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We will study the group of automorphisms of the function fields of the curves
xn+ ym+1=0, for n{m. This groups is bigger than +(n)_+(m) in case m | n. If
moreover n&1 is a power of the characteristic, then the group order exceeds the
Hurwitz bound. � 1998 Academic Press

1. INTRODUCTION

Let n, m be natural numbers. We will work over an algebraically closed
field k whose characteristic p does not divide n and m. Denote by Fn, m the
function field of the affine curve xn+ ym+1=0. If the genus of Fn, m is
greater than one then it is well known that the group of automorphisms of
Fn, m is finite. The aim of this paper is the determination of the group of
automorphisms Gn, m of the function fields Fn, m , with genus g>1. It is
obvious that the group +(n)_+(m), where +(n) is the cyclic group of the
nth roots of unity, is a subgroup of Gn, m . The question is if there are more
automorphisms. Leopoldt [Le], in arbitrary characteristic, and Tzermias
[Tz], in characteristic zero, studied the automorphism group of the Fer-
mat curves, m=n. Hyperelliptic curves in zero characteristic were studied
by Brandt and Stichtenoth [B�S]. We will exclude these curves from our
considerations and assume that n>2. Our tools can not handle the curve
with n=4, m=3 which was recently studied in a paper of Klassen and
Schaefer [K�S]. Without loss of generality we may also assume that n>m
and for the sake of simplicity we suppose that ch(k){2, 3. With the above
restrictions we shall prove the following:
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Theorem 1. The automorphism group Gn, m of the above curves is
Gn, m=+(n)_+(m) if m |% n. In case m | n and n&1 is not a power of the
characteristic of k, the group of automorphisms Gn, m admits a presentation

Gn, m=(_, {�_2m=1, {n=1, _3{&1={_, _2{={_2) ,

where the automorphisms _, { are given by

(_(x)=!�x, _( y)= y�xn�m) ({(x)=!x, {( y)= y),

where ! denotes a primitive nth root of unity. Moreover Gn, m is given as a
central extension

1 � +(m) � Gn, m � Dn � 1,

where Dn denotes the dihedral group of order 2n. This extension splits if and
only if m is odd. In this case Gn, m $+(m)_Dn . In case m | n and n&1=q
is a power of the characteristic the group of automorphisms is given as a
central extension

1 � +(m) � Gn, m � PGL(2, q) � 1.

As in the previous case this extension splits if and only if m is odd. If m is
odd Gn, m $+(m)_PGL(2, q). In case m is even the cohomology class
: # H 2 (PGL(2, q), +(m)) corresponding to the above extension is given by

:=res&1
PGL(2, q) � H2

(;),

where H2 is anyone 2-Sylow subgroup, 2 f +1 is its order and ; # H2 (H2 , +(m))
is the cohomology class corresponding to the subextension

1 � +(m) � ?&1 (H2) � H2 � 1.

The group ?&1 (H2) admits the following presentation in terms of generators
and relations,

?&1(H2)={
(R, S�R2 f

=S 2m=1, S3R&1=RS, S 2R=RS2) ,
if 2 f | q+1=n,

(R, S�R2 fm=S2=1, SRS &1=Rr) ,
if 2 f | q&1,

where r is the unique solution mod 2 fm of the system r#1 mod m,
r#&1 mod 2 f +1.

In case of characteristic zero the problem is easy since there is no wild
ramification, and the calculation of the automorphism group can be done
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by bounding its order using the Riemann�Hurwitz formula. In case of
arbitrary characteristic, we owe very much to the ideas of Leopoldt [Le].
The case m | n and n&1 is a power of the characteristic, appears in Henn's
paper [He] and is a counterexample of the ordinary Hurwitz bound of the
group of automorphisms.

We should keep in mind that the above curve models might be singular
at infinity. We will work in the language of places, which correspond to
algebraic points at some non-singular projective model of our curve.

2. THE FIELD Fn, m AS A KUMMER EXTENSION
OF k(x) AND k( y)

Let Fn, m be the function field of the curve xn+ ym+1=0. Fn, m is a
Kummer algebraic extension over the k(x) and k( y), or equivalently a
cyclic double ramified covering of P1 (k).

Let P(x=a) (P( y=b) respectively) be the place of k(x) (k( y) respectively)
corresponding to the point x=a ( y=b respectively) of P1 (k). We calculate
the ramification places using Kummer's criterion ([St] III.7.3, p. 110). The
minimal polynomial of the separable extension [Fn, m : k(x)] is T m+
(xn+1). Denote by vp the valuation of k(x) corresponding to place P:

1 if P=P(x=`i)

vP(xn+1)=vP \`
n

i=1

(x&`i)+={&n if P=P(x=�)

0 otherwise;

hence the number rP of places above P and the corresponding ramification
indices ep are

1 if P=P(x=`i)

m if P=P(x=`i)

rP={(n, m) if P=P(x=�) eP={ m
(n, m)

if P=P(x=�)

m otherwise
1 otherwise

where (`i) i=1, ..., n are the n th roots of &1. For symmetry reasons between
m and n we have

1 if P=P( y==j)

n if P( y==j)

rP={(n, m) if P=P( y=�) eP={ n
(n, m)

if P( y=�)

n otherwise
1 otherwise
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where (=j) j=1, ..., m are the m th roots of &1. The principal divisors of the
two generating functions x, y of the field Fn, m are

(x)=P(x=0)&P(x=�)= :
m

i=1

:i&
m

(n, m)
:

(n, m)

j=1

#j

( y)=P( y=0)&P( y=�)= :
n

i=1

;i&
n

(n, m)
:

(n, m)

j=1

$j ,

where :i , #j , ;i , $ j are the extensions, in Fn, m , of the places P(x=0) ,
P(x=�) # k(x) and P( y=0) , P( y=�) # k( y), respectively. We can see, using
the defining equation of the curve, that #k=$k . Moreover the different of
the separable extension Fn, m�k(x) is

D(Fn, m�k(x))=(m&1) :
n

i=1

;i+\ m
(n, m)

&1+ :
(n, m)

j=1

# j ;

therefore according to ([Ha], p. 455):

(dx)=D(Fn, m �k(x))&2(x)�

=(m&1) :
n

i=1

; i+\ m
(n, m)

&1+ :
(n, m)

j=1

#j&2
m

(n, m)
:

(n, m)

j=1

#j .

