightarrow C_{n} \rightarrow G \xrightarrow{\pi} G_{0} \rightarrow 1
$$

where $G:=G / C_{n}$ is a finite subgroup of $\operatorname{PGL}(2, k)$. The group G_{0} acts on C_{n} in the following way: We choose a section of G_{0} in G; i.e., for every $\sigma \in G_{0}$ we choose an element $S \in G$, such that $\pi(S)=\sigma$ and define

$$
T^{\sigma}=S T S^{-1}
$$

where T is a generator of the cyclic group C_{n}. Because $C_{n} \triangleleft G$ this action is well defined. Setting $T^{\beta(\sigma)}=T^{\sigma}$ for an integer $\beta(\sigma)$ we can define a homomorphism

$$
\beta:\left\{\begin{array}{l}
G_{0} \rightarrow \mathrm{Aut}\left(C_{n}\right) \cong \mathbb{Z}_{n}^{*} \tag{2}\\
\sigma \mapsto \beta(\sigma) \bmod n
\end{array}\right.
$$

We can interpret the action homomorphism β in terms of the generating elements x, y. Notice first that y is a generator of F over F_{0}, i.e., $F=F_{0}(y)$. A ny other generator of F over F_{0} is of the form $y^{l} B$ where $(l, n)=1$ and $B \in F_{0}$ [Ha, p. 38]. Because $C_{n} \triangleleft F$ we have that for every $S \in G, S\left(F_{0}\right)=F_{0}$ so $S(y)$ is a generator of F_{0} over F, hence of the form $S(y)=y^{l(S)} B_{S}$. By calculation $\beta(\sigma)=l(S)$, where $\sigma=\left.S\right|_{F_{0}}$.

Let us consider now the inverse situation: G_{0} is an arbitrary finite subgroup of automorphisms of the rational function field F_{0}. Is it possible to extend every element in G_{0}, to an automorphism of F ? The following proposition gives us a necessary and sufficient condition.

Proposition 2 [Na]. Let $D=\operatorname{div}(f(x))_{0}$ be the root divisor of the polynomial $f(x)=y^{n}$ in the field F_{0}. Suppose that $\operatorname{deg}(D)=d \equiv 0 \bmod n$ and that $\left(v_{P}(D), n\right)=1$ for all $P \in \operatorname{supp}(D)$. Let $\sigma \in G_{0}$ be an automorphism of F_{0}.
(a) The following are equivalent:

- For every element σ in G_{0} we have that

$$
\sigma(D) \equiv \beta(\sigma) D \bmod n
$$

- There is an automorphism σ^{\prime} of the function field F such that $\left.\sigma^{\prime}\right|_{F_{0}}=\sigma$.
(b) The following are equivalent:
- There is an automorphism σ^{\prime} of the function field F such that $\left.\sigma^{\prime}\right|_{F_{0}}=\sigma$ and $\sigma^{\prime} T=T \sigma^{\prime}$ where T is the generator of the cyclic group $\mathrm{Gal}\left(F / F_{0}\right)$.

$$
\text { - } \sigma(D)=D,
$$

where by writing $D \equiv D^{\prime} \bmod n$, for two divisors with the same support, we mean that $v_{P}(D) \equiv v_{P}\left(D^{\prime}\right)$ for every $P \mid D, D^{\prime}$.
Proof. Let $\sigma \in G_{0}$ and S be an extension of σ to F. Setting $S(y)=$ $y^{\beta(\sigma)} B_{\sigma}$ in the defining equation $y^{n}=f(x)$ of F we get

$$
\begin{equation*}
\frac{\sigma(f)}{f^{\beta(\sigma)}}=B_{\sigma}^{n} \tag{3}
\end{equation*}
$$

Equation (3) is equivalent to

$$
\sigma\left(\operatorname{div}_{0}(f)\right)-\beta(\sigma)\left(\operatorname{div}_{0}(f)\right) \equiv 0 \bmod n,
$$

because we have assumed that $n \mid \operatorname{deg}(f)$, i.e., $\operatorname{div}_{\infty}(f)=n \cdot P_{\infty}$. Conversely, if $\sigma\left(\operatorname{div}_{0}(f)\right)-\beta(\sigma) \operatorname{div}_{0}(f) \equiv 0 \bmod n$ then there is a function $B_{\sigma} \in F_{0}$, satisfying (3) because the divisor $1 / n(\sigma(\operatorname{div}(f))-\beta(\sigma) \operatorname{div}(f))$ is of degree zero, hence principal.

The second assertion of the proposition is a consequence the first one, because σ, and T are commuting if and only if $\beta(\sigma)=1$.
The supp (D) is the set of places of F_{0} which are ramified in the extension F / F_{0}. Because $C_{n} \triangleleft G$, every automorphism σ permutes the places in $\operatorname{supp}(D)$. The fixed places of $\operatorname{supp}(D)$ under the action of G_{0} are ramified in the extension $F_{0} / F_{0}^{G_{0}}$.

Definition 1. Let G_{0} be a finite group of automorphisms of the rational function field F_{0} and $A:=\left\{P_{1}, \ldots, P_{f}\right\}$ be the set of places of F_{0} which are ramified in $F_{0} / F_{0}^{G_{0}}$. Let also $A_{R} \subset A$ be a G_{0} invariant subset of A and $\beta: G_{0} \rightarrow \mathbb{Z}_{n}^{*}$ a homomorphism. We will denote by

$$
\mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right) \subset \operatorname{Div}\left(F_{0}\right),
$$

the set of effective divisors D of F_{0} such that

- G_{0} leaves $\operatorname{supp}(D)$ invariant,
- $A \cap \operatorname{supp}(D)=A_{R}$,
- $\left(v_{P}(D), n\right)=1$ for all places $P \in \operatorname{supp}(D)$,
- $\sigma(D) \equiv \beta(\sigma) D \bmod n$ for all $\sigma \in G_{0}$.

Remark 1. Let $D \in \mathscr{D}_{n}\left(G_{0}, A_{r} \subset A, \beta\right)$. If $\sigma \in G_{0}$ fixes a place $P \in \operatorname{supp}(D)$ then $\beta(\sigma) \equiv 1 \bmod n$. Indeed, $\sigma(D) \equiv \beta(\sigma) D \bmod n$ and $v_{P}(D) \equiv \beta(\sigma) v_{P}(D) \bmod n$, so $\beta(\sigma) \equiv 1 \bmod n$ because $v_{P}(D) \in \mathbb{Z}_{n}^{*}$.

Lemma 3. If for all $\sigma \in G_{0}$ and for all P such that $\sigma(P)=P$ we have $\beta(\sigma) \equiv 1 \bmod n$, then the set $\mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$ is not empty. Moreover if $\mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right) \neq \varnothing$ then we can find an effective divisor D in $\mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$ with arbitrary high degree.

Proof. We will first construct the $\operatorname{supp}(D)$. Pick a place Q_{1} of F_{0} and consider the orbit $O\left(Q_{1}, G_{0}\right)$ of Q_{1} under the action of G_{0}. Choose Q_{2} not in $O\left(Q_{1}, G_{0}\right)$ and consider the orbit $O\left(Q_{2}, G_{0}\right)$. Continuing this way we can construct a set of orbits $O\left(Q_{i}, G_{0}\right)$ such that

$$
O\left(Q_{i}, G_{0}\right) \cap O\left(Q_{j}, G_{0}\right)=\varnothing \quad \text { for } i \neq j
$$

and $A_{R} \subset \bigcup_{i=1}^{s} O\left(Q_{i}, G_{0}\right)$. Define the support of D

$$
\operatorname{supp}(D):=\bigcup_{i=1}^{s} O\left(Q_{i}, G_{0}\right) .
$$

For all $P \in O\left(Q_{i}, G_{0}\right)$ define $v_{P}(D):=\lambda\left(Q_{i}\right) \cdot \beta(\sigma)$, where σ is the element of G_{0} such that $\sigma\left(Q_{i}\right)=P$, and $1 \leq \lambda\left(Q_{i}\right)<n$ is an integer prime to n. We will later select a suitable $\lambda\left(Q_{i}\right)$ so that $\operatorname{deg}(D) \equiv 0 \bmod n$. The divisor D is well defined because if $\sigma, \sigma^{\prime} \in G_{0}$ such that $\sigma\left(Q_{i}\right)=$ $\sigma^{\prime}\left(Q_{i}\right)=P$ then $\sigma^{\prime} \cdot \sigma^{-1}\left(Q_{i}\right)=Q_{i}$, so $\beta\left(\sigma^{\prime}\right) \equiv \beta(\sigma) \bmod n$.

Definition 2. Let G_{0} be a finite group of automorphisms of the rational function field F_{0} and let $A=\left\{P_{1}, \ldots, P_{f}\right\}, A_{R} \subset A$ be as in Definition 1. We say that the ramification type ($G_{0}, A_{R} \subset A, \beta$) is realizable if there exists a cyclic extension F of F_{0} defined as at the beginning of Section 2, such that $C_{n}=\operatorname{Gal}\left(F / F_{0}\right)$ is a normal subgroup of the whole automorphism group $G, G / C_{n} \supset G_{0}$ and the set A_{R} consists of the places of A which are ramified in the extension F / F_{0}.

Proposition 4. If the divisor $D \in \mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$ can be constructed so that

$$
\operatorname{deg} D \equiv 0 \bmod n
$$

and the infinite place $P_{\infty} \notin \operatorname{supp} D$, then the ramification type ($G_{0}, A_{R} \subset$ A, β) is realizable.

Proof. We set $F=F_{0}(y)$, where

$$
y^{n}=\prod_{P \in \operatorname{supp}(D)}(x-x(P))^{v_{p}(D)},
$$

and $x(P) \in k$ denotes the finite point of $\mathbb{P}^{1}(k)$ corresponding to the place P. The assertion follows by Proposition 2. Notice that, in order to ensure $G_{0} \triangleleft G$ we can take $\# \operatorname{supp}(D)>[n / 2]+1$.

In case deg $D \equiv 0 \bmod n$ but $P_{\infty} \in \operatorname{supp} D$, we can find a Möbius transformation $A \in P G L(2, k)$ such that $P_{\infty} \notin Q($ supp $D)$, so the ramification type $\left(Q G_{0} Q^{-1}, Q\left(A_{R}\right) \subset Q(A), \beta\right)$ is realizable.

We will now compute the degree of $D \in \mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$. Let σ_{0} be an arbitrary element in G_{0} of order m. The set $\operatorname{supp}(D)$ splits into orbits under the action of σ_{0} :

$$
\operatorname{supp}(D)=\bigcup_{i=1}^{k_{\sigma_{0}}} O\left(P_{i},\left\langle\sigma_{0}\right\rangle\right)
$$

Let P be an element of $\operatorname{supp}(D)$, which is not fixed by σ_{0}. The orbit of P under the action of $\left\langle\sigma_{0}\right\rangle$ is $O\left(P,\left\langle\sigma_{0}\right\rangle\right)=\left\{P, \sigma_{0}(P), \ldots, \sigma_{0}^{m-1}(P)\right\}$. (Observe that if P is not fixed by the M öbius transformation σ_{0} it is not fixed by any power of σ_{0}.) This orbit corresponds to a divisor,

$$
\sum_{i=0}^{m-1} \lambda \beta\left(\sigma_{0}^{i}\right) \sigma_{0}^{i}(P)
$$

of degree modulo p^{a} :

$$
\sum_{i=0}^{m-1} \lambda \beta\left(\sigma_{0}^{i}\right)= \begin{cases}\lambda \frac{\beta\left(\sigma_{0}\right)^{m}-1}{\beta\left(\sigma_{0}\right)-1} \equiv 0 \bmod p^{a} & \text { if } \beta\left(\sigma_{0}\right) \not \equiv 1 \bmod p^{a}, \tag{4}\\ \lambda m \bmod p^{a} & \text { if } \beta\left(\sigma_{0}\right) \equiv 1 \bmod p^{a},\end{cases}
$$

for every $p^{a} \mid n, p^{a+1}+n$.
Remark 2. Consider a realizable divisor $D \in \mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$, hence of degree $\equiv 0 \bmod n$. If $P \in \operatorname{supp} D$ is a fixed place of $\sigma \in G_{0}$, then $\beta(\sigma) \equiv 1 \mathrm{mod} n$. If σ has two fixed places P_{1}, P_{2} and $P_{1} \in \operatorname{supp}(D)$, $P_{2} \notin \operatorname{supp}(D)$, then necessarily we have $(n, m)=1$, where m is the order of σ. Indeed, the degree of D is

$$
\operatorname{deg}(D)=v_{P_{1}}(D)+\sum \lambda_{i} m \equiv 0 \bmod n .
$$

So $(n, m) \mid v_{P_{1}}(D)$, a contradiction unless $(n, m)=1$.
Lemma 5. If there is a $\sigma \in G_{0}$ such that $\beta(\sigma) \not \equiv 1 \bmod p^{a}$, for every prime $p^{a} \mid n, p^{a+1}+n$, then every divisor $D \in \mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$ has degree $0 \bmod n$.

Proof. σ acts on $\operatorname{supp}(D)$ without fixed points, because $\beta(\sigma) \not \equiv$ $1 \bmod n$. The desired result follows by Eq. (4).

Lemma 6. In case $A_{R}=\varnothing$; i.e., none of the ramified places in $F_{0} / F_{0}^{G_{0}}$ is ramified in F / F_{0} then we can construct a divisor $D \in \mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$ of degree $0 \bmod n$.

Proof. Notice that G_{0} acts without fixed points on $\operatorname{supp}(D)$, because $A_{R}=\varnothing$, so we take even number of orbits $O\left(Q_{i}, G_{0}\right) i=1, \ldots, r$ and put $\lambda\left(Q_{i}\right) \equiv-\lambda\left(Q_{r-i}\right) \bmod n$. This construction implies that $\operatorname{deg} D \equiv 0 \bmod n$.

4. FINITE SUBGROUPS OF $\operatorname{PGL}(2, k)$ AS QUOTIENT GROUPS

All finite subgroups of the group of automorphisms of a rational function field are given by:

Theorem 7 [V-M]. Let F_{0} be a rational function field with an algebraically closed field of constants k of characteristic $p \geq 0$. Suppose that G_{0} is a nontrivial finite group of automorphisms of F_{0} and $F_{1}:=F_{0}^{G_{0}}$ is the fixed field of G_{0}. Let r be the number of ramified places of F_{1} in the extension F_{0} / F_{1} and e_{1}, \ldots, e_{r} the corresponding ramification indices. Then G_{0} is one of the following groups, with F_{0} / F_{1} having one of the associated ramification types:

1. Cyclic group of order relatively prime to p with $r=2, e_{1}=e_{2}=\left|G_{0}\right|$
2. Elementary Abelian p-group with $r=1, e=\left|G_{0}\right|$
3. Dihedral group D_{m} of order $2 m$ with $p=2,(p, m)=1, r=2$, $e_{1}=2, e_{2}=m$, or $p \neq 2,(p, m)=1, r=3, e_{1}=e_{2}=2, e_{3}=m$.
4. Alternating group A_{4} with $p \neq 2,3, r=3, e_{1}=2, e_{2}=e_{3}=3$.
5. Symmetric group S_{4} with $p \neq 2,3, r=3, e_{1}=2, e_{2}=3, e_{3}=4$.
6. Alternating group A_{5} with $p=3, r=2, e_{1}=6, e_{2}=5$, or $p \neq$ $2,3,5, r=3, e_{1}=2, e_{2}=3, e_{3}=5$.
7. Semidirect product of an elementary Abelian p-group of order q with a cyclic group of order m with $m\left|(q-1), r=2, e_{1}=\left|G_{0}\right|, e_{2}=m\right.$.
8. $\operatorname{PSL}(2, q)$ with $p \neq 2, q=p^{m}, r=2, e_{1}=\frac{q(q-1)}{2}, e_{2}=\frac{q+1}{2}$.
9. $\operatorname{PGL}(2, q)$ with $q=p^{m}, r=2, e_{1}=q(q-1), e_{2}=q+1$ where r is the number of places of the field F_{1} ramified in F / F_{0}.

