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Let K be an algebraically closed field of characteristic p ≥ 0. A generalized Fermat 
curve of type (k, n), where k, n ≥ 2 are integers (for p �= 0 we also assume that k is 
relatively prime to p), is a non-singular irreducible projective algebraic curve Fk,n

defined over K admitting a group of automorphisms H ∼= Zn
k so that Fk,n/H is the 

projective line with exactly (n + 1) cone points, each one of order k. Such a group 
H is called a generalized Fermat group of type (k, n). If (n − 1)(k − 1) > 2, then 
Fk,n has genus gn,k > 1 and it is known to be non-hyperelliptic. In this paper, we 
prove that every generalized Fermat curve of type (k, n) has a unique generalized 
Fermat group of type (k, n) if (k − 1)(n − 1) > 2 (for p > 0 we also assume that 
k − 1 is not a power of p).
Generalized Fermat curves of type (k, n) can be described as a suitable fiber product 
of (n − 1) classical Fermat curves of degree k. We prove that, for (k− 1)(n − 1) > 2
(for p > 0 we also assume that k − 1 is not a power of p), each automorphism of 
such a fiber product curve can be extended to an automorphism of the ambient 
projective space. In the case that p > 0 and k − 1 is a power of p, we use tools 
from the theory of complete projective intersections in order to prove that, for k
and n + 1 relatively prime, every automorphism of the fiber product curve can also 
be extended to an automorphism of the ambient projective space.
In this article we also prove that the set of fixed points of the non-trivial elements 
of the generalized Fermat group coincide with the hyper-osculating points of the 
fiber product model under the assumption that the characteristic p is either zero or 
p > kn−1.
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1. Introduction

In this paper, K will denote an algebraically closed field of characteristic p ≥ 0. A generalized Fermat 
curve of type (k, n), where k, n ≥ 2 are integers (and for p > 0 we also assume that k is relatively prime 
to p), is a non-singular irreducible projective algebraic curve Fk,n defined over K admitting a group of 
automorphisms H ∼= Zn

k so that Fk,n/H is the projective line with exactly (n + 1) cone points, each one of 
order k. Such a group H is called a generalized Fermat group of type (k, n). If (n − 1)(k− 1) > 2, then Fk,n

has genus gn,k > 1 (see Section 2) and it is known to be non-hyperelliptic [9].
The generalized Fermat curves are objects with a very interesting geometry. These curves provide us 

with a considerable amount of examples, and their study could eventually help us to generalize certain 
important results. More precisely one of our future objectives is to generalize the work of Y. Ihara [13] on 
Braid representations of the absolute Galois groups. The absolute Galois group can be represented inside 
the automorphisms of the profinite free group F̂r = πet

1 (D−{a1, . . . , ar}) and can be interpreted as a version 
of “mapping class group” acting on the disc minus some rational points. By Belyi’s theorem Ihara had only 
to consider covers of the projective line ramified above {0, 1, ∞} and the Fermat curve and its arithmetic 
emerged naturally as the curve ramified above three points of the projective line with cyclic ramification 
groups of the same order. If one tries to generalize to the more general case of n + 1-ramified covers, in 
order to treat braids and elements of the Galois group in a similar way, then the generalized Fermat curves 
and their arithmetic emerged in a natural way. This will be the object of another article.

We would also like to discuss a second interesting aspect of these curves. It is known that the geometry 
of compact Riemann Surfaces can be described via projective algebraic curves, Fuchsian group, Schottky 
groups, Abelian varieties, etc. However, given one of these descriptions, explicitly obtaining the others is 
a difficult problem, in fact in general it is a problem that has not been solved. The majority of examples 
of Riemann Surfaces where we explicitly know the uniformizing Fuchsian group, and the equations of 
an algebraic curve which represents them, are rigid examples, in other words they are not families. The 
generalized Fermat Curves of the type (n, k) over K = C form a family of algebraic curves of complex 
dimensions n − 2 in which we explicitly know, for each member of the family, a representation as an 
algebraic curve and the uniformizing Fuchsian group (see [7]).

To finish this paragraph, in the case of arbitrary characteristics the generalized Fermat curves can be 
studied as Kummer extensions of the rational function field.

Let us also mention that the term “generalized Fermat curves” has been used for other completely different 
curves for example for the Diophantine equations of the form axk + bxk + czk = 0 [8,4] and for quotients of 
the Fermat curve, in particular for curves of the form xn + ym = 1 [25].

We study the full group of automorphisms of generalized Fermat curves and the uniqueness of generalized 
Fermat groups. Our main result is Theorem 3 which states the uniqueness of generalized Fermat groups of 
type (k, n) if (k − 1)(n − 1) > 2 (for p > 0 we also assume that k − 1 is not a power of p).

Studying algebraic curves over fields of positive characteristic is related to several problems for curves 
over finite fields, especially for Fermat curves [6,28]. In particular the cardinality of the set of rational points 
over a finite field, the search for maximal curves with respect to the Hasse–Weil bound and the investigation 
of zeta functions are current research topics. We believe that Generalized Fermat curves deserve a study of 
their rational points, however this study is outside of the objectives and techniques developed in our article.

Also in the case of curves defined over finite field, when k − 1 is not a power of the characteristic, 
the automorphism group is linear, i.e. a subgroup of PGLn+1(F̄p). But this condition also implies that 
H is a normal subgroup of the whole automorphism group. Therefore we can assume that the group of 
automorphisms is a subgroup of PGLn+1(Fpm), provided that m is big enough to contain both k-th roots 
of unity, and the quotient group Aut(Fn,k)/H can be contained in PGL2(Fpm).

A generalized Fermat curve of type (k, n) can be seen as a complete intersection in a projective space 
defined by the set of equations given in eq. (2) in Section 2. Recall that a closed subscheme Y of Ps is called a 
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(strict) complete intersection, if the homogeneous ideal in K[x1, . . . , xn+1] can be generated by codim(Y, Ps)
elements. By looking at the defining equations, we may see the generalized Fermat curves as a suitable fiber 
product of (n − 1) classical Fermat curves of degree k. We prove that in such algebraic model the full group 
of automorphism is a subgroup of the linear group under the assumptions that (n − 1)(k − 1) > 2 (if p > 0
we also assume that k − 1 is not a power of p).

In the case that p > 0 and k−1 is a power of p, then we may obtain a similar result under the assumption 
that n + 1 is relatively prime to k (Theorem 9). The different behavior in the case k − 1 = q = ph is an 
expected phenomenon, seen also in the case of the Fermat curves xq+1

1 + xq+1
2 + xq+1

3 = 0, where q = ph, 
which have PGU3(Fq2) as automorphism group, see [17]. Essentially this happens since raising to a p-power 
is linear and the Fermat curve in this case behaves like a quadratic form.

Our strategy, in the positive characteristic case, is the following. By a degree argument we show that the 
group of linear automorphisms is normal in the whole automorphism group. The group of linear automor-
phisms is studied by finding all linear transformations which leave the defining ideal of the curve invariant. 
For higher dimensional varieties there is an argument proving that every automorphism is linear, based on 
the fact that the Picard group is free. This argument can not be used in the case of curves, since the Picard 
groups of curves are known to have torsion. Nevertheless we can use a derivation argument in order to settle 
some cases.

This paper is organized as follows. In Section 2 we describe a fiber product of generalized Fermat curves 
and introduce the main results of the paper. The most important is Theorem 3 which states the uniqueness 
of the generalized Fermat groups of type (k, n), when (k−1)(n −1) > 2 (and for p > 0 the extra assumption 
that k − 1 is not a power of p). In the fiber product model, under the same hypothesis, we obtain that the 
full group of automorphisms is linear. The proof of the above is provided in Section 5.

In Section 3 we restrict our study to zero characteristic or to positive characteristic p > kn−1 and prove 
that the set of fixed points of the non-trivial elements of the generalized Fermat group in the fiber product 
model coincide with the set of hyper-osculating points of the fiber product model.

In Section 6 we provide the proof of Theorem 9, concerning the linearity of the full group of automorphisms 
in the case when k − 1 is a power of p > 0 and k is relatively prime to p, under the extra condition that k
and n + 1 are also relatively prime.

2. Main results

We use the notation gcd(a, b) to denote the greatest common divisor between the positive integers a
and b. Let K be an algebraically closed field of characteristic p ≥ 0, let n, k ≥ 2 be integers (if p > 0, then 
we also assume that gcd(k, p) = 1).

A pair (Fk,n, H) is called a generalized Fermat pair of the type (k, n) if Fk,n is a generalized Fermat 
curve of type (k, n), defined over K, and H ∼= Zn

k is a generalized Fermat group of type (k, n) of Fk,n. The 
genus of Fk,n is

g(k,n) = 1 + kn−1

2 ((n− 1)(k − 1) − 2). (1)

In particular, g(k,n) > 1 if and only if (k − 1)(n − 1) > 2; in this case the generalized Fermat curve is 
non-hyperelliptic (see Remark 38). If K = C, then Fk,n defines a closed Riemann surface. Riemann surfaces 
of this kind were studied in [7].

Two generalized Fermat pairs of same type, say (Fk,n, H) and (F̂k,n, Ĥ), are called equivalent if there is 
an isomorphism φ : Fk,n → F̂k,n so that φHφ−1 = Ĥ.
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2.1. A fiber product description

Let us consider a generalized Fermat pair (Fk,n, H). Let us consider a branched regular covering π :
Fk,n → P1, whose deck group is H. By composing by a suitable Möbius transformation (that is, an element 
of PSL2(K)) at the left of π, we may assume that the branch values of π are given by the points

∞, 0, 1, λ1, . . . , λn−2,

where λi ∈ K − {0, 1} are pairwise different.
Let us consider the non-singular complex projective algebraic curve

Ck(λ1, . . . , λn−2) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xk

0 + xk
1 + xk

2 = 0
λ1x

k
0 + xk

1 + xk
3 = 0
...

