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Abstract. In this paper we propose a framization of the Temperley–Lieb algebra. The framiza-
tion is a procedure that can briefly be described as the adding of framing to a known knot
algebra in a way that is both algebraically consistent and topologically meaningfull. Here, our
framization is defined as a quotient of the Yokonuma–Hecke algebra. The main theorem pro-
vides necessary and sufficient conditions for the Markov trace defined on the Yokonuma–Hecke
algebra to pass through to our framization.
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1. Introduction

Since the original construction of the Jones polynomial the Temperley–Lieb algebra has become
a cornerstone of a fruitful interaction between Knot theory and Representation theory. The
Temperley–Lieb algebra was introduced by Temperley and Lieb [23] and was rediscovered by
Jones [8] as a knot algebra [9].

A knot algebra is an algebra that is used in the construction of invariants of classical links.
Our main interest lies in those knot algebras that are involved in the construction of invariants
through Jones’ formula [9]. More precisely, a knot algebra A is a triplet (A, π, τ), where π is an
appropriate representation of the braid group in A and τ is a Markov trace function defined on
A. The Temperley–Lieb algebra, the Iwahori–Hecke algebra and the BMW algebra are the most
important examples of knot algebras.

The ‘framization’ is a mechanism designed by the second and fourth authors that consists of a
generalization of a knot algebra via the addition of framing generators. In this way we obtain a
new algebra which is related to framed braids and framed knots. More precisely, the framization
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procedure can roughly be described as the procedure of adding framing generators to the gener-
ating set of a knot algebra, of defining interacting relations between the framing generators and
the original generators of the algebra and of applying framing on the original defining relations of
the algebra. The resulting framed relations should be topologically consistent. The most difficult
problem in this procedure is to apply the framization on the relations of polynomial type.

The basic example of framization is the Yokonuma–Hecke algebra, which can be regarded
as a framization of the Iwahori–Hecke algebra [13, 16]. This framization of the Iwahori–Hecke
algebra gives the recipe of how to apply the framization technique on the quadratic Iwahori–Hecke
relation. Having in mind this example, the second and fourth authors proposed framizations
of several knot algebras [17, 18]. Further, the second author constructed a unique Markov
trace function, tr, on the Yokonuma–Hecke algebras Yd,n(u) with parameters z, x1, . . . , xd−1 [11].
Consequently, invariants for framed, classical and singular oriented links have been constructed
[16, 15, 14] by applying the ‘E–condition’ on the parameters x1, . . . , xd−1 so that tr re–scales
and respects the negative stabilization move between framed braids [16]. The derived invariants
for classical links do not coincide with the 2–variable Jones or HOMFLYPT polynomial (here
denoted Homflypt) [1] except in few trivial cases, yet they are conjectured to be topologically
equivalent to the Homlfypt polynomial [5].

The Temperley–Lieb algebra can be regarded as a quotient of the Iwahori–Hecke algebra,
therefore it is natural to look for a quotient of the Yokonuma–Hecke algebra that can be consid-
ered as a framization of the Temperley–Lieb algebra. In this paper we propose a framization of
the Temperley–Lieb algebra as a quotient of the Yokonuma–Hecke algebra over an appropriate
two–sided ideal. Although such an ideal is not unique, it will become clear that our choice for
the ideal that leads to the framization of the Temperley–Lieb algebra is the one that reflects the
construction of a ‘framed Jones Polynomial’ in the most natural way.

The outline of the paper is as follows. Section 2 is dedicated to providing necessary definitions
and results, including: the Iwahori–Hecke algebra, the Ocneanu trace, and the Yokonuma–Hecke
algebra Yd,n(u). In Section 3 we recall some basic tools from harmonic analysis of finite groups
such as the convolution product, the product by coordinates and the Fourier transform, necessary
for exploring the ‘E–system’.

In Section 4, where we present two natural quotients of Yd,n(u) that could possibly lead to a
framization of the Temperley–Lieb algebra, the Yokonuma–Temperley–Lieb algebra, YTLd,n(u)
(introduced and studied in [6]) and the Complex Reflection Temperley–Lieb algebra, CTLd,n(u).
After deducing that these two quotient algebras are not suitable for our purpose, we introduce
a third quotient of Yd,n(u), the Framization of the Temperley–Lieb algebra, FTLd,n(u). The
connection between all possible quotients of Yd,n(u) is then analyzed and we prove that the
defining ideals of FTLd,n(u) and CTLd,n(u) are principal. Furthermore, we provide presentations
with non–invertible generators for the quotient algebras FTLd,n(u) and CTLd,n(u). We conclude
this section with the formula for the dimension of FTLd,n(u) by Chlouveraki and Pouchin [2]
and we provide a linear basis for the case d = 2, n = 3.

The main theorems are given in Section 5. They provide the necessary and sufficient conditions
for the Markov trace tr [11] on the Yokonuma–Hecke algebra to pass through to the quotient alge-
bras FTLd,n(u) and CTLd,n(u) respectively. The corresponding results for the algebra YTLd,n(u)
are given in [6]. More precisely, we first find the necessary and sufficient conditions for the case
of FTLd,3(u) using tools from harmonic analysis on finite groups (Lemma 8) and then we gener-
alize using induction on n (Theorem 5). Using the same ideas we prove the analogous theorem
for CTLd,n(u) (Theorem 6). In Section 6 we discuss the connection between the necessary and
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sufficient conditions such that tr passes to all three quotients algebras CTLd,n(u), FTLd,n(u) and
YTLd,n(u).

Finally, in Section 7 we define invariants for framed and classical links through the quotient
algebras FTLd,n(u) and CTLd,n(u), and we deduce that the invariants for framed links that are
derived from FTLd,n(u) provide a framed analogue of the Jones polynomial, while the invariants
from the algebras CTLd,n(u) coincide with those from FTLd,n(u). We note that the invariants
for classical links from the algebras YTLd,n(u) recover the Jones polynomial [6].

2. Preliminaries

2.1. Notations. Throughout the paper by the term algebra we mean an associative unital (with
unity 1) algebra over C. Thus we can regard C as a subalgebra of the center of the algebra. We
will also fix two positive integers, d and n.

As usual we denote Z/dZ the group of integers modulo d, Z/dZ = {0, 1, . . . , d− 1}.
We denote Sn the symmetric group on n symbols. Let si be the elementary transposition

(i, i + 1) and let 〈si, sj〉 denote the the subgroup generated by si and sj . We also denote by l
the length function on Sn with respect to the si’s.

Denote Cd = 〈t | td = 1〉 the cyclic group of order d. Let ti := (1, . . . , 1, t, 1, . . . , 1) ∈ Cnd ,
where t is in the i–th position. We then have:

Cnd = 〈t1, . . . , tn | titj = tjti, t
d
i = 1〉.

Define Cd,n := Cnd o Sn, where the action is defined by permutation on the indices of the ti’s,
namely: sitj = tsi(j)si. Notice that Cd,n is isomorphic to the complex reflection group G(d, 1, n).

Denote also Bn the braid group of type A, that is, the group generated by the elementary
braidings σ1, . . . , σn−1, subject to the following relations: σiσjσi = σjσiσj , for |i − j| = 1 and
σiσj = σjσi, for |i− j| > 1. We will also use the d–modular framed braid group Fd,n := Cnd oBn,
where the action of Bn on Cnd is defined by the induced permutation on the indices of the ti’s
and C is the infinite cyclic group, which surjects naturally on Fd,n. We will also refer to the
framed braid group Fn := Cn oBn. Of course,

Fn ∼= Zn oBn and Fd,n ∼= (Z/dZ)n oBn.

Remark 1. We would like to point out that Cd,n and Fd,n appear in the theory of “fields with one
element”. This is a theory dreamt by J. Tits in his study of algebraic groups. According to the
seminal article of Kapranov and Smirnov [19], GLn(F1) = Sn, GLn(F1[t]) = Bn, GLn(F1n) = Cd,n
and GLn(F1n [t]) = Fd,n, where GLn(F1n) (resp. GLn(F1n [t])) is in “some sense” the limit case
q → 1 of GLn(Fq) (resp. GLn(Fq[t])).