So we conclude that 2g&2=deg (dx)=nm&n&m&(n, m). A basis for
the space of holomorphic differentials of the field Fn, m is given by

xiy j|, (i, j) # I,

where I is the set of indices

I :={(i, j) # N2:
2g&2
(n, m)

&
im+nj
(n, m)

�0= , (1)

and

| :=
dx

mym&1=&
dy

nxn&1 .

Indeed, the divisor of the above differential is

(|)=
2g&2
(n, m)

:
(n, m)

k=1

#i
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and

(xiy j|)=_2g&2
(n, m)

&
im+nj
(n, m) & :

(n, m)

k=1

#k ;

hence all the above differentials are holomorphic. Furthermore they are
linearly independent and Towse1 [To] proves that |I |= g.

3. CALCULATION OF POLE AND GAP NUMBERS

Define for a place P of the function field Fn, m the Weierstrass semigroup

E(P) :=[& # N: _f # Fn, m �( f )�=&P].

The elements of E(P) are called the pole numbers at P and the elements
of N"E(P) are called the gaps at P. For every divisor D of the function
field Fn, m we define the finite dimensional k vector space L(D) :=
[ f : ( f )+D�0]. Set l(D) :=dimk L(D). Observe that s # E(P) if and only
if l(sP)=l((s&1) P)+1.

The objective of this section is to calculate a part of the set E(P) for the
places P=:1 or ;1 . Notice that all :s , s=1, ..., m, ;t , t=1, ..., n have the
same Weierstrass semigroup. The sets

xiy j
1 | or x i

1 y j| (i, j) # I,

where x1=x&`1 , y1= y&=1 , are also two basis for the space of
holomorphic differentials. Moreover it holds

v:1
(x iy j

1|)=i+nj, v;1
(x i

1 y j|)=mi+ j.

The Riemann�Roch theorem implies that

s # E(P) � l(sP)=l((s&1) P)+1

� l(W&(s&1) P)&l(W&sP)=0,

where W is a canonical divisor of Fn, m . We take as W the divisor of |. The
dimension of the space L(W&sP) can be interpreted as the number of
linearly independent holomorphic differentials which have a zero at place
P of order �s, since

L(W&sP) :=[ f: ( f )�&(|)+sP]=[( f|)�sP].
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On the other hand, from (1) we have 0�i<n and 0� j<m, for (i, j) # I,
which gives us that the functions

8n : {I � N

(i, j) [ i+nj+1
9m : {I � N

(i, j) [ mi+ j+1

are ``one to one.'' Hence the valuations va1
(x iy i

1|) take different values for
different (i, j) and the same holds for the valuations v;1

(x i
1 y j|), so the

valuation of an arbitrary holomorphic differential is

va1 { :
(i, j) # I

* i, jx i
1 y j|== min

*i, j{0
va1

(* i, jx i
1 y j|)= min

(i, j) such that *i, j{0
[i+nj].

Thus

l(W&s:1)=|[i+nj�s, (i, j) # I ]|

and similarly

l(W&s;1)=|[mi+ j�s, (i, j) # I ]|.

We conclude that l(W&(s&1) :1){l(W&s:1); if and only if there exist
(i, j) # I : i+nj=s&1. The cardinal number of the set [i+nj+1,
(i, j) # I ]=8n (I ) is g, so the gaps at place :1 are 8n (I ). Similarly the gaps
at place ;1 are 9n (I ).

``Small'' gap numbers are enough for our needs. We restrict ourselves to
gaps at place :1 which are images, under the function 8n , of the set
I1=[(i, 0) # I ]. According to (1), (i, 0) # I1 if and only if

i�n&1&
n+(n, m)

m
. (2)

Divide n+(n, m) by m: n+(n, m)=}m+r, where 0�r<m. If we set

t :={n&}
n&}&1

in case r=0
in case r>0

,

then from (2) we conclude that i�t&1. Moreover n+1=8n ((0, 1)) is a
gap for a1 . Finally, the structure of gap and pole numbers of :1 up to n+1
is

0, 1, 2, ..., t
gaps

, t+1, ..., n
pole numbers

, n+1

gap

, .... (3)
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Similarly for P=;1 we calculate the part of E(;1) which are of the form
9n ((0, j)), (0, j) # I. Divide m+(n, m) by n : m+(n, m)=*n+v, 0�v<n.
Since m<n, * must be zero or one. As in the study of E(:1) if we set

t$ :={m&*
m&*&1

in case v=0
in case v>0

then j�t$&1. Observe that *=1 if and only if v=0; hence t$+1=m and
the structure of gap and pole numbers of ;1 , up to m+1 is

0, 1, 2, ..., m&1

gaps

, m
pole number

, m+1

gap

, .... (4)

Lemma 2. Let n=m}1+r1 , 0�r1<m, be the division of n by m. The
number t is equal to n&}1&1. Furthermore if m+1<n then m<t+1. In
case m+1=n we have m=t+1.

Proof. There are two cases:

1. m | n so (n, m)=m. This means that }=}1+1 and r=0; thus
t=n&}1&1.

2. m |% n so (n, m)<m. Obviously

n+(n, m)=}1 m+r1+(n, m).

We distinguish the following subcases:

v If r1+(n, m)=m, then }=}1+1, r=0 and so t=n&}1&1.

v If r1+(n, m)<m, then }=}1 , r>0 and so t=n&}1&1.

v The case r1+(n, m)>m can never happen since (n, m) | r1 .

At last the inequality m<t+1 is equivalent to (m&r1)�(m&1)<}1 ,
since m>1. The left hand side of the above inequality is less than one
unless r1=0, 1. So (m&r1)�(m&1)�}1 only if }1=1 and r1=0, 1 (recall
that n>m so }1�1). Hence the equality t+1=m holds if and only if
n=m+1. K

Lemma 3. There is no automorphism _ such that: _(:i)=;j .

