
J. Cryptol. (2010) 23: 477–503
DOI: 10.1007/s00145-009-9037-2

On the Efficient Generation of Prime-Order Elliptic
Curves∗

Elisavet Konstantinou
Department of Information and Communication Systems Engineering, University of the Aegean, 83200,

Samos, Greece
ekonstantinou@aegean.gr

and
Computer Technology Institute, N. Kazantzaki Str, Patras University Campus, 26500 Patras, Greece

Aristides Kontogeorgis
Department of Mathematics, University of the Aegean, 83200, Samos, Greece

kontogar@aegean.gr

Yannis C Stamatiou
Department of Mathematics, University of Ioannina, 45110, Ioannina, Greece

istamat@cc.uoi.gr
and

Computer Technology Institute, N. Kazantzaki Str, Patras University Campus, 26500 Patras, Greece

Christos Zaroliagis
Department of Computer Engineering and Informatics, University of Patras, 26500 Patras, Greece

zaro@ceid.upatras.gr
and

Computer Technology Institute, N. Kazantzaki Str, Patras University Campus, 26500 Patras, Greece

Communicated by Johannes Buchmann

Received 9 September 2008 and revised 13 February 2009
Online publication 31 March 2009

Abstract. We consider the generation of prime-order elliptic curves (ECs) over a
prime field Fp using the Complex Multiplication (CM) method. A crucial step of this
method is to compute the roots of a special type of class field polynomials with the most
commonly used being the Hilbert and Weber ones. These polynomials are uniquely
determined by the CM discriminant D. In this paper, we consider a variant of the CM
method for constructing elliptic curves (ECs) of prime order using Weber polynomials.
In attempting to construct prime-order ECs using Weber polynomials, two difficulties
arise (in addition to the necessary transformations of the roots of such polynomials
to those of their Hilbert counterparts). The first one is that the requirement of prime
order necessitates that D ≡ 3 (mod 8), which gives Weber polynomials with degree

∗ This work was partially supported by the IST Programme of EU under contracts no. IST-2001-33116
(FLAGS), and by the Action IRAKLITOS (Fellowships for Research in the University of Patras) with match-
ing funds from ESF (European Social Fund) and the Greek Ministry of Education.

© International Association for Cryptologic Research 2009

mailto:ekonstantinou@aegean.gr
mailto:kontogar@aegean.gr
mailto:istamat@cc.uoi.gr
mailto:zaro@ceid.upatras.gr

478 E. Konstantinou et al.

three times larger than the degree of their corresponding Hilbert polynomials (a fact
that could affect efficiency). The second difficulty is that these Weber polynomials do
not have roots in Fp .

In this work, we show how to overcome the above difficulties and provide efficient
methods for generating ECs of prime order focusing on their support by a thorough
experimental study. In particular, we show that such Weber polynomials have roots in
the extension field F

p3 and present a set of transformations for mapping roots of Weber
polynomials in F

p3 to roots of their corresponding Hilbert polynomials in Fp . We also
show how an alternative class of polynomials, with degree equal to their corresponding
Hilbert counterparts (and hence having roots in Fp), can be used in the CM method to
generate prime-order ECs. We conduct an extensive experimental study comparing the
efficiency of using this alternative class against the use of the aforementioned Weber
polynomials. Finally, we investigate the time efficiency of the CM variant under four
different implementations of a crucial step of the variant and demonstrate the superior-
ity of two of them.

Key words. Public key cryptography, Elliptic curve cryptosystems, Complex multi-
plication, Weber polynomials, Prime order

1. Introduction

Elliptic Curve (EC) cryptography has proven to be an attractive alternative for building
fast and secure public key cryptosystems. Elliptic curves give rise to algebraic structures
that offer a number of distinct advantages (smaller key sizes and highest strength per
bit) over more customary algebraic structures used in various cryptographic applications
(e.g., RSA). The use of smaller parameters for a given level of cryptographic strength
makes them suitable for implementations on hardware devices of limited resources (e.g.,
memory, computing speed, bandwidth, etc.).

One of the fundamental problems in EC cryptography is the generation of crypto-
graphically secure ECs over prime fields, suitable for use in various cryptographic ap-
plications. A typical requirement of all such applications is that the order of the EC
(number of elements in the algebraic structure induced by the EC) possesses certain
properties (e.g., robustness against known attacks [6], small prime factors [1], etc.),
which give rise to the problem of how such ECs can be generated.

One of the most efficient methods that can be employed for the construction of ECs
with specified order is the Complex Multiplication (CM) method [1,24]. In the case
of prime fields, the CM method takes as input a given prime (the field’s order) and
determines a specific parameter, called the CM discriminant D of the EC. The EC of
the desirable order is generated by constructing certain class field polynomials based
on D and finding their roots. The construction and location of the roots (modulo the
finite field’s order) is one of the most crucial steps in the whole process. The most
commonly used class field polynomials are the Hilbert (original version of the CM
method) and the Weber polynomials. Their main differences are: (i) the coefficients
of Hilbert polynomials grow unboundedly as D increases, while for the same D, the
Weber polynomials have much smaller coefficients and thus are easier and faster to
construct; (ii) the roots of a Hilbert polynomial construct directly the EC, while the roots
of a Weber polynomial have to be transformed to the roots of its corresponding Hilbert
polynomial to construct the EC. For a general discussion and comparisons between class
field polynomials, see [11].

On the Efficient Generation of Prime-Order Elliptic Curves 479

The CM method is not by itself adequate for applications that require robust ECs
against cryptanalytic attacks. It turns out that the properties of the order of an EC play
a central role in establishing cryptanalytic robustness. One way to establish robustness
is to generate ECs whose order satisfies a certain number of properties designed to
guard against the currently known most effective attacks [14,26,32,33]. An additional
and equally important property that contributes to the cryptographic strength (see, e.g.,
[34]) requires that the order of the generated EC is a prime number. Note that in certain
applications it is necessary to have ECs of prime order [7]. Prime-order ECs defined in
various fields were also treated in [2,22,28,31].

In this paper, we follow the second approach and study the use of the CM method for
generating ECs of prime order in Fp . Although ECs with no restrictions on their order
may be generated more efficiently using a point counting (such as Schoof’s [36]) algo-
rithm,1 the requirement of prime order can severely change the situation. Point counting
algorithms first choose the parameters of the EC and then compute its order. If this order
is found non-prime, then another set of EC parameters is generated, and the process is
repeated. This can be seen, approximately, as sampling from the set of ECs of prime
order (for a fixed p). There is well-supported theoretical and experimental evidence
[15] that this probability is, asymptotically, cp

logp
, where cp is a constant depending on

p and satisfying 0.44 ≤ cp ≤ 0.62. Thus, it appears that prime orders are not especially
favored by the point counting approach, as also noted in [15]. CM, on the other hand,
starts with a prime number (the order of the EC) and then constructs the parameters,
thus avoiding this averse prime order probability.

The use of Hilbert polynomials in the CM method requires high precision in the arith-
metic operations involved in their construction, resulting in considerable increase in
computing resources. This makes them rather inappropriate for fast and frequent gener-
ation of ECs. To overcome these shortcomings of Hilbert polynomials, two alternatives
have been recently proposed: either to compute them off-line in powerful machines and
store them for subsequent use (see, e.g., [34]), or to use Weber polynomials for certain
values of D (see, e.g., [3,4,19,21,24,41]) and produce the required Hilbert roots from
them. The former approach [34] tackles adequately the efficient construction of ECs,
setting as a sole requirement for cryptographic strength that the order of the EC is prime
which in turn implies that D ≡ 3 (mod 8). However, there may still be problems with
storing and handling several Hilbert polynomials with huge coefficients on hardware
devices with limited resources. These problems are addressed by the second approach.
Despite the space and time efficiency though, the known studies do not treat the case of
D ≡ 3 (mod 8) as these values of D give Weber polynomials with a degree three times
larger than that of their corresponding Hilbert polynomial. For example, the case of
D ≡ 7 (mod 8) and not divisible by 3 is treated in [3,4,19,24], while the cases of D �≡ 3
(mod 8) and D �≡ 0 (mod 3) were treated in [21,41]. In addition, there are works that
consider the generation of prime-order ECs over extension fields, but either they use the
CM method with Hilbert polynomials [2], or they generate the EC parameters at random
and use a point counting algorithm to compute the order of the curve [31]. To the best of
our knowledge, the use of Weber polynomials within the CM method for the generation

1 There are cases where point counting algorithms can be very inefficient compared to the CM method,
e.g., when p is large and the discriminant value is small.

480 E. Konstantinou et al.

of prime-order ECs along with the necessary transformation of the Weber roots to their
Hilbert counterparts for the case D ≡ 3 (mod 8) has not been studied before.

In attempting to construct prime-order ECs using Weber polynomials, two additional
difficulties arise. The first one is that the prime order requirement necessitates that D ≡
3 (mod 8), which in turn results in Weber polynomials with degree three times larger
than the degree of their corresponding Hilbert polynomial. The second and most crucial
difficulty is that such Weber polynomials (used for the construction of prime-order ECs)
do not have roots in Fp for certain values of p, as is shown in Sect. 3.