Remark 3. Because k is algebraically closed, for every place Q of F_{0}, the inertia group is equal to the decomposition group.

4.1. Some Cohomology Calculations

It is well known that the set of all equivalent extensions of the form

$$
1 \rightarrow C_{n} \rightarrow G \xrightarrow{\pi} G_{0} \rightarrow 1
$$

are classified in terms of the second cohomology group $H^{2}\left(G_{0}, C_{n}\right)$ where G_{0} acts on C_{n} by conjugation of an arbitrary section of G_{0}. If C_{n} is a trivial G_{0} module; i.e., the function β defined in (2) is trivial, then it is easy to compute this cohomology group employing the universal coefficient theorem. Namely, the following formula holds [Br]:

$$
\begin{equation*}
H^{2}\left(G_{0}, C_{n}\right) \cong \operatorname{Hom}\left(H_{2}\left(G_{0}, \mathbb{Z}\right), C_{n}\right) \oplus \operatorname{Ext}\left(H_{1}\left(G_{0}, \mathbb{Z}\right), C_{n}\right), \tag{5}
\end{equation*}
$$

where the G_{0} acts trivially on \mathbb{Z}. The homology group $H_{2}(G, \mathbb{Z})$ is the Schur multiplier which is known for all the finite subgroups of $\operatorname{PGL}(2, k)$ appearing in Theorem 7. The homology group $H_{1}\left(G_{0}, \mathbb{Z}\right)$ is the A belianization $G_{0} /\left[G_{0}, G_{0}\right]$ of G_{0}. Using these results we are able to compute the cohomology table, Table I. Notice that two nonequivalent extension sequences might have isomorphic middle groups. For example, all extensions of C_{p} by C_{p}, where p is prime are of order p^{2}, hence A belian. So there are only two possible middle groups for the extension sequence, namely, $C_{2 p}$ and $C_{p} \times C_{p}$. On the other hand $H^{2}\left(C_{p}, C_{p}\right) \cong \mathbb{Z}_{p}$.
D enote by $i\left(G_{0}, C_{n}\right)$ the number of nonisomorphic middle groups obtained by extending the group G_{0} by C_{n}. We have

$$
i\left(G_{0}, C_{n}\right) \leq\left|H^{2}\left(G_{0}, C_{n}\right)\right| .
$$

We state also the proposition which we use later.

TABLE

Group G_{0}	$H^{2}\left(G_{0}, C_{n}\right)$
C_{m}	$\begin{cases}\mathbb{Z}_{(n, m)} & \text { if }(n, 2)=1 \\ \mathbb{Z}_{2} & \text { if }(n, 2)=2,(m, 2)=1 \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} & \text { if }(n, 2)=(m, 2)=2\end{cases}$
D_{m}	$\mathbb{Z}_{(n, 2)} \times \mathbb{Z}_{(n, 3)}$
\mathbb{Z}_{4}	$\mathbb{Z}_{(2, n)} \times \mathbb{Z}_{(2, n)}$
A_{5}	$\begin{cases}1 & \text { if } p=2, p^{f} \neq 4 \\ \mathbb{Z}_{(2, n)} & \text { if } p>2, p^{f} \neq 9, p^{f}=4, \text { where } q=p^{f} \\ \mathbb{Z}_{(2, n)} & \text { if } p^{f}=9\end{cases}$
S_{4}	$\mathbb{Z}_{(2, n)} \times \mathbb{Z}_{(2, n)}$
$P S L(2, q)$	

Proposition 8 [Wei, p. 93]. Let s be the order of G_{0}. There is an injection

$$
\begin{array}{r}
H^{2}\left(G_{0}, A\right)=\bigoplus_{p \mid s} H^{2}\left(G_{0}, A\right)_{p} \xrightarrow{\Phi} \bigoplus_{p \mid s} H^{2}\left(G_{0 p}, A\right) \\
\alpha=\sum_{p \mid s} \alpha_{p} \mapsto \sum_{p \mid s} \operatorname{res}_{\left(G_{0} \rightarrow G_{0 p}\right)} \alpha_{p},
\end{array}
$$

where $G_{0 p}$ ranges over the p-Sylow subgroups of G_{0}. Here $H^{2}\left(G_{0}, A\right)_{p}$ is the p-part of the finite Abelian group $H^{2}\left(G_{0}, A\right)$.

4.2. Cyclic Groups

We begin our examination of the possible finite groups of the rational function field given in Theorem 7, with the cyclic group. In this section we will prove:

Theorem 9. Let $G_{0}=G / C_{n}$ be isomorphic to a cyclic group C_{m} of order m, prime to the characteristic of the field k. The set A of fixed places of F_{0} under the action of G_{0} is $A=\left\{P_{1}, P_{2}\right\}$. The group of automorplhisms G is then isomorphic to
(a) $C_{n m}$ is one, at least, of the places P_{1}, P_{2}, say P_{1}, is ramified completely in the extension F / F_{0}, i.e., when $A_{R} \neq \varnothing$
(b) $C_{n} \rtimes C_{m}$ if no place in A is ramified in F / F_{0}, i.e., $A_{R}=\varnothing$.

Proof. (a) In this case, one of the places P_{1}, P_{2}, say P_{1}, is ramified completely in the extension F / F_{0}. If Q is the unique place of F lying over P_{1}, then the decomposition subgroup $G(Q)$ is cyclic [$\mathrm{Se}, \mathrm{p} .68$] and equal to G. The group G is A belian and the map $\beta: C_{m} \rightarrow \mathbb{Z}_{n}^{*}$ is trivial.
(b) In this case none of the two places P_{1}, P_{2} is ramified in F / F_{0}. Denote by π the natural map π : $G \rightarrow G_{0}$. Let T be a generator of C_{n}, and S an element of G such that $\pi(S)$ is a generator of the quotient subgroup C_{m}. The group G is a metacyclic group generated by T, S. Because $\pi(S)^{m}=1$ we have that

$$
S^{m}=T^{t},
$$

for an element $T^{t} \in C_{n}$. The function β is determined by its value at the generator $\pi(S)$ of C_{m}. Let $l:=\beta(\pi(S))$. Then

$$
T^{\pi(S)}=S T S^{-1}=T^{\beta(\pi(S))}=T^{l} .
$$

Consider the subextension diagram, where $G_{1}:=\pi^{-1}(\operatorname{ker} \beta)$

Let $\pi(S)^{r}, r \mid m$ be a generator of the cyclic group $\operatorname{ker} \beta$. Then

$$
l^{r}=\beta\left(\pi\left(S^{r}\right)\right) \equiv 1 \bmod n,
$$

and $S^{r} T S^{-r}=T^{l^{r}}=T$ so the group $G_{1}<G$, which is generated by T and S^{r}, is A belian.

We claim that all p-Sylow subgroups of G_{1} are isomorphic to $C_{p^{v_{1}}} \times C_{p^{v_{2}}}$, where v_{1}, v_{2} are the exponents of p in the decomposition of n and m / r into prime factors. Indeed, let p be a prime divisor of ($n, m / r$). D enote by G_{1}^{p} a p-Sylow subgroup of G_{1}. Consider the tower of fields

where p_{1} is the restriction of the place P_{1} in $F_{0}^{C_{p} v_{2}}$, and $A_{1}, \ldots, A_{p^{v_{1}}}$ are the extensions of the place P_{1} of F_{0} in $F^{C_{n / p} \nu_{1}}=: L$. The Galois group $\mathrm{Gal}\left(L / F_{0}\right)=C_{p^{c_{1}}}$. If C is a cyclic subgroup of G_{1}^{p} containing $\mathrm{Gal}\left(L / F_{0}\right)$,

$$
\operatorname{Gal}\left(L / F_{0}\right) \leq C \leq G_{1}^{p},
$$

then $C=\operatorname{Gal}\left(L / F_{0}\right)$. Otherwise, there is an intermediate field

$$
L^{C}<L_{T}\left(A_{1}\right)<L
$$

corresponding to the decomposition group $C\left(A_{1}\right)$ such that A_{1} decomposes in the extension $L_{T}\left(A_{1}\right) / L^{C}$ and ramifies in the extension $L / L_{T}\left(A_{1}\right)$. This is impossible, because the subgroups of a cyclic p-group C are completely ordered with respect to inclusion. This remark together with the classification theorem of A belian groups gives us that $G_{1}^{p}=$ $C_{p^{v_{1}}} \times C_{p^{v_{2}}}$. U sing the classification theorem of A belian groups once more,
we get $G_{1}=C_{n} \times \operatorname{ker} \beta$. This implies

$$
\begin{equation*}
\langle T\rangle \cap\left\langle S^{r}\right\rangle=\{1\} . \tag{6}
\end{equation*}
$$

If $S^{m}=T^{t}$ then $\left(S^{r}\right)^{m / r}=T^{t} \in\langle T\rangle \cap\left\langle S^{r}\right\rangle$ so $S^{m}=1$ by (6). Hence the group G is given by generators and relations as

$$
G=\left\{S, T \mid S^{m}=1, T^{n}=1, S T S^{-1}=T^{l}\right\}
$$

where $(l, n)=1, l^{r} \equiv 1 \bmod n$. We have proven that G is the semidirect product of the groups $C_{n} \rtimes C_{m}$ with action given by β.
Remark 4. Notice that if P decomposes in F / F_{0} and the other fixed place of G_{0} ramifies in F / F_{0} then G is cyclic of order $n \cdot\left|G_{0}(P)\right|$. This is possible because in this case (n, m) $=1$ and $C_{n} \times C_{m} \cong C_{n m}$.

Corollary 10. Let G be the group of automorphisms of the function field F and let $G_{0}=G / C_{n}$ be the quotient finite subgroup of F_{0}. Let also $G_{0}(P)$ be the decomposition group of a place P of F_{0}. If $G_{0}(P)$ is cyclic of order prime to the characteristic p, then the group $G_{\pi}(P)$ defined as

$$
G_{\pi}(P):=\{S \in G: \pi(S) P=P\},
$$

is cyclic of order $n \cdot\left|G_{0}(P)\right|$ in case P is ramified in F / F_{0}. Otherwise, i.e., in case P is decomposed in $F / F_{0}, G_{\pi}(P)$ is the semidirect product of $C_{n} \rtimes G_{0}(P)$ with action given by $T^{\sigma}=T^{\beta(\sigma)}$, where σ is a generator for the cyclic group $G_{0}(P)$. In first case $\beta(\sigma) \equiv 1 \bmod n$.

We now prove that the following ramification types are realizable by finding a divisor in $\mathscr{D}_{n}\left(C_{m}, A_{R} \subset A, 1\right)$ such that $\operatorname{deg}(D) \equiv 0 \bmod n$. We have to consider
(a) $A_{R}=\left\{P_{1}\right\}, \beta$ is trivial. The arbitrary divisor in $\mathscr{D}_{n}\left(C_{m}, A_{R} \subset\right.$ $A, 1$) has the form

$$
D=\lambda\left(P_{1}\right) P_{1}+\sum_{i=0}^{r} \lambda\left(Q_{i}\right) \sum_{P \in O\left(Q_{i}, C_{m}\right)} P
$$

We have seen that this situation happens only in case $(n, m)=1$, so there are integers κ, λ such that $\kappa n+\lambda m=1$. We take r even, and we set $\lambda\left(P_{1}\right)=1, \lambda\left(Q_{0}\right)=\lambda$, and $\lambda\left(Q_{i}\right) \equiv-\lambda\left(Q_{r-i+1}\right) \bmod n, i=1, \ldots, r$. This gives us that deg $D \equiv 0 \bmod n$.
(b) $A_{R}=\left\{P_{1}, P_{2}\right\}, \beta$ is trivial. The two orbits $O\left(P_{i}, C_{m}\right)=\left\{P_{i}\right\}$, $i=1,2$ of the fixed places P_{1}, P_{2}, are in A_{R} and $A_{R}=A=\left\{P_{1}, P_{2}\right\}$. The
arbitrary divisor $D \in \mathscr{D}_{n}\left(C_{m}, A_{R} \subset A, 1\right)$ is of the form

$$
D=\lambda\left(P_{1}\right) P_{1}+\lambda\left(P_{2}\right) P_{2}+\sum_{i=1}^{r} \lambda\left(Q_{i}\right) \sum_{P \in O\left(Q_{i}, C_{m}\right)} P,
$$

where $Q_{i} \notin A$ for all $i=1, \ldots, r$. In order to assure that the above divisor has degree $0 \bmod n$, we set $\lambda\left(P_{1}\right) \equiv-\lambda\left(P_{2}\right) \bmod n, r$ to be even and $\lambda\left(Q_{i}\right) \equiv-\lambda\left(Q_{r-i+1}\right) \bmod n$.
(c) $A_{R}=\varnothing$. This case is realizable by Lemma 6 .

4.3. Elementary Abelian Groups

Theorem 11. Let $G_{0}=G / C_{n}$ be isomorphic to an elementary Abelian group $\mathscr{E}_{p}(t)$ of order p^{t}, where p is the characteristic of k. The group G is isomorphic to $C_{n} \rtimes G_{0}$. Moreover if the unique fixed place P_{1} of G_{0} is ramified in the extension F / F_{0} then G is isomorphic to $C_{n} \times G_{0}$.

Proof. Because $\left(n,\left|G_{0}\right|\right)=1$ the group G is a semidirect product, $G=C_{n} \rtimes G_{0}$. The action is given by the function β.

Suppose now that the unique fixed place P_{1} of G_{0} is ramified in F / F_{0}. Let Q be the unique place of F lying over P_{1}. The decomposition group $G(Q)=G$ is equal to the inertia group, because k is algebraically closed. So $G(Q)$ is the semidirect product of a cyclic group of order prime to p with a normal p-group $G_{1}(Q)=G_{0}$. Therefore the product is direct.