Proof. For every place P and for every automorphism _ # G E(P)=
E(_P). To prove the assertion we notice that E(:1){E(;1). Indeed, m # E(;1)
and if m+1<n then by Lemma 2, m<t+1 so m � E(:1). In case m+1
=n, n � E(;1) but n # E(:1). K
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Lemma 4. If P is a place of Fn, m and P � [[: i] i=1, ..., m _ [;j] j=1, ..., n _
[#k]k=1, ...(n, m)] then for every automorphism _ # Aut(Fn, m) holds that
_(P) � [;j] j=1, ..., n .

Proof. We will prove that E(P){E(;j). For this we will work in
L(W )*, i.e., the space of linear forms:

8: L(W ) � k.

The place P restricts to finite places P(x=a) , P( y=b) of the function
fields k(x), k( y), respectively. We set x~ =x&a, y~ :=y&b. The set
[x~ iy~ j|, (i, j) # I ] forms a basis for the vector space of holomorphic
differentials, so every holomorphic differential |1 can be written as

|1= :
(i, j) # I

#i, jx~ iy~ j|, #i, j # k.

Let T be a local uniformiser of the valuation ring at P. The functions x~ , y~
can be expressed as formal power series of T:

x~ = :
k�1

akT k, y~ = :
l�1

b lT l.

Moreover, since the place P is not ramified over the fields k(x), k( y) we
have a1 b1 {0. The s powers of the power series x~ , y~ are denoted by

x~ s= :
k�1

a (s)
k T k, y~ s= :

l�1

b (s)
l T l

and from the multiplication law of power series we compute

a (s)
k =b (s)

k =0,
a (s)

s =as
1 , b (s)

s =bs
1 ,

if k<s{0
if k=s{0

a (0)
k =b (0)

k =1
a (0)

k =b (0)
k =0

if k=0
if k>0.

(5)

Define the linear forms

8(s) :={L(W ) � k
|1 [ (|1 , 8(s)) :=: (i, j) # I #i, j, (s)

i, j ,

where

, (s)
i, j := :

k+l=s

a (i)
k b ( j)

l , (i, j) # I. (6)
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The arbitrary holomorphic differential is written

|1=\ :
s�0

(|1 , 8(s)) T s+ |.

From the selection of the place P we have that P |% (|) so the vector space
L(W&sP) is characterized by the equations: 0=(|, 8(s1)) , \0�s1

�s&1. It is clear that

L(W&s1P)=Ker 8(s1&1) |L(W&(s1&1) P)<L(W&(s1&1)P).

Thus L(W&(s&1) P){L(W&sP) if and only if 8(s&1) is linearly inde-
pendent from the forms 8(s1), 0�s1�s&2; therefore,

s # E(P) � _!0 , ..., !s&2 : 8(s&1)= :
s&2

k=0

!k8(k).

Notice that every linear form 8(s) corresponds to a 1_g matrix, namely

8(s) W (, (s)
(0, 0) , , (s)

(1, 0) , ..., , (s)
(t&1, 0) , ..., , (s)

(i, j) , ...) (i, j) # I.

By (6) and (5) we have that

, (s)
i, 0= :

k+l=s

=a (i)
k b (0)

l =a (i)
s ,

so a left upper square block of the matrix of the first t&1 forms is as in
the following table.

(0, 0) (1, 0) } } } (t&1, 0) } } }

s=0 1 0 } } } 0
s=1 V a1 0
b b b } } } 0
s=t&1 V V at&1

1 V
b V V b } } }

Hence the first t&1 forms 8(s) are linearly independent so 1, ..., t � E(P). In
case m+1<n our assertion is proved. Indeed, m # E(;i) and by Lemma 2
we have that m<t+1 so m � E(P) and E(P){E(;i).

Suppose now that n=m+1. In order to prove that E(P){E(;) we have
to calculate a larger part of the semigroup E(P). This calculation is com-
plicated for general n, m. We will use a theorem of Leopoldt concerning
function fields of the ``allgemein Fermatschen Typus.''
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Theorem 5. Let F�k be a function field with a model in A2 (k) given by
an irreducible polynomial Fn (x, y)=0 of degree n�4 without any
singularities at finite points or at infinity. If P is a place such that P |% (x)� ,
( y)� , Diff(F�k( y), Diff(F�k(x)) then l(&P)=1 for &=0, ..., n&2. Moreover
l((n&1) P)=2 if and only if

whenever x~ &%y~ #0 mod P2 then x~ &%y~ #0 mod Pn&1,

where % # k, and x~ =x&a, y~ = y&b, a=x(P), b= y(P).

Proof. This is Satz 4 of Leopoldt's paper ([Le], p. 267) together
with the characterization of the ``allgemein Fermatschen Typus'' function
fields, in terms of their plane models, done in the discussion in ([Le],
pp. 262�263). K

Observe that the function fields Fm+1, m are function fields of this type
since the plane model given by xm+1+ ym+1=0 is not singular at
the finite points or at infinity. The place P |% (x)� , ( y)� , Diff(F�k( y),
Diff(F�k(x)), so Theorem 5 gives us t+1=n&1 # E(P) if and only if

whenever x~ &%y~ #0 mod P2 then x~ &%y~ #0 mod Pt+1. (7)

Set y
*

:=y~ �b, x
*

:=x~ �a where a=x(P), b= y(P) the algebraic points
corresponding to the place P. The defining polynomial xm+1+ ym+1 of
the curve can be transformed into

(1+ y
*

)m&1=%
*

[(1+x
*

)m+1&1], %
*

=&
am+1

bm {0, �.