Our work addresses the difficulties outlined above with an eye to applications and the
practitioner’s needs. We focus on supporting the theoretical findings with a thorough
experimental study, thus shedding more light in the use of polynomials for the efficient
generation of prime-order ECs using the CM method and providing guidance to the
practitioner with respect to the resolution of these difficulties. In particular, we make
the following contributions:

(i) We show that Weber polynomials defined on values of D ≡ 3 (mod 8) and used
in the CM method for generating ECs of prime order have roots in the extension
field Fp3 and not in Fp .

(ii) We present a set of simplified transformations that map the roots of the We-
ber polynomials in Fp3 to the roots of their corresponding Hilbert polynomials
in Fp . This implies that the particular Weber polynomials can be used to gener-
ate prime-order ECs with the CM method.

(iii) We show how an alternative class of polynomials can be used in the CM method
for generating prime-order ECs. The advantage of these polynomials is that they
have the same degree as their corresponding Hilbert polynomials and hence have
roots in Fp .

(iv) We perform a comparative experimental study regarding the efficiency of the
CM method using the aforementioned Weber polynomials against using the al-
ternative class of polynomials. Although it may seem that the use of Weber
polynomials is inefficient due to their high degree and the fact that their roots
lie in Fp3 (which requires operations with polynomials of degree 2), we provide
experimental evidence which demonstrates that this is not always the case.

We would like to note that the case D ≡ 3 (mod 8) can also be useful for the genera-
tion of ECs that do not necessarily have prime order [37] or for the generation of special
curves, such as MNT curves [27,28]. This makes our analysis for class polynomials with
such discriminants even more useful.

Another important step of the CM method is the determination of the order p of
the underlying prime field and the construction of the order m of the EC. This step
is independent of the computation of Hilbert or Weber polynomials. We consider four
different ways for implementing this step in the CM method (Sect. 2). The first method
is similar to that in [21] and uses the modified Cornacchia’s algorithm [9]. The second
method generates p and m at random as described in [34]. The third method is the very
efficient algorithm given in Baier’s PhD thesis [3, p. 68]. The fourth method, which
we introduce here, resembles the third one and constitutes a simpler and more space-
efficient alternative.

The final contribution of this paper is a comparative experimental study (Sect. 5)
regarding the four methods mentioned above for the computation of p and m in the

On the Efficient Generation of Prime-Order Elliptic Curves 481

construction of an EC. Comparing the four methods for computing p and m, Baier’s
method turns out to be the most time-efficient, followed very closely by the new method
we present here. Hence, the latter could be used as a simpler, space-efficient, and easy-
to-use alternative.

The rest of the paper is organized as follows. In Sect. 2 we review some basic defini-
tions and facts about ECs, the CM method, and the variant we use, the Hilbert polyno-
mials, and discuss some of their properties relevant to the generation of ECs. In Sect. 3
we present properties of Weber polynomials with D ≡ 3 (mod 8) and describe their use
in the CM method. In Sect. 4 we elaborate on the construction of an alternative class
of polynomials that can also be used in the CM method. Finally, in Sect. 5 we present
our experimental results, and we conclude in Sect. 6. Preliminary parts of this work
appeared in [22,23].

2. A Brief Overview of Elliptic Curve Theory and Complex Multiplication

This section contains a brief introduction to elliptic curve theory, to the Complex Mul-
tiplication method for generating prime order elliptic curves, and to the Hilbert class
field polynomials. Our aim is to facilitate the reading of the sections that follow. For
full coverage of the necessary concepts and terms, the interested reader may consult
[6]. Also, the proofs of certain theorems require basic knowledge of algebraic number
theory and Galois theory. The interested reader is referred to [10,39,40] for definitions
not given here.

2.1. Preliminaries of Elliptic Curve Theory

An elliptic curve defined over a finite field Fp , p > 3 and prime, is denoted by E(Fp)

and contains the points (x, y) ∈ Fp ×Fp (in affine coordinates) that satisfy the equation
(in Fp)

y2 = x3 + ax + b (1)

with a, b ∈ Fp satisfying 4a3 + 27b2 �= 0. The set of these points equipped with a prop-
erly defined point addition operation and a special point, denoted by O and called point
at infinity (zero element for the addition operation), forms an Abelian group. This is the
Elliptic Curve group, and the point O is its identity element (see [6,38] for more details
on this group).

The order, denoted by m, is the number of points that belong to E(Fp). The num-
bers m and p are related by the Frobenius trace t = p + 1 − m. Hasse’s theorem (see,
e.g., [6,38]) implies that |t | ≤ 2

√
p. Given a point P ∈ E(Fp), its order is the small-

est positive integer n such that nP = O. By Langrange’s theorem, the order of a point
P ∈ E(Fp) divides the order m of the group E(Fp). Thus, mP = O for any P ∈ E(Fp)

and, consequently, the order of a point is always less than or equal to the order of the
elliptic curve.

Two of the most important quantities of an elliptic curve E(Fp) defined through (1)
are the curve discriminant Δ and the j -invariant: Δ = −16(4a3 + 27b2) and j =
−1728(4a)3/Δ. Given j0 ∈ Fp (j0 �= 0,1728), two ECs of j -invariant j0 can be easily
constructed. If k = j0/(1728 − j0) mod p, one of these curves is given by (1) by setting

482 E. Konstantinou et al.

a = 3k mod p and b = 2k mod p. The second curve (the twist of the first) is given by
the equation

y2 = x3 + ac2x + bc3 (2)

with c any quadratic non-residue of Fp . If m1 and m2 denote the orders of an elliptic
curve and its twist respectively, then m1 + m2 = 2p + 2, which implies that if one of
the curves has order p + 1 − t , then its twist has order p + 1 + t , or vice versa (see
[6, Lemma VIII.3]).

2.2. The Complex Multiplication Method and a Variant

As stated in the previous section, given a j -invariant one may readily construct an EC.
Finding a suitable j -invariant for a curve that has a given order m can be accomplished
through the theory of Complex Multiplication (CM) of elliptic curves over the rationals.
This method is called the CM method, and in what follows we will give a brief account
of it.

By Hasse’s theorem, Z = 4p − (p + 1 − m)2 is nonnegative, and, thus, there is a
unique factorization Z = Dv2 with D a square-free positive integer. Therefore,

4p = u2 + Dv2 (3)

for some integer u that satisfies the equation

m = p + 1 ± u. (4)

The negative parameter −D is called a CM discriminant for the prime p. For conve-
nience throughout the paper, we will use (the positive integer) D to refer to the CM
discriminant. The CM method uses D to determine a j -invariant. This j -invariant in
turn, will lead to the construction of an EC of order p + 1 − u or p + 1 + u.

The CM method requires as input a prime p. Then the smallest D is chosen that
along with integers u,v satisfy (3). The next step is to check whether p + 1 − u and/or
p + 1 + u is a suitable order. If none of them is suitable, then the whole process is
repeated with another prime p as input. If one, however, is found to be suitable, then the
Hilbert polynomial (see Sect. 2.3) is constructed, and its roots (modulo p) are computed.
A root of the Hilbert polynomial is the j -invariant we are seeking. Then, the EC and
its twist are constructed as explained in Sect. 2.1. Since only one of these ECs has the
required suitable order, it can be found using Langrange’s theorem by picking random
points P in each EC until a point is found in some curve for which mP �= O. Then, the
other curve is the one we are seeking.

In general, the most time-consuming part of the CM method is the construction of the
Hilbert polynomial, as it requires high-precision floating-point arithmetic in the field of
complex numbers. In order to overcome the high computational requirements of this
construction, a variant of the CM method was proposed in [34]. In contrast with the
CM method described above, this variant does not start with a specific p but with a
CM discriminant D ≡ 3 (mod 8), since it requires that the EC order m is prime (it is
not hard to verify this constraint on D). It then computes p and the EC order m (the
primality of m is the only requirement for cryptographic strength set in [34]). The prime

On the Efficient Generation of Prime-Order Elliptic Curves 483

p is found by first picking randomly u and v of appropriate sizes and then checking if
(u2 + Dv2)/4 is prime. An important aspect of the variant concerns the computation
of the Hilbert polynomials: since they depend only on D (and not on p), they can be
constructed in a preprocessing phase and stored for later use. Hence, the burden of their
construction can be excluded from the generation of the EC.

In [21], another variant to the CM method was given which uses Weber polynomials.
This variant starts with a discriminant D �≡ 3 (mod 8) and a specific prime p chosen
at random, or from a set of prescribed primes. It then computes u and v using Cornac-
chia’s algorithm [9] to solve (3) and requires that the resulting EC order m is suitable
(cf. Sect. 2.1) but not necessarily prime. Moreover, like in [34], the Weber polynomials
can be constructed in a preprocessing phase as they also depend only on D.

In the rest of the section, we shall describe yet another variant of the CM method
which shares similarities with those in [21,34] but also differs from them in several
aspects. The new variant generates ECs of prime and suitable order, hence taking as
input values of D which are congruent to 3 (mod 8), and determines the pair (u, v) that
specifies p using four alternative implementations. Moreover, since Weber polynomials
are used, which for these values of D, have a degree that is three times the degree of their
corresponding Hilbert polynomials, a new transformation is presented for transforming
Weber roots to Hilbert roots for this case (Sect. 3).