...
...

λn−2x
k
0 + xk

1 + xk
n = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⊂ Pn. (2)

Remark 1 (Ck(λ1, . . . , λn−2) as a fiber product of classical Fermat curves). Set λ0 = 1 and, for each 
j ∈ {0, 1, . . . , n − 2}, let Cj be the classical Fermat curve defined by λjx

k
1 + xk

2 + xk
3+j = 0. Let us consider 

the rational maps πj : Cj → P1 = K ∪ {∞} defined by πj([x1 : x2 : x3+j ]) = −(x2/x1)k. The branch 
values of πj are ∞, 0 and λj . If we consider the fiber product of all these curves, with the given maps, we 
obtain a reducible projective algebraic curve with kn−2 irreducible components. All of these components 
are isomorphic to Ck(λ1, . . . , λn−2).

Let H0 be the group generated by the linear transformations ϕ0, . . . , ϕn, where

ϕj([x0 : · · · : xj : · · · : xn]) := [x0 : · · · : wkxj : · · · : xn],

where wk is a primitive k-th root of unity. In [7] the following facts were proved:

(1) H0 ∼= Zn
k .

(2) ϕ0 ◦ ϕ1 ◦ · · · ◦ ϕn = 1.
(3) H0 < Aut(Ck(λ1, . . . , λn−2)).
(4) The set Fix(ϕj) of fixed points of ϕj in Ck(λ1, . . . , λn−2) is given by the intersection

Fix(ϕj) := {xj = 0} ∩ Ck(λ1, . . . , λn−2),

which is of cardinality kn−1. Set F (H0) := ∪n
j=0Fix(ϕj).

(5) The map

π0 : Ck(λ1, . . . , λn−2) → P1 : [x0 : · · · : xj : · · · : xn] �→ −
(
x1

x2

)k

(3)

is a regular branched cover with deck group H0 and whose branch values are

∞, 0, 1, λ1, . . . , λn−2,

each one of order k. In other words, the pair (Ck(λ1, . . . , λn−2), H0) is a generalized Fermat pair of type 
(k, n).
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Theorem 2. The generalized Fermat pairs (Fk,n, H) and (Ck(λ1, . . . , λn−2), H0) are equivalent. Moreover, 
the only non-trivial elements of H0 acting with fixed points are the non-trivial powers of the generators 
ϕ0, . . . , ϕn.

Proof. This result was obtained, for K = C in [7].
It can be seen that a generalized Fermat curve Fk,n is in fact a fiber product of n − 1 classical Fermat 

curves. In fact, the n − 1 triples

{∞, 0, 1}, {∞, 0, λ1}, . . . , {∞, 0, λn−2}

produce, respectively, the Fermat curves

C0 : xk
1 + xk

2 + xk
3 = 0, C1 : λ1x

k
1 + xk

2 + xk
4 = 0, . . . , Cn−2 : λn−2x

k
1 + xk

2 + xk
n = 0.

If we set λ0 = 1, then on Cj we consider the map πj : Cj → P1 defined by π([x1 : x2 : x3+j ]) = −(x2/x1)k. 
The branch values of πj are ∞, 0, λj .

If we consider the fiber product of the above curves, using the above maps, we obtain a reducible al-
gebraic curve admitting a group (Z2

k)n−1 as a group of automorphisms and kn−2 irreducible components. 
By Remark 1, all its irreducible components are pairwise isomorphic; they are generalized Fermat curves 
of type (k, n), and each one is invariant by a subgroup isomorphic to Zn

k . Let Ĉ be one of these irreducible 
components and let Ĥ be its stabilizer in the above group. Then the quotient Ĉ/Ĥ = Fk,n/H. Now, the uni-
versality property of the fiber product ensures that (Fk,n, H) and (Ĉ, Ĥ) are isomorphic. By the construction 
of the fiber product, it can be seen that in fact (Ĉ, Ĥ) and (Ck(λ1, . . . , λn−2), H0) are isomorphic. �
2.2. Automorphisms of generalized Fermat curves

Let us consider a generalized Fermat pair (Fk,n, H). By Theorem 2 we may assume (and this will be from 
now on) that

(Fk,n, H) = (Ck(λ1, . . . , λn−2), H0).

If n = 2, then Fk,2 is an ordinary Fermat curve of degree k and its automorphism group was studied 
by P. Tzermias [26] for p = 0 and by H. Leopoldt [17] for p > 0. These results state that H0 is the unique 
generalized Fermat group of type (k, 2) if k ≥ 4 (in the case k < 4 it is unique up to conjugation).

If n ≥ 3, then in [7, Cor. 9] it was proved that, for K = C, every automorphism which normalizes 
H0 is linear i.e., the normalizer of H0 is a subgroup of PGLn+1(C). The arguments are still valid for any 
characteristic.

Again, assuming K = C, the following uniqueness results of the generalized Fermat groups are known. In 
the case that k = 2 (these are also called generalized Humbert curves) it was proved in [1] that for n = 4, 5
the generalized Fermat group of type (k, n) is unique. In [5] Y. Fuertes, G. González-Diez, the first and 
third author proved that for k ≥ 3 and n = 3 the generalized Fermat group of type (k, n) is also unique. In 
the same paper it was conjectured that the uniqueness holds for (k− 1)(n − 1) > 2 (in particular, that it is 
normal in the whole automorphism group). Here we solve positively such a conjecture.

Theorem 3. Let k, n ≥ 2 be integers so that (k − 1)(n − 1) > 2. If p > 0, then we also assume that k − 1
is not a power of p and that gcd(p, k) = 1. Then H0 is the only generalized Fermat group of type (k, n) of 
Fk.n. Moreover, Aut(Fk,n) is linear and it consists of matrices such that only an element in each row and 
column is non-zero.
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Remark 4. If k − 1 is a power of p, the previous theorem is, in general, false. For example, if n = 2 and 
k = 1 + ph, p > 0, the group H0 is a normal subgroup of Aut(Fk,2) if only if h = 1 and p = 2. Indeed, for 
all p, h we have Aut(Fk,2) = PGU3(Fp2h). Let us suppose that (h, p) �= (1, 2), then PGU3(Fp2h) is a simple 
group (see Theorem 11.26 of [12]). This implies that H0 is a non-normal subgroup of Aut(Fk,2). In the case 
of (h, p) = (1, 2) the group PGU3(F4) is a group of order 72 with a unique 3-subgroup of Sylow. Which 
implies that H0 is a normal subgroup of Aut(Fk,2).

Corollary 5. Every generalized Fermat curve of type (k, n) has a unique generalized Fermat group of type 
(k, n) if (k − 1)(n − 1) > 2 and, for p > 0, k − 1 is not a power of p and gcd(p, k) = 1.

Corollary 6. Let k > 2 and, for p > 0, let us assume that gcd(p, k) = 1 and that k − 1 is not a power of p. 
Then H0 is a normal subgroup of Aut(Fk,n).

Remark 7. If (k − 1)(n − 1) ≤ 2, then it is known that Aut(Fk,n) < PGLn+1(K). Let us now assume that 
(k− 1)(n − 1) > 2 and, for p > 0, that k− 1 is not a power of p. Theorem 3 asserts that Aut(Fk,n) coincides 
with the normalizer N(H0) of H0, so by the results in [7, Cor. 9] we obtain Aut(Fk,n) < PGLn+1(K). In 
the same paper it is mentioned how to compute Aut(Fk,n). This is done observing the short exact sequence:

1 → H0 → Aut(Fk,n) → G0 → 1,

where G0 is the subgroup of PGL2(K) = Aut(P1) which leaves invariant the set of branch points 
{0, 1, ∞, λ1, . . . , λn−2}. In particular, |Aut(Fk,n)| = |G0|kn.

In the case that K = C, the above uniqueness results provides the following “kind of Torelli’s” result.

Corollary 8. Let Γ1, Γ2 < PSL2(R) be Fuchsian groups acting on the upper-half plane H2 = {z ∈ C : Im(z)
> 0} so that H2/Γj has signature (0; k, n+1. . . , k). Let Γ′

j be the commutator subgroup of Γj. If Γ′
1 = Γ′

2, then 
Γ1 = Γ2.

Theorem 3 states that if (k−1)(n −1) > 2 (and k−1 not a power of p in the case p > 0), then Aut(Fk,n)
is a linear group. The following states a similar result for the case that p > 0 and k−1 is a power of p under 
an extra condition.

Theorem 9. Let p > 0, gcd(p, k) = 1 and assume that k − 1 is a power of p. If gcd(k, n + 1) = 1, then 
Aut(Fk,n) is a subgroup of PGLn+1(K) and it consists of elements A = (aij) such that

AtΣiA
q =

n−2∑
μ=0

bi,μΣμ,

for a (n − 1) × (n − 1) matrix (bi,μ), where Σi are certain (n + 1) × (n + 1) matrices, defined in eq. (17).

2.3. The group of automorphisms of the generalized Fermat curves, and the Hurwitz bound

It is natural to ask how big the group of automorphisms Aut(Fk,n) can be, and how far its order is from 
the Hurwitz bound in the case K = C.