Therefore, using the binomial theorem we obtain

my
*

&%
*

(m+1) x
*

=& :
m

&=2
_\m

& + y&

*
&%

* \m+1
& + x&

*&+%
*

sn

*
. (8)

The elements x
*

, y
*

are local uniformisers at the place P, so from (8)

y
*

&%
*

m+1
m

x
*

#0 mod P2. (9)

Assume that n�4 and t+1=n&1 # E(P); then using (7) and (9) we have

y
*

&%
*

m+1
m

x
*

#0 mod Pt+1. (10)
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Notice also that from (9) we have y&

*
&%&

*
(m+1�m) x&

*
#0 mod P&; there-

fore using the right hand side of (8) we have the following conditions:

\m
& +

(m+1)&

m& %&

*
&%

* \m+1
& +=0 for &=1, ..., t+1=n&1=m.

(11)

In case m>3(11) for &=2 gives

\m
2 +

(m+1)2

m2 %2

*
&%

* \m+1
2 +=0.

Since p |% m, m+1, ( m+1
2 ){0 hence ( m

2 ){0 as well. This gives us p |% m&1
and so %

*
=m2�(m&1)(m+1). We proceed to the next coefficient &=3.

We have

\m
3 +

(m+1)3

m3 %3

*
&%

* \m+1
3 +=0

from which follows that 1#0 mod p, a contradiction. Therefore t+1=n&1
=m � E(P) so E(P){E(;). We have used that p{2, 3 and that 3<n&1.
So our argument does not work for the curves x4+ y3+1=0,
x3+ y2+1=0 and x2+ y+1=0. We are not interested in the two last
curves which have genera 1 and 0, respectively. Klassen and Schaefer
[K�S], proved that the curve x4+ y3+1=0 has 48 automorphisms.

4. LOCAL STUDY

From now on we will denote by G the group of automorphisms, by F the
Fermat function field Fn, m and by G(;) the decomposition subgroup of G
at the place ;, where ;=;i for some i=1, ..., n. Denote by P` the restric-
tion of the place ; to the rational function field k(x). The decomposition
subgroup is equal to the inertia group G(;)=G0 (;), since the field of
definition k is algebraic closed. We will prove that

+(m) if m |% n

G(;)={C2m if m | n, n&1 not a p-power,

Eq < Cm(q&1) if m | n, n&1=q is a p-power

where Cx denotes a cyclic group of order x, and Eq denotes an elementary
abelian group of order q.
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From the study of the gap structure at the place ; we see that the space
L(m;) is two dimensional and a basis is given by [1, 1�(x&`)]. the group
G(;) leaves the space L(m;) invariant. So _(1�(x&`))=++*(1�(x&`)),
+, * # k. This gives us that every automorphism _ # G(;) leaves the field
k(x) invariant. Denote by G� (P`) the image of the restriction map

Res: {G(;) � G� (P`)
_ [ Resk(x) _

.

Obviously the kernel of the restriction is +(m) IG(;).
A generating radicand of F over k(x) is of the form ylz where (l, m)=1

and z # k(x) ([Ha1] p. 38). For all _ # G(;), _(k(x))=k(x), so _( y) is also
a generating radicand for the extension F�k(x). So _( y)= yl_z_ for an
element z_ in k(x). Let { be a generator of the cyclic group +(m)=
Gal(F�k(x)). Observe that

_&1{_={l_ \_ # G(;). (12)

Denote by G1 (;) the first ramification group of ;. The group G(;)=G0 (;)
can be written as a semidirect product of a cyclic group E :=G0 (;)�G1 (;)
of order prime to p by the p-group G1 (;). denote by ? the projection
G0 (;) � G0 (;)�G1 (;). Take ? in both sides of (12)

?(_&1) } ?({) } ?(_)=?({)l_ \_ # G(;).

Since E is abelian and ord(?({))=ord({)=m we have that l_ #1 mod m so

_{={_.

Moreover, since l_ #1 mod m, all automorphisms _ of F extending the
arbitrary _0 # G� (P`) are of the form

_( y)=%_ } y } z_0
_(x)=_0 (x), (13)

where z_0
# k(x) and %_ ranges over the m th roots of unity. This gives us

that

k(x) % zm
_ =\_( y)

y +
m

=
_(xn+1)

xn+1
.

Conversely, if _0 # PGL(2, k), _0 (P`)=P` and _0 (xn+1)�(xn+1)=zm
_0

is
an m th power for some z_0

# k(x), then the automorphisms _ of F given by

_( y)=%yz_0
, _(x)=_0 (x),

are extending _0 . We have proved the following
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Lemma 6. Let P` be the restriction of the place ; in k(x). An element
_0 # PGL(2, k) such that _0 (P`)=P` is extendible into an automorphism of
F if and only if _(xm+1) differs from xn+1 by an mth power factor zm

only. The extensions of _0 to F are given by (13).

According to Lemma 6 we have to determine those automorphisms _ of
k(x) which leave P` fixed and for which

_(x)n+1=zm } (xn+1) with z # k(x). (14)

It suffices to know that this relation holds up to a constant factor in k(x),
because k is algebraically closed and each element in k is an mth power.
Thus instead of (14) we require the relation

_(x)n+1=c } zm } (xn+1) with c # k, z # k(x). (15)

This is equivalent to the corresponding relation for the principal divisors
of the functions involved. The principal divisor of xn+1 is (denote for
simplicity P`i

=P(x=`i)
)

(xn+1)= :
1�i�n

P`i
&nP� . (16)

Notice that every automorphism _ of k(x) which is extendible to F
permutes the places of k(x) which are ramified in F�k(x) with the same
degree.

The ramified places for F�k(x) are, first, the points P`i
, which have com-

mon ramification degree m. Second, the point P� has ramification degree
m�(n, m).

Lemma 7. Every automorphism _ # G(;) that fixes P� is the identity.

Proof. Let _0=_|k(x) , such that _(P�)=P� . Then from (16) we have
that the principal divisors of the functions _(xn+1), xn+1 are equal; thus
(15) holds with z # k. Moreover since _0 leaves P� fixed we have

_0 (x)=a+bx with a, b # k, b{0.

Consequently,

_(x)n+1=(a+bx)n+1=c } (xn+1).