We are now ready to present the main steps of the variant. It starts with a CM discrim-
inant D ≡ 3 (mod 8) for the computation of the Weber polynomial,2 and then generates
at random, or selects from a pool of precomputed good primes (e.g., Mersenne primes),
a prime p and computes odd integers u,v such that 4p = u2 +Dv2. Those odd integers
u,v can be computed with four different ways, which we will outline below. If no such
numbers u and v can be found, then take another prime p and repeat. Otherwise, pro-
ceed with the next steps, which are similar to those of the original CM method. In par-
ticular, a Weber polynomial corresponding to the discriminant value D is constructed,
and we locate a root of it. This root, however, cannot lead to the construction of the
j -invariant directly, since j -invariants are roots of the Hilbert polynomials. Therefore,
we must transform this root to a root of the corresponding (constructed with the same
discriminant) Hilbert polynomial. The necessary transformations are given in Sect. 3.

We now turn to the four different methods for computing u and v. The first is to use
the modified Cornacchia’s algorithm [8]. In particular, a prime p is chosen at random,
or from a set of prescribed primes, and then the modified Cornacchia’s algorithm is used
in order to find a solution (u, v) to (3). If there is a solution to this equation, we check if
the resulting EC order m is prime. If it is not or there is no solution to (3), then another
prime p is chosen. The second method generates odd parameters u and v at random
as it is done in [34]. Once these parameters are created, we must check if the number
p = (u2 + Dv2)/4 is prime. If it is, then the order m is constructed. In the case that
m or p are not prime, then new parameters u and v are generated at random, and the
same process is followed. The third method was proposed in [3, p. 68] and uses some
clever heuristic in order to speed up the discovery of a suitable prime p. This method
follows the idea of the previous approach but improves it considerably by posing several
restrictions to the choice of u and v in order to increase the possibility that p and m are

2 Although the variant defaults to the use of Weber polynomials, Hilbert polynomials can be used as well.

484 E. Konstantinou et al.

prime numbers. Despite its efficiency, this approach is quite complicated and uses an
auxiliary table and two sieving arrays. Motivated by this approach, we have developed
a fourth method, which is simpler and does not use any auxiliary tables or sieving arrays.
The method is outlined in the following paragraph.

From (3) and (4) we know that if we compute u and v such that 4p = u2 +Dv2, then
the order m of the EC is given either by p + 1 − u or p + 1 + u (recall that m should be
prime). We will denote the former by m− and the latter by m+. Since m is prime, u and
v must be odd. In addition, u and v should not have common divisors because then p

would not be a prime. With this observation in mind, we start our method by randomly
picking odd u and v of appropriate sizes such that u = 210x + 1 and v = 210y + 105,
where x, y are random numbers. In this way, u and v do not have common divisors the
numbers 3, 5, and 7 (3 · 5 · 7 = 105). Simply, we chose v to be an odd integer having
as common divisors the numbers 3, 5, and 7 (thus, v = 105 · (2y + 1)) and u to be
an odd integer that certainly would not have these divisors (u could be any number of
the form 210x + c, where c is not a multiple of 3, 5, or 7). Then, we check whether
(u2 + Dv2)/4 is prime. If it is, then we check for primality the quantities m− and m+.
If (u2 + Dv2)/4 is not prime, then we add to u an integer keeping the same value
for v, calculate a new value for p, and repeat the whole process. An issue arises here
as to what integer we add to u. Note that when u = 210x + 1 ≡ 1 (mod 3), then p ≡ 1
(mod 3), m− ≡ 1 (mod 3) and m+ ≡ 0 (mod 3). Thus, only m− can be a prime. If u

were equal to u = 210x + 107 ≡ 2 (mod 3), then again p ≡ 1 (mod 3), but m− ≡ 0
(mod 3) and m+ ≡ 1 (mod 3). Therefore, at the first iteration of our method we select
u = 210x + 1, at the second u = 210x + 107, and so on, in order to check for primality
m− and m+ in tandem. In particular, if the choice u = 210x + 1 does not give primes
p and m, then we add to u the number 106, in the next iteration we add 104, and so on.
In this way, u is at one step congruent to 1 (mod 3) and at the next step congruent to
2 (mod 3).

As mentioned earlier, the other most complicated part of the CM method is the con-
struction of the polynomials (Weber or Hilbert), which is addressed in the next section.

2.3. Hilbert Polynomials

Every CM discriminant D defines a unique Hilbert polynomial, denoted by HD(x).
Given a CM discriminant D, the Hilbert polynomial HD(x) ∈ Z[x] is defined as

HD(x) =
∏

τ

(
x − j (τ)

)
, (5)

where j (τ) = (256h(τ)+1)3

h(τ)
, h(τ) = Δ(2τ)

Δ(τ)
, Δ(τ) = η(τ)24 = q(1 + ∑

n≥1(−1)n ×
(qn(3n−1)/2 + qn(3n+1)/2))24, and q = e2πiτ . The quantity j (τ) in (5) is called class
invariant. Every value of τ is constructed from a 3-tuple of integers [α,β, γ] by
the equation τ = (−β + √−D)/(2α) (notice that τ is a root of the quadratic equa-
tion αz2 + βz + γ = 0). Every such 3-tuple of integers is called a primitive reduced
quadratic form of −D and satisfies the following conditions: (i) β2 − 4αγ = −D, (ii)
|β| ≤ α ≤ √

D/3, (iii) α ≤ γ , (iv) gcd(α,β, γ) = 1, and (v) if |β| = α or α = γ , then
β ≥ 0. Clearly, the set of primitive reduced quadratic forms of a given discriminant is
finite.

On the Efficient Generation of Prime-Order Elliptic Curves 485

Let h be the number of primitive reduced quadratic forms (and thus the number of τ

values), which determines the degree or class number of HD(x). Then, the bit precision
required for the generation of HD(x) can be estimated (see [24]) by

H-Prec(D) ≈ ln 10

ln 2
(h/4 + 5) + π

√
D

ln 2

∑

τ

1

α
(6)

with the sum running over the same values of τ as the product in (5). Hilbert polynomi-
als have roots modulo p under certain conditions stated in the following theorem.

Theorem 1. A Hilbert polynomial HD(x) with degree h has exactly h roots modulo p

if and only if the equation 4p = u2 + Dv2 has integer solutions and p does not divide
the discriminant Δ(HD) of the polynomial.

Proof. Let HK be the Hilbert class field of the imaginary quadratic field K =
Q(

√−D), and let OHK
and OK be the rings of algebraic integers of HK and K, re-

spectively.
Let p be a prime such that 4p = u2 + Dv2 has integer solutions. Then, according

to [10, Theorem 5.26], p splits completely in HK . Let HD(x) ∈ Z[x] be the Hilbert
polynomial with root the real algebraic integer j (τ). Proposition 5.29 in [10] implies
that HD(x) has a root modulo p if and only if p splits in HK and does not divide its

discriminant3 Δ(HD). However, since
OHK

pOHK
/Fp is Galois, HD(x) has not only one

root modulo p but h distinct roots modulo p. �

There are finitely many primes dividing the discriminant Δ(HD) of the Hilbert poly-
nomial and infinitely many primes to choose. In elliptic curve cryptosystems the prime
p is at least 160 bits. Therefore, an arbitrary prime almost certainly does not divide the
discriminant.

3. The CM Method Using Weber Polynomials

In this section we define Weber polynomials for discriminant values D ≡ 3 (mod 8)

and prove that they do not have roots in Fp for certain primes p but do have roots in the
extension field Fp3 . We then discuss their efficiency when used in the CM method and
present a transformation that maps roots of Weber polynomials in Fp3 into the roots of
their Hilbert counterparts in Fp .

3 For a definition of the discriminant of a polynomial, see [8].

486 E. Konstantinou et al.

3.1. Weber Polynomials and Their Roots in Finite Fields

Weber polynomials are defined using the Weber functions (see [1,17]):

f (τ) = q−1/48
∞∏

r=1

(
1 + qr−1/2), f1(τ) = q−1/48

∞∏

r=1

(
1 − qr−1/2),

f2(τ) = √
2 q1/24

∞∏

r=1

(
1 + qr

)
where q = e2πiτ .

The Weber polynomial WD(x) ∈ Z[x] for D ≡ 3 (mod 8) is defined as

WD(x) =
∏

	

(
x − g()

)
, (7)

where 	 = −b+√−D
a

satisfies the equation ay2 + 2by + c = 0 for which b2 − ac = −D

and (i) gcd(a, b, c) = 1, (ii) |2b| ≤ a ≤ c, and (iii) if either a = |2b| or a = c, then b ≥ 0.
Let ζ = eπi/24. The class invariant g() for WD(x) is defined by

g() =

⎧
⎪⎪⎨

⎪⎪⎩

ζ b(c−a−a2c) · f () if 2 |/a and 2 |/c,
−(−1)

a2−1
8 · ζ b(ac2−a−2c) · f1() if 2 |/a and 2 | c,

−(−1)
c2−1

8 · ζ b(c−a−5ac2) · f2() if 2 | a and 2 |/c,
(8)

if D ≡ 3 (mod 8) and D �≡ 0 (mod 3), and

g() =

⎧
⎪⎪⎨

⎪⎪⎩

1
2ζ 3b(c−a−a2c) · f 3() if 2 |/a and 2 |/c,
− 1

2 (−1)
3(a2−1)

8 · ζ 3b(ac2−a−2c) · f 3
1 () if 2 |/a and 2 | c,

− 1
2 (−1)

3(c2−1)
8 · ζ 3b(c−a−5ac2) · f 3

2 () if 2 | a and 2 |/c,
(9)

if D ≡ 3 (mod 8) and D ≡ 0 (mod 3). The above equations were derived from [17] in
an attempt to simplify the corresponding (and rather tedious) equations for the construc-
tion of Weber polynomials.