2.2. Background material. From now on we fix a non–zero complex number u. We denote by
Hn(u) the Iwahori–Hecke algebra associated to Sn, that is, the C–algebra with linear basis
{hw |w ∈ Sn} and the following rules of multiplication:

hsihw =

{
hsiw for l(siw) > l(w)
uhsiw + (u− 1)hw for l(siw) < l(w)

(2.1)

Set hi := hsi . Then Hn(u) is presented by h1, . . . , hn−1 subject to the following relations:

hihj = hjhi for all |i− j| > 1

hihjhi = hjhihj for all |i− j| = 1

h2i = u+ (u− 1)hi
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Definition 1. The Temperley–Lieb algebra TLn(u) can be defined as the quotient of the algebra
Hn(u) over the two–sided ideal generated by the Steinberg elements hi,j :

hi,j :=
∑

w∈〈si,sj〉

hw, for all |i− j| = 1. (2.2)

Equivalently, TLn(u) can be presented by h1, . . . , hn−1 subject to the following relations:

hihj = hjhi for all |i− j| > 1

hihjhi = hjhihj for all |i− j| = 1

h2i = u+ (u− 1)hi

1 + hi + hj + hihj + hjhi + hihjhi = 0 for all |i− j| = 1

Furthermore, using the transformation:

fi :=
1

u+ 1
(hi + 1) (2.3)

the algebra TLn(u) can be presented by the non–invertible generators f1, . . . , fn−1 subject to
the following relations:

f2i = fi
fifjfi = δfi, for all |i− j| = 1
fifj = fjfi, for all |i− j| > 1

where δ−1 = 2 + u+ u−1 [9].
In [7, 9] Ocneanu constructed a unique Markov trace on Hn(u). More precisely, we have the

following theorem.

Theorem 1 (Ocneanu). For any ζ ∈ C× there exists a linear trace τ on ∪∞n=1Hn(u) uniquely
defined by the inductive rules:

(1) τ(ab) = τ(ba), a, b ∈ Hn(u)
(2) τ(1) = 1
(3) τ(ahn) = ζ τ(a), a ∈ Hn(u) (Markov property).

The Ocneanu trace τ passes through to TLn(u). Indeed, as it turned out [9], to factorize τ to
the Temperley–Lieb algebra, we only need the fact that τ kills the expression of Eq. 2.2. So, in
[9] it is proved that τ passes to the Temperley–Lieb algebra if and only if:

ζ = − 1

u+ 1
or ζ = −1. (2.4)

2.3. The Yokonuma–Hecke algebra. The Yokonuma–Hecke algebra of type A, denoted Yd,n(u)
[25], can be defined by generators and relations [11] and can be regarded as a quotient of CFd,n
over the two–sided ideal that is generated by the elements:

σ2i − (u− 1)ei − (u− 1)eiσi − 1,

where ei is the idempotent defined by:

ei :=
1

d

d−1∑
s=0

tsi t
d−s
i+1 , i = 1, . . . , n− 1. (2.5)

Equivalently, one can define Yd,n(u) as follows:
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Definition 2. The Yokonuma–Hecke algebra Yd,n(u) is the algebra presented by generators
g1, . . . , gn−1, t1, . . . , tn subject to the following relations:

gigj = gjgi for all |i− j| > 1 (2.6)
gi+1gigi+1 = gigi+1gi (2.7)

titj = tjti for all i, j (2.8)

tdi = 1 for all i (2.9)
giti = ti+1gi (2.10)

giti+1 = tigi (2.11)
gitj = tjgi for j 6= i, i+ 1 (2.12)
g2i = 1 + (u− 1)ei + (u− 1)eigi (2.13)

Note that for d = 1 the quadratic relation (2.13) becomes:

g2i = (u− 1)gi + u

So the Yokonuma–Hecke Y1,n(u) coincides with the Iwahori–Hecke algebra.

The algebra Yd,n(u) can also be regarded as a u–deformation of the group algebra CCd,n.
Indeed, if w ∈ Sn is a reduced word in Sn with w = si1 . . . sik then the expression gw =
gsi1 . . . gsir ∈ Yd,n(u) is well–defined since the generators gi := gsi satisfy the same braiding
relations as the generators of Sn [20]. We have the following multiplication rule in Yd,n(u) (see
Proposition 2.4[10]):

gsigw =

{
gsiw for l(siw) > l(w)
gsiw + (u− 1)eigsiw + (u− 1)eigw for l(siw) < l(w).

(2.14)

Note also that the generators gti correspond to ti and so we have that: gtiw = gtigw = tigw.

The definition of the idempotents ei can be generalized in the following way. For any indices
i, j we define the following elements in Yd,n(u):

ei,j :=
1

d

d−1∑
s=0

tsi t
d−s
j . (2.15)

We also define, for any 0 ≤ m ≤ d− 1, the shift of ei by m:

e
(m)
i :=

1

d

d−1∑
s=0

tm+s
i td−si+1 . (2.16)

Notice that ei = ei,i+1 = e
(0)
i . Notice also that e(m)

i = tmi ei = tmi+1ei. Then one deduces easily
that:

e
(m)
i ei+1 = eie

(m)
i+1

ta1t
b
2t
c
3e1e2 = e

(a+b+c)
1 e2

(2.17)

for all 0 ≤ m, a, b, c ≤ d− 1.
The following lemma collects some of the relations among the ei’s, the tj ’s and the gi’s. These

relations will be used in the paper.
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Lemma 1 ([6] Lemma 1). For the idempotents ei and for 1 ≤ i, j ≤ n−1 the following relations
hold:

tjei = eitj
ei+1gi = giei,i+2

eigj = gjei, for j 6= i− 1, i+ 1
ejgigj = gigjei for |i− j| = 1
eiei+1 = eiei,i+2

eiei+1 = ei,i+2ei+1.

Using the multiplication formulas (2.14), the second author proved in [11] that Yd,n(u) has
the following standard linear basis:

{ta11 . . . tann gw | ai ∈ Z/dZ, w ∈ Sn}. (2.18)

Notice now that using relations (2.10) and (2.11) one can write any monomial m in Yd,n(u) in
the following form:

m = ta11 . . . tann m′

where m′ = gi1 . . . gin . We say that every monomial in Yd,n(u) has the splitting property„ which
is in fact inherited from the framed braid group Fn. That is, one can separate the framing part
from the braiding part.

Further, we have an inductive basis of the Yokonuma–Hecke algebra, which is used in the
proof of the main theorem, Theorem 5. More precisely:

Proposition 1 ([11] Proposition 8). Every element in Yd,n+1(u) is a unique linear combination
of words, each of one of the following types:

mngngn−1 . . . git
k
i or mnt

k
n+1

where 0 ≤ k ≤ d− 1 and mn is a word in the inductive basis of Yd,n(u).

2.4. Using the above basis, the second author proved that Yd,n(u) supports a unique Markov
trace. We have the following theorem:

Theorem 2 ([11] Theorem 12). For indeterminates z, x1, . . . , xd−1 there exists a unique linear
Markov trace tr:

tr : ∪∞n=1Yd,n(u) −→ C[z, x1, . . . , xd−1]

defined inductively on n by the following rules:
tr(ab) = tr(ba)
tr(1) = 1

tr(agn) = z tr(a) (Markov property)
tr(atsn+1) = xstr(a) (s = 1, . . . , d− 1)

where a, b ∈ Yd,n(u).

Using the trace rules of Theorem 2 and including x0 := 1, we deduce that tr(ei) takes the
same value for all i, and this value is denoted by E:

E := tr(ei) =
1

d

d−1∑
s=0

xsxd−s.

Moreover, we also define the shift by m of E, where 0 ≤ m ≤ d− 1, by:

E(m) := tr(e
(m)
i ) =

1

d

d−1∑
s=0

xm+sxd−s.
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Notice that E = E(0).

3. Fourier transform and the E–system

An important tool in the proof of the main theorem are some classical identities of harmonic
analysis on the group of integers modulo d. More precisely, we will use identities linking the
convolution product and the product by coordinates through the Fourier transform. These tools
were also used in solving the so–called E–system, see Appendix [16]. Thus, in this section we
shall give some notations and recall some well–known and useful facts of the Fourier transform
along with some facts for the E–system.

3.1. In our setting it is convenient to see the group of integers modulo d as the group Cd. Hence,
the product by coordinates in CCd is defined by the formula(

d−1∑
r=0

art
r

)
·

(
d−1∑
s=0

bst
s

)
=

d−1∑
i=0

aibit
i

and the convolution product is defined by the formula:(
d−1∑
r=0

art
r

)
∗

(
d−1∑
s=0

bst
s

)
=

d−1∑
r=0

(
d−1∑
s=0

asbr−s

)
tr (3.1)

In order to define the Fourier transform on Cd we need to introduce the following elements:

ia :=
d−1∑
s=0

χa(s)t
s (a ∈ Z/dZ).

where the χk’s denote the characters of the group Z/dZ, namely:

χk(m) = cos
2πkm

d
+ i sin

2πkm

d
(k,m ∈ Z/dZ)

One can verify that:

ia ∗ ib =

{
d ia if a = b

0 if a 6= b.