We expand the left hand side according to the binomial formula. Since p |% n
there is at least one intermediate binomial coefficient ( n

i ){0, where
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0<i<n. Comparing the coefficient of xi on both sides of the above equa-
tion we see that

\n
i + an&ibi=0

which gives a=0, i.e., _(x)=bx. Hence _ leaves not only P� fixed but
also P0 . So _0 fixes three points of k(x) and consequently _=1. K

To study G� (P`) we have to distinguish three cases:

Case (i). 1<(n, m)<m. In this case, P� is the only place of k(x)
which has ramification degree m�(n, m); hence P� is fixed under every
extendible automorphism _0 which fixes P` . So by lemma 7 we have that
G� (P`)=1.

Case (ii). (n, m)=m, i.e., m | n. In this case a nontrivial extendible
automorphism _ of k(x) which fixes P` is given by

_(x)=
`2

x
, (17)

where `n=&1. For, since `2n=1 we have

_(x)n+1=
1
xn+1=

1+xn

xn .

We see that (15) holds with c=1 and z=1�xn�m; note that m | n in
Case (ii). The automorphism given by (17) permutes P� and P0 .

Every other automorphism _ # G� (P`) permutes the primes P`i
because

these are precisely the primes which ramify in F, with ramification degree m.
We put

P'=_(P�)

with ' � [`1 , ..., `n]. We assume that '{� because otherwise P� is fixed
under _ and hence _=1 by Lemma 7. We compute

:
1�i�n

_(P`i
)&n_(P�)= :

1�i�n

P`i
&nP'

=n(P�&P')+ :
1�i�n

P`i
&nP� .
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Here, P�&P' is the principal divisor of the function 1�(x&'). It follows
that (15) holds with z=(1�(x&'))n�m. (Recall that m | n in Case (ii).) On
the other hand, since _(P�)=P' we see that _ is of the form

_(x)=
a+bx
x&'

. (18)

Substituting in (15) and multiplying with (x&')n we obtain

(a+bx)n+(x&')n=c } (xn+1) (19)

as a necessary and sufficient condition for _ to be extendible to F. As
above, let 0<i<n such that ( n

i ){0. Comparing coefficients of xi on both
sides of (19) we see that

an&ibi=&(&')n&i. (20)

If '=0 then a{0 (otherwise _=1) and thus b=0. Since _ leaves P`

fixed, the specialization x [ ` implies _(x) [ ` which means a=`2. Hence
if '=0 we obtain the involution already found in (17).

Now assume that '{0; then a{0 and b{0 according to (20). Suppose
that there exists an i such that both ( n

i ){0 and ( n
i+1){0. Then Eq. (20)

holds simultaneously for i and i+1. Taking quotients we have that
ab&1=&' and so in view of (18), _(x)=b(x&')�(x&')=b, a contra-
diction. Hence, if there should exist a nontrivial automorphism _ # G� (P`),
which is different from the involution (17) there do not exist two successive
intermediate binomial coefficients ( n

i ), ( n
i+1) which are both {0.

Lemma 8. If for all i=1, ..., n&2,

\n
i+{0 O \ n

i+1+=0

and p |% n then n=1+q where q is a p-power.

Proof. Denote by a = � ai pi, b = � bi pi, 0 � a i , bi < p, the p-adic
expansions of two integer numbers a, b. if ai�bi for all i then we write
a�p b. It is known that ( n

i ){0 if and only if i� p n ([Sch], p. 73). Let
n=n0+n1q1+ } } } +nsqs be the p-adic expansion of n, where qi= psi and
0<ni<0. Observe that qi� p n and 1+q1� p n so ( n

qi
){0 and ( n

1+qi
){0.

From the condition of the lemma we have that n&2<qi . Since the charac-
teristic is prime to n, s=1 and n&1=q1 . K
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Using Lemma 8 we deduce that in Case (ii), if n&1 is not a power of the
characteristic p, then G� (P`) is of order 2, containing only the involution given
by (17).

It remains to discuss Case (ii) when n&1=q is a p-power. It is con-
venient to replace the Kummer radicand by another radicand for F�k(x)
which will be easier to handle. Let us put

t :=
`

x&`
; hence x=` }

t+1
t

(21)

and

u := &tn (xn+1). (22)

Since m | n, we have that tn is an mth power and hence u is an admissible
radicand for the Kummer extension F�k(x). Without any restriction of
generality we might assume that `=`1 . The principal divisor of u is

(u)=n } (t)+(xn+1)=n(P�&P`)+ :
1�i�n

P`i
&nP�

= :
2�i�n

P`i
&(n&1) P` .

Now we know in Case (ii) that the P`i
are permuted under _ # G� (P`), and

P` is kept fixed. Hence the principal divisor of u is fixed under _.
By definition of t we have k(x)=k(t), and the pole of t is P` . The

element u has P` as only pole, of order n&1=q. Consequently, u is a poly-
nomial in t, of degree q. It is easy to compute that polynomial explicitly,
using (21) and (22), keeping in mind that n=q+1:

u=&tn \`n (t+1)n

tn +1+=(t+1)n&tn=tq+t+1.

It is convenient to change the variable t so that the form of the above poly-
nomial is simplified. Namely, we put t=a1+b1 t1 with a1 , b1 # k such that
aq

1+a1=&1 and bq
1=&b1 , with b1 {0. Then we put u1=&b&1

1 u and
have

u1=tq
1&t1 .

Now let us change notation: we write t instead of t1 and u instead of u1 .
We have seen that, in Case (ii) with n=q+1 there exists a generator t of
k(x)=k(t) which has P` as its pole, and such that the polynomial u=tq&t
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is a radicand for F�k(t). The principal divisor of u is kept fixed under every
_ # G� (P`).

Now every _ # G� (P`) leaves the pole of t fixed and hence is of the form

_(t)=a+bt,

with a, b # k and b{0. Such an automorphism is in G� (P`) if and only if
_(u)=cu where 0{c # k, which means

_(t)q&_(t)=(a+bt)q&(a+bt)=c } (tq&t),

with c{0 # k. This yields the conditions

aq=a, c=b, bq=b.