We would like to note that the conditions for the construction of the quadratic forms
[a,2b, c] are slightly different from the conditions for the computation of the primitive
quadratic forms

[
α,β, γ

]
needed in Sect. 2.3. This means that having as input the same

value of D, the quadratic forms which are constructed for Hilbert and Weber polyno-
mials are different. In particular, when D ≡ 3 (mod 8), the number of these quadratic
forms for Weber polynomials is three times larger than the corresponding number of
quadratic forms for Hilbert polynomials.

Thus, for these cases of the discriminant (D ≡ 3 (mod 8)), the Weber polynomial
WD(x) has degree three times larger than the degree of its corresponding Hilbert poly-
nomial HD(x). An upper bound for the precision requirements of Weber polynomials

for both cases of D was presented in [22] and is equal to 3h + π
√

D
24 ln 2

∑
	

1
α

for D �≡ 0

(mod 3) and to 3h+ π
√

D
8 ln 2

∑
	

1
α

for D ≡ 0 (mod 3). The sum runs over the same values

On the Efficient Generation of Prime-Order Elliptic Curves 487

of 	 as the product of (7), and 3h is the degree of the Weber polynomial (h is the degree
of the corresponding Hilbert polynomial).

Consider the modular function

Φ2(x, j) = (x − 16)3 − jx (10)

where j is a class invariant for the Hilbert polynomial. The three roots of the equation
Φ2(x, j) = 0 are the powers f 24, −f 24

1 , and −f 24
2 of the Weber functions (it is known

that j (z) = (f 24(z)−16)3

f 24(z)
= (f 24

1 (z)+16)3

f 24
1 (z)

= (f 24
2 (z)+16)3

f 24
2 (z)

, see [6]). A transformation (used

in the CM method) from roots of Weber polynomials to roots of Hilbert polynomials
was presented in [22] and is derived from the modular equation Φ2(x, j) = 0. The
transformation for D �≡ 0 (mod 3) is

RH = (212R−24
W − 16)3

212R−24
W

(11)

and for D ≡ 0 (mod 3) is

RH = (24R−8
W − 16)3

24R−8
W

(12)

where RW is a root of WD(x), and RH is a root of HD(x). To use these transformations,
we have to locate RW on a specific field, an issue not addressed in [22].

In the rest of this section we will show that when u,v are odd numbers and D ≡
3 (mod 8), then WD(x) does not have roots modulo p, but its roots belong to the ex-
tension field Fp3 (recall that the order m = p + 1 ± u of the elliptic curve can be prime
only if u is odd, which means that in (3) v must be odd, too).

Theorem 2. Let D ≡ 3 (mod 8) and assume that the equation 4p = u2 + Dv2 has a
solution (u, v), where u,v are odd integers. Then, the Weber polynomial WD(x) with
degree 3h has no roots modulo p.

Proof. In order to prove that the Weber polynomial WD(x) has no roots modulo p,
we must prove first that the equation Φ2(x, j) = 0 (mod p) has no roots x (mod p) for
a given j (mod p). Let j be a root of Hilbert polynomial modulo p (denoted also as
RH), which we know from Theorem 1 that always exists. According to (11) and (12),
the modular equation Φ2(x, j) = 0 (mod p) (for a given j (mod p)) has a solution x =
212R−24

W if D �≡ 0 (mod 3) and x = 24R−8
W if D ≡ 0 (mod 3). If the Weber polynomial

WD(x) had a root RW modulo p, then Φ2(x, j) = 0 (mod p) would also have a root x

modulo p. Consequently, if we could prove that Φ2(x, j) = 0 (mod p) has no roots x

modulo p, then the same will be true for the Weber polynomial WD(x).
For an integer c, let (c

2) denote the Kronecker symbol. From [30, Theorem 3.1] we

conclude that if (−Dv2

2) = −1, then the polynomial Φ2(x, j) (mod p) is irreducible
modulo p. This means that in this case the equation Φ2(x, j) = 0 (mod p) has no roots

x (mod p) for a given j (mod p). Thus, it suffices to prove that (−Dv2

2) = −1. Us-

ing the Kronecker symbol, we know that (−Dv2

2) = −1 if −Dv2 is odd and −Dv2 ≡

488 E. Konstantinou et al.

±3 (mod 8). We will show that Dv2 ≡ 3 (mod 8). Clearly, since D ≡ 3 (mod 8) =
8d1 +3 and v = 2v1 +1 is odd, Dv2 is also odd. We have Dv2 = (8d1 +3)(2v1 +1)2 =
(8d1 +3)(4v2

1 +4v1 +1). That is, Dv2 ≡ 3(4v2
1 +4v1 +1) (mod 8), and because v2

1 +v1

is even, it is easily seen that Dv2 ≡ 3 (mod 8), which completes the proof. �

The next theorem establishes the main result of this section.

Theorem 3. Let D ≡ 3 (mod 8) and assume that the equation 4p = u2 + Dv2 has a
solution (u, v), where u,v are odd integers. Then, the Weber polynomial WD(x) has h

monic irreducible factors of degree 3 modulo p and 3h roots in the extension field Fp3 .

Proof. We have proved in Theorem 2 that the Weber polynomial does not have roots
modulo p if u,v are odd numbers and that the polynomial Φ2(x, j) is irreducible mod-
ulo p. This means that Φ2(x, j) = 0 has three roots x ∈ Fp3 for a root j ∈ Fp of the

Hilbert polynomial.4 According to (11) and (12), x = 212R−24
W if D �≡ 0 (mod 3), and

x = 24R−8
W if D ≡ 0 (mod 3). Thus, there are at least three roots of the Weber polyno-

mial that correspond to a root j ∈ Fp of the Hilbert polynomial and which are either in
Fp3 or in an extension field of greater degree (at most 72 if D �≡ 0 (mod 3) and at most
24 if D ≡ 0 (mod 3)).

Let RW,j be a root of the Weber polynomial that corresponds to a root j of the Hilbert
polynomial. Let fj (x) be the minimal polynomial of RW,j (mod p). The degree of this
polynomial will be at least 3, because the root RW,j is at least in Fp3 . Then, the Weber
polynomial can be written as

WD(x) =
∏

j

fj (x) (mod p). (13)

Since the degree of the Weber polynomial is 3h and the roots j modulo p of the Hilbert
polynomial are h (see Theorem 1) we have that every minimal polynomial fj (x) will
have degree 3. Thus, Weber polynomials have h irreducible cubic factors. Every factor
fj (x) has 3 roots in Fp3 ∼= Fp[x]/fj (x), which means that there are totally 3h roots
in Fp3 . �

3.2. The Use of Weber Polynomials in the CM Method

In this subsection we will elaborate on the use of Weber polynomials for the genera-
tion of prime-order ECs. The idea is that we replace Hilbert polynomials with Weber
polynomials and then try to compute a root of the Hilbert polynomial from a root of
its corresponding Weber polynomial. To compute the desired Hilbert root, we proceed
in three stages. First, we construct the corresponding Weber polynomial. Second, we
compute its roots in Fp3 . Finally, we transform the Weber roots to the desired Hilbert
roots in Fp . The first stage is accomplished using the definition of Weber polynomials
in Sect. 3.1. To compute a root of WD(x) in Fp3 , we have to find an irreducible fac-
tor (modulo p) of degree 3 of the polynomial. This is achieved using Algorithm 3.4.6

4 Each root x is an element of F
p3 because Φ2(x, j) is irreducible modulo p and F

p3 is isomorphic to
Fp[x]/Φ2(x, j).

On the Efficient Generation of Prime-Order Elliptic Curves 489

from [8]. The irreducible factor has 3 roots in Fp3 , from which it suffices to choose one
in order to accomplish the third stage.

Suppose that x3 + ax2 + bx + c is an irreducible factor modulo p of the Weber poly-
nomial. From this irreducible factor we can compute three roots (one suffices for the
CM method) of the Weber polynomial if we have already defined the reduction poly-
nomial of the extension field Fp3 . We simply set the reduction polynomial to be equal
to the irreducible factor x3 + ax2 + bx + c, and then a root of the Weber polynomial
would be just x.

Let us see an example: if W403(x) = x6 − 12x5 − 26x4 + 4x3 + 36x2 +
20x + 4 and p = 722107661880352729711165735009, then a factor of the
Weber polynomial modulo p is x3 + 530841998355731959331093661138x2 +
2654209991778659796655 46830567x + 7221076618803527 29711165735007. Note
that 403 is not divisible by 3 and that 722107661880352729711165735007 = p − 2 ≡
−2 (mod p).

The following lemma allows us to determine the constant term of the irreducible
factor and consequently to simplify the roots’ transformation as we will see later.

Lemma 1. Let x3 + ax2 + bx + c be an irreducible factor (modulo p) of the Weber
polynomial with D ≡ 3 (mod 8). Then, the following hold: (i) if D ≡ 0 (mod 3), then
c = −1; (ii) if D �≡ 0 (mod 3), then c = −2.