On the other hand, we shall denote by δa the element of the canonical linear basis of CCd, that
is, δa := ta. It is clear that:

δa · δb =

{
δa if a = b

0 if a 6= b

The Fourier transform is the linear automorphism on CCd, defined as:

y :=

d−1∑
r=0

art
r 7→ ŷ :=

d−1∑
s=0

(y ∗ is)(0)ts (3.2)

where (y ∗ is)(0) denote the coefficient of δ0 in the convolution y ∗ is.
The next proposition gathers the most important properties of the Fourier transform used in

the paper.

Proposition 2 ([22]). For any y and y′ in CCd, we have:

(1) ŷ ∗ y′ = ŷ · ŷ′
(2) ŷ · y′ = d−1ŷ ∗ ŷ′
(3) δ̂a = i−a
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(4) îa = dδa
(5) If y =

∑d−1
r=0 art

r, then

̂̂y = d
d−1∑
r=0

a−rt
r

Finally, we note that the elements in the group algebra CCd can also be identified to the set
of functions f : Z/dZ→ C, where the identification is as follows:

(f : Z/dZ→ C) 7→
d−1∑
k=0

f(k)tk ∈ CCd.

Some times we shall use this identification, since it makes some computations more comfortable.

3.2. The E–system is a non–linear system of equations that was introduced in order to find the
necessary and sufficient conditions that need to be applied on the parameters xi of tr so that the
definition of link invariants from the Yokonuma–Hecke algebra would be possible [16].

In [16, Appendix] the full set of solutions of the E–system is given. To do that, Gérardin
interpreted the solutions of the E–system as certain complex functions x over Z/dZ. More
precisely, the function x is defined by mapping 0 to x0 := 1 and k is mapped in the parameters
xk of tr. Thus, the function x is identified as:

x =
d−1∑
k=0

xkt
k

Notice that the coefficient of tk in the convolution x ∗ x (respectively x ∗ x ∗ x) is:

E(k) (respectively tr(e
(k)
1 e2))

(see Lemma 2 [6]). Equivalently, we have

x ∗ x : k 7→ E(k) and x ∗ x ∗ x : k 7→ tr(e
(k)
1 e2) (3.3)

Definition 3. We say that the (d− 1)–tuple of complex numbers (x1, . . . , xd−1) satisfies the E–
condition if x1, . . . , xd−1 satisfy the following system of non–linear equations in C, the E–system:

E(m) = xmE (1 ≤ m ≤ d− 1). (3.4)

More precisely, in [16, Appendix], Gérardin achieved to solve the E–system by interpreting
each equation of (3.4) as the value atm of the convolution product of the functional x : s 7→ xs by
itself in the complex algebra CCd and then using some tools of harmonic analysis on finite groups.
It turns out that the solutions of the E–system are parametrized by the non–empty subsets of
the cyclic group Z/dZ, that is, given a non–empty subset D of Z/dZ, the corresponding solution
is:

xD =
1

|D|
∑
k∈D

χk (3.5)

Remark 2. It is worth noting that the formula for the solutions of the E–system can be in-
terpreted as a generalization of the Ramanujan’s sum. Indeed, by taking the subset P of Z/dZ
consisting of the numbers coprime to d, then the solution parametrized by P is, up to the factor
|P |, the Ramanujan’s sum cd(k) (see [21]).
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Notice now, that the characters of Cd are given by ta 7→ χk(a), where k runs in Z/dZ; thus,
we shall denote also this character as χk. We note also that the solutions xD can be seen as
elements in CCd, namely:

xD =
d−1∑
j=0

xjt
j (3.6)

where xj = 1
|D|
∑

m∈D χm(j).
We finish this section with a theorem which yields the main connection among the solutions

of the E–system and the trace tr.

Theorem 3 ([13] Theorem 7). If the trace parameters (x1, . . . , xd−1) satisfy the E–condition,
then

tr(αen) = tr(α)tr(en) (a ∈ Yd,n(u)).

4. A Framization of the Temperley–Lieb algebra

As discussed during the Introduction, the Yokonuma–Hecke algebra can be interpreted as the
framization of the Iwahori–Hecke algebra, which is a knot algebra. Thus a natural question
arises, the definition of a framization for the knot algebra Temperley–Lieb. Considering the fact
that the Temperley–Lieb algebra can be defined as a quotient of the Iwahori–Hecke algebra,
it is natural to try and define a framization of the Temperley–Lieb algebra as a quotient of
the Yokonuma–Hecke algebra. Recall now that the defining ideal of the Temperley–Lieb algebra
(Definition 1) is generated by the Steinberg elements which are related to the subgroups 〈si, si+1〉
of Sn, for all i. These subgroups can be also regarded as subgroups of Cd,n. Therefore, using the
multiplication rule of Eq. 2.14 we are able to define the analogous Steinberg elements gi,i+1 in
Yd,n(u),

gi,i+1 :=
∑

w∈〈si,si+1〉

gw for all i

In [6, Definition 5] we defined a potential candidate for the framization of the Temperley–Lieb
algebra, the Yokonuma–Temperley–Lieb algebra, denoted YTLn(u), which is the quotient of
Yd,n(u) over the 2–sided ideal generated by all the gi,i+1’s for all i. It is not difficult to show that
this ideal is in fact principal and it is generated by the element g1,2. Moreover, the necessary
and sufficient conditions for the trace tr to pass through to YTLn(u) were studied [6, Theorem
5]. Unfortunately, these conditions turn out to be too strong. Namely, the trace parameters xi
must be dth roots of unity, furnishing obvious, special solutions of the E–system and resulting
in loss of the framing information on the level of the invariant. Thus, the framed analogues of
the Jones polynomial obtained from the algebras YTLd,n(u) turn out to be of no interest. For
this reason, YTLd,n(u) is discarded as framization of TLn(u). However, using the results of [1],
the classical Jones polynomial can be still recovered through these algebras by representing the
Artin braid group Bn in Yd,n(u), considering the ti’s as formal generators, and then taking the
quotient over the ideal that is generated by the gi,i+1’s [6, Corollary 2]. Finally, we note that
the representation theory of this algebra has been studied extensively in [2].

Given the fact that Yd,n(u) can be considered as a u–deformation of CCd,n (recall the discussion
in Section 2.3), it is natural to consider subgroups of Cd,n that involve in their generating set
the framing generators of the i–th and j–th strands along with 〈si, sj〉. Therefore, we have
considered the following subgroups of Cd,n:

Ci,i+1 := 〈ti, ti+1, ti+2〉o 〈si, si+1〉 for all i.
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Further, notice that these subgroups are isomorphic to Cd,3 and thus analogous to the classical
case. We define now the elements ci,i+1 in Yd,n(u) as follows:

ci,i+1 =
∑

c∈Ci,i+1

gc

We then have the following definition:

Definition 4. For n ≥ 3, we define the algebra CTLd,n(u) as the quotient of the algebra Yd,n(u)
by the two–sided ideal of generated by the ci,i+1’s, for all i. We shall call CTLd,n(u) the Complex
Reflection Temperley–Lieb algebra.

As it will be shown in Theorem 6 the necessary and sufficient conditions such that tr passes
to CTLd,n(u) are, contrary to the case of YTLd,n(u), too relaxed. In particular, the E–condition
does not appear on the trace parameters xi, which is necessary for the definition of link invariants
through tr (see [16, Section 4] for details). Thus, in order to define link invariants from the
algebras CTLd,n(u), the E–condition must be imposed on the xi’s resulting in invariants that
are naturally obtained from a different construction (see below). Therefore, both of the natural
definitions for the framed analogue of the Temperley–Lieb algebra that are derived from Yd,n(u)
should be discarded as possible framizations of the Temperley–Lieb algebra.

Since the conditions such that the trace tr passes to the quotient algebras are either too strong
or too relaxed, it indicates that the desired framization of the Temperley–Lieb algebra should
be an intermediate algebra between YTLd,n(u) and CTLd,n(u). Regarding the definitions of
these two algebras, it is reasonable to construct the framization in an analogous way using an
intermediate subgroup between 〈si, si+1〉 and Ci,i+1. Thus, we consider the following subgroups
of Cd,n,

Hi,i+1 := 〈tit−1i+1, ti+1t
−1
i+2〉o 〈si, si+1〉 for all i.

We now introduce the following elements:

ri,i+1 :=
∑

x∈Hi,i+1

gx for all i.

Definition 5. For n ≥ 3, the Framization of the Temperley–Lieb algebra, denoted FTLd,n(u), is
defined as the quotient Yd,n(u) over the two–sided ideal generated by the elements ri,i+1, for all
i.