Hence, in Case (ii) with n=q+1, the group G� (P`) consists precisely of those
transformations t [ a+bt whose coefficients a, b are contained in the field
Fq of q-elements. This group is isomorphic to the group of matrices

\1
a

0
b+ with a, b # Fq , b{0.

In particular we see that the order of G� (P`) is (q&1)q.

Case (iii). (n, m)=1. In this case the n+1 places P`1
, ..., P`n

, P� are
precisely the places which are ramified in F, and they all have ramification
degree m. Every _ # G� (P`) leaves P` fixed and hence permutes the
P`2

, ..., P`n
, P� .

Let _(P�)=P' . If '=� then from Lemma 7 we see that _=1. Now
suppose _{1 which means that ' # [`2 , ..., `n]. The principal divisor of
xn+1 is mapped under _ onto the divisor

:
1�i�n

_(P`i
)&nP' .

In the above sum the term P' does not appear, whereas one term P�

appears. If we subtract from this the principal divisor of xn+1 then we
obtain

\_(xn+1)
xn+1 +=(n+1)(P�&P'). (23)
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The right hand side is the principal divisor of the function (1�(x&'))n+1.
On the other hand, we know that the right hand side is the divisor of the
mth power of such a function. We obtain

m | n+1

as a necessary condition for the existence of a nontrivial automorphism in
G� (P`).

Equation (23) gives us that

_(x)n=
c(xn+1)&(x&')n+1

(x&')n+1 , where c # k.

The principal divisor of the polynomial f (x) :=c(xn+1)&(x&')n+1,
which is of degree n+1, is

:
1�i�n

Ai+P'&(n+1) P� ,

where Ai , P' are the places, not necessarily different, corresponding to the
roots of f (x). On the other hand the principal divisor of (x&')n+1 is
(n+1)(P'&P�) and this gives us that the principal divisor of _(x)n is

(_(x)n)= :
1�i�n

Ai&nP' .

Therefore the polynomial f (x) has a multiple root of order n. Let \ be this
root; then

f (x)=c(xn+1)&(x&')n+1=c1 } (x&')(x&\)n, (24)

for some c1 # k. We distinguish two cases:

Case (a). \=0. Then (24) becomes

c(xn+1)&(x&')n+1=c1 (x&') xn=c1xn+1&c1'xn. (25)

We extract the left hand side using the binomial formula

c(xn+1)&(x&')n+1=&xn+1+(&(n+1)(&')+c) xn

& :
n&1

i=1
\n+1

i + (&')n+1&ixi+c&(&')n+1.
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By comparing the coefficients of the xn+1 in both sides of (25) we obtain
c1=&1. By comparing the coefficients of xn and the constant term we have
that c='. Furthermore for all i=1, ..., n we have that

\n+1
i +=0,

which in view of the nonvanishing criterion of a binomial coefficient given
in Lemma 8 gives us that n+1=q is a power of the characteristic p. But
this is impossible since m | n+1 and (m, p)=1.

Case (b). \{0. We observe that (x&\)n&1 divides the polynomial

g(x) :=(n+1) f (x)&
df (x)

dx
(x&')=c(xn+n'xn&1+(n+1)).

Moreover we have that ' is a root of g(x), since 'n=&1, so for a constant
c$ we have

c(xn+n'xn&1+(n+1))=c$(x&')(x&\)n&1. (26)

By comparing the coefficients of xn in both sides of (26) we deduce that
c$=c. Comparing the coefficients of x and x2 in both sides of (26) we
obtain

(&\)n&2 (&\&'(n&1))=0 O &\=(n&1) ' (27)

and

(&\)n&3 \&' \n&1
2 +&\(n&1)+=0. (28)

We substitute (27) into (28) to get

(&\)n&3 '
(n&1) n

2
=0,

a contradiction, since from (27) n&1{0 (recall that we have assumed for
the characteristic p{2 and p |% n).

We have found so far all the elements in group G(;). This group is of
order

m if m |% n

|G� (P`)| } |+(m)|={2m if m | n and n&1 is not a p power.

mq(q&1) if m | n and n&1=q is a p power
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Moreover, in the first two cases the order of G(;) is prime to the charac-
teristic of the field p (recall that we have assumed p{2), so G(;) is
isomorphic to a cyclic group of order m (respectively 2m). In last case the
group G(;) is the semidirect product of a cyclic group of order m(q&1) by
a normal elementary abelian group of order q [Se, p. 68].

5. STRUCTURE OF THE GROUP OF AUTOMORPHISMS

Denote by O(;, G) the orbit of the place ; under the action of G. In this
section we will calculate the order of |G| counting the order of O(;, G). We
have determined which places of F cannot be in the orbit of ; (Lemmata
3 and 4); therefore

O(;, G)�[;1 , ;2 , ..., ;n , #1 , #2 , ..., #(n, m)].

Notice that all ;i # O(;, G) for all i=1, ..., n and if #i0
# O(;, G) for some

i0 then #i # O(;, G) for all places #i i=1, ..., (n, m) above P� .

Case (1). Suppose that m | n. The involution _ given by (17) sends a
place #i over P� to some place :j over P0 . This gives us that O(;, G)=
[;1 , ;2 , ..., ;n], for if there was a { # G such that {(;)=#i then {_(;)=:j

which is impossible due to Lemma 3. Therefore the order of G, in this case,
is given by

|G|=|G : G(;)| } |G(;)|=|0(;, G)| } |G(;)|

={2nm
nmq(q&1)

if n&1 is not a power of p
if n&1 is a power of p.

Case (2). Suppose now that m |% n. Then |O(;, G)|=n or n+(n, m).
Suppose that |O(;, G)|=n+(n, m) and let H :=+(n)_+(m). Obviously
the order of the orbit of ; under the action of H is |O(;, H)|=
|H : H(;)|=n. We have proved that |G(;)|=+(m)=|H(;)| so

n+(n, m)
n

=
|G : G(;)|
|H : H(;)|

=
|G|
|H|

# N.

From the left hand side of the above equation we obtain that n | (n, m),
a contradiction since n>m. So |O(;, G)|=n and the group G has order

|G|=|O(;, G)| } |G(;)|=nm.