Proof. The constant term of the Weber polynomial is equal to (−1)h for the first
case of D and (−2)h for the second case (see [18]). The Galois group of the extension
HK/K operates on the roots modulo p of HD(x) and therefore on the cubic irreducible
factors of WD(x) (every root of HD(x) corresponds to three roots of WD(x) and thus
to a cubic irreducible factor). Since every element in this Galois group induces the
identity on Fp , all cubic factors of WD(x) will have the same constant term. Because
the constant term of a monic polynomial is equal to the product of the constant terms
of its monic irreducible factors, it can be easily seen that c = −1 for the first case of D

and c = −2 for the second. �

We are now ready to present the transformations for mapping a Weber root in Fp3

to its corresponding Hilbert root in Fp . Suppose that RW = x is a root of a Weber
polynomial WD(x) in the extension field Fp3 . The calculations in the transformations
must be in Fp3 with reduction polynomial x3 +ax2 +bx + c, since RW is a root in Fp3 .

The transformations may seem quite complicated because of the arithmetic opera-
tions that take place in the extension field, but they can be simplified due to Lemma 1.
Consider the case D �≡ 0 (mod 3), for which an irreducible factor of the Weber
polynomial is equal to x3 + ax2 + bx − 2. Then, R−24

W = x−24 = (x2+ax+b

x(x2+ax+b)
)24 =

(x2+ax+b
2)24. This means that 212R−24

W = (x2+ax+b)24

212 . Substituting it into Eq. (11), we
finally have

RH = ((x2 + ax + b)24 − 216)3

224(x2 + ax + b)24
. (14)

490 E. Konstantinou et al.

Similarly, for D ≡ 0 (mod 3), the transformation becomes

RH = 28((x2 + ax + b)8 − 1)3

(x2 + ax + b)8
. (15)

The nominator and denominator of the two transformations are elements of Fp3 . How-
ever we know that RH is in Fp , and we can find its value dividing only the leading coeffi-
cients of these two elements modulo p. To illustrate the above transformations, consider
again the Weber polynomial W403. Let p be a prime as in the previous example, and
let the reduction polynomial be the factor of the W403(x) presented also in the previous
example. Then, ((x2 + ax + b)24 − 216)3 = 485216670393361675137940525358x2 +
498390024660218217560914441491x + 437 505083747867349301080018378
and (x2 + ax + b)24 = 372203635398289746518033 419220x2 +
193471851293797158505478806686x + 105818622204842691408284289 782. The
root RH of the Hilbert polynomial is equal to 485216670393361675137940525358

224372203635398289746518033419220
(mod p)

= 188541528108458443856585415294.

4. The CM Method Using an Alternative Class of Polynomials

Even though Weber polynomials have much smaller coefficients than Hilbert polyno-
mials and can be computed very efficiently, the fact that their degree for D ≡ 3 (mod 8)

is three times larger than the degree of the corresponding Hilbert polynomials can be
a potential problem, because it involves computations in extension fields. Moreover,
the computation of a cubic factor modulo p in a polynomial with degree 3h is more
time consuming than the computation of a single root modulo p of a polynomial with
degree h.

To alleviate these problems, we can use in the CM method a relatively new class of
polynomials which have degree h like Hilbert polynomials. In particular, two types of
polynomials can be constructed in Z[x] using two families of η-products: ml(z) = η(z/l)

η(z)

[29] for an integer l, and mp1,p2(z) = η(z/p1)η(z/p2)
η(z/(p1p2))η(z)

[12], where p1,p2 are primes such
that 24|(p1 − 1)(p2 − 1). We will refer to the minimal polynomials of these products
(powers of which generate the Hilbert class field and are called class invariants like
j (τ)) as MD,l(x) and MD,p1,p2(x), respectively, where D is the discriminant used for
their construction.

The polynomials are obtained from these two families by evaluating their value at
a suitably chosen system of quadratic forms. Once a polynomial is computed, we can
use the modular equations Φl(x, j) = 0 or Φp1,p2(x, j) = 0, in order to compute a
root modulo p of the Hilbert polynomial from a root modulo p of the MD,l(x) or the
MD,p1,p2(x) polynomial, respectively. In this section we will construct polynomials
using only the ml family for prime values of l, in particular for l = 3,5,7,13. The
reason is that only for these values of l, the modular equations have degree 1 in j . For
all other values of l or for the mp1,p2 family, the degree in j is at least 2 (which makes
the computations more “heavy”), and the coefficients of the modular equations are quite
large (which makes their use less efficient).5

5 For example, notice in [13] the size of the smallest modular polynomial Φ5,7(x, j).

On the Efficient Generation of Prime-Order Elliptic Curves 491

Table 1. Class invariants for different values of l.

l Class invariant

3 m12
3

5 m6
5

7 m4
7

13 m2
13

In order to construct the polynomial MD,l(x) with l = 3,5,7,13, we used Theorem 2
from [11], which for our purposes boils down to the following statement.

Theorem 4. [11] Let l ∈ {3,5,7,13} and D > 0 a discriminant such that l|D. Choose
the power me

l as specified in Table 1. Assume that Q = [A,B,C] is a primitive
quadratic form of discriminant D with gcd(A, l) = 1, gcd(A,B,C) = 1, and B2 ≡ −D

(mod 4l). If τQ = −B+√−D
2A

, then the minimal polynomial of me
l (τQ) has integer coef-

ficients and can be computed from an l-system.

An l-system is a system S = {(Ai,Bi,Ci)}1≤i≤h of representatives of the re-
duced primitive quadratic forms of a discriminant −D such that B2

i − 4AiCi = −D,
gcd(Ai, l) = 1, and Br ≡ Bs (mod 2l) for all 1 ≤ r, s ≤ h. For a more formal defini-
tion, see [35].

Although the construction of MD,l(x) polynomials is explained in [11,29,30], the re-
quired computation of the primitive forms is not provided. In the following, we provide
all the details for computing these forms, which we also used in our implementation.
Possibly there are alternative ways to generate the same polynomial MD,l(x) with other,
equivalent forms.

For the construction of the polynomials MD,l(x), according to Theorem 4, the con-
dition Br ≡ Bs (mod 2l) can be replaced by the condition B2

i ≡ −D (mod 4l), and
because D ≡ 0 (mod l), we can write Bi = l + 2lki ≡ l (mod 2l) for an integer ki ≥ 1.
In particular, MD,l(x) = ∏

τQ
(x −me

l (τQ)), where Q = [Ai,Bi,Ci] is a primitive form

satisfying the conditions gcd(Ai, l) = 1, Bi = l + 2lki , and τQ = −Bi+
√−D

2Ai
. The set of

forms [Ai,Bi,Ci]1≤i≤h can be computed from the set of the reduced primitive quadratic
forms [α,β, γ] that are used for the construction of HD(x).

A form [Ai,Bi,Ci] can be computed from a reduced primitive quadratic form
[α,β, γ] using (at most) two transformations from [35, Proposition 3]. The first one
transforms a form [a, b, c] to the equivalent (having the same discriminant −D) form
[a, b + 2ak, c + bk + ak2] for an integer k, and the second transforms a form [a, b, c]
to the equivalent form [a + bn + cn2, b + 2cn, c] for an integer n. In order to com-
pute a form [Ai,Bi,Ci], we first transform a reduced primitive form [α,β, γ] to a
form [α1, β1, γ1] such that β1 and γ1 are divided by l, using the first transformation.
This means that we choose an integer k such that β1 = β + 2αk ≡ 0 (mod l) and
γ1 = γ + βk + αk2 ≡ 0 (mod l). If α ≡ 0 (mod l), we just set α1 = γ and γ1 = α,
and we do not apply the transformation (β1 = β ≡ 0 (mod l), because D ≡ 0 (mod l)).
After this transformation, we use the second transformation from [35] to compute the

492 E. Konstantinou et al.

Table 2. Modular functions for different values of l.

l Φl(x, j)

3 (x + 27)(x + 3)3 − jx

5 (x2 + 10x + 5)3 − jx

7 (x2 + 13x + 49)(x2 + 5x + 1)3 − jx

13 (x2 + 5x + 13)(x4 + 7x3 + 20x2 + 19x + 1)3 − jx

final form [Ai,Bi,Ci] from [α1, β1, γ1]. Thus, Ai = α1 +β1n+ γ1n
2, Bi = β1 + 2γ1n,

and Ci = γ1 for an integer n such that Ai > Bi > Ci .
It is easy to see why this process yields a form that satisfies the desired conditions.

The requirement Ai > Bi > Ci exists because our experiments showed that it is neces-
sary for the proper construction of the polynomial MD,l(x). For example, for D = 51,

the reduced forms are [1,1,13], [3,3,5], and the corresponding forms [Ai,Bi,Ci] for
l = 3 are [67,63,15], [11,9,3].

The invariants me
l (τ) are related with j (τ) through the modular equation Φl(m

e
l (τ),

j (τ)) = 0, based on the definitions of Φl(x, j) for the different values of l given in
Table 2.

Theorem 5. A polynomial MD,l(x) has h roots modulo p if and only if the equation
4p = u2 +Dv2 has an integer solution and p does not divide the discriminant Δ(MD,l)

of the polynomial.

Proof. It follows the same lines as that of Theorem 1. We know that the class invari-
ants me

l generate the Hilbert class field, and therefore Proposition 5.29 from [10] hold.
This implies that MD,l(x) has a root modulo p when 4p = u2 + Dv2 has an integer so-

lution, and since
OHK

pOHK

/Fp is Galois, the polynomial MD,l(x) has h distinct solutions

modulo p. �

The polynomials MD,l(x) can be used in the CM method in a more straightfor-
ward way, compared to that of Weber polynomials for the case of prime order elliptic
curves. Since MD,l(x) has roots RM modulo p, we use an algorithm for their computa-
tion (for example, Berlekamp’s algorithm [5]), and then we can compute the roots RH

modulo p of the corresponding Hilbert polynomial HD(x) from the modular equation
Φl(RM,RH) = 0.