The reason of considering FTLd,n(u) as a framization of the Temperley–Lieb algebra is due
to the fact that through this algebra the definition of a non–trivial framization of the Jones
polynomial is possible. Therefore, the necessary and sufficient conditions for the trace tr to pass
to FTLd,n(u) are determined in Theorem 6, while in Section 7 we discuss the invariants derived
from this algebra.

Remark 3. Notice that when d = 1, the Yokonuma–Hecke algebra collapses to the Iwahori–
Hecke algebra, hence it follows that YTL1,n(u) also collapses to TLn(u). Moreover, in this case
the subgroups Hi,i+1 and Ci,i+1 also collapse to 〈si, si+1〉. Hence, FTL1,n(u) and CTL1,n(u)
collapse to TLn(u) too.

4.1. We shall now show how the algebras defined above are related. We start noting that

Ci,i+1 = Hi,i+1 o Cd

Indeed, we have a homomorphism φ from Ci,i+1 onto Cd defined by φ(x) = ta+b+ci , where Cd is
regarded as the cyclic group generated by ti and x is written uniquely as x = tai t

b
i+1t

c
i+2w, with
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w ∈ 〈si, si+1〉. Thus, kerφ = Hi,i+1 and φ
∣∣
Hi,i+1

= idCd
, then Ci,i+1 = Hi,i+1 o Cd. Therefore,

given x ∈ Ci,i+1 we have a unique decomposition x = tki y, where 0 ≤ k ≤ d− 1 and y ∈ Hi,i+1.
This decomposition of the elements of Ci,i+1 together with the multiplication rule Eq. 2.14,
implies gx = tki gy. Then

ci,i+1 =
∑

0≤k≤d−1
y∈Hi,i+1

tki gy

hence

ci,i+1 =

(
d−1∑
k=0

tki

)
ri,i+1 (4.1)

Notice that every x in Hi,i+1 can be written in the form x = tai t
−a
i+1t

b
i+1t

−b
i+2w = tai t

b−a
i+1 t

−b
i+2w,

where w ∈ 〈si, si+1〉. Therefore, by using again the multiplication rule of Eq. 2.14, we have that
gx = tai t

b−a
i+1 t

−b
i+2gw. Then,

ri,i+1 =

d−1∑
a,b=0

w∈〈si,si+1〉

tai t
b−a
i+1 t

−b
i+2gw =

 d−1∑
a,b=0

tai t
b−a
i+1 t

−b
i+2

 ∑
w∈〈si,si+1〉

gw


hence

ri,i+1 = eiei+1gi,i+1 (4.2)

Equation 4.1 implies that CTLd,n(u) projects onto FTLd,n(u) while Eq. 4.2 implies that
FTLd,n(u) projects onto YTLd,n(u). Moreover, we have the following commutative diagram
of epimorphisms:

Yd,n(u)

��

// CTLd,n(u)

��

// FTLd,n(u)

ww

// YTLd,n(u)

qqHn(u) // TLn(u)

where the non–horizontal arrows are defined by mapping the framing generators to 1.

4.2. It is known that the defining ideal of the Temperley–Lieb algebra is principal. We are going
now to prove that the defining ideals of FTLd,n(u) and CTLd,n(u) respectively are principal ideals
too. The method used in the proof is standard and we start with two technical lemmas.

Lemma 2. The following hold in Yd,n(u) for all i = 1, . . . , n− 1 and j = 1, . . . , n:

(1) tj = (g1 . . . gn−1)
j−1 t1 (g1 . . . gn−1)

−(j−1)

(2) gi = (g1 . . . gn−1)
i−1 g1 (g1 . . . gn−1)

−(i−1)

Proof. The statement (1) is true for j = 2. Indeed:

(g1 . . . gn−1) t1 (g1 . . . gn−1)
−1 = g1t1g2 . . . gn−1(g1 . . . gn−1)

−1

= t2(g1 . . . gn−1)(g1 . . . gn−1)
−1

= t2.
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Suppose that the statement is true for j = k. We will show that the statement holds for j = k+1.
We have:

(g1 . . . gn−1)
kt1(g1 . . . gn−1)

−k = (g1 . . . gn−1)(g1 . . . gn−1)
k−1t1(g1 . . . gn−1)

−(k−1)(g1 . . . gn−1)
−1

= (g1 . . . gn−1)tk(g1 . . . gn−1)
−1

= g1 . . . gk−1gk tk gk+1 . . . gn−1(g1 . . . gn−1)
−1

= tk+1(g1 . . . gn−1)(g1 . . . gn−1)
−1

= tk+1.

The second statement of the Lemma has been proved in [6, (2) Lemma 5].
�

Lemma 3. The following hold in Yd,n(u) for all i = 1, . . . , n− 2 and 0 ≤ a, b, c ≤ d− 1:

(1) tai t
b
i+1t

c
i+2 = (g1 . . . gn−1)

i−1 ta1t
b
2t
c
3 (g1 . . . gn−1)

−(i−1)

(2) tai t
b
i+1t

c
i+2gi = (g1 . . . gn−1)

i−1 ta1t
b
2t
c
3g1 (g1 . . . gn−1)

−(i−1)

(3) tai t
b
i+1t

c
i+2gi+1 = (g1 . . . gn−1)

i−1 ta1t
b
2t
c
3g2 (g1 . . . gn−1)

−(i−1)

(4) tai t
b
i+1t

c
i+2gigi+1 = (g1 . . . gn−1)

i−1 ta1t
b
2t
c
3g1g2 (g1 . . . gn−1)

−(i−1)

(5) tai t
b
i+1t

c
i+2gi+1gi = (g1 . . . gn−1)

i−1 ta1t
b
2t
c
3g2g1 (g1 . . . gn−1)

−(i−1)

(6) tai t
b
i+1t

c
i+2gigi+1gi = (g1 . . . gn−1)

i−1 ta1t
b
2t
c
3g1g2g1 (g1 . . . gn−1)

−(i−1)

Proof. We will demonstrate the proof the statement (1) and (6). The other statements are proved
in an analogous manner. For statement (1) we have from Lemma 2:

tai t
b
i+1t

c
i+2 = (g1 . . . gn−1)

i−1ta1(g1 . . . gn−1)
−(i−1)(g1 . . . gn−1)

itb1(g1 . . . gn−1)
−i

· (g1 . . . gn−1)i+1tc1(g1 . . . gn−1)
−(i+1)

= (g1 . . . gn−1)
i−1ta1(g1 . . . gn−1)t

b
1(g1 . . . gn−1)

−1(g1 . . . gn−1)
−(i−1)

· (g1 . . . gn−1)i−1(g1 . . . gn−1)2tc1(g1 . . . gn−1)−2(g1 . . . gn−1)−(i−1)

= (g1 . . . gn−1)
i−1ta1t

b
2t
c
3(g1 . . . gn−1)

−(i−1).

For statement (6) we have from Lemma 2:

tai t
b
i+1t

c
i+2gigi+1gi = (g1 . . . gn−1)

i−1ta1(g1 . . . gn−1)
−(i−1)(g1 . . . gn−1)

itb1(g1 . . . gn−1)
−i

· (g1 . . . gn−1)i+1tc1(g1 . . . gn−1)
−(i+1)(g1 . . . gn−1)

i−1g1(g1 . . . gn−1)
−(i−1)

· (g1 . . . gn−1)ig1(g1 . . . gn−1)−i(g1 . . . gn−1)i−1g1(g1 . . . gn−1)−(i−1)

= (g1 . . . gn−1)
i−1ta1(g1 . . . gn−1)t

b
1(g1 . . . gn−1)

−1(g1 . . . gn−1)
−(i−1)

· (g1 . . . gn−1)i−1(g1 . . . gn−1)2tc1(g1 . . . gn−1)−2(g1 . . . gn−1)−(i−1)

· (g1 . . . gn−1)i−1g1(g1 . . . gn−1)−(i−1)(g1 . . . gn−1)i−1(g1 . . . gn−1)

· g1(g1 . . . gn−1)−1(g1 . . . gn−1)−(i−1)(g1 . . . gn−1)i−1g1(g1 . . . gn−1)−(i−1)

= (g1 . . . gn−1)
i−1ta1t

b
2t
c
3g1g2g1(g1 . . . gn−1)

−(i−1).