For the positive characteristic case, the automorphism group of generalized Fermat curves can be quite 
large with respect to its genus when k − 1 is a power of the characteristic. For example, the Hermitian 
function fields (k = ph + 1 and n = 2) are known to have extremely large automorphism with respect to 
their genus [19,22]. On the other hand, if k− 1 is not a power of the characteristic, then we will prove that 
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H is a normal subgroup of Aut(Fk,n); so any wild automorphism appears within the quotient and is an 
element in PGL2(K). Such an automorphism is weakly ramified, i.e. all higher ramification groups G2(P )
are trivial at all ramified primes P , and the automorphism group is bounded above by 16g4

(k,n), see [19] or 
[22].

In this section, in the case that K is of characteristic zero, we will give a bound for the order of Aut(Fk,n)
in terms of k and n. As we shall see, this bound is, in general, well below the Hurwitz bound.

In virtue of Remark 7, we obtain that |Aut(Fk,n)| = |G0|kn, where G0 is the subgroup of PGL2(K) =
Aut(P1) keeping invariant the set of branch points {0, 1, ∞, λ1, . . . , λn−2}.

It is well known that a finite subgroup of PGL2(K) is isomorphic to some of the following groups: the 
cyclic group Cm of order m ≥ 0, the dihedral group Dm of order 2m ≥ 0, the tetrahedral group Td, the 
hexahedral group Hh, and the icosahedral group Lh. Recall that |Td| = 12, |Hh| = 24 and |Lh| = 60.

Let us observe that for any n we can choose a set of points {0, 1, ∞, λ1, . . . , λn−2} so that there exists a 
dihedral group Dn+1 which leaves this set invariant. In particular, for all n ≥ 2 there exists a generalized 
Fermat curve with a group of automorphisms of order 2(n +1)kn. With the above information the following 
lemma is deduced.

Lemma 10. For n ≥ 29 we have that |Aut(Fk,n)| ≤ 2(n + 1)kn. Even more, the bound is attained.

Proof. For all n ≥ 2 we have that there exists a generalized Fermat curve such that the group G0 is 
isomorphic to Dn+1. Observe that from n ≥ 29 we have that |Dn+1| ≥ 60. Which finishes the demonstration, 
because the order of the symmetry groups of platonic solids is less than or equal to 60. �

By the previous lemma we only need to find a bound for the order of the group Aut(Fk,n) in the case 
n < 29.

Let G be a finite subgroup of PGL2(K). For each point P ∈ P1 we have associated its G-orbit whose 
size is equal to |G|/|G(P )|, where G(P ) is the G-stabilizer of P . If we can find points P1, . . . , Pr, whose 
G-orbits are pairwise disjoint and n + 1 =

∑r
j=1 |G|/|G(Pj)|, then there is a generalized Fermat curve of 

type (k, n) with G < G0 (in this case, if O denotes the union of all these orbits, then G0 will be its stabilizer 
in PGL2(K)).

For example the action of Td on P1 has 2 orbits of size 4, an orbit of size 6, and all other orbits 
of size 12. Then, for n < 29 there exists a generalized Fermat curve such that G0 ∼= Td if and only if 
n = 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27. But what we want to find is the group G0 of the highest order 
possible. As for n ≥ 5 the order of the group Dn+1 is greater than or equal to 12, then only for n = 3 there 
exists a generalized Fermat curve with G0 = Td, and that does not satisfy the bound of the previous lemma. 
Using this idea we can prove the following result.

Theorem 11. For all n, k, such that (n − 1)(k − 1) > 2, we have that

|Aut(Fk,n)| ≤ ρ(n)kn,

where ρ(n) = 2(n + 1) for all n ≥ 2 with the exception of the following list

ρ(n) = 12 n = 3
ρ(n) = 24 n = 5, 7
ρ(n) = 60 n = 11, 19

Furthermore, the bound is attained for all n.
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Given a curve X of genus g, the Hurwitz bound establishes that

|Aut(X)| ≤ 84(g − 1).

As the genus of Fk,n is

g(k,n) := kn−1((n− 1)(k − 1) − 2) + 2
2 ,

we have that

84(g(n,k) − 1) = 42kn−1((n− 1)(k − 1) − 2),

so we may observe that the upper bound obtained in the previous theorem is smaller than the Hurwitz 
bound.

In positive characteristic there is a similar classification of finite groups acting on P1, given in [27, th. 1]. 
The new groups which appear are elementary abelian groups E ∼= (Z/pZ)μ μ ∈ N, semidirect products of an 
elementary Abelian group times a cyclic group E � C, PSL2(Fpm), PGL2(Fpm), and also the groups which 
already appeared in characteristic 0 can appear with different ramification types, when the characteristic is 
2 or 3. The method of proof used in characteristic 0 can not be used here, since the size of all the dihedral 
groups cannot control the size of the finite projective linear subgroups.

If we consider the action of G0 on the set of the n + 1 branch points, then this set is decomposed as a 
disjoint union of t orbits of length |G0| and r orbits of smaller length; more precisely,

n + 1 = t · |G0| +
r∑

ν=1

|G0|
|G0(Pν)|

, (4)

where Pν denote a maximal collection of points which are non-equivalent under the action of G0 with 
non-trivial stabilizer.

Using the genus formula for Fk,n, we compute

|Aut(Fn,k)|
g(k,n) − 1 = 2|G0| · k

k(n− 1) − (n + 1) ≤ 2|G0| · k
(k − 1)(n + 1) ≤ 4|G0|

n + 1 . (5)

If t in eq. (4) is not zero, then |G0| ≤ n + 1 and this gives us the bound

|Aut(Fn,k)|
g(k,n) − 1 ≤ 4,

i.e. a linear bound in the genus. Since we are in case of generalized Fermat curves n + 1 ≥ 4, groups which 
have only a few short orbits, which also have small size, when acting on P1, should also have t > 0. For 
example this approach allows us to handle the E case, since by [27, th. 1] elementary abelian groups have 
orbits of size either 1 or |E | and moreover there is only one orbit of size 1. Since n + 1 > 1, we should have 
t > 1.

In positive characteristic, there are known examples of curves for which the order of their groups of 
automorphisms are not bounded linearly by the genus. Here, the ramification is wild. Bounds in higher 
powers of the genus are expected, see [19]. We consider the following quotient:

|Aut(Fn,k)|
�
≤ 2|G0|

�

kn

(n−1)� �
≤ 2�+1|G0|

�
· kn(1−�).
(g(k,n) − 1) (n + 1) k · (k − 1) (n + 1)
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We compute the derivative

∂nk
(1−�)n(1 + n)−� = −(n + 1)−�−1

(
kn(1−�)

)
((�− 1)(n + 1) log(k) + �),

which is negative for � > 1, therefore, for fixed k, � > 1, and |G0|, the maximal value for k(1−�)n(1 + n)−�

is attained at the minimal possible value for n + 1, which is the minimal orbit size.
According to [27, th. 1] the sizes of orbits are as follows:

Group Orbits
Elementary Abelian group E 1, |E |

E � C 1, |E |, |E ||C|
PSL2(Fq), q = pm q + 1, q(q − 1), |PSL2(Fq)|
PGL2(Fq), q = pm q + 1, q(q − 1), |PGL2(Fq)|

We have already considered the E case. For the case of the projective linear groups the bound is of the 
form (after setting n + 1 = q + 1):

|Aut(Fn,k)| ≤ (g(k,n) − 1)�2�+1(q − 1)q(q + 1)1−�kq(1−�), (6)

while for the case of a semidirect product E �C, the minimal non-trivial orbit size is q = |E | which gives a 
similar bound

|Aut(Fn,k)| ≤ (g(k,n) − 1)�2�+1|C|q1−�k(q−1)(1−�). (7)

The quantities on the right hand side of equations (6), (7) are clearly bounded (keep in mind that in the 
case E �C, the order of cyclic part divides q−1 [27, th. 5 (7)]) by some constant if � > 1. We have obtained 
the following:

Theorem 12. If k is an algebraically closed field of characteristic p ≥ 0, such that k − 1 is not a power of 
the characteristic, then for every ε > 0

|Aut(Fn,k)| ≤ c · (g(k,n) − 1)1+ε,

for some constant c ∈ R depending on ε, q, k.

Proof. The condition k−1 is not a power of the characteristic implies that H�Aut(Fn,k), so Aut(Fn,k)/H ⊂
PGL2(K) and the result follows by eq. (7). �
3. Hyper-osculating points of Ck(λ1, . . . , λn−2)

In this section we demonstrate, in characteristic zero or in characteristic p > kn−1, that the set F (H0)
of fixed points of the generalized Fermat group H0 coincides with the set of hyper-osculating points of the 
curve Fk,n = Ck(λ1, . . . , λn−2).

We begin by explaining the theory of hyper-osculating points of curves over fields of characteristic 0
following essentially [11]. In positive characteristic a variety of new, very interesting phenomena appear. 
Also all definitions need appropriate modification in order to work. For the positive characteristic case we 
will follow the Laksov approach [15,16], since his theory was successful in giving a version of the generalized 
Plücker formulas.

Essentially the results of Laksov, for the case of generalized Fermat curves, show that if we assume that 
the characteristic p > kn−1, then we have exactly the same behavior as in characteristic 0.
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For a curve C (non-singular, projective) defined over a field K we consider the function field K(C)
which plays the role of the field of meromorphic functions. The points of the curve can be seen as places 
(equivalence classes of valuations) and a function f in K(C) is called holomorphic at P if vP (f) ≥ 0, where 
vP (f) is the valuation of f at P . Holomorphic functions admit Taylor expansions at the completions of the 
valuation rings. For the general theory of functions fields over arbitrary fields we refer to [23,10].

3.1. Preliminaries on hyper-osculating points of curves

Let C be a projective smooth curve of the projective space Pn, f0 : C → Pn the natural embedding 
defined by the inclusion C ⊂ Pn, and the divisor D be the inverse image of a hyperplane Π of Pn.