We finally note that the precision required for the construction of the MD,l(x) poly-
nomials is approximately 1

l
H-Prec(D) [11].

5. Implementation and Experimental Results

In this section, we discuss some issues regarding the implementation of our variant of
the Complex Multiplication method and our experimental results concerning its time
and space efficiency. All of our implementations were made in ANSI C using the
(ANSI C) GNUMP [16] library for high-precision floating-point arithmetic and also

On the Efficient Generation of Prime-Order Elliptic Curves 493

Fig. 1. Bit precision for the construction of Hilbert and Weber polynomials for various degrees h ∈ [3,15].

for the generation and manipulation of integers of unlimited precision. The implemen-
tation includes the construction of the Hilbert, Weber, and MD,l(x) polynomials, al-
gorithms for the computation of roots modulo p of a polynomial, algorithms for the
computation of a cubic factor of a polynomial modulo p, and of course all the steps
of the CM method for the generation of prime-order elliptic curves. All implementa-
tions and experiments have been carried out on a Pentium III (933 MHz) running Linux
and equipped with 256 MB of main memory. Our implementation is also part of a
software library for EC cryptography that we build [20]. The library is available from
http://www.ceid.upatras.gr/faculty/zaro/software/ecc-lib/.

5.1. Construction of Class Field Polynomials

Our experiments first focused on the bit precision and the time requirements needed
for the construction of Hilbert and Weber class field polynomials. We have considered
various values of D and h and made several experiments. We observed a big difference
in favor of Weber polynomials both w.r.t. precision and time. This was evident even for
small values of D and h. Figure 1 illustrates the approximate (theoretical) estimate of
the bit precision required for the construction of Weber and Hilbert polynomials and
the actual precision, i.e., the minimal precision required for their actual construction
during the experiments. The actual precision was computed by gradually increasing the
bit precision used in GNUMP library for floating-point arithmetic and stop at the first
value for which each polynomial was correctly constructed.

As is evident from the figure, there is a large difference in the required precision
between the two types of polynomials. The difference grows considerably larger for
bigger values of D. The degree h for these values of D ranges from 3 to 15. This
means that for different values of D in Fig. 1, the corresponding degrees h can be
the same. For this reason, it is more convenient to show the bit precision require-
ments for the construction of the polynomials with respect to the discriminant D

http://www.ceid.upatras.gr/faculty/zaro/software/ecc-lib/

494 E. Konstantinou et al.

Fig. 2. Time in seconds for the construction of Weber polynomials for various degrees h ∈ [50,150].

(and not h). We also observe (see Fig. 1) that the approximate precision estimates
are very close to the actual precision used in the implementation. For Hilbert poly-
nomials, the approximation from (6) was used, while for Weber polynomials, that of
Sect. 3. Regarding the time requirements of Weber polynomials, illustrative results
are reported in Fig. 2. It is clear that the precision required for the case of D ≡
0 (mod 3) is bigger than the precision required for D �≡ 0 (mod 3) for similar values
of D and h. The degree h of the polynomials ranges from 50 to 150, while D ranges
from 11299 to 69315 (for D = 69211 and h = 150, the time for the construction of the
polynomial is only 7.57 seconds). The difference between these two cases can be read-
ily explained from the EC theory: the class invariants for such values of D are raised
to the power of three, and since they increase in magnitude, the time requirements are
expected to be much larger than the requirements for Weber polynomials corresponding
to other values of the discriminant. This fact implies that values of D divisible by 3
should be avoided.

Our experiments focused also on the bit precision and the time requirements needed
for the construction of Weber and MD,l(x) polynomials with D ≡ 3 (mod 8). We would
like to note here that the construction of Hilbert polynomials is much less efficient than
the construction of Weber (as seen in Fig. 1) or MD,l(x) polynomials for all values of D

and l. Concerning Weber polynomials, we used discriminants D �≡ 0 (mod 3). We avoid
discriminants D ≡ 0 (mod 3) because the precision requirements are greater than those
of the case D �≡ 0 (mod 3). We have considered various values of D and report on our
experimental results in Figs. 3 and 4. The degree h for the first value of the discriminant
D in the figures is equal to 32, while for the last two values, it is 48. We noticed, as the
theory dictates, that the precision required for the construction of Weber polynomials
WD(x) is less than the precision required for the construction of MD,l(x) polynomials
for all the values of l that we examined (in Sect. 4 we explained why we consider these
particular values of l). Among the MD,l(x) polynomials, the least precision is required

On the Efficient Generation of Prime-Order Elliptic Curves 495

Fig. 3. Bit precision for the construction of class polynomials.

0

50

100

150

200

250

300

350

400

30000 35000 40000 45000 50000 55000 60000 65000

e
mi

T

D

l = 3
l = 5
l = 7
l =13

weber

Fig. 4. Time requirements for the construction of class polynomials.

for the construction of MD,13(x), followed by the construction of MD,7(x), followed
by the construction of MD,5(x). The greatest requirements in precision are set by the
MD,3(x) polynomials.

The same ordering can be observed in the construction time. For Fig. 4 (time in sec-
onds), we used the same values of D as in Fig. 3, and also in this figure the differences
among the polynomials are very clear. We observed that the time for the construction
of MD,l(x) depends not only on the precision requirements of the polynomials but also

496 E. Konstantinou et al.

on the convergence rate of η-products. The greater the l, the slower the convergence.
This is why in Fig. 4 the differences do not seem to be analogous with the differences
in Fig. 3. This favors Weber polynomials, as the η-products in their construction con-
verge faster than any of the MD,l(x) polynomials, making their generation even more
efficient.

The operations that are responsible for the construction time are two: firstly the com-
putation of the class invariants and secondly the construction of the polynomial via the
product (x − a1)(x − a2) · · · (x − ah), where each ai is a class invariant. As the degree
of the polynomials increases, the computation of this product becomes much more time
consuming and is responsible for the largest part of the construction time. For example,
in the case of MD,3(x) polynomials in Fig. 4, the time requirements for the construc-
tion of the polynomials for the three values of the discriminant D were 128.04, 339.74,
and 363.43 seconds, respectively. The total time required for the computation of all the
class invariants for these three cases was only 19.23, 52.81, and 58.08 seconds, respec-
tively. The remaining time of 108.81, 286.93, and 305.35 seconds, respectively, from
the total construction time of the polynomials is due to the computation of the product
(x − a1)(x − a2) · · · (x − ah).

The coefficients of the Weber polynomials are also smaller than the coefficients of
the MD,l(x) polynomials, following the same relative order with precision and time.
However, the disadvantage of Weber polynomials is that their degree is three times
larger than the degree of the MD,l(x) polynomials. Therefore, the space required for
the storage of a Weber polynomial WD(x) can be larger than the space required for the
storage of MD,13(x) or MD,7(x). Actually, it turns out that MD,l(x) polynomials can
be even more advantageous when it comes to storage requirements as our experiments
showed. Suppose that MD,l(x) = xh +M1x

h−1 +· · ·+Mh−1x +Mh and h is even. We
noticed that every coefficient Mi of MD,l(x) is divisible by l. Moreover, when l = 13,
then Mh = 13h/2 and Mh−i

Mi
= 13h/2−i for 1 ≤ i ≤ (h/2 − 1). For l = 7, Mh = 7h and

Mh−i

Mi
= 7h−2i ; for l = 5, Mh = 53h/2 and Mh−i

Mi
= 53h/2−3i ; and finally, for l = 3, we

have Mh = 33h and Mh−i

Mi
= 33h−6i . Using these properties of the MD,l(x) polynomials,

we can reduce the space required for their storage (if someone wants to store them for
subsequent use).

This is not the only advantage of MD,l(x) against WD(x). The large degree of the
Weber polynomials is a disadvantage for the time efficiency of the CM method, because
the time for finding a cubic factor of the polynomial can be much larger than the time
for finding a single root modulo p of a polynomial with three times smaller degree.
In Table 3 we report on the time (in seconds) that is required for the computation of
a cubic factor modulo p of WD(x), denoted by TW , and the time that is required for
the computation of a linear factor modulo p of the MD,l(x) polynomials denoted by
TM , for various values of l. The prime p has size 160 bits. CW and CM is the time
required for the construction of the WD(x) and the MD,l(x) polynomials, respectively.
The degree of WD(x) is 3h. Note that CW +TW (resp. CM +TM) is the time that mostly
dominates and differentiates the use of polynomials (Weber versus MD,l(x)) in the CM
method, since the time for the other steps of the method is practically independent of
the polynomials used.

In particular, the last two steps of the CM method, which include the transformation
of a root to a root of the corresponding Hilbert polynomial and the choice of the correct

On the Efficient Generation of Prime-Order Elliptic Curves 497

Table 3. Time for the computation of a cubic factor of Weber polynomials and of a linear factor of the
MD,l(x) polynomials, together with their construction time.