The arbitrary divisor in $\mathscr{D}_{n}\left(G_{0}, A_{R} \subset\left\{P_{1}\right\}, \beta\right)$ is given by

$$
D=\sum_{P \in A_{R}} \lambda(P) P+\sum_{i=1}^{s} \lambda\left(Q_{i}\right) \sum_{P \in O\left(Q_{i}, G_{0}\right)} P,
$$

where $Q_{i} \notin A, i=1, \ldots, s$. To prove that both ramification types are realizable we must select the above divisor to have degree $0 \bmod n$. In the first case $A_{R}=\left\{P_{1}\right\}$ and β is trivial, so we take s orbits $O\left(Q_{i}, G_{0}\right)$ with $\lambda\left(P_{1}\right)=\lambda\left(Q_{i}\right)=1$, such that

$$
\operatorname{deg}(D)=1+s p^{a} \equiv 0 \bmod n,
$$

where p^{a} is the order of G_{0}. This is always possible, because $(n, p)=1$. In the second case, $A_{R}=\varnothing$ and the desired result follows from Lemma 6 .

4.4. Semidirect Products of Cyclic Groups with Elementary Abelian Groups

In this case $G_{0}=G / C_{n}$ is isomorphic to the semidirect product of an elementary A belian group $\mathscr{E}_{p}(t)$ of order p^{t}, where p is the characteristic of k, with a cyclic group C_{m} of order m, and $m \mid\left(p^{t}-1\right)$. In the extension
$F_{0} / F_{0}^{G_{0}}$, two places p_{1}, p_{2} of $F_{0}^{G_{0}}$ are ramified with ramification indices $e_{1}=\left|G_{0}\right|$ and $e_{2}=m$, respectively.

Theorem 12. Let $G_{0}=G / C_{n}$ be isomorphic to the semidirect product of an elementary Abelian group $\mathscr{E}_{p}(t)$ of order p^{t}, where p is the characteristic of k, with a cyclic group C_{m} of order m, and $m \mid\left(p^{t}-1\right)$. The group of automorphisms G is isomorphic to $C_{n} \rtimes G_{0}$ if $A_{R}=\varnothing$ and $\mathscr{E}_{p}(t) \rtimes C_{n m}$ if $A_{R} \neq \varnothing$.

Proof. Although in this case we are interested in elementary A belian groups of order a power of the characteristic, we prove a more general lemma allowing p to be other than the characteristic.

Lemma 13. Denote by $\mathscr{E}_{p}(t)$ an elementary Abelian p group of order p^{t}, where p is not necessarily the characteristic. Consider the group $G_{0}=\mathscr{E}_{p}(t) \rtimes$ C_{m}, with $(m, p)=1$, acting on the rational function field F_{0}. Suppose that the subextension

$$
\begin{equation*}
1 \rightarrow C_{n} \rightarrow \pi^{-1}\left(\mathscr{E}_{p}(t)\right) \rightarrow \mathscr{E}_{p}(t) \rightarrow 1 \tag{7}
\end{equation*}
$$

of the extension

$$
\begin{equation*}
1 \rightarrow C_{n} \rightarrow G \xrightarrow{\pi} \mathscr{E}_{p}(t) \rtimes C_{m} \rightarrow 1 \tag{8}
\end{equation*}
$$

splits, i.e., $\pi^{-1}\left(\mathscr{E}_{p}(t)\right)=C_{n} \rtimes \mathscr{E}_{p}(t)$. Then G is isomorphic to $C_{n} \rtimes\left(\mathscr{E}_{p}(t) \rtimes\right.$ C_{m}) if both fixed places of F_{0}, under the action of C_{m}, are decomposed in F / F_{0} or to $G \cong \mathscr{E}_{p}(t) \rtimes C_{n m}$ if one of the fixed places of F_{0}, under the action of C_{m}, is ramified in F / F_{0}.

Proof. A ccording to the study of cyclic extensions, we have two possibilities for the group $\pi^{-1}\left(C_{m}\right)$. Thus

$$
\pi^{-1}\left(C_{m}\right) \cong C_{n} \rtimes C_{m} \quad \text { or } \quad \pi^{-1}\left(C_{m}\right) \cong C_{n m}
$$

If $\pi^{-1}\left(C_{m}\right) \cong C_{n} \rtimes C_{m}$ then using the injection Φ defined in Proposition 8 :

$$
H^{2}\left(\mathscr{E}_{p}(t) \rtimes C_{m}, C_{n}\right) \xrightarrow{\Phi} \underset{q \|\left|G_{0}\right|}{ } H^{2}\left(H_{q}, C_{n}\right),
$$

where H_{q} ranges over the q-Sylow subgroups of G_{0}, we have that the whole extension (8) splits, because H_{q} is either a subgroup of $\mathscr{E}_{p}(t)$ or C_{m}.

If $\pi^{-1}\left(C_{m}\right) \cong C_{n m}$ then we will show that $G \cong \mathscr{E}_{p}(t) \rtimes C_{n m}$. Indeed, in this case there is an element $R \in G$ of order $n m$, which generates a subgroup of G isomorphic to $C_{n m}$. Because the extension (7) splits we
have an embedding

$$
j: \mathscr{E}_{p}(t) \hookrightarrow \pi^{-1}\left(\mathscr{E}_{p}(t)\right) \hookrightarrow G .
$$

M oreover $\mathscr{E}_{p}(t) \cong j\left(\mathscr{E}_{p}(t)\right)$ and $\pi^{-1}\left(\mathscr{E}_{p}(t)\right) \triangleleft G$. Because $C_{n} \cap \mathscr{E}_{p}(t)=1$ we have that $j\left(\mathscr{E}_{p}(t)\right) \triangleleft G$. On the other hand $j\left(\mathscr{E}_{p}(t)\right) \cap C_{n m}=1$. Indeed if $x \in j\left(\mathscr{E}_{p}(t)\right) \cap C_{n m}$ then $x^{m} \in j\left(\mathscr{E}_{p}(t)\right) \cap C_{n}=1$ so $x^{m}=1$, and $x=1$ because $(p, m)=1$. This implies the desired assertion.
We return now to our case, where p is the characteristic of k. Because (p, n) $=1$, the extension (7) splits. If moreover one of the places fixed by C_{m} ramifies in F / F_{0}, then $G \cong \mathscr{E}_{p}(t) \rtimes C_{n m}$. Otherwise $G \cong C_{n} \rtimes$ $\left(\mathscr{E}_{p}(t) \rtimes C_{m}\right)$.
To prove the realization of the ramification type we have to select the arbitrary divisor

$$
D=\sum_{P \in A_{R}} \lambda(P) P+\sum_{i=1}^{s} \lambda\left(P_{i}\right) \sum_{Q \in O\left(P_{i}, G_{0}\right)} P,
$$

of $\mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$ to have degree $0 \bmod n$. Denote by Q the unique place of F_{0} above p_{1} and by $Q_{1}, \ldots, Q_{p^{t}}$ the places of F_{0} above p_{2}. Notice also that $O\left(Q, G_{0}\right)=\{Q\}, O\left(Q_{1}, G_{0}\right)=\left\{Q_{1}, \ldots, Q_{p^{\prime}}\right\}$.
We have the following cases for A_{R}
(a) $A_{R}=\varnothing$. This ramification type is realizable by Lemma 6 .
(b) $A_{R}=O\left(Q, G_{0}\right)=\{Q\}$. In this case the function β must be trivial. Observe that the fixed places of C_{m} are Q, Q^{\prime} where $Q^{\prime} \in$ $O\left(Q_{1}, G_{0}\right)$. Therefore, by Remark 2 we have that $(n, m)=1$. We set $\lambda\left(P_{i}\right)=1$, and we choose the number s so that

$$
\operatorname{deg}(D)=1+s \cdot\left|G_{0}\right| \equiv 0 \bmod n .
$$

This is possible because $\left(\left|G_{0}\right|, n\right)=(n, m)=1$.
(c) $A_{R}=O\left(Q_{1}, G_{0}\right)=\left\{Q_{1}, \ldots, Q_{p^{\prime}}\right\}$. N otice that $C_{m}<\operatorname{ker} \beta$. As before we have $(n, m)=1$ as a necessary condition for this ramification type to be realizable. The degree of the divisor corresponding to the orbit $O\left(P_{i}, G_{0}\right)$ is

$$
\sum_{P \in O\left(Q_{i}, G_{0}\right)} v_{P}(D) \equiv \begin{cases}0 \bmod p^{a} & \text { if } \beta(\sigma) \not \equiv 1 \bmod p^{a}, \\ \lambda\left|G_{0}\right| \bmod p^{a} & \text { if } \beta(\sigma) \equiv 1 \bmod p^{a}\end{cases}
$$

where $p^{a} \mid n, p^{a+1}+n$. Let $n_{0}=\Pi_{p \mid n, \beta(\sigma) \equiv 1 \bmod p^{a}} p^{a}$. We have to choose an s such that $\operatorname{deg}(D) \equiv 0 \bmod n_{0}$. We take $\lambda(P)=1$ for all $P \in \operatorname{supp}(D)$,
and because $\left(n_{0},\left|G_{0}\right|\right)$ divides $(n, m p)=(n, m)=1$ the equation

$$
\operatorname{deg}(D)=p^{t}+s \cdot\left|G_{0}\right| \equiv 0 \bmod n_{0},
$$

has a solution $\bmod n_{0}$.
(d) $A_{R}=O\left(Q, G_{0}\right) \cup O\left(Q_{1}, G_{0}\right)$. In this case β must be trivial. We set $\lambda(Q) \equiv-1 \bmod n, \lambda\left(P_{i}\right)=\lambda\left(Q_{1}\right) \equiv 1 \bmod n$, and we take s, so that

$$
\operatorname{deg}(D)=-1+p^{t}+s \cdot\left|G_{0}\right| \equiv 0 \bmod n .
$$

This is possible because $\left(n,\left|G_{0}\right|\right) \mid m$ and $m \mid\left(p^{t}-1\right)$.

4.5. Dihedral Groups

In this section we consider the case $G_{0}=G / C_{n} \cong D_{m}$. The dihedral group D_{m} admits the presentation in terms of generators and relations:

$$
D_{m}=\left\langle a, b \mid a^{m}=1, b^{2}=1, a b=b a^{-1}\right\rangle .
$$

The action homomorphism $\beta: D_{m} \rightarrow \mathbb{Z}_{n}^{*}$ is determined by its values on the generators a and b. Thus

$$
\beta:\left\{\begin{array}{l}
a \mapsto \beta(a) \\
b \mapsto \beta(b)
\end{array} .\right.
$$

Because β is a group homomorphism we have that

$$
\begin{gathered}
\beta(a)^{m} \equiv 1 \bmod n, \quad \beta(b)^{2} \equiv 1 \bmod n, \\
\beta(a) \beta(b) \equiv \beta(b) \beta(a)^{-1} \bmod n .
\end{gathered}
$$

We claim that $\operatorname{ord}(\beta(a)) \leq 2$. Indeed, if $\operatorname{ord}(\beta(a))>2$ then $\operatorname{ord}(\beta(b))=$ 1 , because the multiplicative group \mathbb{Z}_{n}^{*} is A belian and cannot contain the dihedral group $D_{\operatorname{ord}(\beta(a))}$. But then $\beta(a b)=\beta(a) \beta(b)=\beta(a)$ a contradiction, because the order of $\beta(a b)$ is at most 2. Furthermore if $\operatorname{ord}(\beta(a))=2$ then $2 \mid m$ because $1=\beta\left(a^{m}\right)=\beta(a)^{m}$.

There are three cases for $\operatorname{Im}(\beta)$.

$$
\operatorname{Im}(\beta)=\{1\} \text { or } \operatorname{Im}(\beta) \cong \mathbb{Z}_{2} \text { or } \operatorname{Im}(\beta) \cong V_{4} .
$$

The third case appears only when $m \equiv 0 \bmod 2$. We will need:
Lemma 14. Let $n \in N$ and l an integer such that

$$
l^{2}-1 \equiv 0 \bmod n
$$

There are integers $n^{+}(l), n^{-}(l)$ such that

$$
n=\frac{n^{+}(l) \cdot n^{-}(l)}{\left(n^{+}(l), n^{-}(l)\right)},
$$

where

$$
\left(n^{+}(l), n^{-}(l)\right)=\left\{\begin{array}{ll}
2 & \text { if } n \equiv 0 \bmod 2 \\
1 & \text { if } n \equiv 1 \bmod 2
\end{array},\right.
$$

with the additional property:

$$
l \equiv 1 \bmod n^{+}(l) \quad \text { and } \quad l \equiv-1 \bmod n^{-}(l) .
$$

Proof. We simply notice that if p is a prime divisor of n then $p \mid\left(l^{2}-\right.$ $1)=(l-1)(l+1)$ and p divides both $l-1$ and $l+1$ if and only if $p=2$.

Remark 5. Because the extensions F / F_{0} and $F_{0} / F_{0}^{D_{m}}$ are both G alois, the places P_{i} of F_{0} above a common $p \in F_{0}^{G_{0}}$ are either all ramified completely or all decomposed completely in the extension F / F_{0}.

A ccording to Theorem 7 there are two cases for the ramification type in the extension $F_{0} / F_{0}^{G_{0}}$. We will handle them separately.

Case A. The characteristic of the field k is $p \neq 2(p, m)=1$. There are three distinct places of $F_{1}:=F_{0}^{G_{0}}$, namely, p_{1}, p_{2}, p_{3}, which are ramified in $F_{0} / F_{0}^{G_{0}}$ with ramification indices $2,2, m$, respectively. Denote by $P_{1, i}, P_{2, i}, P_{3, j}$, where $i=0, \ldots, m-1, j=0,1$ the places of F_{0} which extend p_{1}, p_{2}, p_{3}.