Let us consider an s-plane Πs ⊂ Pn, 1 ≤ s ≤ n − 1, and let us define, without imposing restrictions on 
the characteristic of K, the multiplicity of Πs in P ∈ C as

multP (Πs ∩ C) := Order of contact of Πs and C in P.

It is known that there exists a unique s-plane, denoted by Π(s, P ), such that

multP (Π(s, P ) ∩ C) ≥ s + 1.

Now if we suppose that the characteristic of K is p > degD or zero it can be assured that there exists 
at most a finite number of points P ∈ C such that

multP (Π(s, P ) ∩ C) > s + 1

(see [15], [21] or Appendix B of [20]). As we shall see, in the case that C = Fn,k we have that degD = kn−1.
The s-plane Π(s, P ) is called the osculating s-plane of C at P and a point P ∈ C is called a hyper-

osculating point if

multP (Π(n− 1, P ) ∩ C) > n.

Remark 13. Let ϕ ∈ Aut(Pn) ∼= PGLn+1(K). Observe that

multϕ(P )(ϕ(Πs) ∩ ϕ(C)) = multP (Πs ∩ C).

In particular, P is a hyper-osculating point of C if and only if ϕ(P ) is a hyper-osculating point of ϕ(C).

3.2. Laksov’s theory of osculating planes

We will follow the approach D. Laksov article. For an alternative but similar approach we point to the 
seminal work of Stöhr and Voloch [24].

Let C be a smooth curve of genus g over a general field K and let D be a divisor in C. Moreover, let V
be a linear system in H0(C, D) of projective dimension n. We note degD the degree of the divisor D.

Tensor powers of the sheaf of differentials can be interpreted as

(Ω1
C)⊗m = Im/Im+1,

where I is the ideal defining the diagonal in the product C × C. Let p, q be the two projections C ×
C into the first and second factor respectively. Laksov defined the bundle of principal parts Pm(D) =
p∗(q∗OC(D)|C(m)), where C(m) is the subscheme of C ×C defined by Im+1. He then introduced a family 
of maps
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vm(D) : H0(C,D)C := H0(C,D) ⊗K OC → Pm(D)

and the corresponding map vm : VC := V ⊗K OC → Pm(D). Let Bm and Am be the image and the cokernel 
of vm. The Corollary 2 of [16] implies that there are integers

0 = G0 < G1 < · · · < Gn ≤ degD < Gn+1 = ∞

such that rankBj = (s + 1) for Gs ≤ j < Gs+1. The above sequence is called the gap sequence of the linear 
system V . If Gm = m for m = 0, 1, . . . , n then the gap sequence is called classical.

Definition 14 (Associated Curves). The surjection VC → As induced by the map vbs defines a map

fs : C → G(s, n)

to the grassmanian of s-planes in Pn. The s-plane in Pn is called the associated s-plane to V at P , and the 
degree ds of the map fs is called the s-rank of the linear system V .

The grassmanian can be embedded in terms of the Plücker coordinates in a projective space PN , where 
N =

(
n+1
s+1
)
− 1. We will denote by bs(P ) the ramification index and by bs the sum of all ramification indices 

of the composition C
fs−→ G(s, n) → PN . The image of the later map is called the s-associated curve.

Remark 15. Geometrically ds can be interpreted as the number of associated s-planes to V which intersect 
a generic (n − s − 1)-plane of Pn. In addition, we have that ds = rankAs. See section 5 of the article [16].

Let e0, e1, . . . , en be a basis of V . Using the canonical maps v0 : VC → OC(D), we can prove that this 
basis induces a set of linearly independent functions v0, v1, ..., vn belonging to the local ring OC,P , P ∈ C, 
such that there exists a sequence of integers h0 < h1 < · · · < hn, where hi := OrdP vi. These integers are 
called the Hermitian invariants at P .

The s-plane associated to the sub-space of V spanned by es+1, ..., en is the unique s-plane with maximal 
contact order with V at P (the order of contact is equal to hs+1 − h0). This s-plane is called the osculating 
s-plane to V at P .

Let C be a projective smooth curve of the projective space Pn. If f0 : C → Pn is the natural embedding 
defined by the inclusion C ⊂ Pn, and the divisor D is the inverse image of a hyperplane Π of Pn, we obtain 
that h0 = 0 for all P ∈ C and that the concepts of osculating s-plane to V at P and osculating s-plane of 
C at P coincide.

Additionally, given a local uniformizer z at the point p, the normal form of f0 in P is obtained in the 
following manner:

f0(z) := [v0(z) : · · · : vn(z)].

When the characteristic p is small, then a lot of new phenomena appear, however for p > degD the 
situation is similar as in characteristic zero:

Theorem 16 (See [16, Th. 15]). Assume that the characteristic p of the ground field is zero or strictly grater 
than degD. Fix a point P ∈ C and let h0, h1, . . . , hn be the Hermite invariants of the linear system V at P . 
Then:

(1) The linear system V has classical gap sequence, i.e. Gm = m for m = 0, 1, . . . , n.
(2) The ramification index bs(P ) of fs at P is equal to hs+1 − hs − 1 for s = 0, 1, . . . , n − 1.
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(3) The Plücker formulas take the form:

ds+1 − 2ds + ds−1 = (2g − 2) − bs for s = 0, 1, . . . , n− 1,

where d−1 = 0 and dn = 0.
(4) The osculating and associated s-planes to V at P coincide.

3.3. The hyper-osculating points of Fk,n

Let f0 : Fk,n → Pn be the natural embedding defined by the inclusion Fk,n ⊂ Pn. Let P be a point in 
F (H0) and let z be a local uniformizer at P . The following lemma helps us to find the normal form of f0
around z(P ) = 0.

Let Π be a hyperplane section of the projective space Pn and D = f�
0 (Π) the inverse image divisor of Π. 

Using the Bezout theorem we obtain that degD = kn−1. In the rest of this section Theorem 16 will be used 
quite a lot, for this reason we will impose, as a general hypothesis in the entire rest of the section, that the 
characteristic of the ground field is zero, or strictly greater than kn−1.

Lemma 17. Let us conserve the previously defined notations. Assume that we are working over a field of zero 
characteristic or strictly greater than kn−1. Then there exists a sequence of n − 1 integers,

1 = l0 < 2 = l1 < l2 < · · · < lj < · · · < ln−2 ≤ kn−2,

such that the normal form of f0 around z(P ) = 0 is the following:

f0(z) = [1 : z : g0(zk) : g1(zk) : · · · : gi(zk) : · · · : gn−2(zk)],

where the gi admit an expansion gi(z) = zli + · · · + · · · .

Proof. We will begin by the case of the characteristic of the field being zero.
Using linear substitutions in the system of equations which define the curve Fk,n = Ck(λ1, . . . , λn−2), 

followed by an automorphism of Pn, we can suppose that Fk,n = Ck(λ̂1, . . . , ̂λn−2) and that P ∈ Fix(ϕ1).
These transformations do not affect the condition of being or not being a point of hyper-osculation, see 
Remark 13.

In order to simplify the notations, we say that λ̂0 = 1. Then the point P in homogeneous coordinates is

P := [1 : 0 : ρ1 : ρ2 : · · · : ρn−1],

where ρki = −λ̂i−1, 0 ≤ i ≤ n − 1.
Let f0 : Fk,n → Pn be the natural embedding defined by the inclusion Fk,n ⊂ Pn, and let us consider the 

following Taylor series centered in t = 0:

k
√

1 + t =
∞∑
i=0

(
k−1

i

)
ti, |t| < 1,

where

(
k−1

i

)
:= Γ(k−1 + 1)

Γ(i + 1)Γ(k−1 − i + 1) =
i∏

ν=1

k−1 + 1 − ν

ν
= 1

i!ki
i−1∏
ν=1

(1 − kν) ∈ Q. (8)
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Remark 18. The binomial coefficient 
(
n
i

)
for n, i ∈ N has always meaning in fields of positive characteristic p, 

since we can always reduce it modulo p. The binomial coefficients in eq. (8) are not defined if p ≤ i.

Remark 19. If Mk < p then 
(
k−1

i

)
�= 0 for all i < M . Indeed, by eq. (8) we observe that for 1 ≤ ν ≤ i −1 < M

the quantity kν − 1 �≡ 0 mod p. Otherwise, 0 < μp = kν − 1 < p/M · i − 1 < p for ν, μ ∈ N, a contradiction.

Using this expansion, we can describe f0 explicitly in a neighborhood of P . Let z be a local uniformizer 
at P , we express locally

f0(z) =
[
1 : z :

∞∑
i=0

c(i,1)z
ik :

∞∑
i=0

c(i,2)z
ik : · · · :

∞∑
i=0

c(i,n−1)z
ik

]
,

where c(i,j) := ρj

λ̂i
j−1

(
k−1

i

)
, 1 ≤ j ≤ n − 1, i ≥ 0.

We can prove by induction on j, that for each integer 1 ≤ j ≤ n − 2, there exists a sequence of n − 2
integers

1 = l0 < 2 = l1 < l2 < · · · < lj ≤ · · · ≤ · · · ≤ ln−2,

for which there exists a change of coordinates of Pn (which is to say, an automorphism of Pn) such that

f0(z) =

⎡⎣1 : z :
∞∑
i=1

d(i,1)z
ik :

∞∑
i=2

d(i,2)z
ik :

∞∑
i=l2

d(i,3)z
ik : · · · :

∞∑
i=ln−2

d(i,n−1)z
ik

⎤⎦ ,
where d(lm−1,m) = 1 for all 1 ≤ m ≤ n − 2.