D h l TW CW TM CM

403 2 13 0.12 0.63 0.01 0.36
1027 4 13 0.40 1.31 0.02 0.38
2035 8 5 1.53 2.35 0.07 1.31
2795 12 13 3.88 3.60 0.13 2.12
4403 20 7 13.12 5.15 0.44 8.71
5603 22 13 16.97 6.94 0.50 8.38
6995 32 5 41.05 9.64 1.72 36.03

22435 32 5 41.05 17.80 1.72 72.94

EC, require on average 0.32 seconds in the 192-bit field. This time is not influenced
by the size of the CM discriminant D. The transformation of a Weber root to the cor-
responding Hilbert root requires 0.75 msecs, while the transformation of a root of the
MD,l(x) polynomials requires 0.70 msecs. It is clear that the choice of the correct EC
is responsible for the total time of these two last steps. Recall that the correct EC is
found by using Langrange’s theorem, which involves one (at least) point multiplication
operation. This operation is much more time consuming than a simple transformation.

We observe from Table 3 that CW + TW is almost always larger than CM + TM ,
implying that the use of Weber polynomials is more time consuming than the use of the
MD,l(x) polynomials. However, we also observed that in some cases where D increases,
h is of moderate size, and l ∈ {3,5}, the construction of the MD,l(x) polynomials may
become less efficient (cf. last line of Table 3), and the total time of the CM method
with these polynomials can be larger than the time required by the method when their
corresponding Weber polynomials are used.

In conclusion, the type of polynomial that one should use depends on the particular
application. If the main focus is on time or precision regarding the construction of the
polynomials, then Weber polynomials should be preferred. If the focus is on fast and
frequent generation of ECs and which implies storage of polynomials for subsequent
use in the CM method, then the MD,l(x) polynomials (l �= 3) must be preferred. Finally,
if the class polynomials are computed online with the CM method, then the selection
of the proper polynomial depends on D and h. Notice, though, that Weber polynomials
can be constructed for any value of D ≡ 3 (mod 8), while MD,l(x) polynomial add a
restriction for D, demanding that D ≡ 0 (mod l).

5.2. Computation of p and m

In this section we elaborate on the four methods for the calculation of the prime order p

of the underlying field and the prime (and suitable) order m of the EC (recall Sect. 2.2).
We shall refer to these methods as R (random choice used in [34]), C (modified Cor-
nacchia’s algorithm), B (Baier’s algorithm in [3, p. 68]), and N (new method). We have
made several experiments both in the 192-bit and in the 224-bit fields with various val-
ues of D and h. All reported experimental values are averages over 3000 ECs for each
value of the discriminant D.

In the figures and the tables that follow, we report on the time requirements for each
method and on the number of integers p and m that must be computed by each method

498 E. Konstantinou et al.

Fig. 5. Time in seconds for the computation of p and m in the 224-bit field.

until both of them are primes. For example, in the R method, random numbers u and v of
proper size are generated, and then it is checked whether the number p = (u2 +Dv2)/4
is prime. If it is not, then other parameters u and v are created, and the same process is
followed. After a number of iterations (we will denote it by #p) a prime p is found, the
two EC orders m+ and m− are constructed, and their primality is checked. The number
of iterations required to find a prime order m will be denoted by #m. This means that
the total number of pairs (u, v) generated in order to find a prime p and a prime m are
#p · #m.

Figure 5 presents the time requirements of the four methods for various discriminants
D in the 224-bit field. Clearly, C is by far the slowest, even for small values of h (h ≤ 10
in Fig. 5); this is due to its time complexity, which is O(log4 p). More timing details
on the four methods are given in Table 4. The B method is the fastest, followed closely
by the N method. The performance of these two methods is not influenced by the dis-
criminant D. It is clear that the B method has an advantage against the other methods
because the number of iterations required to find the primes p and m are much smaller
compared to the corresponding iterations for the other methods. Concerning the other
two methods (C and R), notice that their performance improves as the discriminant D

increases and the degree h remains the same. The number of primes that we had to try
in order to find a solution (u, v) with the modified Cornacchia’s algorithm is equal to
3h with surprising accuracy. This fact can be seen also in Tables 5 and 6. Moreover,
it is interesting that the values of #m are very similar for C and R methods. This can
be explained easily as the order m in both methods is constructed by randomly chosen
primes p. In contrast, the heuristics used in B and N methods reduce the numbers #p

and #m. In Tables 5 and 6 we report on the performance of the four methods in the
192-bit field. We notice that as D and h increase, the time requirements of C and R
methods increase, while the performance of the other two methods remains the same.

On the Efficient Generation of Prime-Order Elliptic Curves 499

Table 4. Timing estimations (in secs) of all methods in the 224-bit finite field.

D h C method R method B method N method

#p #m Time #p #m Time #p #m Time #p #m Time

155 4 12 121 29.57 117 106 2.41 17 33 0.55 39 43 0.86
195 4 12 78 24.82 104 87 1.99 17 33 0.53 40 43 0.87
259 4 12 54 17.03 91 59 1.32 18 33 0.56 43 45 0.92
355 4 12 46 13.50 81 43 0.99 18 34 0.59 39 42 0.82
555 4 12 42 11.89 61 42 0.97 19 37 0.64 31 38 0.68

Table 5. Timing estimations (in secs) of all methods in the 192-bit finite field.

D h C method R method B method N method

#p #m Time #p #m Time #p #m Time #p #m Time

59 3 9 138 19.70 123 134 1.84 16 28 0.32 24 26 0.31
83 3 9 99 15.97 104 103 1.49 15 27 0.31 31 32 0.41

107 3 9 94 12.53 92 85 1.26 15 27 0.31 36 38 0.50
379 3 9 26 4.39 49 30 0.48 16 30 0.34 25 28 0.36
883 3 9 15 2.26 32 17 0.26 16 28 0.32 25 26 0.31
179 5 15 123 34.03 118 124 1.81 15 28 0.30 31 34 0.42
227 5 15 97 24.42 105 106 1.54 15 26 0.28 31 32 0.41
347 5 15 74 18.45 85 83 1.32 16 28 0.31 34 39 0.51
443 5 15 65 16.08 76 70 1.19 16 28 0.31 30 35 0.45

1051 5 15 26 6.92 50 29 0.46 16 29 0.32 25 27 0.33

Fig. 6. Time requirements for the computation of p and m for various degrees h ∈ [10,20].

Since the C method is by far the less efficient one, we do not consider C when
reporting results with larger values of D and h, and concentrate on the compari-
son among methods R, B, and N. The difference in efficiency among these three

500 E. Konstantinou et al.

Fig. 7. Time requirements for the computation of p and m for various degrees h ∈ [200,400].

Table 6. Timing estimations (in secs) of all methods in the 192-bit finite field for various degrees h.

D h C method R method B method N method

#p #m Time #p #m Time #p #m Time #p #m Time

163 1 3 12 0.67 24 12 0.20 15 28 0.29 19 20 0.25
403 2 6 15 1.65 31 16 0.26 15 30 0.32 25 26 0.33
883 3 9 16 2.26 32 17 0.26 15 29 0.32 25 26 0.31
555 4 12 36 7.52 54 39 0.64 16 30 0.33 26 28 0.37

1051 5 15 23 6.79 50 29 0.46 15 29 0.32 25 27 0.33
451 6 18 53 16.70 90 57 0.89 15 28 0.30 35 37 0.46
811 7 21 43 15.63 78 50 0.83 15 29 0.32 30 34 0.43

1299 8 24 53 22.01 91 57 0.91 16 31 0.35 30 28 0.38
1187 9 27 78 30.62 84 76 1.25 16 31 0.35 34 37 0.46
611 10 30 128 55.04 131 134 2.20 15 29 0.31 34 36 0.45

methods can be seen in Figs. 6 and 7. Figure 6 involves values of D ranging from
163 to 2099 and values of h ranging from 10 to 20, while Fig. 7 involves values of
(D,h) in {(125579,200), (184091,250), (223739,300), (294971,350), (428819,400),

(539579,450)}. More details for these values are given in Table 7. We notice that the
performance of the three methods is not affected by the degree h and the discriminant D.
This is surprising for the R method, whose time requirements (as seen in Table 6 and
Fig. 6) increase with h, when h is small. We conclude that there is an upper bound on
the degree h after which the performance of the method stabilizes.

In either case, we observe a similar behavior in the relative efficiency among the three
methods: R is the most time consuming, while the most efficient is B. The new method
(N) is slightly slower than B, but it is simpler and uses less memory. The difference be-
tween R, and B or N becomes more apparent as D and h increase (cf. Fig. 7). We would
also like to note that the timings obtained by our implementation of B using GNUMP

On the Efficient Generation of Prime-Order Elliptic Curves 501

Table 7. Timing estimations (in secs) of the three methods in the 192-bit finite field.

D h R method B method N method

#p #m Time #p #m Time #p #m Time

125579 200 187 204 4.01 15 28 0.30 36 35 0.48
184091 250 217 252 5.13 14 28 0.29 38 40 0.54
223739 300 211 243 4.56 15 31 0.35 41 43 0.55
294971 350 205 212 4.18 15 29 0.32 41 41 0.53
428819 400 192 220 4.09 15 30 0.34 39 41 0.52
539579 450 206 222 4.41 16 31 0.36 39 40 0.54

are very close to those reported in [3], which were based on a C++ implementation of
B using the advanced C++ library LiDIA [25] and carried out on a similar machine.