Theorem 15. Let $G_{0}=G / C_{n}$ be isomorphic to the dihedral group D_{m}, $p+m$ and $p \neq 2$. There are the cases for the structure of the automorphism group G.
(1). Suppose that $\left\{P_{1, i}\right\}_{0 \leq i<m} \cup\left\{P_{3, j}\right\}_{j=0,1} \subset A_{R}$. Then $(n, m) \mid 2$ and the group of automorphisms G admits the presentation in terms of generators and relations,

$$
G=\left\langle R, S \mid R^{2}=S^{m}, S^{n m}=1, R S R^{-1}=S^{r}\right\rangle,
$$

where r is a solution of the system of equations

$$
\begin{equation*}
r \equiv 1 \bmod n, \quad r \equiv-1 \bmod m . \tag{9}
\end{equation*}
$$

If $(n, m)=1$ there is only one solution r. If $(n, m)=2$ there are two cases:

- $n \equiv 2 \bmod 4$. In this case, one solution of (9) appears when $\left\{P_{2, i}\right\}_{0 \leq i<m} \cap A_{R}=\varnothing$ and the other when $\left\{P_{2, i}\right\}_{0 \leq i<m} \cap A_{R} \neq \varnothing$.
- $n \equiv 0 \bmod 4$. In this case, $\left\{P_{2, i}\right\}_{0 \leq i<m} \cap A_{R}=\varnothing$ and we have two possible nonisomorphic groups corresponding to the same ramification type.
(2) $A_{R}=\left\{P_{3, j}\right\}_{j=1,2}$. The group G is isomorphic to the semidirect product $C_{n m} \rtimes C_{2}$.
(3) $A_{R}=\left\{P_{1, i}\right\}_{0 \leq i<m} \cup\left\{P_{2, i}\right\}_{i=1, \ldots, m}$. In this case, β is trivial and G is isomorphic to $C_{n} \times D_{m}$ if $(n, 2)=1$ and G is given by

$$
G=\left\langle R, S \mid R^{2 n}=1, S^{m}=1, R S R^{-1}=S^{-1}\right\rangle,
$$

if $(n, m)=2$.
(4) $A_{R}=\varnothing$. In this case G is isomorphic to $C_{n} \rtimes D_{m}$, where the action of D_{m} into C_{n} is given by β.
(5) $A_{R}=\left\{P_{1, i}\right\}_{0 \leq i<m}$. In this case G admits the presentation:

$$
G=\left\langle R, S \mid R^{2 n}=1, S^{m}=1,(R S)^{2}=1\right\rangle .
$$

Proof. We begin with:
Remark 6. Suppose that $b \in D_{m}$ fixes the place $P_{1,0}$. The other places $P_{1, i}$ can be enumerated so that $P_{1, i}=a^{i} P_{1,0}$. The decomposition groups $D_{m}\left(P_{1, i}\right)$ of each place $P_{1, i}$ are of the form

$$
D_{m}\left(P_{1, i}\right)=D_{m}\left(a^{i} P_{1,0}\right)=a^{i} D_{m}\left(P_{1,0}\right) a^{-i}=\left\langle a^{2 i} b\right\rangle .
$$

Every automorphism $b a^{k} \in D_{m}$ has two fixed places. A place of the form $P_{1, i}$ is fixed by $b a^{k} \neq 1$, if and only if $b a^{k} \in\left\langle a^{2 i} b\right\rangle$ and because $\operatorname{ord}\left(a^{2 i} b\right)$ $=2$ this is equivalent to

$$
\begin{equation*}
a^{2 i} b=b a^{k}=a^{-k} b \quad \Leftrightarrow \quad 2 i \equiv-k \bmod m . \tag{10}
\end{equation*}
$$

If $(m, 2)=2$ then (10) has two solutions if k is even, and no solution if k is odd. This implies that the two fixed places of the automorphism $b a^{k}$ restrict to the same place p_{1} (if $k \equiv 0 \bmod 2$) or p_{2} (if $k \equiv 1 \bmod 2$). If $(m, 2)=1$ then (10) has a unique solution, so one of the two fixed places of $b a^{k}$ restrict to p_{1} and the other to p_{2}.

Suppose that one of the places $P_{3, j}$, say $P_{3,1}$ is ramified in extension F / F_{0}. Let $Q_{3,1}$ be the unique place of F over $P_{3,1}$. Because (m, p) $=1$ we have that the decomposition group $G\left(Q_{3,1}\right)$ is cyclic of order $n m$. Hence $\beta(a) \equiv 1 \bmod n$. Notice that the index $|G: G(Q)|=2$ so $G(Q) \triangleleft G$ and G
is a metacyclic group. Let S, R be in G, such that $\pi(R)=b, \pi(S)=a$. We may choose $S \in \pi^{-1}(a)$ such that $\langle S\rangle=G(Q)$. Because $G(Q) \triangleleft G$, there is an integer r such that

$$
\begin{equation*}
R S R^{-1}=S^{r} \tag{11}
\end{equation*}
$$

O bserve that the group C_{n} is generated by $\left\langle S^{m}\right\rangle$. So from (11) and the action of b on C_{n}, we have

$$
S^{\beta(b) m}=R S^{m} R^{-1}=S^{r m},
$$

which gives us the relation

$$
\begin{equation*}
r \equiv \beta(b) \bmod n \tag{12}
\end{equation*}
$$

Because $G / C_{n} \cong D_{n}$, (11) implies

$$
R S R^{-1} S=S^{r+1} \in\left\langle S^{m}\right\rangle
$$

and this, in turn, gives us the relation

$$
\begin{equation*}
r \equiv-1 \bmod m \tag{13}
\end{equation*}
$$

The system of equations (12), (13) has solutions if and only if (n, m) | $(\beta(b)+1)$. We distinguish the cases:

1. $\left\{P_{1, i}\right\}_{0 \leq i<m} \cup\left\{P_{3, j}\right\}_{j=0,1} \subset A_{R}$ so one of the places $P_{1, i}, i=0$, $\ldots, m-1$, say $P_{1,0}$ is ramified completely in extension F / F_{0}. Denote by $Q_{1,0}$ the place above $P_{1,0}$. As in Remark 6, we may suppose that $P_{1,0}$ is fixed by $b \in D_{m}$ (select as generator b of D_{m} another element of order two if necessary). The decomposition group $G\left(Q_{1,0}\right)$ is cyclic of order $2 n$. Select a generator $R \in \pi^{-1}(b)$ of $G\left(Q_{1,0}\right)$.

The group C_{n} is the unique subgroup of order n of the cyclic group $\langle R\rangle$, so it is generated by R^{2}. Hence $R^{2}=S^{m i}$ for some $(i, n)=1$. We simplify the notation by rechoosing a suitable generator S for the group $G\left(Q_{3,1}\right)$ such that $R^{2}=S^{m}$. Notice also that $\beta(b) \equiv 1 \bmod n$.

The group G as a metacyclic group is given by the generators and relations

$$
\begin{equation*}
G=\left\langle R, S \mid R^{2}=S^{m}, S^{n m}=1, R S R^{-1}=S^{r}\right\rangle, \tag{14}
\end{equation*}
$$

where r is defined as a solution of the system

$$
\begin{align*}
r & \equiv 1 \bmod n \tag{15}\\
r & \equiv-1 \bmod m .
\end{align*}
$$

This system admits (n, m) solutions if and only if $(n, m) \mid 2$. In case $(n, m)=1$ the solution r is uniquely determined $\bmod n m$. In case (n, m) $=2$ we have two solutions mod $n m$, namely,

$$
r_{0}, \quad r_{1}=r_{0}+\frac{n m}{2} .
$$

We have already assumed that the places in the orbit of $P_{1,0}$ are ramified completely in F / F_{0}. It is interesting to see how the ramification type of the places $P_{2, i}$ determines the selection of the root r_{0}.

Let $P=P_{2, k}$ be a place of F_{0} in the orbit of $P_{2,0}$, hence, according to Remark 6, fixed by $b a^{i} \in D_{m}$, for some $i \equiv 1 \bmod 2($ recall that $2 \mid m)$. A ccording to Corollary 10, P is decomposed (resp., ramified) if $G_{\pi}(P)=$ $C_{2} \times C_{n}$ (resp., $C_{2 n}$). The function

$$
\Phi_{P}: \begin{cases}G_{\pi}(P) & \rightarrow G_{\pi}(P) \\ x & \mapsto x^{2}\end{cases}
$$

is a group homomorphism. Because $2 \mid n$, $\operatorname{ker} \Phi_{P}=C_{2} \times C_{2}$ if P is decomposed otherwise (i.e., if P is ramified) $\operatorname{ker} \Phi_{P}=C_{2}$. By computation,

$$
G_{\pi}(P)=\left\{R S^{i+s m}, S^{s m} \mid s=0, \ldots, n-1\right\} \quad \text { for some } i \equiv 1 \bmod 2 .
$$

The elements $\left\{1, S^{n m / 2}\right\}$ are in ker Φ_{P}. M oreover, using (14) we have

$$
\left(R S^{i+s m}\right)^{2}=S^{m(1+((r+1) / m)(i+s m))} .
$$

Hence P is decomposed in the extension F / F_{0} if and only if the equation

$$
-(r+1) s \equiv 1+i \frac{r+1}{m} \bmod n
$$

has a solution s. This equation has $(r+1, n)=2$ different $\bmod n$ solutions if and only if $(r+1, n)=2 \left\lvert\,\left(1+i \frac{r+1}{m}\right)\right.$. Because $i \equiv 1 \bmod 2$ we have the equivalence

$$
1+i \frac{r+1}{m} \equiv 0 \bmod 2 \Leftrightarrow \frac{r+1}{m} \not \equiv 0 \bmod 2 .
$$

If $n \equiv 2 \bmod 4$ then $n / 2$ is odd, so 2 divides either $\left(r_{0}+1\right) / m$ or $\left(r_{1}+1\right) / m=\left(r_{0}+1\right) / m+n / 2$. Hence, if $n \equiv 2 \bmod 4$ the two solutions of system (15) correspond to the two different ramification types of the places $P_{2, i}$ in extension F / F_{0}.

If $n \equiv 0 \bmod 4$ then $(r+1) / m \not \equiv 0 \bmod 2$ for both solutions of (15). F or if $2 \mid((r+1) / m)$ then $4 \mid(r+1)$ (recall that $2 \mid m)$ and $4|n|(r-1)$ so
$4 \mid((r+1)-(r-1))=2$, a contradiction. Therefore, if $n \equiv 0 \bmod 4$ then for both solutions of (15) all places $P_{2, i}$ are decomposed in F / F_{0}.
2. $A_{R}=\left\{P_{3, j}\right\}_{j=1,2}$. In this case the places $P_{i, j}, i=1,2, j=0, \ldots$, $m-1$ of F_{0} are all decomposed in the extension F / F_{0}. A ccording to Corollary 10 ,

$$
G_{\pi}\left(P_{i, j}\right) \cong C_{n} \rtimes C_{2} .
$$

We may select a $R \in \pi^{-1}(b)$ such that $R^{2}=1$. The group G is given by

$$
\left\langle R, S \mid S^{n m}=1, R^{2}=1, R S R^{-1}=S^{r}\right\rangle,
$$

where r is the solution of the system of E qs. (11), (12), namely,

$$
\begin{equation*}
r \equiv \beta(b) \bmod n, \quad r \equiv-1 \bmod m, \tag{16}
\end{equation*}
$$

therefore $(n, m) \mid(\beta(b)+1)$. The group G is a semidirect product

$$
C_{n m} \rtimes C_{2},
$$

with action defined by r. If $(n, m)>1$ then the system (16) may have more than one solution mod $n m$ which lead to more than one nonisomorphic automorphism group G.

Suppose now that the places $P_{3, j}, j=1,2$ are not ramified in the extension F / F_{0}. Then Corollary 10 implies that,

$$
G_{\pi}\left(P_{3,1}\right) \cong C_{n} \rtimes C_{m},
$$

because $D_{m}\left(P_{3, i}\right)=\langle a\rangle$ is a cyclic group. $G_{\pi}\left(P_{3,1}\right)$ has index 2 in G so $C_{n} \rtimes C_{m} \triangleleft G$. Let T be a generator of the cyclic group C_{n}, and S a generator of C_{m} such that $\pi(S)=a$. If $R \in \pi^{-1}(b)$ because $\left|G: C_{n} \rtimes C_{m}\right|$ $=2$ the element $R^{2} \in C_{n} \rtimes C_{m}$ so $R^{2}=T^{\mu} S^{z}$. But $\pi\left(R^{2}\right)=a^{z}$ so $z \equiv$ $0 \bmod m$ and $R^{2}=T^{\mu}$. This gives us

$$
\begin{equation*}
R^{2} S R^{-2}=T^{\mu} S T^{-\mu}=T^{\mu(1-\beta(a))} S \tag{17}
\end{equation*}
$$

We may compute the left-hand side of (17) in another way. Because $C_{n} \rtimes C_{m} \triangleleft G$ we have

$$
R S R^{-1}=T^{\lambda} S^{r},
$$

and this gives us

$$
\begin{equation*}
R^{2} S R^{-2}=R T^{\lambda} S^{-1} R^{-1}=T^{\lambda(\beta(b)-\beta(a))} S . \tag{18}
\end{equation*}
$$

Combining (17) and (18) we get

$$
\begin{equation*}
\mu(1-\beta(a)) \equiv \lambda(\beta(b)-\beta(a)) \bmod n . \tag{19}
\end{equation*}
$$

M oreover because $G /\langle T\rangle \cong D_{m}$ we have

$$
\begin{equation*}
R S R^{-1} S=T^{\lambda} S^{r+1} \in\langle T\rangle \quad \text { so } r \equiv-1 \bmod m . \tag{20}
\end{equation*}
$$

A mong $T, R, S \in G$ there are the relations,

$$
\begin{align*}
S^{m}=1, \quad T^{n} & =1, \quad R^{2}=T^{\mu}, \quad R T R^{-1}=T^{\beta(b)}, \tag{21}\\
S T S^{-1} & =T^{\beta(a)}, \quad R S R^{-1}=T^{\lambda} S^{-1},
\end{align*}
$$

for some λ, μ satisfying (19). Observe that there are no other relations in the definition of the group G, because the relations (21) define a group of order 2 nm .

We want to simplify the relation $R S R^{-1}=T^{\lambda} S^{-1}$ by choosing another generator $S_{1}=T^{x} S$. We calculate

$$
\begin{equation*}
R S_{1} R^{-1}=R T^{x} S R^{-1}=T^{x \beta(b)+\lambda} S^{-1}=T^{x(\beta(a)+\beta(b))+\lambda} S_{1}^{-1} . \tag{22}
\end{equation*}
$$

Lemma 16. Let P be a place of F_{0} which is fixed by ba. Suppose also that $R^{2}=T^{\mu}$. If $2 \mid n$ then

$$
\begin{equation*}
(n, \beta(b) \beta(a)+1) \mid(\lambda+\mu \beta(a)), \tag{23}
\end{equation*}
$$

if and only if P is decomposed in F / F_{0}. If $(2, n)=1$ then (23) holds in all cases.

Proof. Suppose first that $2 \mid n$. By Corollary (10) we have

$$
G_{\pi}(P)=\operatorname{Gal}\left(F / F_{0}^{\langle b a\rangle}\right)=\left\{\begin{array}{ll}
C_{2 n} & \text { if } P \text { ramifies in }\left(F / F_{0}\right) \\
C_{n} \rtimes C_{2} & \text { if } P \text { decomposes in }\left(F / F_{0}\right)
\end{array} .\right.
$$

In the first case there is only one element of order 2 in $\mathrm{Gal}\left(F / F_{0}^{\langle b a\rangle}\right)$ and in the second there are more elements of order 2 in $G_{\pi}(P)$. R ecall that

$$
G_{\pi}(P)=\{\sigma \in G \mid \pi(\sigma) P=P\}=\left\{R S T^{k}, T^{k} \mid k=0, \ldots, n-1\right\} .
$$

Because n is even, one element of order 2 is $T^{n / 2}$. If $R S T^{k}$ is of order 2 then

$$
\begin{equation*}
1=\left(R S T^{k}\right)^{2}=T^{k(\beta(b) \beta(a)+1)+\lambda+\mu \beta(a)}, \tag{24}
\end{equation*}
$$

so for some $k \in\{0, \ldots, n-1\}$,

$$
\begin{equation*}
k(\beta(b) \beta(a)+1)+\lambda+\mu \beta(a) \equiv 0 \bmod n . \tag{25}
\end{equation*}
$$

But Eq. (25) has solutions in k if and only if $(n, \beta(b) \beta(a)+1) \mid(\lambda+$ $\mu \beta(a))$.
If $(n, 2)=1$, then the unique element of order 2 in $\mathrm{Gal}\left(F / F^{\langle b a\rangle}\right)$ is of the form $R S T^{k}$ so (24) has a solution, which gives us the desired result as in the case that n is even.