By virtue of part (iii) of Theorem 10 of [16], we obtain that the Hermite invariant hn is less than or equal 
to degD = kn−1 (it is worth mentioning that this result is valid in the case of the positive characteristic). 
Implying that ln−2 ≤ kn−2. This will prove the lemma in the case of characteristic zero.

Using the fact that hn ≤ kn−1, and Remark 19, we can ensure that for fields of characteristic p such 
that kn−1 < p the method of recurrence raised previously functions in the same way. However the sequence 
of integers l2 < l3 < · · · < ln−2, obtained in the case of the positive characteristic, could differ from the 
sequence of integers obtained in the case of characteristic zero.

Let us now do some steps of the induction in order to indicate some problems that may occur over fields 
of positive characteristic:

f0(z) =
[
1 : z : c(0, 1) + c(1, 1)zk + · · · : c(0, 2) + c(1, 2)zk + ρ1

λ̂2
1

(
k−1

2

)
z2k + · · · : . . . :

]
.

In the first step we subtract the constant function 1 multiplied by c(0, i) from all but the first two 
projective coordinates of f0(z) arriving at

f0(z) =
[
1 : z : c(1, 1)zk + · · · : c(1, 2)zk + ρ2

λ̂2
1

(
k−1

2

)
z2k + · · · : . . . :

]
.

The coefficient c(1, 1) = ρ1
λ̂0

(
k−1

1
)
�= 0 so we can divide the third coordinate of f0(z) by c(1, 1) in order to 

have coefficient of zk equal to 1. Then we subtract from all but the first two coefficients the third coefficient 
in order to eliminate the term zk. The coefficient of z2k in the fourth coordinate equals to
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c(1, 1)c(2, 2) − c(1, 2)c(2, 1) = ρ1

λ̂0

(
k−1

1

)
ρ2

λ̂2
1

(
k−1

2

)
− ρ2

λ̂1

(
k−1

1

)
ρ1

λ̂2
0

(
k−1

2

)
= ρ1ρ2

λ̂0λ̂1

(
k−1

2

)(
k−1

1

)(
1
λ̂1

− 1
λ̂0

)
�= 0,

since (
k−1

2

)
= k−1(k−1 − 1)

2 = 1 − k

2k2 �= 0 and λ̂1 �= 1.

We can now normalize the coefficient of z2k to 1 and subtract it multiplied by the appropriate constant 
from the next coordinate. Doing this subtraction it can happen that the coefficients of z3k, z4k etc. are also 
eliminated. So we set 2 < l2 the first non-zero exponent in the above subtraction. We then proceed in a 
similar way until all coordinates are in the form requested by the lemma. �

The next theorem describes the hyper-osculating points of Fk,n and the ramification indices.

Theorem 20. Assume that the characteristic p of the ground field is zero or strictly grater than kn−1, and 
(n − 1)(k − 1) > 2. Then the following holds:

(1) F (H0) is the set of hyperosculating points of Fk,n.
(2) If P ∈ F (H0), then b1(P ) = k − 2 and bl(P ) = k − 1 for all 2 ≤ l ≤ n − 1.

Proof. Let P be a point in F (H0). By (2) in Theorem 16 and Lemma 17, we obtain the following system 
of equations: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 + b1(P ) = k

3 + b1(P ) + b2(P ) = 2k
4 + b1(P ) + b2(P ) + b3(P ) = l2k
...

...
...

...
. . .

...
...

n + b1(P ) + b2(P ) + b3(P ) + · · · + bn−1(P ) = ln−2k.

Equivalently, we obtain ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b1(P ) = k − 2
b2(P ) = k − 1
b3(P ) = (l2 − 2)k − 1

...
...

...
bn−1(P ) = (ln−2 − ln−3)k − 1.

Observe that bl(P ) ≥ k − 1 for all 2 ≤ l ≤ n − 1. In particular, P is a hyper-osculating point.
Since the cardinality of F (H0) is equal to (n + 1)kn−1, we have the following lower bound from the total 

ramification indices: {
b1 = b̂1 := (n + 1)kn−1(k − 2),
bl ≥ b̂l := (n + 1)kn−1(k − 1), for every 2 ≤ l ≤ n− 1.

Observe that in order to finish the proof of the theorem, it is necessary and sufficient to prove bl = b̂l, 
for all 1 ≤ l ≤ n − 1. We will now prove these equalities.
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Consider the following inequality

0 ≤ bl − b̂l ≤
n−1∑
l=0

(n− l)(bl − b̂l),

where b0 = b̂0 = 0. The idea is to show that the right part of the inequality is zero.
Recall that the genus of Fk,n is given by the following formula:

g(k,n) := kn−1((n− 1)(k − 1) − 2) + 2
2 .

Via direct calculation, we obtain the following equality:

n−1∑
l=0

(n− l)b̂l = n(n + 1)(g(k,n) − 1) + (n + 1)kn−1.

Using the Plücker formulas (Item (3) of Theorem 16), we obtain

n−1∑
l=0

(n− l)bl =
n−1∑
l=0

(n− l)(2(g(k,n) − 1) − Δ2dl)

= n(n + 1)(g(k,n) − 1) −
n−1∑
l=0

((n− l)Δ2dl),

where Δ2dl = dl+1 − 2dl + dl−1.
A simple computation permits to obtain that

n−1∑
l=0

(n− l)Δ2dl = dn − (n + 1)d1 + nd−1.

Since dn = d−1 = 0 and d1 = kn−1, therefore

n−1∑
l=0

(n− l)bl = n(n + 1)(g(k,n) − 1) + (n + 1)kn−1,

which implies that bl = b̂l for all 1 ≤ l ≤ n − 1. �
The following corollary is directly derived from Theorem 20 and Lemma 17.

Corollary 21. Let z be a local chart of Fk,n around a point P . Then the normal form of f0 in z(P ) := 0 is:

(1) If P ∈ F (H0)

f0(z) =
[
1 : z : g0(zk) : g1(zk) : · · · : gi(zk) : · · · : gn−1(zk)

]
,

where the gi are holomorphic functions such that gi(z) = zi+1 + · · · + · · · ,
(2) If P �∈ F (H0), then

f0(z) =
[
1 : z : z2 + · · · : · · · : z(n−1) + · · ·

]
.
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4. Complete intersections and linear automorphisms

Let Pn be the projective space with homogeneous coordinates [x1 : · · · : xn+1]. Consider the curve Fk,n =
Ck(λ1, . . . , λn−2) embedded in Pn+1 as the intersection of the n −1 hypersurfaces fi := λix

k
1 +zk2 +zk3+i = 0

for 0 ≤ i ≤ n − 2, where k, n ≥ 2 are integers so that, for p > 0, (k, p) = 1 (see eq. (2)).

Proposition 22. The curve Fk,n is a nonsingular complete intersection.

Proof. The curve is given as the intersection of n −1 hypersurfaces fi := λix
k
1 +xk

2 +xk
3+i for i = 0, . . . , n −2. 

We consider the matrix of ∇fi written as rows.⎛⎜⎜⎜⎝
kxk−1

1 kxk−1
2 kxk−1

3 0 . . . 0
λ1kx

k−1
1 kxk−1

2 0 kxk−1
4 . . . 0

...
...

...
...

...
λn−2kx

k−1
1 kxk−1

2 0 . . . 0 kxk−1
n+1

⎞⎟⎟⎟⎠ . (9)

By the defining equations of the curve we see that a point which has two variables xi = xj = 0 for i �= j

and 1 ≤ i, j ≤ n + 1 has also xt = 0 for t = 1, . . . , n + 1. Therefore the above matrix has the maximal rank 
n − 1 at all points of the curve.

So the defining hypersurfaces are intersecting transversally and the corresponding algebraic curve they 
define is non-singular. �
Proposition 23. The ideal Ik,n defined by the n − 1 equations defining Fk,n ⊂ Pn+1 is prime.

Proof. We will follow the method of [14, sec. 3.2.1]. Observe first that the defining equations f0, . . . , fn−2
form a regular sequence, and K[x1, . . . , xn+1] is a Cohen–Macauley ring and the ideal Ik,n they define is 
of codimension n − 1. The ideal Ik,n is prime by the Jacobian Criterion [3, Th. 18.15], [14, Th. 3.1] and 
Proposition 22. In remark [14, 3.4] we pointed out that an ideal I is prime if the singular locus of the 
algebraic set defined by I has big enough codimension. �
Remark 24 (Stable Family). Consider now the polynomial ring R1 := K[λ1, . . . , λn−2] and consider the 
ideal J generated by 

∏n−2
i=1 λi(λi − 1) ·

∏
i<j(λi −λj). We consider the localization R of the polynomial ring 

R1 with respect to the multiplicative set R1 − J . The affine scheme SpecR is the space of different points 
P1, . . . , Pn+1, and the family X → SpecR is a stable family of curves since it has non-singular fibers of 
genus ≥ 2.

By the results of Deligne–Mumford [2, Lemma I.12] any automorphism of the generic fibre is also an 
automorphism of the special fibre. Special fibres have more automorphisms, when the ramified points

{0, 1,∞, λ1, . . . , λn−2}

are in such a configuration, so that a finite automorphism group of PGL2(K) permutes them.

Since Fk,n is a projective variety, for every automorphism σ ∈ Aut(Fk,n) there is a Zariski open covering 
of Fk,n, (Ui)i∈I such that the restriction of σ |U is given by n +1 homogeneous polynomials g(σ)

i of the same 
degree, i.e. if x̄ = [x1 : · · · : xn+1], then

σ |U (x̄) = [g(σ)
1 (x̄) : · · · : g(σ)

n+1(x̄)], (10)

see [18, prop. 6.20].
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All automorphisms that come as automorphisms of the ambient projective space, i.e. they are represented 
on the whole curve Fk,j as in eq. (10) with deg gi = 1 for all 1 ≤ i ≤ n + 1 are called linear and they form 
a subgroup L of Aut(Fk,n).