6. Conclusions

We have presented a variant of the Complex Multiplication method for the generation
of prime-order ECs using Weber polynomials. We have shown that Weber polynomials
in this case do not have roots in Fp but do have in the extension field Fp3 . We have
also presented a set of transformations for mapping roots of Weber polynomials in Fp3

to roots of their corresponding Hilbert polynomials in Fp , and we have shown how a
new class of polynomials can be used instead of Weber polynomials in the CM method.
Finally, we have compared experimentally the use of Weber polynomials against the use
of this new class, and we have investigated the efficiency of the computation of p and m

under four different implementations showing the superiority of two of them. We believe
that our experimental results can be used as a guideline for the construction of prime-
order elliptic curves, as the potential designer can have an estimate of the computation
time, and the precision required before the actual implementation is accomplished.

Acknowledgements

We are indebted to the anonymous referees for their criticism and valuable comments
that improved the presentation.

References

[1] A.O.L. Atkin, F. Morain, Elliptic curves and primality proving. Math. Comput. 61, 29–67 (1993)
[2] H. Baier, Elliptic curves of prime order over optimal extension fields for use in cryptography, in Progress

in Cryptology—INDOCRYPT 2001. Lecture Notes in Computer Science, vol. 2247 (Springer, Berlin,
2001), pp. 99–107

[3] H. Baier, Efficient algorithms for generating elliptic curves over finite fields suitable for use in cryptog-
raphy. PhD Thesis, Dept. of Computer Science, Technical Univ. of Darmstadt, May 2002

[4] H. Baier, J. Buchmann, Efficient construction of cryptographically strong elliptic curves, in Progress
in Cryptology—INDOCRYPT 2000. Lecture Notes in Computer Science, vol. 1977 (Springer, Berlin,
2000), pp. 191–202

[5] E.R. Berlekamp, Factoring polynomials over large finite fields. Math. Comput. 24, 713–735 (1970)
[6] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography. London Mathematical Society Lecture

Note Series, vol. 265 (Cambridge University Press, Cambridge, 1999)

502 E. Konstantinou et al.

[7] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, in ASIACRYPT 2001. Lecture
Notes in Computer Science, vol. 2248 (Springer, Berlin, 2001), pp. 514–532

[8] H. Cohen, A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol.
138 (Springer, Berlin, 1993)

[9] G. Cornacchia, Su di un metodo per la risoluzione in numeri interi dell’ equazione∑n
h=0Chxn−hyh=P . G. Mat. Battaglini 46, 33–90 (1908)

[10] D.A. Cox, Primes of the Form x2 + ny2 (Wiley, New York, 1989)
[11] A. Enge, F. Morain, Comparing invariants for class fields of imaginary quadratic fields, in Algebraic

Number Theory—ANTS V. Lecture Notes in Computer Science, vol. 2369 (Springer, Berlin, 2002), pp.
252–266

[12] A. Enge, R. Schertz, Constructing elliptic curves from modular curves of positive genus. Preprint (2003)
[13] A. Enge, R. Schertz, Modular curves of composite level. Acta Arith. 118(2), 129–141 (2005)
[14] G. Frey, H.G. Rück, A remark concerning m-divisibility and the discrete logarithm problem in the

divisor class group of curves. Math. Comput. 62, 865–874 (1994)
[15] S. Galbraith, J. McKee, The probability that the number of points on an elliptic curve over a finite field

is prime. J. Lond. Math. Soc. 62(3), 671–684 (2000)
[16] GNU multiple precision library, edition 3.1.1, September 2000. Available at: http://www.swox.

com/gmp
[17] IEEE P1363/D13, Standard Specifications for Public-Key Cryptography, 1999. http://grouper.ieee.

org/groups/1363/tradPK/draft.html
[18] E. Kaltofen, N. Yui, Explicit construction of the Hilbert class fields of imaginary quadratic fields by

integer lattice reduction. Research Report 89-13, Rensselaer Polytechnic Institute, May 1989
[19] E. Kaltofen, T. Valente, N. Yui, An improved Las Vegas primality test, in Proc. ACM-SIGSAM 1989

International Symposium on Symbolic and Algebraic Computation (1989), pp. 26–33
[20] E. Konstantinou, Y. Stamatiou, C. Zaroliagis, A software library for elliptic curve cryptography, in Proc.

10th European Symposium on Algorithms—ESA 2002 (Engineering and Applications Track). Lecture
Notes in Computer Science, vol. 2461 (Springer, Berlin, 2002), pp. 625–637

[21] E. Konstantinou, Y. Stamatiou, C. Zaroliagis, On the efficient generation of elliptic curves over prime
fields, in Cryptographic Hardware and Embedded Systems—CHES 2002. Lecture Notes in Computer
Science, vol. 2523 (Springer, Berlin, 2002), pp. 333–348

[22] E. Konstantinou, Y.C. Stamatiou, C. Zaroliagis, On the construction of prime order elliptic curves, in
Progress in Cryptology—INDOCRYPT 2003. Lecture Notes in Computer Science, vol. 2904 (Springer,
Berlin, 2003), pp. 309–322

[23] E. Konstantinou, A. Kontogeorgis, Y. Stamatiou, C. Zaroliagis, Generating prime order elliptic curves:
difficulties and efficiency considerations, in International Conference on Information Security and
Cryptology—ICISC 2004. Lecture Notes in Computer Science, vol. 3506 (Springer, Berlin, 2005), pp.
261–278

[24] G.J. Lay, H. Zimmer, Constructing elliptic curves with given group order over large finite fields, in
Algorithmic Number Theory—ANTS-I. Lecture Notes in Computer Science, vol. 877 (Springer, Berlin,
1994), pp. 250–263

[25] LiDIA. A library for computational number theory. Technical University of Darmstadt. Available from
http://www.informatik.tu-darmstadt.de/TI/LiDIA/Welcome.html

[26] A.J. Menezes, T. Okamoto, S.A. Vanstone, Reducing elliptic curve logarithms to a finite field. IEEE
Trans. Inf. Theory 39, 1639–1646 (1993)

[27] A. Miyaji, M. Nakabayashi, S. Takano, Characterization of elliptic curve traces under FR-reduction,
in International Conference on Information Security and Cryptology—ICISC 2000. Lecture Notes in
Computer Science, vol. 2015 (Springer, Berlin, 2001), pp. 90–108

[28] A. Miyaji, M. Nakabayashi, S. Takano, New explicit conditions of elliptic curve traces for FR-reduction.
IEICE Trans. Fundam. E84-A(5), 1234–1243 (2001)

[29] F. Morain, Modular curves and class invariants. Preprint, June 2000
[30] F. Morain, Computing the cardinality of CM elliptic curves using torsion points. Preprint, October 2002
[31] Y. Nogami, Y. Morikawa, Fast generation of elliptic curves with prime order over F

p2c , in Proc. of the

International workshop on Coding and Cryptography, March 2003
[32] G.C. Pohlig, M.E. Hellman, An improved algorithm for computing logarithms over GF(p) and its

cryptographic significance. IEEE Trans. Inf. Theory 24, 106–110 (1978)

http://www.swox.com/gmp
http://www.swox.com/gmp
http://grouper.ieee.org/groups/1363/tradPK/draft.html
http://grouper.ieee.org/groups/1363/tradPK/draft.html
http://www.informatik.tu-darmstadt.de/TI/LiDIA/Welcome.html

On the Efficient Generation of Prime-Order Elliptic Curves 503

[33] T. Satoh, K. Araki, Fermat quotients and the polynomial time discrete log algorithm for anomalous
elliptic curves. Comment. Math. Univ. St. Pauli 47, 81–91 (1998)

[34] E. Savaş, T.A. Schmidt, Ç.K. Koç, Generating elliptic curves of prime order, in Cryptographic Hardware
and Embedded Systems—CHES 2001. Lecture Notes in Computer Science, vol. 2162 (Springer, Berlin,
2001), pp. 145–161

[35] R. Schertz, Weber’s class invariants revisited. J. Théor. Nr. Bordx. 4, 325–343 (2002)
[36] R. Schoof, Counting points on elliptic curves over finite fields. J. Théor. Nr. Bordx. 7, 219–254 (1995)
[37] M. Scott, P.S.L.M. Barreto, Generating more MNT elliptic curves, Cryptology ePrint Archive, Report

2004/058 (2004)
[38] J.H. Silverman, The Arithmetic of Elliptic Curves (Springer, Berlin, 1986). GTM 106
[39] I. Stewart, Galois Theory, 3rd edn. (Chapman & Hall/CRC, Boca Raton, 2004)
[40] I. Stewart, D. Tall, Algebraic Number Theory, 2nd edn. (Chapman & Hall, London, 1987)
[41] T. Valente, A distributed approach to proving large numbers prime. Rensselaer Polytechnic Institute

Troy, New York, PhD Thesis, August 1992

	On the Efficient Generation of Prime-Order Elliptic Curvesthanks
	Abstract
	Introduction
	A Brief Overview of Elliptic Curve Theory and Complex Multiplication
	Preliminaries of Elliptic Curve Theory
	The Complex Multiplication Method and a Variant
	Hilbert Polynomials

	The CM Method Using Weber Polynomials
	Weber Polynomials and Their Roots in Finite Fields
	The Use of Weber Polynomials in the CM Method

	The CM Method Using an Alternative Class of Polynomials
	Implementation and Experimental Results
	Construction of Class Field Polynomials
	Computation of p and m

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