We consider now the three last cases of Theorem 15:
3. $A_{R}=\left\{P_{1, i}\right\}_{0 \leq i<m} \cup\left\{P_{2, i}\right\}_{i=1, \ldots, m}$. All places $P_{i, j}$ are ramified in the extension F / F_{0}. Suppose as in Remark 6 that $D_{m}\left(P_{1,0}\right)=\langle b\rangle$. In view of Corollary 10 we may select a $R \in \pi^{-1}(b)$ such that $R^{2}=T$, i.e., $\mu=1$. M oreover the extension is central in this case, i.e.,

$$
\beta(a) \equiv \beta(b) \equiv 1 \bmod n
$$

We consider two more subcases

- $(n, 2)=1$. Because the extension is central we have $H^{2}\left(D_{m}, C_{n}\right)=$ 1 , so there is only one extension of D_{m} by C_{n}, namely,

$$
G \cong C_{n} \times D_{m}
$$

- $(n, 2)=2$. In this case Eq. (22) becomes

$$
\begin{equation*}
R S_{1} R^{-1}=T^{2 x+\lambda} S_{1}^{-1} \tag{26}
\end{equation*}
$$

By Lemma 16 we have that $(n, \beta(a) \beta(b)+1)=2 \nmid \lambda+1$, therefore $2 \mid \lambda$ and the equation

$$
2 x+\lambda \equiv 0 \bmod n
$$

has a solution x. Relation (26) for this solution x can be written as

$$
R S_{1} R^{-1}=S_{1}^{-1}
$$

Let t be the order of S_{1}. The group G in this case is a metacyclic group given by the relations,

$$
\left\langle R, S_{1} \mid R^{2 n}=1, S_{1}^{t}=1, R S_{1} R^{-1}=S_{1}^{-1}\right\rangle,
$$

but then $|G|=2 n t$, so $t=m$.
4. $\quad A_{R}=\varnothing$. All places $P_{i, j}$ are decomposed in the extension F / F_{0}. Suppose that $D_{m}\left(P_{1,0}\right)=\langle b\rangle$. By Corollary 10 we may select $R \in \pi^{-1}(b)$ such that $R^{2}=1$, and $\mu=0$. Because all places of F_{0} which are above
p_{1}, p_{2} are decomposed in F / F_{0}, Lemma 16 gives us $(n, \beta(b) \beta(a)+1) \mid \lambda$. But $(\beta(b), n)=1$, so $(n, \beta(b a)+1)=(n, \beta(b) \beta(b) \beta(a)+\beta(b))=$ $(n, \beta(a)+\beta(b)) \mid \lambda$. Therefore there is an x such that

$$
x(\beta(a)+\beta(b))+\lambda \equiv 0 \bmod n
$$

and for this x, (22) becomes

$$
R S_{1} R^{-1}=T^{x(\beta(a)+\beta(b))+\lambda} S_{1}^{-1}=S_{1}^{-1}
$$

Denote by t the order of $S_{1}=T^{x} S$. The group is given by the generators and relations

$$
\begin{array}{r}
\left\langle R, T, S_{1}\right| R^{2}=1, R T R^{-1}=T^{\beta(b)}, S_{1} T S_{1}^{-1}=T^{\beta(a)}, R S_{1} R^{-1}=S_{1}^{-1} \\
\left.S_{1}^{t}=1, T^{n}=1\right\rangle .
\end{array}
$$

The group defined by the above generators and relations is a group of order $2 n t$, therefore $t=m$ and the group G is isomorphic to the semidirect product

$$
C_{n} \rtimes D_{m},
$$

where the action of D_{m} on C_{n} is determined by the function β.
5. $A_{R}=\left\{P_{1, i}\right\}_{0 \leq i<m}$. In this case the set of places $P_{1, i}$, above p_{1} are ramified in F / F_{0} and the set of places $P_{2, i}$ above p_{2} are decomposed. We may select an $R \in \pi^{-1}(b)$ such that $R^{2}=T$ so $\mu=1$. M oreover $\beta(b) \equiv$ $1 \bmod n$.

From Lemma 16 we have that $(\beta(b) \beta(a)+1, n)=(\beta(a)+1, n) \mid$ $(\lambda+\beta(a))$. So there is an x such that

$$
x(\beta(a)+1)+\lambda \equiv-\beta(a) \bmod n,
$$

and for this x Eq. (22) becomes

$$
R S_{1} R^{-1}=T^{x(\beta(a)+\beta(b))+\lambda} S_{1}^{-1}=T^{-\beta(a)} S_{1}^{-1}=S_{1}^{-1} T^{-1} .
$$

Because $T=R^{2}$, this relation is equivalent to

$$
\left(R S_{1}\right)^{2}=1
$$

Denote by t the order of S_{1}. The group G admits the presentation:

$$
G=\left\langle R, S_{1} \mid R^{2 n}=1, S_{1}^{t}=1,\left(R S_{1}\right)^{2}=1\right\rangle .
$$

O bserve that the group generated by R^{2} is the G alois group $\operatorname{Gal}\left(F / F_{0}\right)$ which is a normal subgroup of G. The quotient

$$
\bar{G}:=\frac{G}{\left\langle R^{2}\right\rangle}=\left\langle\bar{R}, \bar{S}_{1} \mid \bar{R}^{2}=1, \bar{S}_{1}^{t}=1,\left(\overline{R S}_{1}\right)^{2}=1\right\rangle
$$

is clearly isomorphic to a dihedral group of order $2 t$. Hence the group G has order $2 n t$ and $t=m$.

We now show that those cases are realizable; i.e., we can select the divisor $D \in \mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$ to have degree $0 \bmod n$. We will consider the cases:

1. We distinguish the subcases

- $n \equiv 2 \bmod 4, m \equiv 0 \bmod 2$. In this case, we must have the set A_{R} of fixed places of D_{m} in the support of D

$$
A_{R}=\left\{P_{3,1}, P_{3,2}, P_{1,0}, P_{1,1}, \ldots, P_{1, i-1},\left(P_{2,0}, P_{2,1}, \ldots, P_{2, i-1}\right)\right\}
$$

and of course s orbits $O\left(P_{j}, D_{m}\right)$ where P_{j} are not fixed by D_{m}. Recall that the action function β is trivial, so by taking $\lambda(Q)=1$ for all $Q \in \operatorname{supp}(D)$, we have

$$
\operatorname{deg}(D)=2+m+2 m s(+m)
$$

Because $(2 m, n)=2$ which divides $2+m(+m)$, we can choose s so that $\operatorname{deg}(D) \equiv 0 \bmod n$.

- $n \equiv 0 \bmod 4, m \equiv 0 \bmod 2$. In this case, we have the set A_{R} of fixed places of D_{m} in the support of D

$$
A_{R}=\left\{P_{3,1}, P_{3,2}, P_{1,0}, P_{1,1}, \ldots, P_{1, i-1}\right\},
$$

and s orbits $O\left(P_{j}, D_{m}\right)$ where P_{j} are not fixed by D_{m}. We take again $\lambda(Q)=1$ for all Q in $\operatorname{supp}(D)$, so

$$
\operatorname{deg}(D)=2+m+2 m s .
$$

In this case $(2 m, n)=4$ which divides $2+m$ (recall that because $(n, m)=2, m \equiv 2 \bmod 4)$, so we can choose s so that $\operatorname{deg}(D) \equiv 0 \bmod n$. We can show similarly that we can choose $\operatorname{deg}(D) \equiv 0 \bmod n$ in the case $(n, m)=1$.
2. In this case we have $A_{R}=\left\{P_{3,1}, P_{3,2}\right\}$. Decompose n into prime factors $n=p_{1}^{a_{1}} \cdots p_{t}^{a_{t}}$. A ccording to Lemma 14 we write $n=n^{+}(\beta(b))$. $n^{-}(\beta(b))$, and $\left(n^{+}(\beta(b)), n^{-}(\beta(b))\right)=1$ or 2. Equation (4), gives us $\operatorname{deg}(D) \equiv 0 \bmod p_{i}^{a_{i}}$ for every prime divisor p_{i} of $n^{-}(\beta(b)), p_{i} \neq 2$. If $2 \mid n$,
and $p_{i_{0}}=2$, then $\operatorname{deg}(D) \equiv 0 \bmod p_{i_{0}}^{a_{i_{0}}}$, where $a_{i_{0}}^{\prime}=v_{2}\left(n^{-} \beta(b)\right)<a_{i_{0}}$. The arbitrary divisor $D \in \mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$ can be written in the form

$$
D=\lambda\left(P_{3,1}+P_{3,2}\right)+\sum_{i=1}^{s} \lambda\left(P_{i}\right) \sum_{P \in O\left(P_{i}, D_{m}\right)} P .
$$

We have to choose a D such that $\operatorname{deg}(D) \equiv 0 \bmod n^{+}(\beta)$. We set $\lambda=$ $\lambda\left(P_{i}\right) \equiv 1 \bmod n$. We can choose the number s and the divisor $D \in$ $\mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$, so that

$$
\operatorname{deg}(D)=2+m s \equiv 0 \bmod n^{+}(\beta),
$$

because $\left(n^{+}(\beta), m\right) \mid 2$ (recall that $\left.(n, m) \mid \beta(b)+1\right)$.
3. We have $A_{R}=\left\{P_{i, j} \mid i=1,2, j=0, \ldots, m-1\right\}$. In view of this we choose D to have s orbits $O\left(P_{i}, D_{m}\right)$ where P_{i} is not fixed by D_{m}, and, by taking $\lambda\left(Q_{i}\right) \equiv 1 \bmod n$, we compute

$$
\operatorname{deg}(D)=2 m+s 2 m .
$$

We can choose an appropriate s so that the above degree is $0 \bmod n$.
4. In this case, $A_{R}=\varnothing$ and the realization follows by Lemma 6 .
5. In this case, $A_{R}=\left\{P_{1,0}, \ldots, P_{1, m-1}\right\}$. Notice first that $\beta(b) \equiv$ $1 \bmod n$. We decompose n into $n^{+}(\beta(a)), n^{-}(\beta(a))$ as in Lemma 14. By Eq. (4), we have $\operatorname{deg}(D) \equiv 0 \bmod p_{i}^{a_{i}}$ for $p_{i} \mid n^{-}(\beta(a))$ and all divisors $D \in \mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$. So, we have to choose a D such that

$$
\operatorname{deg} D \equiv 0 \bmod n^{+}(\beta(a)) \text { as well. }
$$

By computation,

$$
\begin{equation*}
\operatorname{deg} D=m+2 m s \bmod n^{+}(\beta(a)) . \tag{27}
\end{equation*}
$$

From Eq. (27) we obtain the necessary condition $\left(n^{+}(\beta(a)), 2 m\right) \mid m$, for case 5 to be realizable.

Case B. In this case, the characteristic of the field k is 2 . We have that $G / C_{n}=D_{m},(2, m)=1$. By the characterization of the finite automorphism groups of the rational function field in Theorem 7, we deduce that two places p_{1}, p_{2} of $F^{G}=F_{0}^{D_{m}}$ are ramified in $F_{0} / F_{0}^{D_{m}}$, with ramification indices 2 and m, respectively. Let $P_{1, i}, i=1, \ldots, m\left(P_{2, j}, j=1,2\right.$, resp.) be the set of places of F_{0} above p (p_{2}, resp.).

Theorem 17. Let $G_{0}=G / C_{n}$ be isomorphic to the dihedral group D_{m}, $p+m, p=2$. There are the following cases for the structure of G :

1. $A_{R} \supset\left\{P_{1, i}\right\}_{0 \leq i<m}$. Then β is trivial and $G \cong C_{n} \times D_{m}$.
2. $A_{R}=\left\{P_{2,}\right\}_{j=1,2}$. Then $G \cong C_{n m} \rtimes C_{2}$.
3. $A_{R}=\varnothing$. Then $G \cong C_{n} \rtimes D_{m}$.

Proof. 1. $A_{R} \supset\left\{P_{1, i}\right\}_{0 \leq i<m}$, so the places $P_{1, i} i=1, \ldots, m$ above p_{1} are ramified in the extension F / F_{0}. Observe also that the G alois group $\mathrm{Gal}\left(F / F_{0}^{\left\langle b a^{i}\right\rangle}\right)$ of the extension $F / F_{0}^{\left\langle b a^{i}\right\rangle}$ is a group extension of the group $\left\langle b a^{i}\right\rangle \cong C_{2}$. By the study of extensions of elementary A belian groups, we have that $\beta\left(b a^{i}\right) \equiv 1 \bmod n$, for all $i=0, \ldots, m-1$ because the unique fixed point of $b a^{i}$ is ramified in F / F_{0}. This holds for all i so the group G is a central extension of D_{m} by C_{m}. Because $n \equiv 1 \bmod 2$, we have that $H^{2}\left(D_{m}, C_{n}\right)=1$, therefore

$$
G \cong C_{n} \times D_{m}
$$

2. $A_{R}=\left\{P_{2, j}\right\}_{j=1,2}$. In this case the places $P_{1, i}$ above p_{1} are all decomposed in F / F_{0}, and the two places $P_{2, j}$ of F_{0} above p_{2} are ramified completely in $F / F_{0} . D_{m}\left(P_{2, j}\right)=\langle a\rangle$, so by Corollary (10) we may find $S \in \pi^{-1}(a)$, which has order $n m$. The action of a on $\operatorname{Gal}\left(F / F_{0}\right) \cong\left\langle S^{m}\right\rangle$ is trivial, i.e., $\beta(a) \equiv 1 \bmod n$. Let $R \in \pi^{-1}(b)$. O bserve that $|G:\langle S\rangle|=2$ so $\langle S\rangle \triangleleft G$. Therefore there is an r such that,

$$
R S R^{-1}=S^{r}
$$

O bserve that S^{m} generates the group $\operatorname{Gal}\left(F / F_{0}\right) \cong C_{n}$, so

$$
S^{\beta(b) m}=R S^{m} R^{-1}=S^{m r},
$$

therefore

$$
\begin{equation*}
\beta(b)=r \bmod n . \tag{28}
\end{equation*}
$$

On the other hand we have

$$
R S R^{-1} S=S^{r+1} \quad \Rightarrow \quad 1=\pi\left(R S R^{-1} S\right)=\pi\left(S^{r+1}\right)
$$

so

$$
\begin{equation*}
r \equiv-1 \bmod m \tag{29}
\end{equation*}
$$

The system of (28), (29) has a solution r if and only if $(n, m) \mid(\beta(b)+1)$ and the group is given by the relations:

$$
\left\langle R, S \mid R^{2}=1, S^{n m}=1, R S R^{-1}=S^{r}\right\rangle .
$$

Notice that G is isomorphic to

$$
G \cong C_{n m} \rtimes C_{2} .
$$

3. In this case, all places, $P_{1, i}, P_{2, j}$ of F_{0} above p_{1} and p_{2}, respectively, are decomposed in F / F_{0}. Observe that $(n, 2)=(m, 2)=1$. We will use
the injection map of Proposition 8, namely, the map

$$
\begin{aligned}
H^{2}\left(D_{m}, C_{n}\right)=\bigoplus_{p \mid 2 m} H^{2}\left(D_{m}, C_{n}\right)_{p} & \rightarrow \underset{p \mid 2 m}{ } H^{2}\left(H_{p}, C_{n}\right) \\
\alpha=\sum \alpha_{p} & \mapsto \operatorname{res}_{D_{m} \rightarrow H_{p}}\left(\alpha_{p}\right) .
\end{aligned}
$$