Lemma 25. The group L is a normal subgroup of Aut(Fk,n).

Proof. Consider a non-linear automorphism τ ∈ Aut(Fk,n) and a linear automorphism σ ∈ L. Since τ is 
not linear there is an open U ⊂ Fk,n where τ is expressed in terms of polynomials of degree d > 1.

Consider the element σ′ = τστ−1. We will show that σ′ is linear. Since the curve Fk,n is connected, the 
open sets U and σ(U) have non-trivial intersection V . On this set V we express the automorphisms σ, τ, σ′

in terms of homogeneous polynomials g(σ)
i , g(τ)

i , g(σ′)
i , 1 ≤ i ≤ n + 1, respectively of degrees 1, d, d′ as in 

eq. (10). We have σ′τ = τσ and this implies for x̄ ∈ V the relation

[g(σ′)
1 ◦ g(τ)

1 (x̄) : · · · : g(σ′)
n+1 ◦ g

(τ)
n+1(x̄)] = [g(τ)

1 ◦ g(σ)
1 (x̄) : · · · : g(τ)

n+1 ◦ g
(σ)
n+1(x̄)].

Let Ik,n be the ideal defining the curve Fk,n. For each x̄ ∈ Kn there is a λx̄ ∈ K such that

g
(σ′)
i ◦ g(τ)

i (x̄) = λx̄g
(τ)
i ◦ g(σ)

i (x̄) mod Ik,n for all 1 ≤ i ≤ n + 1.

The left hand side has degree d′d while the right hand side has degree d. So if we substitute μx̄ in 
the above equation where μd′ = λx̄ we obtain g(σ′)

i ◦ g
(τ)
i = g

(τ)
i ◦ g

(σ)
i for all 1 ≤ i ≤ n + 1 modulo the 

homogeneous ideal Ik,n of the curve and this in turn is possible only if d′ = deg g(σ′)
i = 1, i.e. σ′ is given in 

terms of linear polynomials.
We have proved so far that there is an open cover (Ui)i∈I of Fk,n where σ′ is given in terms of linear 

polynomials. Since every element in the defining ideal of the curve Fk,n has degree > 1 this means that on 
the nonempty intersections Ui ∩ Uj the linear polynomials expressing σ′ should not only be equal modulo 
the defining ideal, but equal as polynomials. This proves that σ′ is given by linear polynomials on the whole 
space Fk,n so σ′ ∈ L. �
4.1. The elements of L

In this section we describe the elements on the group L of linear automorphisms of the curve Fk,n.
All automorphisms σ ∈ L are linear ones, so they are given in terms of an (n + 1) × (n + 1) matrix:

σ(xi) =
n+1∑
ν=1

ai,νxi. (11)

An automorphism of V (f1, . . . , fn−2) is a map σ such that if P is a point in V (f1, . . . , fn−2), then σ(P )
is in V (f1, . . . , fn−2). The following holds true:

fi ◦ σ = σ∗(fi) ∈ 〈f1, . . . , fn−1〉

i.e.

fi ◦ σ =
n−1∑
ν=1

gν,ifν , (12)

for some appropriate polynomials gi ∈ K[x1, . . . , xn+1]. When σ ∈ L, so it is linear, the polynomials gν,i
are just constants.
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Theorem 26. Set Yi = ∇fi. If σ ∈ L, then σ(Yi) should be a linear combination of elements Yi.

Proof. By applying ∇ to Eq. (12) we have for every point on the curve

∇(fi ◦ σ)(P ) =
n−1∑
ν=1

(
gi,ν(P )∇fν(P ) + ∇gi,ν(P )fν(P )

)
.

But fν(P ) = 0 so we arrive at

∇(fi ◦ σ)(P ) =
n−1∑
ν=1

gi,ν(P )∇fν(P ),

which gives rise to

∇(fi ◦ σ) =
n−1∑
ν=1

gi,ν∇fν + F,

where F is an element in the ideal Ik,n of the curve Fk,n. The ideal Ik,n is generated by polynomials of 
degree k, while ∇fi are polynomials of degree k − 1. Therefore,

∇(fi ◦ σ) =
n−1∑
ν=1

gi,ν∇fν , (13)

as polynomials in K[x1, . . . , xn+1]. �
Now the chain rule implies that, for σ ∈ L,

∇(fi ◦ σ)(P ) = ∇(fi)(σ(P )) ◦ σ, (14)

where σ is given by the (n + 1) × (n + 1) matrix A = (aij) given in eq. (11). We now rewrite eq. (14) and 
combine it with eq. (13)

σ∗(∇fi) ◦ σ = ∇(fi)(σ(P )) ◦ σ = ∇(fi ◦ σ)(P ) =
n−1∑
ν=1

gi,ν∇fν . (15)

Recall that fj = λjx
k
1 + xk

2 + xk
3+j for 1 ≤ j ≤ n − 2 and

Yj = (kλjx
k−1
1 , kxk−1

2 , 0, . . . , 0, kxk−1
j+3 , 0, . . . , 0),

where the third non-zero element is at the j + 3 position. For 1 ≤ i ≤ n + 1 let us write

σ∗(xi) =
n+1∑
ν=1

ai,νxν .

So

σ∗(Yj) = k

⎛⎝λj

(
n+1∑
ν=1

a1,νxν

)k−1

,

(
n+1∑
ν=1

a2,νxν

)k−1

, 0 . . . 0,
(

n+1∑
ν=1

aj+3,νxν

)k−1

, 0 . . . 0

⎞⎠ .
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Observe that eq. (15) implies that σ∗(Yi) is a linear combination of Yi, which involves only combinations 
of the monomials xk−1

i , while the t-th (t = 1, 2, j + 3) coefficient of σ∗(Yi) involves all combinations of the 
terms (

k − 1
ν1, . . . , νn+1

)(
aν1
t,1 · · · a

νn+1
t,n+1

)
·
(
xν1

1 · · ·xνn+1
n+1

)
for ν1 + · · · + νn+1 = k − 1.

For ν̄ = (ν1, . . . , νn+1) define xν̄ = xν1
1 · · ·xνn+1

n+1 and set

At,ν̄ = aν1
t,1 · · · a

νn+1
t,n+1.

Observe that if 
(

k−1
ν1,...,νn+1

)
�= 0 and xν̄ does not appear as a term in the linear combination of Yi, then using 

eq. (15) we have

(A1,ν̄ , . . . , An+1,ν̄) ·A = 0.

But A is an invertible matrix so the above equation implies that

At,ν̄ = 0

if xν̄ does not appear as a term in the linear combination of Yi.

Lemma 27. The binomial coefficients 
(
k−1
ν

)
= 0 for all 1 ≤ ν ≤ k − 1 if and only if k − 1 is a power of the 

characteristic.

Proof. The binomial coefficient 
(
k−1
ν

)
is not divisible by the characteristic p if and only if νi ≤ ki for all i, 

where ν =
∑

νip
i, k−1 =

∑
kip

i are the p-adic expansions of ν and k−1, [3, p. 352]. The result follows. �
Lemma 28. Let σ ∈ L given by a (n + 1) × (n + 1) matrix (aij). If k− 1 is not a power of the characteristic, 
then there is only one non-zero element in each column and row of (aij).

Proof. If k − 1 is not a power of the characteristic, then we see that the matrix (ai,j) can have only one 
non-zero term in each row and column. Indeed, if this was not true, then for some j we have two non-zero 
terms aj,l1 , aj,l2 . If j ≥ 3, then we work with σ∗(Yj−3) and for ν such that 

(
k−1
ν

)
�= 0 we have that 

aνj,l1a
k−1−ν
j,l2

= 0, so the desired result follows. �
Corollary 29. If k − 1 is not a power of the characteristic, then every automorphism σ ∈ L restricts to an 

automorphism of the function field K(X), X = −xk
2

xk
1
, i.e. L normalizes H0.

Proof. The function field of the generalized Fermat curves can be seen as Kummer extension with Galois 
group H of the rational function field K(X), where X = −xk

2
xk
1

(see [7, par. 2.2] or eq. (3)). In order to prove 
that H is a normal subgroup of the whole automorphism group we have to show that every automorphism 
of the curve keeps the field K(X) invariant.

Since there is only one non-zero element in each row and column of A for the automorphism σ we have:

σ∗(xk
i ) =

n+1∑
ν=1

aki,νx
k
ν . (16)
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Therefore

σ∗(X) = −σ∗(x2)k

σ∗(x1)k
= −

∑n+1
ν=1 a

k
2,νx

k
ν∑n+1

ν=1 a
k
1,νx

k
ν

.

In the above equation we replace all variables xν for ν ≥ 3 using the defining equations xk
ν = −λν−3x

k
1 −xk

2

in order to arrive at an expression involving only X = −xk
2

xk
1
:

σ∗(X) = −
ak21x

k
1 + ak22x

k
2 +
∑n+1

ν=3 a
k
2,ν
(
−λν−3x

k
1 − xk

2
)

ak11x
k
1 + ak12x

k
2 +
∑n+1

ν=3 a
k
1,ν
(
−λν−3xk

1 − xk
2
)

= −

(
−ak22 +

∑n+1
ν=3 a

k
2,ν

)
X +

(
ak21 −

∑n+1
ν=3 λν−3a

k
2,ν

)
(
−ak12 +

∑n+1
ν=3 a

k
1,ν

)
X +

(
ak11 −

∑n+1
ν=3 λν−3ak1,ν

) . �

Proposition 30. Assume that k − 1 = ph = q is a power of the characteristic. Denote by

Σi = diag(λi, 1, 0, . . . , 1, 0, . . . , 0), (17)

with 1 in the i + 3 position. Then a matrix A ∈ PGLn+1(K) corresponding to σ ∈ L should satisfy

AtΣiA
q =

n−2∑
μ=0

bi,μΣμ, (18)

for a (n − 1) × (n − 1) matrix (bi,μ).