�

Theorem 4. The defining ideal of FTLd,n(u) is generated by any single element ri,i+1.
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Proof. It is enough to prove that ri,i+1 = (g1 . . . gn−1)
(i−1)r1,2(g1 . . . gn−1)

−(i−1). Expanding r1,2,
we have

(g1 . . . gn−1)
i−1r1,2(g1 . . . gn−1)

−(i−1) =
∑

a+b+c=0
w∈S3

(g1 . . . gn−1)
i−1 ta1t

b
2t
c
3 gw (g1 . . . gn−1)

−(i−1)

Applying now Lemma 3 in each factor of the summation, we arrive to

(g1 . . . gn−1)
i−1r1,2(g1 . . . gn−1)

−(i−1) = ri,i+1 (4.3)

Therefore the proof is concluded. �

From Theorem 4 we have the following corollaries:

Corollary 1. FTLd,n(u) is the algebra generated by t1, . . . , tn, g1, . . . , gn−1 which are subject to
the defining relations of Yd,n(u) and the relation:

r1,2 = 0. (4.4)

Corollary 2. The defining ideal of CTLd,n(u) is generated by any single element ci,i+1. Hence
CTLd,n(u) can be presented by t1, . . . , tn, g1, . . . , gn−1 together with the defining relations of
Yd,n(u) and the relation:

c1,2 = 0. (4.5)

Proof. As in the proof Theorem 4, it is enough to prove that ci,i+1 = γc1,2γ
−1 where γ :=

(g1 . . . gn−1)
i−1. From Eq. 4.1, we have

γc1,2γ
−1 =

 ∑
0≤k≤d−1

γtk1γ
−1

 γr1,2γ
−1

By using now (1) of Lemma 2 and Eq. 4.3, it follows that γc1,2γ−1 = ci,i+1. The rest of the
statement is now clear. �

4.3. By using the analogous transformation to Eq. 2.3, we obtain presentations for FTLd,n(u)
and CTLd,n(u) through non–invertible generators. More precisely, set

`i :=
1

u+ 1
(gi + 1).

Then, by a direct computation, which is not necessary to reproduce here, we obtain the following:

Proposition 3. The algebra FTLd,n(u) can be presented with generators:

`1, . . . , `n−1, t1, . . . , tn
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subject to the following relations:

tdi = 1, titj = tjti

`itj = tj`i, for |i− j| > 1

`i`j = `j`i, for |i− j| > 1

`iti = ti+1`i +
1

u+ 1
(ti − ti+1)

`iti+1 = ti`i +
1

u+ 1
(ti+1 − ti)

`2i =
(u− 1)ei + 2

u+ 1
`i,

`i`i+1`i −
(u− 1)ei + 1

(u+ 1)2
`i = `i+1`i`i+1 −

(u− 1)ei+1 + 1

(u+ 1)2
`i+1

eiei+1`i`i+1`i =
u

(u+ 1)2
eiei+1`i

Proposition 4. The algebra CTLd,n(u) can be presented with generators:

`1, . . . , `n−1, t1, . . . , tn

subject to the following relations:

tdi = 1, titj = tjti

`itj = tj`i, for |i− j| > 1

`i`j = `j`i, for |i− j| > 1

`iti = ti+1`i +
1

u+ 1
(ti − ti+1)

`iti+1 = ti`i +
1

u+ 1
(ti+1 − ti)

`2i =
(u− 1)ei + 2

u+ 1
`i,

`i`i+1`i −
(u− 1)ei + 1

(u+ 1)2
`i = `i+1`i`i+1 −

(u− 1)ei+1 + 1

(u+ 1)2
`i+1

d−1∑
k=0

e
(k)
i ei+1`i`i+1`i =

d−1∑
k=0

e
(k)
i ei+1

u

(u+ 1)2
`i

Remark 4. We know that a linear basis of the Temperley–Lieb algebra can be constructed from
the interpretation of the generators fi as diagrams. In virtue of Remark 3, then it is desirable to
construct a basis of FTLd,n(u) from the presentation given in Proposition 3. Unfortunately, we
do not have a diagrammatic interpretation for the generators li yet. Also, an explicit linear basis
for both FTLd,n(u) and CTLd,n(u) is still an open problem. Indeed, the construction of such a
basis for FTLd,n(u) seems like a non–trivial task. However, in [3], by using the representation
theory of Yokonuma–Hecke algebra (see [4]), Chlouveraki and Pouchin have found a formula for
the dimension of FTLd,n(u). More precisely, they proved:

dimFTLd,n(u) =
∑

|k1|+|k2|+...+|kd|=n

(
n!

|k1|! . . . |kd|!

)2

c|k1| . . . c|kd| (4.6)
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where n = (k1, . . . , kd) is a d–partition of n, ki is a usual partition whose Young diagram has at
most two columns and ck is the k–th Catalan number. We shall show an explicit basis for the
case n = 3 and d = 2. To do that, we shall use the Corollary 1 to describe FTLd,n(u). Therefore,
we have that the inductive basis of Y2,3(u) described in Proposition 1 spans FTL2,3(u). From
Eq. 4.6 it follows that the dimension of FTL2,3(u) is 46. Thus, a linear basis of FTL2,3(u) can be
obtained by omitting 2 linearly dependent elements, from the 48 elements of the inductive basis
of Y2,3(u). Now Eq. 4.2, implies that tm1 e1e2g1,2 = 0, for m = 0, 1. Therefore, it follows that the
elements 1 and t1 can be expressed, in FTL2,3(u), as a linear combination of the standard basis
of Y2,3(u). Thus, we have a basis of FTL2,3(u) obtained from the inductive basis FTL2,3(u) by
omitting the monomials 1 and t1.

4.4. We finish this section with two technical lemmas which will be used in the proof of Theo-
rems 5 and 6.

Lemma 4. For the element g1,2 we have in Yd,n(u) the following:

(1) g1g1,2 = [1 + (u− 1)e1]g1,2
(2) g2g1,2 = [1 + (u− 1)e2]g1,2
(3) g1g2g1,2 = [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]g1,2
(4) g2g1g1,2 = [1 + (u− 1) e2 + (u− 1)e1,3 + (u− 1)2e1e2]g1,2
(5) g1g2g1g1,2 = [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]g1,2.

Proof. See [6, Lemma 5]. Cf. [12, Lemma 7.5 ]. �

Lemma 5. For the element r1,2 we have in Yd,n(u):

(1) g1r1,2 = [1 + (u− 1)e1]r1,2
(2) g2r1,2 = [1 + (u− 1)e2]r1,2
(3) g1g2r1,2 = [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]r1,2
(4) g2g1r1,2 = [1 + (u− 1) e2 + (u− 1)e1,3 + (u− 1)2e1e2]r1,2
(5) g1g2g1r1,2 = [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]r1,2.

Proof. In order to prove this lemma we will make extensive use of Lemmas 4 and 1. For statement
(1) we have:

g1r1,2 = g1e1e2g1,2 = e1e1,3g1g1,2

= e1e2[1 + (u− 1)e1]g1,2

= [1 + (u− 1)e1]e1e2g1,2

= [1 + (u− 1)e1]r1,2

In an analogous way we prove statement (2). For statement (3) we have that:

g1g2r1,2 = g1g2e1e2g1,2 = e2e1,3g1g2g1,2

= e1e2[1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]g1,2

= [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]e1e2g1,2

= [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]r1,2
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In an analogous way we prove statement (4). Finally, we have for statement (5):

g1g2g1r1,2 = g1g2g1e1e2g1,2

= e1e2g1g2g1g1,2

= e1e2[1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]g1,2

= [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]e1e2g1,2

= [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]r1,2.

�

Lemma 6. For the element c1,2 we have in Yd,n(u):

(1) g1c1,2 = [1 + (u− 1)e1]c1,2
(2) g2c1,2 = [1 + (u− 1)e2]c1,2
(3) g1g2c1,2 = [1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2]c1,2
(4) g2g1c1,2 = [1 + (u− 1) e2 + (u− 1)e1,3 + (u− 1)2e1e2]c1,2
(5) g1g2g1c1,2 = [1 + (u− 1)(e1 + e2 + e1,3) + (u− 1)2(u+ 2) e1e2]c1,2

Proof. The proof is completely analogous to the proof of Lemma 5. �

5. Markov traces

The main purpose of this section is to find the necessary and sufficient conditions in order that
the trace tr defined on Yd,n(u) [11] passes to the quotient algebras FTLd,n(u) and CTLd,n(u).
Since the defining ideal of FTLd,n(u) (respectively of CTLd,n(u)) is principal, by the linearity of
tr, we have that tr passes to FTLd,n(u) (respectively to CTLd,n(u)) if and only if we have:

tr(m r1,2) = 0 (respectively tr(m c1,2) = 0) (5.1)

for all monomials m in the inductive basis of Yd,n(u). So, we seek necessary and sufficient
conditions for (5.1) to hold. The strategy is to find such conditions first for n = 3 and then
generalise using induction.