Because $(n, 2)=1$ we have $H^{2}\left(H_{2}, C_{n}\right)=1$ by Z assenhaus theorem. If $p \neq 2, p \mid m$ then the p-Sylow subgroup is a subgroup of the cyclic subgroup $\langle a\rangle \cong C_{m}$ of D_{m}. Because $\langle a\rangle$ fixes $P_{2, j}$, which decomposes in F / F_{0}, the subextension

$$
1 \rightarrow C_{n} \rightarrow \pi^{-1}(\langle a\rangle) \rightarrow\langle a\rangle \rightarrow 1,
$$

splits. All subextensions corresponding to the p-Sylow subgroups of $\langle a\rangle$ split as well, so $H^{2}\left(H_{p}, C_{n}\right)=1$ for $p \neq 2$. This implies that $H^{2}\left(D_{m}, C_{n}\right)$ $=1$ and finally

$$
G \cong C_{n} \rtimes D_{m},
$$

where the semidirect action of D_{m} onto C_{n} is determined by the function β.
To prove that the above three ramification types are realizable we have to select a $D \in \mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$ of degree $0 \bmod n$. We will distinguish the cases:

1. We take s orbits $O\left(P_{i}, D_{m}\right)$, such that P_{i} are not fixed by D_{m} and $\lambda\left(P_{i}\right) \equiv 1 \bmod n$. We have $A_{R}=\left\{P_{1,1}, \ldots, P_{1, m},\left(P_{2,1}, P_{2,2}\right)\right\}$ so the degree of D is

$$
\operatorname{deg} D=m+(+2)+2 m s
$$

Obviously, because $(2 m, n)=(n, m)$ we can find an s such that deg $D \equiv$ $0 \bmod n$ in the case $A_{R}=\left\{P_{1,1}, \ldots, P_{1, m}\right\}$. If $A_{R}=\left\{P_{1,1}, \ldots, P_{1, m}\right.$, $\left.P_{2,1}, P_{2,2}\right\}$, we arrive at $(n, m) \mid 2$ as a necessary condition for this type to be realizable. Notice that the condition $(n, m) \mid 2$ is equivalent to $(n, m)=$ 1 because $(n, 2)=(m, 2)=1$.
2. By Lemma 5, it is enough to construct a D of degree 0 $\bmod n^{+}(\beta(b))$. We take s orbits $O\left(P_{i}, D_{m}\right)$, where P_{i} are not fixed by D_{m} and we set $\lambda(P) \equiv 1 \bmod n$ for all P in $\operatorname{supp}(D)$. We have then

$$
\operatorname{deg}(D)=2+2 m s \bmod n^{+}(b)
$$

We can take s such that $\operatorname{deg}(D) \equiv 0 \bmod n^{+}(b)$, because $(n, 2)=$ $\left(n^{+}(b), 2\right)=1$.
3. The ramification type of this case is realizable by Lemma 6, because $A_{R}=\varnothing$.

4.6. The Group A_{4} as Quotient Group

In this section suppose that $G / C_{n} \cong A_{4}$. From the classification theorem 7 we have that three places of $F_{1}:=F^{G}=F_{0}^{A_{4}}$ are ramified in F_{0} / F_{1}, namely, p_{1}, p_{2}, p_{3} with ramification indices $e_{1}=2, e_{2}=e_{3}=3$, respectively. M oreover the characteristic is not 2 or 3 . D enote by $P_{1, i}, i=1, \ldots, 6$, $P_{2, j}, P_{3, j}, j=1, \ldots, 4$ the set of places of F_{0} lying over p_{1}, p_{2}, p_{3}, respectively.
The group A_{4} admits the presentation in terms of generators and relations:

$$
A_{4}=\left\langle a, b \mid a^{2}=b^{3}=1,(a b)^{3}=1\right\rangle .
$$

Notice also that the group A_{4} has a normal 2-Sylow subgroup isomorphic to the Klein group V_{4}, which, as a subgroup of A_{4}, can be expressed in terms of the generators of A_{4} as

$$
V_{4}=\left\{1, a, b a b^{-1}, b^{2} a b^{-2}\right\} .
$$

The group A_{4} can be written as a semidirect product $A_{4} \cong V_{4} \rtimes\langle b\rangle$. The action map

$$
\beta: A_{4} \rightarrow \mathbb{Z}_{n}^{*}
$$

cannot be injective, because A_{4} is not A belian. We have two possibilities for $\operatorname{ker} \beta$:

$$
\operatorname{ker} \beta=V_{4} \text {, or } \operatorname{ker} \beta=A_{4} \text { (central extension). }
$$

In any case, because $A_{4} / V_{4} \cong \mathbb{Z}_{3}$ and a has order 2 in A_{4}, we have that $\beta(a) \equiv 1 \bmod n$.

Theorem 18. If $G_{0}=G / C_{n} \cong A_{4}$ then the group of automorphisms G is isomorphic to:
(a) $G \cong C_{n} \rtimes A_{4}$ if $A_{R}=\varnothing$.
(b) $G \cong V_{4} \rtimes C_{3 n}$ if $A_{R}=\left\{P_{2, j}\right\}_{1 \leq j \leq 4}$
(c) $G \cong G^{\prime} \rtimes C_{3}$ if $A_{R}=\left\{P_{1, i}\right\}_{1 \leq i \leq 6}$. Here G^{\prime} is defined in terms of generators and relations

$$
G^{\prime}:=\left\langle R, S \mid R^{2}=S^{2}, S^{2 n}=1, R S R^{-1}=S^{\tau}\right\rangle .
$$

(d) G admits the following representation in terms of generators and relations:

$$
G=\left\langle R, S \mid R^{2 n}=1, R^{2}=S^{3},(R S)^{3}=R^{2 k}\right\rangle,
$$

for some integer $k \in\{1, \ldots, n\}$, if $\left\{P_{1, i}\right\}_{i=1, \ldots, 6} \nsubseteq A_{R}$.
(a) $A_{R}=\varnothing$; i.e., all places of F_{0} above p_{1}, p_{2}, p_{3} are decomposed in F / F_{0}. We claim that in this case

$$
G \cong C_{n} \rtimes A_{4},
$$

where the action of A_{4} on C_{n} is determined by β. To prove this we observe that A_{4} is the semidirect product of $V_{4} \rtimes\langle b\rangle$ and obviously V_{4} is an elementary A belian group of the form $\mathscr{E}_{2}(2)$. Now according to the study of the dihedral case, because the fixed places of $V_{4}=D_{2}$ are decomposed, we have that the subextension

$$
\begin{equation*}
1 \rightarrow C_{n} \rightarrow \pi^{-1}\left(V_{4}\right) \rightarrow V_{4} \rightarrow 1 \tag{30}
\end{equation*}
$$

splits, so by Lemma $13 G \cong C_{n} \rtimes A_{4}$.
(b) $A_{R}=\left\{P_{2, j}\right\}_{1 \leq j \leq 4}$ or $A_{R}=\left\{P_{3, j}\right\}_{1 \leq j \leq 4}$, hence the set of six places $P_{1, i}, i=1, \ldots, 6$ are decomposed and at least one of the set of the places $P_{2, j}, P_{3, j}$, say $P_{2, j}, j=1, \ldots, 4$ is ramified in F / F_{0}. A ccording to Corollary 10, because the fixed places of b are ramified, we have that $\beta(b) \equiv 1 \bmod n$ so the extension is central. A_{4} is a semidirect product of $V_{4} \rtimes\langle b\rangle$ and as in case (a) we have that the short exact sequence (30) splits. U sing Lemma 13 we have that

$$
G \cong V_{4} \rtimes C_{3 n} .
$$

Let R be the generator of the cyclic group $C_{3 n}$. The conjugation action of R on V_{4} induces a homomorphism $\rho: C_{3 n} \rightarrow S_{3}$. Because $R^{n}=b$, and $\rho(b)$ is cycle of order 3 in S_{3}, we have that $\rho(R)$ must be also a cycle of order 3, therefore $(n, 3)=1$.
(c) $A_{R}=\left\{P_{1, i}\right\}_{1 \leq i \leq 6}$, hence the set of places $P_{1, i}, i=1, \ldots, 6$ are ramified and the set of places $P_{i, j}, i=1,2, j=1, \ldots, 4$ are decomposed. Then by the study of dihedral extensions we have that the group $G^{\prime}:=$ $\pi^{-1}\left(V_{4}\right)$ is given in terms of generators and relations by

$$
G^{\prime}=\left\langle R, S \mid R^{2}=S^{2}, S^{2 n}=1, R S R^{-1}=S^{r}\right\rangle .
$$

Here r is the unique solution of the system $r \equiv 1 \bmod n, r \equiv-1 \bmod 2$ if $(n, 2)=1$, and the unique solution of the system $r \equiv 1 \bmod n, r \equiv$ $-1 \bmod 2$ such that $(r+1) / 2$ is even, otherwise. Notice also that in the case $(n, 2)=2$ this ramification type appears only if $n \equiv 2 \bmod 4$. We claim that $G \cong G^{\prime} \rtimes\langle b\rangle \cong G^{\prime} \rtimes C_{3}$. Observe that $G^{\prime} \triangleleft G$ because $V_{4} \triangleleft A_{4}$. On the other hand, by Corollary 10 the subextension

$$
\begin{equation*}
1 \rightarrow C_{n} \rightarrow \pi^{-1}(\langle b\rangle) \rightarrow\langle b\rangle \rightarrow 1 \tag{31}
\end{equation*}
$$

splits, therefore there is a homomorphism

$$
j:\langle b\rangle \hookrightarrow C_{n} \rtimes\langle b\rangle \hookrightarrow G,
$$

such that $j(\langle b\rangle) \cap C_{n}=\{1\}$. To prove our claim we have to show that $j(\langle b\rangle) \cap G^{\prime}=1$. Let $x \in j(\langle b\rangle) \cap G^{\prime}$. If $x \neq 1$ then $x \in j(\langle b\rangle)$ has order 3. On the other hand notice that the square of every element in G^{\prime} is in $\langle S\rangle$. This implies that for x, which is written in the form $R^{i} S^{j}$, we have $x^{3}=x x^{2}=R^{i} S^{j} S^{k}$ so $x \in\langle S\rangle$ and $x^{2} \in C_{n}$. Because $j(\langle b\rangle) \cap C_{n}=\{1\}$ we have $x^{2}=1$ and $x=1$ because $(2,3)=1$.
(d) $\left\{P_{1, i}\right\}_{i=1, \ldots, 6} \nsubseteq A_{R}$, hence all places $P_{1, i}, i=1, \ldots, 6$ and at least one set of places among the $P_{2, j}$ and $P_{3, j}, j=1, \ldots, 4$ are ramified in the extension F / F_{0}. (R ecall that the set of places $P_{2, j}$ and $P_{3, j}$ have different ramification type if and only if $(3, n)=1$.) M oreover from the study of dihedral extensions, if $(n, 2)=2$ then $n \equiv 2 \bmod 4$. A ssume that $P_{1,1}$ is fixed by a and that $P_{2,1}$ is fixed by b. Using Corollary 10 , we deduce that the function β is trivial, so the extension is central, and moreover there are elements $R \in \pi^{-1}(a)$ and $S \in \pi^{-1}(b)$ such that

$$
\langle R\rangle \cong C_{2 n}, \quad\langle S\rangle \cong C_{3 n} .
$$

The group $\operatorname{Gal}\left(F / F_{0}\right) \cong C_{n}$ is a common subgroup of $\langle R\rangle,\langle S\rangle$ so by choosing suitable generators R, S we have the relations between R, S

$$
R^{2 n}=1, \quad R^{2}=S^{3} .
$$

Denote by π the projection $G \rightarrow G / C_{n}$. Because $\pi(R S)=a b$ has order 3 in A_{4} we have the additional relation $(R S)^{3}=R^{2 k}$ between R, S. Let G_{1} be the group

$$
\begin{equation*}
G_{1}:=\left\langle R, S \mid R^{2 n}=1, R^{2}=S^{3},(R S)^{3}=R^{2 k}\right\rangle . \tag{32}
\end{equation*}
$$

Obviously $\left\langle R^{2}\right\rangle$ is a normal subgroup of G_{1} and $G_{1} /\left\langle R^{2}\right\rangle \cong A_{4}$ so $G_{1} \cong G$. We prove that there is only one solution to the extension problem with the ramification type of case (d), so there is only one group defined by the relations of (32). U nfortunately we could not find a neat formula for k. However, using the computer algebra package M AGMA [M a] we can then compute k for several values of n. Thus,

$$
\begin{array}{r|rrrrrrrrrrrrrr}
n & 2 & 3 & 5 & 6 & 7 & 9 & 10 & 11 & 13 & 14 & 15 & 17 & 18 & 19 \\
\hline k & 1 & 1 & 5 & 1 & 6 & 7 & 5 & 8 & 9 & 6 & 10 & 11 & 7 & 12
\end{array} .
$$

In order to prove that there is only one solution to the extension problem in case (d), we count the number $i\left(A_{4}, C_{n}\right)$ of nonisomorphic groups G, obtained by extending the group A_{4} by C_{n}. Because the extension in case (d) is central we have

$$
H^{2}\left(A_{4}, C_{4}\right) \cong \mathbb{Z}_{(n, 2)} \times \mathbb{Z}_{(n, 3)}
$$

In case $(n, 3)=(n, 2)=1$, the above formula implies that the extension splits and the group G is isomorphic to $C_{n} \times A_{4}$. In case $(n, 2)=1$, $(n, 3)=3$, the subextension

$$
1 \rightarrow C_{n} \rightarrow \pi^{-1}\left(V_{4}\right) \rightarrow V_{4} \rightarrow 1
$$

splits by Zassenhaus theorem, so according Lemma 13, we have two possibilities for G, namely,

$$
G \cong C_{n} \rtimes A_{4} \quad \text { or } \quad G \cong V_{4} \rtimes C_{3 n} .
$$

In case that $(n, 2)=2,(n, 3)=1$, we have $H^{2}\left(A_{4}, C_{n}\right) \cong \mathbb{Z}_{2}$. The two groups appearing here are isomorphic to the two groups of case (c).