Proof. By applying σ∗ to fi we have:

σ∗(fi) = λi

(
n+1∑
ν=1

a1,νxν

)q+1

+
(

n+1∑
ν=1

a2,νxν

)q+1

+
(

n+1∑
ν=1

ai+3,νxν

)q+1

=
n+1∑
ν,μ=1

(
λia1,νa

q
1,μ + a2,νa

q
2,μ + ai+3,νa

q
i+3,μ

)
xνx

q
μ

=
n+1∑
ν,μ=1

Bi
ν,μ(σ)xνx

q
μ.

Observe that by eq. (13) we have Bi
ν,μ = 0 for all 0 ≤ i ≤ n − 2, 1 ≤ ν, μ ≤ n + 1, n �= μ.

The polynomials are in some sense “quadratic forms”

fi(x1, . . . , xn+1) = (x1, . . . , xn+1)Σi

⎛⎜⎜⎝
xq

1
xq

2
...

xq
n+1

⎞⎟⎟⎠ ,

so σ∗fi is computed as

σ∗fi = (x1, . . . , xn+1)AtΣiA
q

⎛⎜⎜⎝
xq

1
xq

2
...

q

⎞⎟⎟⎠ ,
xn+1
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and the above expression should be a linear combination of fi. The desired result follows. �
Remark 31. Matrices A = (aij) which satisfy eq. (18) should satisfy the following equations: For 0, . . . , n −2
and 1 ≤ ν, μ ≤ n + 1 we set

Bi
ν,μ = λia1,νa

q
1,μ + a2,νa

q
2,μ + ai+3,νa

q
i+3,μ.

We have

Bi
ν,μ = 0 for ν �= μ.

Moreover the coefficients bi,μ in eq. (18) satisfy the system⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 λ1 λ2 · · · λn−2
1 1 1 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . 1
. . .

...
...

. . . . . . 0
0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

bi,1
bi,2
...
...
...

bi,n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bi
1,1

Bi
2,2
...
...
...

Bi
n+1,n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which gives us that

bi,ν = Bi
2+ν,2+nu = λia

q+1
1,2+ν + aq+1

2,2+ν + aq+1
i+3,2+ν for 1 ≤ ν ≤ n− 1,

plus the compatibility relations

n+1∑
ν=3

Bi
ν,ν = Bi

2,2,

and

n+1∑
ν=3

λν−3B
i
ν,ν = Bi

1,1.

Solving these linear systems with λ1, . . . , λn−2 as parameters, seems a complicated problem, which is out 
of reach for now.

5. Proof of Theorem 3

In this section, we assume that k, n ≥ 2 are integers so that (n − 1)(k − 1) > 2 and, for p > 0, we also 
assume that gcd(p, k) = 1 and that k − 1 is not a power of p.

Set Fk,n = Ck(λ1, . . . , λn−2), where λ1, . . . , λn−2 ∈ K − {0, 1} are different.
As before, let N(H0) < Aut(Fk,n) be the normalizer of H0 in the group Aut(Fk,n).
Lemma 25 asserts that L, the group of linear automorphisms of Fk,n, is a normal subgroup of Aut(Fk,n). 

Corollary 29 asserts that L < N(H0) and, since H0 < L, that H0 is a normal subgroup of L.

Remark 32. We may arrive to the same conclusion above using the theory of hyper-osculating points under 
the condition kn−1 < p or char(K) = 0. Indeed, as a consequence of Remark 13 and Theorem 20, we have that 
L preserves the set of fixed points F (H0). This in particular asserts that if τ ∈ L, then τϕjτ

−1 = ϕσ(j) for 
a suitable permutation σ of the set {0, 1, . . . , n}; in particular, τH0τ

−1 = H0. This asserts that L < N(H0).
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Lemma 33. Under the above assumptions, N(H0) = L.

Proof. As noted above (under the assumption that k− 1 is not a power of p if p > 0), Corollary 29 asserts 
that L < N(H0). In [7] it was seen that N(H0) < PGLn+1(K) (in that article it was assumed that K = C, 
but the same techniques can be used in the general case); obtaining that N(H0) < L. For the sake of 
completeness we briefly recall the proof that N(H0) ⊂ PGLn+1(K). Every element in N(H0) permutes the 
conical points ∞, 0, 1, λ1, λn−2. Also, according to Remark 7, every Möbius automorphism T ∈ PGL2(K)
permuting the conical points can be lifted to an automorphism T̂ ∈ Aut(Fk,n) so that πT̂ = Tπ, where 
π : Fk,n → Fk,n/H0 = P1. Such an automorphism acts by conjugation on the cyclic generators aj of H0. 
Therefore, T̂ 〈aj〉T̂−1 = 〈aσ(j)〉, for some permutation σ ∈ Sn+1. The divisor of the function xj/x1 is 
div(xj/x1) = Fix(aj) − Fix(a1), and so for the pullback div(T̂ ∗(xj/x1)) = Fix(aσ−1(j)) − Fix(aσ−1(a1)). 
Therefore, on the open set x1 �= 0 we have for some constants c2, . . . , cn+1 ∈ K:

T̂ (x2/x1, . . . , xn+1/x1) =
(
c2xσ−1(2)/xσ−1(1), . . . , cn+1xσ−1(n+1)/xσ−1(1)

)
and finally

T̂ [x1 : x2 : . . . , xn+1] =
[
xσ−1(1) : c2xσ−1(2) : . . . : cn+1xσ−1(n+1)

]
,

i.e. an automorphism of PGLn+1(K). �
Lemma 34. Under the above assumptions, H0 is the unique generalized Fermat group of Fk,n inside L.

Proof. Let H ′ < L be another generalized Fermat group of type (k, n). The group H ′ is generated by the 
elements ϕ∗

j , for j = 0, . . . , n, so that the non-trivial elements of H ′ acting with fixed points in Fk,n are 
exactly the non-trivial powers of these generators and ϕ∗

0 ◦ ϕ∗
1 ◦ · · · ◦ ϕ∗

n = 1.
If the set of cyclic groups 〈ϕ∗

0〉, . . . , 〈ϕ∗
n〉 coincides with the set of cyclic groups

〈ϕ0〉, . . . , 〈ϕn〉,

then clearly H0 = H ′.
So, let us assume, from now on, that the above is not the case.

Claim 1. The set of cyclic groups 〈ϕ∗
0〉, . . . , 〈ϕ∗

n〉 is not disjoint with the set of cyclic groups 〈ϕ0〉, . . . , 〈ϕn〉.

Proof. Let us assume, by the contrary, that the set of cyclic groups 〈ϕ∗
0〉, . . . , 〈ϕ∗

n〉 is disjoint with the set 
of cyclic groups 〈ϕ0〉, . . . , 〈ϕn〉. In this case, the group H ′ descends under the quotient map π0, defined in 
eq. (3), to a group of Möbius transformations that preserves the n + 1 branch values ∞, 0, 1, λ1,..., λn−2, 
and it is isomorphic to Zt

k, for some t ≥ 1.
It is known that the finite abelian subgroups of Möbius transformations are either cyclic, isomorphic 

to Z2
2 or isomorphic to Zt

p, where p is the characteristic and t ∈ N. The last case can not appear since 
gcd(k, p) = 1.

Case 1. If k ≥ 3, then t = 1 and H ′ ∩ H0 ∼= Zn−1
k . The cyclic group Zk induced by H ′ is generated by a 

Möbius transformation T that permutes the n +1 branch values and fixes no one. In particular, n +1 = rk, 
for some positive integer r. It follows (see [7]) that each lifting of T (that is, the generators ϕ∗

0, . . . , ϕ
∗
n) is a 

linear transformation providing the same permutation (by conjugation action) of the generators ϕ0, . . . , ϕn, 
in r disjoint cycles of length k. Up to permutation of indices, we may assume that ϕ∗

0 permutes cyclically the 
elements of each of the sets {ϕ0, ϕ1, . . . , ϕk−1}, {ϕk, ϕk+1, . . . , ϕ2k−1},..., {ϕ(r−1)k, ϕ(r−1)k+1, . . . , ϕrk−1}. 
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It follows that the maximal subgroup Q of H0 formed by those elements that commute with ϕ∗
0 is the one 

generated by the elements

ϕ0 ◦ ϕ1 ◦ · · · ◦ ϕk−1, ϕk ◦ ϕk+1 ◦ · · · ◦ ϕ2k−1, . . . , ϕ(r−1)k ◦ ϕ(r−1)k+1 ◦ · · · ◦ ϕrk−1.

Since the composition of all of the above elements equals the identity, Q ∼= Zr−1
k .

Now, as ϕ∗
0 must commute with each element of H ′ ∩ H0, the n − 1 generators of it must be each one 

invariant under conjugation by ϕ∗
0. As H ′ ∩H0 < Q, we must have n ≤ r, a contradiction.