We will now give a group theoretic description of the group of auto-
morphisms. Suppose first that m |% n. In this case the group G is the direct
product of the groups +(n) and +(m), since |G|=n } m and +(n)_+(m)�G.
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Suppose now that m | n. Observe first that +(m)<Z(G). Indeed, let G1 be
the subgroup of G generated by all products x } y, x # G(;), y # +(n) The
group G1<G has at least |G(;)| } |+(n)|=|G| elements, since G(;) &
+(n)=1. So |G1 |=|G| and obviously G1=G. This gives us the desired
result, because the elements of +(m) are commuting with elements of G(;)
and +(n).

Since +(m) IG every automorphism _ # G can be restricted into an
automorphism of the rational function field k(x)=F+(m). Thus the restric-
tion map given above can be extended to a map

F: {G
_

�
[

F(G)<PGL(2, k)
resk(x) _.

Obviously the kernel of F is ker F=+(m). We distinguish two more cases:

Case (i). n&1 is not a power of p. Then according to the calculation
of the order of G, the order of F(G) is 2n. Notice that the group F(G)
contains the cyclic group +(n) generated by {0 : x [ `2x and the involution
_0 : x [ `2�x. Since _0 � ({0)=+(n) and _0 {0={&1

0 _0 , the group
generated by _0 , {0 is a dihedral group of order 2 } n. This is the order of
the group F(G), so F(G)$Dn and the group G is given as a central
extension of Dn with abelian kernel +(m).

The decomposition group is generated by

_: {
y [

y
xn�m

x [
`2

x

since _ is of order 2m. the group +(n)<G is generated by

{: {y [ y
x [ `2x

and we can check that the group G admits a presentation

(_, {�_2m=1, {n=1, _3{&1={_, _2{={_2).

Observe that if a central extension with abelian kernel splits, i.e., it
corresponds to the trivial cohomology class, then G is the direct product of
the groups involved. We will prove that the extension

1 � +(n) � G � Dn � 1 (29)

splits, i.e., G$+(n)_Dn if and only if m is odd.
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Suppose first that m is odd. We will use the fact that the map

H2 (Dn , +(m))= �
p | 2n

H2 (Dn , +(m))p � �
p | 2n

H2 (Hp , +(m))

a= :
p | 2n

ap [ :
p | 2n

res(Dn � Hp) ap ,

where Hp runs through all p-Sylow subgroups of Dn is injective [Wei,
p. 93]. If p=2 then ( |H2 |, m)=1 so res(Dn � H2) a2=1 by the Zassenhaus
theorem [Hu, p. 126]. On the other hand if Hp is a p-Sylow subgroup for
p{2, then res(Dn � Hp) ap=1 since Hp<+(n) and the subextension

1 � +(m) � G1 � +(n) � 1

splits.
In case m is even the extension which gives G does not split. For this

consider the subgroup generated by the involution _ given by (17) and the
subextension given by the following diagram:

?
www� www�1 w� +(m) G Dn w� 1

1 w� +(m) w� ?&1 ((_) ) w� (_) w� 1

Let a # H2 (Dn , +(m)) be the cohomology class which corresponds to the
extension G. To the subextension ?&1 ((_) ) corresponds the cohomology
class res(Dn � (_) ) a [Wei, p. 213]. But ?&1 ((_) )=G(;) which is a cyclic
group of order 2m. So res(Dn � (_) ) a{1 since a cyclic group of order 2m is
not isomorphic to +(m)_(_) in case 2 | m.

Case (ii). n&1= ps=q, is a power of the characteristic. We claim that
F(G)<PGL(2, q2). We take as generator of the field k(x) the element t
defined above. We have proved that F(G(;))=G� (P`) is a group of
Mo� bius transformations of the form t [ a+bt, a, b # Fq /Fq2 . Elements in
+(n) are defined over Fq2 as well. Indeed, in the change of coordinates x [ t
we have involved `, a1 , b1 which are in Fq2 since

bq
1=&b1 O bq2

1 =b1 (q is odd)

`n=&1 O `q+1=&1 O `q=&
1
`

O `q2
=`

aq
1=&1&a1 O aq2

1 =(&1&a1)q=(&1)q+(&1)q aq
1=a1 ,
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therefore the change of coordinates x [ t is a Mo� bius transformation in
PGL(2, q2). On the other hand F(+(n)) is generated by the automorphism
x [ `2x which is in PGL(2, q2).

The order of F(G) is q(q&1)(q+1). We will prove that the unique sub-
group of PGL(2, q2) of order q(q&1)(q+1) is PGL(2, q). For this we will
use the following characterization of subgroups of projective linear groups
found in [V�M, p. 165].

Theorem 9. The group PGL(2, p f) has only the following subgroups:

1. Elementary abelian p-groups

2. Cyclic groups of order t with t | p f\1.

3. Dihedral groups of order 2t, t | p f\1.

4. Groups isomorphic to A4 , S4 , A5 .

5. Semidirect products of elementary abelian groups of order pr with
cyclic groups of order t, where t | pr&1 and t | p f&1.

6. Groups isomorphic to PSL(2, pr) and PGL(2, pr) where r | f.

We will use this theorem and the fact that |F(G)|=q(q2&1), where
q= ps is a power of the characteristic, to describe the group structure of
F(G). First F(G) is not a p-group, so it is not an elementary abelian
group. Suppose that F(G) is isomorphic to a cyclic group of order t,
t | p f\1. Then |F(G)|= ps ( p2s&1) divides p f\1, a contradiction, since
p |% 1. For the same reason F(G) is not a dihedral group. The three groups
A4 , S4 , A5 have order less than or equal to 60. On the other hand
|F(G)|=q(q2&1)�120 since p�5. So F(G)$3 A4 , S4 , A5 . Suppose now
that F(G) is the semidirect product of an elementary abelian group of
order pr with a cyclic group of order t= ps&r ( p2s&1). The number t must
divide both pr&1 and p f&1, which is again a contradiction. Finally if
F(G)$PSL(2, pr) then r | f =2s and

|PSL(2, r)|=
( p2r&1) pr

2
=( p2s&1) ps,

another contradiction. The only remaining possibility for Im(F)$
PGL(2, q).