Suppose now that $(n, 2)=2,(n, 3)=3$. We prove that the number of nonisomorphic central extensions of A_{4} by C_{4} is $i\left(A_{4}, C_{4}\right)=4$. Let us write $n=2^{a} 3^{b} m$ with $(m, 2)=(m, 3)=1$. There are only two nonisomorphic extensions $G_{i}^{\prime}, i=1,2$ of the form

$$
1 \rightarrow C_{3^{b} m} \rightarrow G_{i}^{\prime} \rightarrow A_{4} \rightarrow 1,
$$

as we have seen in the case that $(n, 2)=1,(n, 3)=3$. The group G is given by an extension of G_{i}^{\prime}, namely,

$$
1 \rightarrow C_{2^{a}} \rightarrow G \rightarrow G_{i}^{\prime} \rightarrow 1
$$

We claim that G has two possibilities for each selection of $G_{i}^{\prime}, i=1,2$. Indeed,

$$
H^{1}\left(C_{3^{b} m}, C_{2^{a}}\right)=\operatorname{Hom}\left(C_{3^{b} m}, C_{2^{a}}\right) \cong 0,
$$

so the sequence (restriction-inflation) is exact

$$
0 \rightarrow H^{2}\left(\frac{G_{i}^{\prime}}{C_{3^{b} m}}, C_{2^{a}}\right) \rightarrow H^{2}\left(G_{i}^{\prime}, C_{2^{a}}\right) \rightarrow H^{2}\left(C_{3^{b} m}, C_{2^{a}}\right) \cong 0,
$$

which implies that $H^{2}\left(G_{i}^{\prime}, C_{2^{a}}\right) \cong \mathbb{Z}_{2}$ because

$$
H^{2}\left(\frac{G_{i}^{\prime}}{C_{3^{b} m}}, C_{2^{a}}\right)=H^{2}\left(A_{4}, C_{2^{a}}\right) \cong \mathbb{Z}_{2} .
$$

In order to prove that the ramification type of case (b) is realizable we have to find a divisor $D \in \mathscr{D}_{n}\left(A_{4}, A_{R} \subset A, \beta\right)$ of degree $0 \bmod n$. We consider the cases:
(a) $A_{R}=\varnothing$. The ramification type of this case is realizable by Lemma 6.
(b) If $A_{R}=\left\{P_{2,1}, \ldots, P_{2,4}, P_{3,1}, \ldots, P_{3,4}\right\}$ we take s orbits $O\left(P_{i}, A_{4}\right)$ where P_{i} is not fixed by A_{4} and we set $\lambda\left(P_{i}\right) \equiv 1 \bmod n, \lambda\left(P_{2, j}\right) \equiv$ $-\lambda\left(P_{3, j}\right) \bmod n . \operatorname{So}, \operatorname{deg}(D)=12 s$ and we can select an s such that $\operatorname{deg}(D) \equiv 0 \bmod n$. If $A_{R}=\left\{P_{2,1}, \ldots, P_{2,4}\right\}$ we take s orbits $O\left(P_{i}, A_{4}\right)$ where P_{i} is not fixed by A_{4} and we set $\lambda(P) \equiv 1 \bmod n$ for all $P \in$ $\operatorname{supp}(D)$. The degree of D is

$$
\operatorname{deg}(D)=4+12 s
$$

Therefore, because $(n, 3)=1$ we have that $(n, 12) \mid 4$, so we can find an s such that $D \equiv 0 \bmod n$.
(c) In this case $A_{R}=\left\{P_{1,1}, \ldots, P_{1,6}\right\}$. Let n_{0} be the part of n such that

$$
\beta(b) \equiv 1 \bmod n_{0} .
$$

By Lemma 5 it is enough to prove that $\operatorname{deg}(D) \equiv 0 \bmod n_{0}$. Take s orbits $O\left(P_{i}, A_{4}\right)$ where P_{i} is not fixed by A_{4} and put $\lambda(P) \equiv 1 \bmod n$ for all $P \in \operatorname{supp}(D)$. By computation

$$
\operatorname{deg}(D)=6+12 s
$$

Because $n \equiv 2 \bmod 4$ or $n \equiv 1 \bmod 2$ we have that $\left(n_{0}, 12\right) \mid 6$, so we can find an s such that $\operatorname{deg}(D) \equiv 0 \bmod n_{0}$.
(d) We take s orbits $O\left(P_{i}, A_{4}\right)$ where P_{i} are not fixed by D_{m}. If $A_{R}=\left\{P_{1,1}, \ldots, P_{1,6}, P_{2,1}, \ldots, P_{2,4}\right\}$ then we set $\lambda\left(P_{1, i}\right) \equiv 1 \bmod n$ for $i=$ $1, \ldots, 6$, and $\lambda\left(P_{2, j}\right) \equiv-1 \bmod n$ for $j=1, \ldots, 4$. If

$$
A_{R}=\left\{P_{1,1}, \ldots, P_{1,6}, P_{2,1}, \ldots, P_{2,4}, P_{3,1}, \ldots, P_{3,4}\right\}
$$

then we set $\lambda\left(P_{1, i}\right) \equiv 1 \bmod n$ and $\lambda\left(P_{2, i}\right) \equiv-\lambda\left(P_{3, i}\right) \bmod n, i=1, \ldots, 6$, $j=1, \ldots, 4$. The degrees of the above divisors are

$$
\operatorname{deg}(D)=2+12 s \quad \text { and } \quad \operatorname{deg}(D)=6+12 s
$$

We can select an s such that $\operatorname{deg}(D) \equiv 0 \bmod n$. Indeed, as in cases (b) and (c) we notice that $n \equiv 2 \bmod 4$ or $n \equiv 1 \bmod 2$ and, if the places $P_{3,1}, \ldots, P_{3,4}$ are not ramified in F / F_{0} then $(n, 3)=1$ by Remark 2.

4.7. The Group A_{5} as a Quotient Group

The group A_{5} appears as a group of automorphisms of the rational function field with the following ramification types, which we handle together:
(a) In $F_{0} / F_{0}^{A_{5}}$ three places p_{1}, p_{2}, p_{3} of $F_{0}^{A_{5}}$ are ramified, with ramification indices $e_{1}=2, e_{2}=3, e_{3}=5$, respectively. The characteristic is $p \neq 2,3,5$.
(b) In $F_{0} / F_{0}^{A_{5}}$ two places p_{1}, p_{2} are ramified with ramification indices $e_{1}=6, e_{2}=5$, respectively. In this case the characteristic $p=3$.
In this section we will prove:
Theorem 19. Let $G_{0}=G / C_{n}$ be isomorphic to A_{5}. The cohomological class $\alpha \in H^{2}\left(A_{5}, C_{n}\right)$ describing G can be determined by the cohomology class corresponding to the subextension of a 2 -Sylow subgroup H_{2}.

If $(n, 2)=1$ or all places of F_{0} above p_{1} are decomposed in F / F_{0} then $G \cong C_{n} \times A_{5}$. Otherwise G admits a presentation in terms of generators and relations as:

$$
\begin{gathered}
\langle X, Y, Z, T| T^{n}=X^{3}=1, Y^{2}=T, Z^{2}=T,(X Y)^{3}=T^{l},(Y Z)^{3}=T^{o}, \\
\left.(X Z)^{2}=T^{m}, X T X^{-1}=T, Z T Z^{-1}=T, Y T Y^{-1}=T\right\rangle,
\end{gathered}
$$

for some integers $m, l, o \in\{1, \ldots, n\}$.
Proof. A_{5} is a simple non-A belian group so the action homomorphism

$$
\beta: A_{5} \rightarrow \mathbb{Z}_{n}^{*}
$$

is trivial and the extension

$$
\begin{equation*}
1 \rightarrow C_{n} \rightarrow G \xrightarrow{\pi} A_{5} \rightarrow 1 \tag{33}
\end{equation*}
$$

central. We have computed that $H^{2}\left(A_{5}, C_{n}\right) \cong \mathbb{Z}_{(n, 2)}$. If n is odd then

$$
G \cong C_{n} \times A_{5} .
$$

Suppose now that n is even. By Proposition 8 the restriction map

$$
\begin{align*}
&\left.\mathbb{Z}_{2} \cong H^{2}\left(A_{5}, C_{n}\right)=H^{2}\left(A_{5}, C_{n}\right)\right)_{(2)} \xrightarrow{1-1} H^{2}\left(H_{2}, C_{n}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
& \alpha \mapsto \operatorname{res}_{A_{5} \rightarrow H_{2}}(\alpha) \tag{34}
\end{align*}
$$

is injective, where $H_{2} \cong V_{4}$ is the 2-Sylow subgroup of A_{5}. This proves that we can determine the structure of the extension of A_{5}, by computing the structure of the subextension of a 2-Sylow subgroup. The 2-Sylow subgroup of A_{5} is isomorphic to V_{4}. We consider the two cases:

1. All places above p_{1} are decomposed in the extension F / F_{0}. By the study of extensions of dihedral groups we have that, $\pi^{-1} \cong C_{n} \times V_{4}$, hence $G \cong C_{n} \times A_{5}$.
2. All places above p_{1} are ramified in extension F / F_{0}. By the study of dihedral extensions, this is possible only if $n \equiv 2 \bmod 4$. We would like to write a presentation for G in terms of generators and relations. The group A_{5} admits the presentation [$\mathrm{Hu}, \mathrm{p} .138$]:

$$
\begin{equation*}
A_{5}=\left\langle x, y, z \mid x^{3}=y^{2}=z^{2}=(x y)^{3}=(y z)^{3}=(x z)^{2}\right\rangle \tag{35}
\end{equation*}
$$

Let T be a generator of the cyclic group C_{n}. The decomposition group of all places of F which extend p_{1} have a cyclic subgroup of order $2 n$. Let X, Y be elements of order $2 n$, such that $\pi(X)=x, \pi(Y)=y$. We can select X, Y such that $Y^{2}=X^{2}=T$. By applying π to products of X, Y and using the relations of A_{5} given in (35) we arrive at the presentation of G :

$$
\begin{gathered}
\langle X, Y, Z, T| T^{n}=X^{3}=1, Y^{2}=T, Z^{2}=T,(X Y)^{3}=T^{l},(Y Z)^{3}=T^{o}, \\
\left.(X Z)^{2}=T^{m}, X T X^{-1}=T, Z T Z^{-1}=T, Y T Y^{-1}=T\right\rangle,
\end{gathered}
$$

where $m, l, o \in\{1, \ldots, n\}$. One can compute m, l, o using the presentation of $\pi^{-1}\left(V_{4}\right)$ in terms of generations and relations. It is difficult to do this sort of computation generically. H owever, using MAGMA [M a] symbolic algebra package we can calculate the values of m, l, o for certain n : For all values of n we have tried it turns out that we can take $m=1=l=1$ for $n=2$ and $m=1, o=3, l=2+(n-2) / 4$ for $n>2, n \equiv 2 \bmod 4$.

Let D be an arbitrary divisor in $\mathscr{D}_{n}\left(A_{5}, A_{R} \subset A, \beta\right)$

$$
D=\sum_{i=1}^{3} a_{i} \sum_{P \mid p_{i}} P+\sum_{i=1}^{s} \lambda\left(P_{i}\right) \sum_{P \in O\left(P_{i}, A_{5}\right)} P
$$

where $a_{i}=0$ if the places above p_{i} are not in A_{R} and $0<a_{i}=\lambda\left(P_{i, j}\right)<n$ if the places of F_{0} above p_{i} are in $A_{R}, P_{i, j}$ is an arbitrary place over p_{i}. The degree of D in case (a) is

$$
\operatorname{deg}(D)=a_{1} 30+a_{2} 20+a_{3} 12+60 \sum_{i=1}^{s} \lambda_{i}\left(P_{i}\right) .
$$

This gives us

$$
(60, n) \mid\left(a_{1} 30+a_{2} 20+a_{3} 12\right),
$$

as a necessary and sufficient condition for the ramification type A_{R} to be realizable. Similarly in case (b) we have the condition

$$
(60, n) \mid\left(a_{1} 10+a_{2} 12\right),
$$

as a necessary and sufficient condition for the ramification type A_{R} to be realizable.

4.8. The Group S_{4} as a Quotient Group

In this section suppose that $G / C_{n} \cong S_{4}$. This case appears in characteristics $p \neq 2,3$. In the extension $F_{0} / F_{0}^{S_{4}}$ three places q_{1}, q_{2}, q_{3} of F_{0} are ramified, with ramification indices $e_{1}=2, e_{2}=3, e_{3}=4$. Let $\left\{P_{1, i}\right\}_{1 \leq i \leq 12}$, $\left\{P_{2, j}\right\}_{1 \leq j \leq 8},\left\{P_{3, k}\right\}_{1 \leq k \leq 6}$ be the sets of places of F_{0} which are above q_{1}, q_{2}, q_{3}, respectively. S_{4} admits the presentation in terms of generators and relations,

$$
\begin{equation*}
S_{4}=\left\langle x, y \mid y^{2}, x^{4},\left(x^{-1} y\right)^{3}=1\right\rangle, \tag{36}
\end{equation*}
$$

and as one checks A_{4} is the subgroup of S_{4} generated by $x^{2}, y x$.
The ramification of S_{4} compared to the ramification of A_{4} is given in the diagram:

F_{0}	$P_{1,1}, \ldots, P_{1,12}$	$P_{2,1}, \ldots, P_{2,8}$	$P_{3,1}, \ldots, P_{3,6}$
\mid	\backslash	$3 \backslash / \backslash / 3$	$\backslash / 2$
$F_{0}^{A_{4}}$	$*$	$p_{2} p_{3}$	p_{1}
\mid	$\mid 2$	\backslash	$\mid 2$
$F_{0}^{S_{4}}$	q_{1}	q_{2}	q_{3}

Theorem 20. Let $G / C_{n}=G_{0}$ be isomorphic to the symmetric group S_{4}. Then there are the cases for the group of automorphisms of G.
(a) $\left\{P_{1, i}\right\}_{1 \leq i \leq 12} \cup\left\{P_{3, k}\right\}_{1 \leq k \leq 6} \subset A_{R}$. The action of S_{4} on C_{n} is trivial. If $(n, 2)=1$ then $G \cong C_{n} \times S_{4}$ and if $(n, 2)=2, n \equiv 2 \bmod 4$ then G admits the presentation in terms of generators and relations

$$
\begin{aligned}
G=\langle X, Y, T| T^{n}=1, Y^{2}=X^{4}=X T X^{-1}= & Y T Y^{-1}=T \\
& \left.\left(X^{-1} Y\right)^{3}=T^{k}\right\rangle,
\end{aligned}
$$

for some $k \in\{1, \ldots, n\}$.
(b) $\quad G \cong C_{n} \rtimes S_{4}$ in all other cases.