5.1. Recall that elements in the inductive basis of Yd,3(u) are of the following forms:

ta1t
b
2t
c
3, ta1g1t

b
1t
c
3, ta1t

b
2g2g1t

c
1, ta1t

b
2g2t

c
2, ta1g1t

b
1g2t

c
2, ta1g1t

b
1g2g1t

c
1, (5.2)

where 0 ≤ a, b, c ≤ d− 1 (see Proposition 1). We need now to compute the trace of the elements
m r1,2, where m runs the monomials listed in (5.2). To do these computations we will use the
following lemma and proposition.

Lemma 7. For all 0 ≤ m ≤ d− 1, we have:

tr
(
e
(m)
1 e2g1,2

)
= (u+ 1)z2xm + (u+ 2)z E(m) + tr(e

(m)
1 e2)
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Proof. By direct computation we have:

tr
(
e
(m)
1 e2g1,2

)
= tr

(
e
(m)
1 e2g1

)
+ tr

(
e
(m)
1 e2g2

)
+ tr

(
e
(m)
1 e2g1g2

)
+ tr

(
e
(m)
1 e2g2g1

)
+ tr

(
e
(m)
1 e2g1g2g1

)
+ tr

(
e
(m)
1 e2

)
=

1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k2 t−k3 g1) +

1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k2 t−k3 g2)

+
1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k2 t−k3 g1g2) +

1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k2 t−k3 g2g1)

+
1

d2

d−1∑
s=0

d−1∑
k=0

tr(tm+s
1 t−s+k2 t−k3 g1g2g1) + tr

(
e
(m)
1 e2

)
= 2zE(m)2z2xm + +zE(m) + (u− 1)zE(m) + (u− 1)z2xm

= (u+ 1)z2xm + (u+ 2)zE(m) + tr
(
e
(m)
1 e2

)
.

�

Proposition 5. For all 0 ≤ a, b, c ≤ d− 1, we have:
(1) If m = ta1t

b
2t
c
3,

tr(mr1,2) = (u+ 1)z2xa+b+c + (u+ 2)E(a+b+c)z + tr(e
(a+b+c)
1 e2)

(2) If m = ta1g1t
b
1t
c
3 and m = ta1t

b
2g2t

c
2,

tr(mr1,2) = u
[
(u+ 1)z2xa+b+c + (u+ 2)E(a+b+c)z + tr(e

(a+b+c)
1 e2)

]
(3) If m = ta1t

b
2g2g1t

c
1 and m = ta1g1t

b
1g2t

c
2,

tr(mr1,2) = u2
[
(u+ 1)z2xa+b+c + (u+ 2)E(a+b+c)z + tr(e

(a+b+c)
1 e2)

]
(4) If m = ta1g1t

b
1g2g1t

c
1,

tr(mr1,2) = u3
[
(u+ 1)z2xa+b+c + (u+ 2)E(a+b+c)z + tr(e

(a+b+c)
1 e2)

]
.

Proof. We will prove claim (1). According to Eq. 4.2 we have: mr1,2 = ta1t
b
2t
c
3r1,2 = ta1t

b
2t
c
3e1e2g1,2.

But ta1tb2tc3e1e2 = e
(a+b+c)
1 e2, hence

mr1,2 = e
(a+b+c)
1 e2g1,2

Thus, claim (1) follows by applying Lemma 7.
The proofs for the rest claims use Lemmas 5 and 7 and follow the same argument, so we finish

the proof of the proposition by proving only one more representative case. We shall prove claim
(3) for m = ta1g1t

b
1g2t

c
2. This monomial can be rewritten as ta1tb2tc3g1g2. Now, by using Lemma 5

on g1g2r1,2, we obtain:

mr1,2 = ta1t
b
2t
c
3g1g2r1,2 = ta1t

b
2t
c
3

[
1 + (u− 1)e1 + (u− 1)e1,3 + (u− 1)2e1e2

]
r1,2

then using now Eq. 4.2 and the fact the ei’s are idempotent, follows that:

mr1,2 = ta1t
b
2t
c
3

[
e1e2 + (u− 1)e1e2 + (u− 1)e1e2 + (u− 1)2e1e2

]
g1,2

= u2ta1t
b
2t
c
3e1e2g1,2.
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Then, applying Eq. 2.17 we have:

mr1,2 = u2ta1t
b
2t
c
3e1e2g1,2 = u2e

(a+b+c)
1 e2g1,2.

Therefore, by using Lemma 7, we obtain the desired expression for tr(mr1,2). �

The following lemma is our main result for n = 3.

Lemma 8. The trace tr passes to FTLd,3 if and only if the parameters of the trace tr satisfy:

xk = −z

 ∑
m∈Sup1

χ(km) + (u+ 1)
∑

m∈Sup2

χ(km)

 and z = − 1

|Sup1|+ (u+ 1)|Sup2|
,

where Sup1 ∪ Sup2 (disjoint union) is the support of the Fourier transform of x, and x is the
complex function on Z/dZ, that maps 0 to 1 and k to the trace parameter xk (cf. Subsection
3.2).

Proof. Recall that the trace tr passes to FTLd,3 if and only if the Eqs. 5.1 hold, for all m in the
inductive basis of Yd,3. By using Proposition 5 follows that the trace tr passes to the quotient
algebra FTLd,n(u) if and only if the trace parametersz, x1, . . . , xd−1 satisfy the following system
of equations:

E0 = E1 = · · · = Ed−1 = 0

where
Em := (u+ 1)z2xm + (u+ 2)E(m)z + tr(e

(m)
1 e2) = 0, 0 ≤ m ≤ d− 1

We note now that this system of equations above is equivalent to the system:

E0 = 0
Em − xmE0 = 0 where 1 ≤ m ≤ d− 1

(5.3)

We will solve this system of equations, obtaining thus the proof of the lemma.
Recall that x0 := 1, E(0) = E and e

(0)
i = ei, hence E0 = (u + 1)z2 + (u + 2)Ez + tr(e1e2).

Then the (d− 1) equations Em − xmE0 = 0 of Eq. 5.3 become:

z(u+ 2)
(
E(m) − xmE

)
= −

(
tr(e

(m)
1 e2)− xm tr(e1e2)

)
, 1 ≤ m ≤ d− 1. (5.4)

Interpreting now the above equation in the functional notation of Section 3 and having in
mind Eq. 3.3, it follows that Eq. 5.4 can be rewritten as:

(u+ 2)z

(
1

d
x ∗ x− Ex

)
= −

(
1

d2
x ∗ x ∗ x− tr(e1e2)x

)
.

Applying now the Fourier transform on the above functional equality and using Proposition 2,
we obtain:

(u+ 2)z

(
x̂2

d
− Ex̂

)
= −

(
x̂3

d2
− tr(e1e2)x̂

)
(5.5)

Let now x̂ =
∑d−1

m=0 ymt
m. Then Eq. 5.5 becomes:

(u+ 2)z

(
y2m
d
− Eym

)
= −

(
y3m
d2
− tr(e1e2)ym

)
Hence

ym

(
y2m
d2

+ (u+ 2)z
ym
d
− (u+ 2)zE − tr(e1e2)

)
= 0 (5.6)



FRAMIZATION OF THE TEMPERLEY–LIEB ALGEBRA 19

Now, from equation E0 = 0, we have that −(u + 2)zE = (u + 1)z2 + tr(e1e2). Replacing this
expression of −(u+ 2)zE in Eq. 5.6 we have that:

ym

(
y2m
d2

+ (u+ 2)z
ym
d

+ (u+ 1)z2
)

= 0

or equivalently:
ym (ym + dz) (ym + dz(u+ 1)) = 0 (5.7)

Denote Sup1 ∪ Sup2 the support of x̂, where

Sup1 := {m ∈ Z/dZ ; ym = −dz} and Sup2 := {m ∈ Z/dZ ; ym = −dz(u+ 1)}

hence
x̂ =

∑
m∈Sup1

−dztm +
∑

m∈Sup2

−dz(u+ 1)tm

Then ̂̂x = −dz
∑

m∈Sup1

δ̂m − dz(u+ 1)
∑

m∈Sup2

δ̂m

thus from argument (4) of Proposition 2 we have:

̂̂x = −z

 ∑
m∈Sup1

i−m + (u+ 1)
∑

m∈Sup2

i−m


Therefore, having in mind now (5) of Proposition 2, we deduce that:

xk = −z

 ∑
m∈Sup1

χ(km) + (u+ 1)
∑

m∈Sup2

χ(km)

 (5.8)

Having in mind that x0 = 1, one can determine the values of z. Indeed, from Eq. 5.8, we have
that:

1 = x0 = −z(|Sup1|+ (u+ 1)|Sup2|)
or equivalently:

z = − 1

|Sup1|+ (u+ 1)|Sup2|
. (5.9)

�

Keeping the same notation with the above lemma, we have:

Theorem 5. The trace tr defined on Yd,n(u) passes to the quotient algebra FTLd,n(u) if and
only if the trace parameters z, x1, . . . , xd−1 satisfy the conditions of Lemma 8, i. e. Eqs. 5.8 and
5.9.