Case 2. If k = 2, then t ∈ {1, 2}. If t = 1, then we may proceed as in the above case to get a contradiction. 
If t = 2, then H ′ ∩H0 ∼= Zn−2

2 and the group H ′ induces a group of Möbius transformation isomorphic to 
Z2

2 that permutes the n +1 branch values and none of them is fixed by a non-trivial element. It follows that 
n + 1 = 4r, for some positive integer r.

In this case, after a permutation of the indices, we may assume that Z2
2 is generated by the induced 

elements of ϕ∗
0 and ϕ∗

1. It follows that ϕ∗
i (i = 0, 1) permutes (by conjugation action) the generators 

ϕ0, . . . , ϕn in 2r disjoint cycles of length 2 each one. Up to a permutation of indices, we may assume that 
ϕ∗

0 permutes cyclically the elements of each of the sets {ϕ0, ϕ1}, {ϕ2, ϕ3},..., {ϕn−1, ϕn}. It follows that the 
maximal subgroup Q of H0 formed by those elements that commute with ϕ∗

0 is the one generated by the 
elements

ϕ0 ◦ ϕ1, ϕ2 ◦ ϕ3, . . . , ϕn−1 ◦ ϕn,

that is, Q ∼= Z2r−1
2 . Since the subgroup of H0 formed by those elements that commute with ϕ∗

0 and with ϕ∗
1

is a subgroup of Q, we must show that H ′ ∩H0 < Q, that is, n − 2 ≤ 2r − 1. This obligates to have r = 1, 
in particular, that n = 3, a contradiction to the assumption that (k − 1)(n − 1) > 2. �

As a consequence of the above, the set of cyclic groups 〈ϕ∗
0〉, . . . , 〈ϕ∗

n〉 is not disjoint with the set of cyclic 
groups 〈ϕ0〉, . . . , 〈ϕn〉. We may assume, up to permutation of the indices, that 〈ϕ0〉 = 〈ϕ∗

0〉. The underlying 
Riemann surface R of the quotient orbifold C(λ1, . . . , λn−2)/〈ϕ0〉 is a generalized Fermat curve of type 
(k, n − 1) admitting two different generalized Fermat groups of type (k, n − 1); these being H ′/〈ϕ∗

0〉 and the 
other being H0/〈ϕ0〉.

In the case that K = C we have the following. For k = 2 we have already proved the uniqueness (so 
normality) for n = 4, 5 in [1] and for k ≥ 3, the uniqueness was obtained for n = 3 [5]. In this way, the 
above procedure asserts, by induction on n, the desired result in the zero characteristic situation.

The situation for general p > 0 can be done as follows. First, we know the uniqueness for k ≥ 4 and 
n = 2 (as a consequence of the results in [26] and [17]); so again, by the induction process we are done for 
k ≥ 4. The case k = 2 is ruled out because 1 = k − 1 = p0 and we are assuming that k − 1 is not a power 
of p. In the case k = 3, we only need to check uniqueness for n = 3.

5.1. The case (k, n) = (3, 3)

In this case, our hypothesis are that p �= 2, 3. Lemma 33 asserts that H0 ∼= Z3
3 is a normal subgroup of L

and Lemma 25 asserts that L is a normal subgroup of Aut(F3,3). Let W < L be the 3-Sylow subgroup of L
containing H0. If W = H0, then the conditions of normality asserts the uniqueness. Let us now assume that 
H0 �= W . In this case, W/H0 produces a 3-subgroup G < PGL2(K) keeping invariant the set {∞, 0, 1, λ1}. 
The only possibility is to have G ∼= Z3. Up to a transformation in PGL2(K), we may assume that the 
generator T of G satisfies that T (∞) = 0, T (0) = 1, T (1) = ∞ and T (λ1) = λ1. So, T (x) = 1/(1 − x) and 
λ2

1 −λ1 +1 = 0. In this case, the collection {∞, 0, 1, λ1} is also invariant under the involutions A(x) = λ1/x

and B(x) = (x − λ1)/(x − 1). The group generated by A and B is Z2
2. In fact, the group U generated by A
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and T is the alternating group A4 and it contains B. There are not more elements of PGL2(K) −U keeping 
invariant the set {∞, 0, 1, λ1}; so L/H0 = U ∼= A4. This ensures that |L| = 12 × 33 and also that H0 is 
unique inside L (see [5, Cor. 6]). �
Lemma 35. Under the above assumptions, N(H0) = Aut(Fk,n), in particular, that Aut(Fk,n) < PGLn+1(K).

Proof. Let τ ∈ Aut(Fk,n). Since L is a normal subgroup of the group Aut(Fk,n) (see Lemma 25), then 
H ′ = τH0τ

−1 is a subgroup of L; again a generalized Fermat group of type (k, n). Since H0 is the unique 
generalized Fermat group of type (k, n) inside L (see Lemma 34), we must have that H ′ = H0. �
5.2. Conclusion of the proof of Theorem 3

Lemma 34 asserts that H0 is the unique generalized Fermat group of type (k, n) inside L. Since Lemma 33
asserts that L = N(H0) and, by Lemma 35, N(H0) = Aut(Fk,n), we obtain that H0 is the unique generalized 
Fermat group of type (k, n) of Fk,n. In [7] we have seen that N(H0) is a subgroup of PGLn+1(K). Now 
Lemma 28 provides the last part of our theorem.

6. Proof of Theorem 9

Before to provide the proof of Theorem 9 let us provide some general facts on linear automorphisms in 
algebraic varieties.

Proposition 36. Consider a complete intersection Y ⊂ Ps of projective hypersurfaces Yi of degree di for 
i = 1, . . . , r. The canonical sheaf ωY is given by

ωY = OY

(
r∑

i=1
di − s− 1

)
.

Proof. [9, exer. 8.4, p. 188] �
The curve Fk,n is given as complete intersection of n − 1 hypersurfaces of degree k. Therefore, we have 

the following

Corollary 37. The canonical sheaf on the curves Fk,n is given by

ωFk,n
= OFk,n

(
(n− 1)k − n− 1

)
= OFk,n

(
(n− 1)(k − 1) − 2

)
.

Of course this is compatible with the genus computation given in eq. (1) since the degree of OFk,n
(1) is 

kn−1.

Remark 38. As the line bundle OFk,n
(1) is very ample, and (n − 1)(k− 1) > 2, we obtain that the canonical 

bundle ωFk,n
is very ample. Then the curve Fk,n is not hyperelliptic (see p. 341 of [9]). In the case of K = C, 

in the article [7] an alternative proof of this fact is presented.

Proposition 39. Let i : X ↪→ Ps be a closed projective subvariety, such that the map

H0(Ps,OPs(1)
) i∗−→ H0(X,OX(1)

)
is an isomorphism. Every automorphism of X preserving OX(1) can be extended to an automorphism of the 
ambient projective space, i.e. it is an element in PGLs+1(K).
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Proof. [14, prop. 2.1] �
We may try to prove that every automorphism is linear in the following way. Every automorphism σ of 

the curve Fk,n should preserve the canonical sheaf so it should preserve OFk,n

(
(n − 1)(k − 1) − 2

)
. Does it 

preserve OFk,n
(1)? This is certainly true if Pic(Fk,n) has no torsion and it is the general way how one proves 

linearity in higher dimensional varieties. Unfortunately curves have torsion in their Picard group.

6.1. Proof of linearity part of Theorem 9

Let D = OFk,n
(1). For every automorphism σ ∈ Aut(Fk,n) we consider the difference Tσ := σ(D) −D. It is 

a divisor of degree 0, and the divisor 
(
(n −1)(k−1) −2

)
Tσ is principal. Hence Tσ is a 

(
(n −1)(k−1) −2

)
-torsion 

point in the Jacobian of the curve Fk,n. The automorphism is linear if and only if Tσ is zero.

Lemma 40. The map σ �→ Tσ is a derivation, i.e.

Tστ = σTτ + Tσ.

Proof. Observe that

Tστ = στ(D) −D = στ(D) − σ(D) + σ(D) −D = σ(Tτ ) + Tσ. �
Lemma 41. The torsion points Tσ are H0-invariant.

Proof. Using Lemma 25 we find an � ∈ L such that hσ = σ�. For all linear automorphisms � and in particular 
for � ∈ H0 we have T� = 0. We now use the derivation rules:

Thσ = hTσ + Th = hTσ

and

Tσ� = σT� + Tσ = Tσ.

The desired result follows, since Thσ = Tσ�. �
Consider the natural map π : Fk,n → Fk,n/H0 ∼= P1. We have two maps induced on the Jacobians, 

namely

π∗ : Jac(Fk,n) → Jac(Fk,n/H0)∑
nPP �→

∑
nPπ(P ),

and

π∗ : Jac(Fk,n/H0) → Jac(Fk,n)∑
nQQ �→

∑
nQ

∑
P∈π−1(Q)

e(P/Q)P,

where 
∑

nPP (resp. 
∑

nQQ) is a divisor of degree 0 in Fk,n (resp. P1) and e(P/Q) denotes the ramification 
index of a point P lying above Q.
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Observe that the map π∗ ◦ π∗ : Jac(Fk,n) → Jac(Fk,n) is given by sending a point P ∈ Jac(Fk,n) to ∑
h∈H0

P and π∗ ◦ π∗ is the zero map since the Jacobian of the projective line is trivial.
This means that on the H0-invariant points Pσ, multiplication by |H0| = kn is zero. Since Tσ is an (

(n − 1)(k − 1) − 2
)
-torsion point, if (k, n + 1) = 1, then Tσ is zero and σ is linear.

6.2. Proof of second part of Theorem 9

Under the extra assumption that (k, n + 1) = 1, we have seen in Section 6.1 that L = Aut(Fk,n). Now 
Proposition 30 states the last part of our theorem.
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