Proof. The map Φ of Proposition 8:

$$
\begin{aligned}
& H^{2}\left(S_{4}, C_{n}\right)=\bigoplus_{p=2,3} H^{2}\left(S_{4}, C_{n}\right) \xrightarrow{\Phi} H^{2}\left(H_{2}, C_{n}\right) \oplus H^{2}\left(H_{3}, C_{n}\right) \\
& \alpha=\alpha_{2}+\alpha_{3} \mapsto \operatorname{res}_{S_{4} \rightarrow H_{2}}\left(\alpha_{2}\right)+\operatorname{res}_{S_{4} \rightarrow H_{3}}\left(\alpha_{3}\right)
\end{aligned}
$$

is injective, where H_{2} (resp., H_{3}) is any 2-Sylow subgroup (resp., 3-Sylow). We will prove

Lemma 21. If $G / C_{n} \cong S_{4}$, then the map,

$$
\begin{aligned}
H^{2}\left(S_{4}, C_{n}\right) & \rightarrow H^{2}\left(H_{2}, C_{n}\right) \\
\alpha=\alpha_{2}+\alpha_{3} & \mapsto \operatorname{res}_{S_{4} \rightarrow H_{2}}\left(\alpha_{2}\right)
\end{aligned}
$$

is injective.
Proof. If $A_{R} \supset\left\{P_{2, j}\right\}_{1 \leq j \leq 8} \cup\left\{P_{3, k}\right\}_{1 \leq k \leq 6}$ or $A_{R} \supset\left\{P_{1, i}\right\}_{1 \leq i \leq 12}$ then the action of S_{4} on C_{n} is trivial, so $H^{2}\left(S_{4}, C_{n}\right)=\mathbb{Z}_{(2, n)} \times \mathbb{Z}_{(2, n)}$. If $A_{R} \cap\left\{P_{2, j}\right\}_{1 \leq j \leq 8}=\varnothing$ then by the study of extensions of cyclic groups, we have $\operatorname{res}_{S_{4} \rightarrow H_{3}}(\alpha)=0$. Finally if $A_{R} \supset\left\{P_{2, j}\right\}_{1 \leq j \leq 8}$ and $A_{R} \cap\left\{P_{3, k}\right\}_{1 \leq k \leq 6}$ $=\varnothing$, then by the study of case (b) of extension of A_{4} we have that $(n, 3)=1$, so $H^{2}\left(H_{3}, C_{n}\right)=0$.

This proves that the structure of G is determined by the structure of the subextension

$$
1 \rightarrow C_{n} \rightarrow \pi^{-1}\left(D_{4}\right) \rightarrow D_{4} \rightarrow 1 .
$$

We have the tower of field extensions:

F_{0}	$P_{1,1}, \ldots, P_{1,12}$	$P_{2,1}, \ldots, P_{2,8}$	$P_{3,1}, \ldots, P_{3,6}$		
\mid	$2 \backslash \mid$	$\mid /$	\backslash	$2 \backslash \mid$	$4 \mid /$
$F_{0}^{D_{4}}$	p_{1}^{\prime}	$*$	$*$	p_{2}^{\prime}	p_{3}^{\prime}
$3 \mid$	$1 \backslash / 2$	$3 \mid$	$2 \backslash / 1$		
$F_{0}^{S_{4}}$	q_{1}	q_{2}	q_{3}		

The ramification of q_{2} of the extension $F_{0} / F_{0}^{S_{4}}$ does not affect the ramification type in the extension $F_{0} / F_{0}^{D_{4}}$. We have to consider the cases:
(1) $A_{R} \cap\left\{P_{1, i}\right\}_{1 \leq i \leq 12}=\varnothing$ and $\left\{P_{3, k}\right\}_{1 \leq k \leq 6} \subset A_{R}$ or $A_{R} \cap$ $\left\{P_{3, k}\right\}_{1 \leq k \leq 6}=\varnothing$ and $\left\{P_{1, i}\right\}_{1 \leq i \leq 12} \subset A_{R}$.

In both of the above cases, the action of S_{4} on C_{n} is trivial. M oreover $y \in S_{4}$ fixes a place of F_{0} above q_{1} and a place of F_{0} above q_{3}. Hence by Remark 4 we have that $(n, 2)=1$. Therefore, $H^{2}\left(S_{4}, C_{n}\right)=0$, so $G \cong$ $C_{n} \times S_{4}$.
(2) $A_{R} \cap\left\{P_{1, i}\right\}_{1 \leq i \leq 12}=A_{R} \cap\left\{P_{3, k}\right\}_{1 \leq k \leq 6}=\varnothing$. In this case by the study of dihedral extensions we have $\operatorname{res}_{S_{4} \rightarrow D_{4}}(\alpha)=0$, hence $\alpha=0$ and $G \cong C_{n} \rtimes S_{4}$.
(3) $\left\{P_{1, i}\right\}_{1 \leq i \leq 12} \cup\left\{P_{3, k}\right\}_{1 \leq k \leq 6} \subset A_{R}$. In this case the action of S_{4} on C_{n} is trivial. Hence if $(n, 2)=1$ then $G \cong C_{n} \times S_{4}$. If $(n, 2)=2$ then by the study of dihedral extensions, this case appears only if $n \equiv 2 \bmod 4$. Let T be a generator of the cyclic group C_{n}. Consider elements X, Y in G of orders $4 n$ and $2 n$, respectively, such that $\pi(X)=x$ and $\pi(Y)=y$. We can choose X, Y such that $X^{4}=T$ and $Y^{2}=T$. M oreover we have the relations $X T X^{-1}=T$ and $Y T Y^{-1}=T$. Applying π to the products of X, Y and using the presentation (36) we arrive at the presentation of G,

$$
\begin{aligned}
G=\langle X, Y, T| T^{n}=1, Y^{2}=X^{4}=X T X^{-1}= & Y T Y^{-1}=T \\
(& \left.\left.X^{-1} Y\right)^{3}=T^{k}\right\rangle,
\end{aligned}
$$

for some $k \in\{1, \ldots, n\}$. Although the structure of G can be determined by the structure of $\pi^{-1}\left(V_{4}\right)$ it is very difficult to compute k generically. Using MAGMA [Ma] we can compute k for several $n, n \equiv 2 \bmod 4$. It turns out that $k=2+(n-2) / 4$.

In order to prove that the above ramification types are realizable we have to find a divisor $D \in \mathscr{D}_{n}\left(S_{4}, A_{R} \subset A, \beta\right)$ with deg $D \equiv 0 \bmod n$. As in the A_{5} case we have that the condition

$$
\left(n_{0}, 24\right) \mid\left(a_{1} 12+a_{2} 8+a_{3} 6\right)
$$

is sufficient and necessary for $\operatorname{deg}(D) \equiv 0 \bmod n_{0}$, where $a_{i}=0$ if the places $P_{i, j}$ of F_{0} which are above p_{i} do not ramify in extension F / F_{0} and $a_{i}=\lambda\left(P_{i, j}\right) \neq 0$, otherwise.

4.9. The Matrix Groups $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ as a Quotient Group

In this case $G_{0}=G / C_{n}$ is isomorphic to $\operatorname{PSL}(2, q)$ or to $\operatorname{PGL}(2, q)$. In extension $F_{0} / F_{0}^{G_{0}}$ only two places p_{1}, p_{2} are ramified. It is very complicated to give a presentation of G in terms of generators and relations because as far as the author knows, there is no general presentation of the matrix groups $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ in terms of generators and rela-
tions. However, we can prove:
Theorem 22. Let $G_{0}=G / C_{n}$ be isomorphic to $\operatorname{PSL}(2, q)$ or $\operatorname{PGL}(2, q)$, where q is a power of the characteristic. The cohomology class $\alpha \in H^{2}\left(G_{0}, C_{n}\right)$ is determined by the restriction $\operatorname{res}_{G_{0} \rightarrow H_{2}}(\alpha)$ to a 2 -Sylow subgroup H_{2}. In particular, when $(n, 2)=1$, or when the places of F_{0} which extend p_{1}, p_{2} are decomposed in extension F / F_{0} then $G \cong C_{n} \rtimes G_{0}$.

Proof. We need:
Lemma 23. For $G_{0}=\operatorname{PSL}(2, q)$, $\operatorname{PGL}(2, q), H^{2}\left(G_{0}, C_{n}\right)$ is a 2-group.
Proof. We have the two cases:
Case 1. $G_{0}=\operatorname{PSL}(2, q),(q, 2)=1$ or $G_{0}=\operatorname{PGL}\left(2,2^{f}\right)=\operatorname{PSL}\left(2,2^{f}\right)$.
Because $\operatorname{PSL}(2, q)$, where $q=p^{f}$ is a power of the characteristic, is simple, the action of G_{0} on C_{n} is trivial. We have

$$
H^{2}\left(\operatorname{PSL}(2, q), C_{n}\right) \cong \begin{cases}\mathbb{Z}_{(2, n)} & \text { if } p^{f} \neq 9 \\ \mathbb{Z}_{(6, n)} & \text { if } p^{f}=9\end{cases}
$$

O bserve that if $p^{f}=9$ then $(n, 6)=(n, 2)$ because we have assumed that the characteristic p does not divide n, so $H^{2}\left(\operatorname{PSL}(2, q), C_{n}\right)=\mathbb{Z}_{(2, n)}$.

Case 2. $G_{0}=P G L(2, q),(q, 2)=1$. The kernel of the action homomorphism

$$
\beta: P G L(2, q) \rightarrow \mathbb{Z}_{n}^{*}
$$

is either $\operatorname{ker} \beta=P G L(2, q)$ or $\operatorname{ker} \beta=P S L(2, q)$. In the first case the extension is central and $H^{2}\left(P G L(2, q), C_{n}\right)=\mathbb{Z}_{(n, 2)} \times \mathbb{Z}_{(n, 2)}$. Observe that

$$
H^{1}\left(\operatorname{PSL}(2, q), C_{n}\right) \cong \operatorname{Hom}\left(\operatorname{PSL}(2, q), C_{n}\right)=0,
$$

because $\operatorname{PSL}(2, q)$ is simple and non-A belian. We write the inflation-restriction sequence

$$
\begin{aligned}
0 & \rightarrow H^{2}\left(\frac{\operatorname{PGL}(2, q)}{\operatorname{PSL}(2, q)}, C_{n}\right) \rightarrow H^{2}\left(\operatorname{PGL}(2, q), C_{n}\right) \\
& \rightarrow H^{2}\left(\operatorname{PSL}(2, q), C_{n}\right) \cong \mathbb{Z}_{(2, n)}
\end{aligned}
$$

and because $\operatorname{PGL}(2, q) / \operatorname{PSL}(2, q) \cong \mathbb{Z}_{2}$ we deduce that $H^{2}\left(P G L(2, q), C_{n}\right)$ is a 2-group.

We return now to the proof of Theorem 22. The monomorphism Φ of Proposition 8:

$$
H^{2}\left(G_{0}, C_{n}\right)=\bigoplus_{t \mid q\left(q^{2}-1\right)} H^{2}\left(P G L(2, q), C_{n}\right)_{(t)} \xrightarrow{\Phi} \bigoplus_{t \text {-sylow }} H^{2}\left(H_{t}, C_{n}\right),
$$

where H_{t} runs over the t-Sylow subgroups of G_{0} is injective so the restriction map

$$
\begin{aligned}
H^{2}\left(G_{0}, C_{n}\right) & \rightarrow H^{2}\left(H_{2}, C_{n}\right) \\
\alpha & \mapsto \beta=\operatorname{res}_{G_{0} \rightarrow H_{2}}(\alpha)
\end{aligned}
$$

is injective as well. The 2-Sylow subgroup H_{2} is isomorphic to a dihedral group $D_{2^{K}}$, of order 2^{K+1}, where $K=\max \left\{v_{2}\left(e_{1}\right), v_{2}\left(e_{2}\right)\right\}$.

M oreover, if $(n, 2)=2$ then the cohomology group vanishes, so $G \cong$ $C_{n} \rtimes G_{0}$, and by the study of dihedral extensions we have that if all places of F_{0} above p_{1}, p_{2} are decomposed in the extension F / F_{0}, then $\beta=$ $\operatorname{res}_{G_{0} \rightarrow H_{2}}(\alpha)=1$, so $G \cong C_{n} \rtimes G_{0}$ as well.

Let D be a divisor in $\mathscr{D}_{n}\left(G_{0}, A_{R} \subset A, \beta\right)$, and n_{0} the greatest divisor of n, such that $\beta(\sigma) \equiv 1 \bmod n_{0}$. According to Lemma 6 we have that $\operatorname{deg}(D) \equiv 0 \bmod n \Leftrightarrow \operatorname{deg}(D) \equiv 0 \bmod n_{0}$. Therefore the condition

$$
\left(n_{0}, q(q-1)(q+1)\right) \mid\left(a_{1} q(q-1)+a_{2}(q+1)\right)
$$

is necessary and sufficient for $\operatorname{deg}(D)$ to be congruent to $0 \bmod n_{0}$, where $a_{i}=0$ if the places of F_{0} above p_{i} are in A_{R} and $a_{i}=\lambda(P), P \mid p_{i}$ otherwise.

ACKNOWLEDGMENTS

I express my gratitude to my advisor, Jannis A. A ntoniadis, for his continued support guidance and encouragement. I also thank the Greek National Scholarship Foundation (I.K.Y .) for their financial support.

REFERENCES

[Ac] R. D. M. Accola, Strongly branched coverings of closed Riemann surfaces, Proc. Amer. Math. Soc. 26 (1970), 315-322.
[A-C] E. Arbarello and M. Cornalba, Footnotes to a paper of Beniamino Segre, Math. Ann. (1981), 341-362.
[Br] R. Brandt, "Über die Automorphismengruppen von Algebraischen Funktionenkörpern," Ph.D. dissertation, U niversität-G esamthochschule E ssen, 1988.
[B-S] R. Brandt and H. Stichtenoth, Die Automorphismen hyperelliptischer Kurven, Manuscripta Math. 55 (1986), 83-92.
[B-R] V. Gonzalez and R. Rodriguez, On automorphism of curves and linear series, in "Complex Geometry Seminar," V ol. III, Chile, 1994.
[H a] H. H asse, Theorie der relativ-zyklischen algebraischen Functionenkörper, insbesondere bei endlichen K onstantenkörper, J. Reine Angew. Math. 172 (1934), 37-54.
[Hu] B. Huppert, Endliche Gruppen, I, in "Die Grundlehren der M athematischen Wissenschaften," V ol. 134, Springer-V erlag, Berlin, 1967.
[Ko] A. Kontogeorgis, The group of automorphisms of function fields of the curves $x^{n}+y^{m}+1=0, J$. Number Theory 72, Sept. 1998.
[Ma] Magma Algebra System, Computational Algebra Group, University of Sydney, http://www.maths.usyd.edu.au:8000/u/magma/.
[Na] M. Namba, Equivalence problem and automorphism groups of certain compact R iemann surfaces, Tsukuba J. Math. 5, No. 2 (1981), 319-338.
[St] H. Stichtenoth, "A Igebraic Function Fields and Codes," Springer-V erlag U niversitext, Berlin, 1993.
[Se] J.-P. Serre, "Local Fields," G raduate Texts in M athematics, V ol. 67, Springer-V erlag, New Y ork, 1979.
[V-M] C. R. Valentini and L. M. M adan, A H auptsatz of L. E. Dickson and A rtin-Schreier extensions, J. Reine Angew. Math. 318 (1980), 156-177.
[W ei] E. W eiss, "C ohomology of Groups," A cademic Press, New Y ork, 1969.