Proof. The proof is by induction on n. The case n = 3 is the lemma above. Assume now that
the statement holds for all FTLd,k(u), where k ≤ n, that is:

tr(ak r1,2) = 0

for all ak ∈ Yd,k(u), k ≤ n. We will show the statement for k = n+ 1. It suffices to prove that
the trace vanishes on any element of the form an+1r1,2, where an+1 belongs to the inductive basis
of Yd,n+1(u) (recall Eq. 1), given the conditions of the theorem. Namely:

tr(an+1 r1,2) = 0.
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Since an+1 is in the inductive basis of Yd,n+1(u), it is of one of the following forms:

an+1 = angn . . . git
k
i or an+1 = ant

k
n+1

where an is in the inductive basis of Yd,n(u). For the first case we have:

tr(an+1 r1,2) = tr(angn . . . git
k
i r1,2) = z tr(angn−1 . . . git

k
i r1,2) = z tr(ãr1,2),

where ã := angn−1 . . . git
k
i . Notice now that ã is a word in Yd,n(u) and so, by the linearity of the

trace, we have that tr(ã r1,2) is a linear combination of traces of the form tr(an r1,2), where an is
in the inductive basis of Yd,n(u). Therefore, by the induction hypothesis, we deduce that:

tr(ã r1,2) = 0

if and only if the conditions of the Theorem are satisfied. Therefore the statement is proved.
The second case is proved similarly. Hence, the proof is concluded. �

Corollary 3. In the case where one of the sets Sup1 or Sup2 is the empty set, the values of the
xk’s are solutions of the E–system. More precisely, if Sup1 is the empty set, the xk’s are the
solutions of the E–system parametrized by Sup2 and z = −1/(u+ 1)|Sup2|. If Sup2 is the empty
set, then xk’s are the solutions of the E–system parametrized by Sup1 and z = −1/|Sup1|.

Proof. The proof follows from Eq. 3.5 and the expression given in theorem above for the xk’s. �

5.2. The method of finding the necessary and sufficient conditions for tr to pass to the quotient
algebra CTLd,n(u) is completely analogous to that of the previous subsection. Thus, we will
need the following analogue of Proposition 5.

Proposition 6. Define G, as follows:

G = (u+ 1)z2
d−1∑
k=0

xk + (u+ 2)z
d−1∑
k=0

E(k) +
d−1∑
k=0

tr(e
(k)
1 e2)

Then for all 0 ≤ a, b, c ≤ d− 1, we have:
(1) tr(mc1,2) = G for m = ta1t

b
2t
c
3

(2) tr(mc1,2) = uG for m = ta1g1t
b
1t
c
3 and m = ta1t

b
2g2t

c
2,

(3) tr(mc1,2) = u2G for m = ta1t
b
2g2g1t

c
1 and m = ta1g1t

b
1g2t

c
2,

(4) tr(mc1,2) = u3G for m = ta1g1t
b
1g2g1t

c
1.

Following now the analogous reasoning that was used to prove Theorem 5 and having in mind
Eq. 5.1, Corollary 2, Lemma 6 and Proposition 6, we obtain the following theorem.

Theorem 6. The trace tr passes to the quotient if and only if the parameter z and the xi’s are
related through the equation:

(u+ 1)z2
∑

k∈Z/dZ

xk + (u+ 2)z
∑

k∈Z/dZ

E(k) +
∑
k∈Z

tr(e
(k)
1 e2) = 0. (5.10)

6. Comparison of the trace conditions

In this section we will compare the conditions that need to be applied to the trace paramaters
z and xi, i = 1, . . . , d− 1 so that tr passes to each of the quotient algebras.

In [6] we found the necessary and sufficient conditions so that tr passes to YTLd,n(u). Indeed,
we have the following:

Theorem 7. The trace tr passes to the quotient YTLd,n(u) if and only if the xi’s are solutions
of the E–system and one of the two cases holds:
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(i) For some 0 ≤ m1 ≤ d− 1 the x`’s are dth roots of unity and z = − 1
u+1 or z = −1.

(ii) For some 0 ≤ m1,m2 ≤ d− 1, m1 6= m2, the x`’s are expressed as:

x` =
1

2
(exp(m1`) + exp(m2`)) (0 ≤ ` ≤ d− 1).

In this case we have z = −1
2 .

The conditions for the xi’s in this case are particular solutions of the E–system. Thus, the
conditions such that tr passes to YTLd,n(u) are contained in those of Theorem 5.

Moreover, Theorem 5 can be rephrased in the following way:

Theorem 8. The trace tr passes to the quotient algebra FTLd,n(u) if and only if the parameter
z and the xi’s are related through the equation:

(u+ 1)z2xk + (u+ 2)zE(k) + tr(e
(k)
1 e2) = 0, ∀k ∈ Z/dZ

This implies that the conditions such that the trace passes to the quotient algebra FTLd,n(u)
are contained in those of Theorem 6. All of the above can be summarised in the following table:

Yd,n(u) � CTLd,n(u) � FTLd,n(u) � YTLd,n(u)
z free ← Theorem 6 ← Theorem 8 ← Theorem 7
xi free

Table 1. Relations of algebras and trace conditions.

The first row includes the projections between the algebras while the second shows the inclusions
of the trace conditions for each case.

7. Knot invariants

7.1. The 2–variable Jones or Homflypt polynomial, P (λ, u), can be defined through the Ocneanu
trace τ on Hn(u) [9]. Indeed, for any braid α ∈ ∪∞Bn we have:

P (λ, u)(α̂) =

(
− 1− λu√

λ(1− u)

)n−1 (√
λ
)ε(α)

τ(π(α)),

where: λ = 1−u+ζ
uζ , π is the natural epimorphism of CBn onto Hn(u) that sends the braid

generator σi to hi and ε(α) is the algebraic sum of the exponents of the σi’s in α. Further, the
Jones polynomial, V (u), related to the algebras TLn(u), can be redefined through the Homflypt
polynomial, by specializing ζ to − 1

u+1 [9]. This is the non–trivial value for which the Ocneanu
trace τ passes to the quotient algebra TLn(u). Namely:

V (q)(α̂) =

(
−1 + u√

u

)n−1 (√
u
)ε(α)

τ(π(α)) = P (u, u)(α̂).

7.2. In [16] it is proved that the trace tr defined on Yd,n(u) can be re–scaled according to the
braid equivalence corresponding to isotopic framed links if and only if the xi’s furnish a solution
of the E–system (recall discussion in Section 3). Let XD = (x1, . . . , xd−1) be a solution of the
E–system parametrized by the non–empty set D of Z/dZ. We have the following definition:

Definition 6 (Definition 3 [1]). The trace map trD defined as the trace tr with the parameters
xi specialized to the values xi, shall be called the specialized trace with parameter z.
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By normalizing trD, an invariant for framed links can be obtained [16]:

ΓD(w, u)(α̂) =

(
−(1− wu)|D|√

w(1− u)

)n−1 (√
w
)ε(α)

trD(γ(α)), (7.1)

where: D is a non–empty subset of Z/dZ which parametrizes a solution of the E–system, w =
z+(1−u)E

uz , E = 1
|D| , γ the natural epimorphism of the framed braid group algebra CFn onto the

algebra Yd,n(u), and α ∈ ∪∞Fn.
Further, in [15] Juyumaya and Lambropoulou represented the classical braid group Bn in the

algebra Yd,n(u) by regarding the framing generators ti as formal elements. This is equivalent to
restricting ΓD to classical links, seen as framed links with all framings zero. This gives rise to
an invariant of classical oriented links, denoted ∆D(α̂), where α ∈ ∪∞Bn. Namely:

∆D(w, u)(α̂) =

(
−(1− wu)|D|√

w(1− u)

)n−1 (√
w
)ε(α)

trD(δ(α)), (7.2)

where: D, w, E as above, δ the natural homomorphism of the classical braid group algebra CBn
to the algebra Yd,n(u) and α ∈ ∪∞Bn. Further, in [14] the invariant ∆D(w, u) was extended to
an invariant for singular links.