The group G is a central extension of PGL(2, q) with kernel +(m) given
by the exact sequence

1 � +(m) � G w�? PGL(2, q) � 1. (30)
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Using the universal coefficient theorem, the values of the Schur multiplier
H2 (PGL(2, q), Z) and the abelianization of PGL(2, q) [Br, p. 26] we can
compute

H2 (PGL(2, q), +(m))={0
Z2 �Z2

if m#1 mod 2
if m#0 mod 2.

This gives us that for m odd the group G is isomorphic to

G$+(m)_PGL(2, q).

For m even the situation is more complicated. To describe the structure of
G it is enough to determine the cohomology class a # H2 (PGL(2, q), +(m))
which corresponds to the central extension (30). The restriction map

Z2 �Z2 =H2 (PGL(2, q), +(m))

=H2 (PGL(2, q), +(m)) (2) � H 2 (H2 , +(m)),

to anyone 2-Sylow subgroup H2 of PGL(2, q), is injective [Wei, p. 93].
Therefore the cohomology class : # H2 (PGL(2, q), +(m)) is determined by
the cohomology class ; :=resPGL(2, q) � H2

(:) of the corresponding sub-
extension

1 � +(m) � ?&1 (H2) � H2 � 1. (31)

To calculate the cohomology class ; # H2 (H2 , +(m)) we will describe first
the structure of the group ?&1 (H2). From Theorem 9, since the charac-
teristic p{2, we have that H2 is isomorphic to a dihedral group Dk , k=2 f.
Observe that (q&1, q+1)=2 since 2 |m| q+1. So k=2 f, for f>1 divides
either q&1 or q+1 (recall that the order of PGL(2, q)=q(q&1)(q+1)).
Moreover, it is known that in the extension k(x)�k(x)PGL(2, q) only two
places p1 , p2 of k(x)PGL(2, q) ramify, with corresponding ramification indices
e1=q(q&1) and e2=q+1. The places of k(x) over p1 are P`1

, ..., P`n
and

the set of places of k(x) over p2 are in the orbit O(PGL(2, q), P(x=0)) of
P(x=0) under the action of PGL(2, q).

Suppose that the group H2 is given in terms of generators and relations
as

H2=(\, _�\2 f
=_2=(\_)2=1).

The element \ # H2 of order 2 f fixes a place over p1 or p2 . We distinguish
the following two cases: (notice that if f =1, the two cases coincide)
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Case (a). 2 f|q+1=n. Then \ fixes two places of k(x), which belong to
the O(PGL(2, q), P(x=0)). We can choose the 2-Sylow subgroup H2 to be
a subgroup of the group Dn=(_0 , {0) defined above. Therefore ?&1 (H2)
admits a presentation

(R, S�R2 f
=S 2m=1, S3R&1=RS, S2R=RS2).

Let , be a section of H2 in ?&1 (H2), defined by ,(\i_ j)=RiS j . The repre-
sentative cocycle, which corresponds to the section ,, of the cohomology
class ; is given by

b={H2_H2 � +(m)
(x, y) [ ,(x) ,( y) ,(xy)&1.

For x=\i_ j, y=\ i $_ j $, arbitrary elements of H2 we calculate

b(x, y)={0
S 2i $

if j=0
if j{0

(recall that +(m)=(S2) ).

Case (b). 2 f | q&1. In this case \ fixes two places among the P`i
. The

group ?&1 ((\) ) is a subgroup of the decomposition group G(;i) for some
i. Since (ord(?&1 ((\) )), p)=1 we have that ?&1 ((\) ) is cyclic so we can
choose a preimage R # ?&1 (\) of order 2 fm in ?&1 (H2). Observe that
?&1 ((_) is abelian and isomorphic to +(m)_(_), since _ fixes a place
k(x) which does not ramify in the extension F�k(x). Therefore we can
choose S # ?&1 (_), such that S 2=1. Since [?&1 (H2) : (R)]=2 the group
(R) is normal in ?&1 (H2). This gives us the relation SRS &1=S r, for
some r. The group ?&1 (H2) is given by

?&1 (H2)=(R, S�R2 fm=S 2=1, SRS &1=S r) .

To determine r we notice first that R2 f
# +(m); hence

R2 f
=SR2 fS &1=Rr2 f

, so R#1 mod m.

Moreover

SRS&1R=Rr+1 # +(m), so r#&1 mod 2 f.

The above system, since (2 f, m)=2, has two solutions modulo 2 fm, r0 and
r1=r0+2 f &1m.

The fixed places of every element in H2 of the form _\i, are in

O(PGL(2, q), P(x=0)). So _\i is a conjugate with the involution x [
{o

n�2

`nx in
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+(n). We have that the groups ?&1 ((\_ i) )$((_) )$+(m)_Z2 . Since,
(m, 2)=2, every preimage of every element in H2 of the form \_i has order
t such that (t, 2)=2. On the other hand (SR)2=S r+1 has order

2 fm
(r+1, m2 f)

=
m

\r+1
2 f , m+

which must be odd. So ((r+1)�2 f, m)=2 which gives us that 2 f +1 divides
r+1. 2 f +1 cannot divide both solutions r0 and r1 . So r is uniquely deter-
mined mod 2 f m as the solution of the system

r#1 mod m, r#&1 mod 2 f +1.

Let , be the section of H2 in ?&1 (H2) defined in part (a). In this case the
representative cocycle is given by

b(\i_ j, \ i $_ j $)={1
Ri $(r+1)

if j=0
if j=1

(recall that 2 f | r+1 and +(m)=(R2 f) ).
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