Note that for d = 1 the traces tr and trD coincide with the Ocneanu trace τ , so the invariants
ΓD(u,w) and ∆D(u,w) coincide with the Homflypt polynomial. Moreover, in [1] it is shown
that for generic values of the parameters u, z the invariants ∆D(w, u) do not coincide with the
Homflypt polynomial except in the trivial cases u = 1 and E = 1. Yet, computational data [5]
indicate that these invariants may be topologically equivalent to the Homflypt polynomial.

In [6] the invariants that are defined through the Yokonuma–Temperley–Lieb were studied.
More precisely, it was shown that in order that the trace tr passes to the quotient algebra
YTLd,n(u) it is necessary that the xi’s are dth roots of unity. These furnish a (trivial) solution
of the E–system and in this case E = 1. So, by [1], the invariants we obtain from YTLd,n(u)
coincide with the Jones polynomial. This is the main reason that the algebras YTLd,n(u) do not
qualify for being the framization of the Temperley–Lieb algebra.

In this section we will define the invariants for framed and classical links that can be obtained
from the algebras FTLd,n(u) and CTLd,n(u).

7.3. Invariants from FTLd,n(u). As it has already been stated, the trace parameters xi should
be solutions of the E–system so that a link invariant through tr is well–defined. Moreover, the
conditions of Theorem 5 include these solutions for the xi’s. In order to define a link invariant
on the level of the quotient algebra FTLd,n(u), we discard any value of the xi’s that does not
comprise a solution of the E–system. Using Corollary 3 we choose a solution of the E–system
and denote with D the subset of Z/dZ that parametrizes the said solution. This leads to the
following values for z:

z = − 1

(u+ 1)|D|
or z = − 1

|D|
Further, we do not take into consideration the case where z = − 1

|D| , since important topological
information is lost. Indeed, the trace tr gives the same value for all even (resp. odd) powers of
the gi’s, for m ∈ Z>0 [16]:

tr(gmi ) =

(
um − 1

u+ 1

)
z +

(
um − 1

u+ 1

)
1

|D|
+ 1 if m is even (7.3)

and
tr(gmi ) =

(
um − 1

u+ 1

)
z +

(
um − 1

u+ 1

)
1

|D|
− 1

|D|
if m is odd. (7.4)
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From the remaining case where the xi’s are solutions of the E–system and z = − 1
(u+1)|D| we

deduce that w = u in Eq. 7.1. We then have the following definition:

Definition 7. Let XD be a solution of the E–system, parametrized byt the non–empty subset D
of Z/dZ and let z = − 1

(u+1)|D| . We obtain from ΓD(w, u) the following invariant for α ∈ ∪∞Fn:

(i) ϑD(u)(α̂) =
(
− (1+u)|D|√

u

)n−1
(
√
u)
ε(α)

trD (γ(α)) = ΓD(u, u)(α̂),

Further, from ∆D, we obtain the following invariant for α ∈ ∪∞Bn:

(ii) θD(u)(α̂) =
(
− (1+u)|D|√

u

)n−1
(
√
u)
ε(α)

trD (δ(α)) = ∆D(u, u)(α̂),

The invariants ϑD(u) are analogues of the Jones polynomial in the framed category.

Remark 5. If the invariants ∆D(w, u) on the level of the Yokonuma–Hecke algebras turn out
to be topologically equivalent to the Homflypt polynomial [5] then the invariants θD(u) will be
topologically equivalent to the Jones polynomial, and the invariants ϑD(u) framed analogues of
the Jones polynomial.

7.4. Invariants from CTLd,n(u). The conditions of Theorem 6 do not involve the solutions of
the E–system at all, so in order to obtain a well–defined link invariant on the level of CTLd,n(u)
we must impose this condition on the xi’s. Recall that the solutions of the E–system can be
expressed in the form:

xD =
1

|D|
∑
k∈D

ik ∈ CCd

where ik =
∑d−1

j=0 χk(j)t
j , χk is the character that sends m 7→ cos2πkmd + i sin2πkm

d and D is
the subset of Z/dZ that parametrizes a solution of the E–system. Let now ε be the augmentation
function of the group algebra CCd, sending

∑d−1
j=0 xjt

j to
∑d−1

j=0 xj . We have that:

ε(xD) =
1

|D|
∑
k∈D

ε(ik) =
1

|D|

d−1∑
j=0

∑
k∈D

χj(k) =

{ d
|D| , if 0 ∈ D
0 if 0 /∈ D

(7.5)

From this we deduce that:
d−1∑
j=0

E(j) = ε
(x ∗ x

d

)
=

1

d|D|2
∑
k∈D

ε(ik ∗ ik) =
1

|D|2
∑
k∈D

ε(ik) =

{ d
|D|2 , if 0 ∈ D

0 if 0 /∈ D
(7.6)

and also that:
d−1∑
j=0

tr(e
(j)
1 e2) = ε

(x ∗ x ∗ x
d2

)
=

1

d2|D|3
∑
k∈D

ε(ik ∗ ik ∗ ik) =
1

|D|3
∑
k∈D

ε(ik) =

{ d
|D|3 , if 0 ∈ D

0 if 0 /∈ D
(7.7)

Using now Eqs. 7.5, 7.6 and 7.7, Eq. 5.10 becomes for the case where 0 ∈ D:

d

|D|

(
(u+ 1)z2 +

(u+ 2)

|D|
z +

1

|D|2

)
= 0.

Therefore, the trace tr passes to the quotient for the following values of z:

z = − 1

(u+ 1)|D|
or z = − 1

|D|
.
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Much like the case of FTLd,n(u), the value z = − 1
|D| is not taken into consideration, since

from Eq. 5.10 we deduce that E = 1
|D| and therefore from Eqs. 7.3 and 7.4 the trace tr gives the

same value for all even (resp. odd) powers of the gi’s.
We have the following definition:

Definition 8. Let XD be a solution of the E–system, parametrized byt the non–empty subset D
of Z/dZ and let z = − 1

(u+1)|D| . We obtain from ΓD(w, u) the following invariant for α ∈ ∪∞Fn:

(i) WD(u)(α̂) =
(
− (1+u)|D|√

u

)n−1
(
√
u)
ε(α)

trD (γ(α)) = ΓD(u, u)(α̂),

Further, from ∆D, we obtain the following invariant for α ∈ ∪∞Bn:

(ii) WD(u)(α̂) =
(
− (1+u)|D|√

u

)n−1
(
√
u)
ε(α)

trD (δ(α)) = ∆D(u, u)(α̂),

Remark 6. It should be clear that the invariants WD and WD that are obtained from tr on the
level of the quotient algebra CTLd,n(u) coincide with the invariants ϑD and θD on the level of
FTLd,n(u). More precisely, the conditions that are applied to the trace parameters are the same
for both of the quotient algebras and, consequently, so are the related invariants.

Furthermore, the solutions of the E–system (which are the necessary and sufficient conditions
so that topological invariants for framed links can be defined) are included in the conditions of
Theorem 5, while for the case of CTLd,n(u) we still have to impose them. These are the main
reasons that lead us to consider the quotient algebra FTLd,n(u) as the most natural non–trivial
analogue of the Temperley–Lieb algebra in the context of framed links.

The following table give a full overview of the invariants for each quotient algebra:

d,D Fd,n Bn u w
Yd,n(u) ΓD ∆D u w
YTLd,n(u) VD VD u u
FTLd,n(u) ϑD θD u u
CTLd,n(u) ϑD θD u u

d = 1 Bn u w
Hn(u) P u λ
TLn(u) V u u

d, |D| = 1 Fd,n Bn u w
Yd,n(u) ΓD P u λ
YTLd,n(u) VD V u u
FTLd,n(u) VD V u u
CTLd,n(u) VD V u u

d, |D| > 1 Fd,n Bn u w
Yd,n(u) ΓD ∆D u λ
YTLd,n(u) no no − −
FTLd,n(u) ϑD θD u u
CTLd,n(u) ϑD θD u u

Table 2. Overview of the invariants for each algebra.

7.5. Concluding note. The knot invariants from the algebras FTLd,n(u) and CTLd,n(u) still
remain under investigation. If the invariants from the Yokonuma–Hecke algebras prove to be
topologically equivalent to the Homflypt polynomial, then the invariants from FTLd,n(u) and
CTLd,n(u) will be topologically equivalent to the Jones polynomial. If not, it would be then mean-
ingfull to consider the corresponding 3–manifold invariants (as obtained from work of Wenzl [24]).
In the case of the algebras YTLd,n(u) the Witten invariants of 3–manifolds can be recovered,
since the related knot invariants recover the Jones polynomial [6].
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