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Introduction

All compact Riemann surfacesi§-a-vis complex projective curves) of genus

g > 2 share the same universal topological covering space, and hence admit a
uniformization by a discrete subgroup®SL (2, R). This description leads to a
fruitful dualism in the theory of complex curves, visible in both its theorems and
their proofs. The most appropriate instance of this to be quoted here is probably
the fact that Hurwitz’'s upper bound 84— 1) on the number of automorphisms

of a compact Riemann surface of genus- 2 is equivalent to Siegel's lower
boundr /21 on the volume of the fundamental domain of a Fuchsian group (
Lehner, [19], p. 402-405).

Although over anon-archimedeamalued fieldk, compact rigid-analytic and
projective algebraic curves can still be identified, the analogue of the dualism to
discrete group theory is of quite a different nature, as not all curves admit the
same universal topological covering spaee( curves having good reduction
are analytically simply connected). But Mumford has shown that curves whose
stable reduction is split multiplicativé€.,a union of rational curves intersecting
in k-rational points) are isomorphic to an analytic space of the P — L),
whereI” is a discontinuous group iIRG L (2, k) with £ as set of limit points.
Thus, the theory of non-archimedean discrete groups is both more restrictive
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than the complex analytic one (as it cannot be applied to any curve), and more
powerful, as it can lead to stronger results for such so-called Mumford curves.

As an example of this, Herrlich has shown that feadic Mumford curves
of genusg > 2, Hurwitz's bound can be strengthened t@gl2 1) (if p > 7, cf.
[12]). One can wonder what happens for Mumford curves over non-archimedean
fields ofpositive characteristic

It ought to be mentioned that in positive characteristic, general algebraic
curves can have many more automorphisms than expected from Hurwitz’s bound,
e.g, there exist algebraic curves of arbitrary high genus with more thgfi 16
automorphisms (Stichtenoth, [29]). It has been observed on many occasions that
the most anomalous examples invariably have agerank. One is therefore led
to expect better properties for so-called ordinary curivescurvesX of genus
g for which

dimz,, JadX)[p] = g,

which are Zariski-dense in the moduli space of curves of genusdeed, S.
Nakajima ([22]) has shown that for such curvgst(X)| < 84g(g — 1). How-
ever, one knows of no infinite set of ordinary curves of arbitrary high genus all
of whose elements attain this bound. Rather, the number of automorphisms in
all such known collections does not exceed a cubic polynomigignand it has
been suggested that worse cannot happen.

Mumford curves are known to be ordinary (Sect. 1), whence the aforemen-
tioned pathologies are moderated by Nakajima'’s result. It is our aim to show that
a bound of the type suggested before indeed holds for Mumford curves:

Theorem. Let X be a Mumford curve of genys> 2 over a non-archimedean
valued field of characteristip > 0. Then

JAut(X)] < max12(g — 1), 2,/g(v/g + D?}.

Actually, the proof yields more: it provides a kind of classification of those
curvesX for which JAut(X)| > 12(g — 1) (Sect. 4).

Remark. A reformulation of the above theorem in the style of Siegel's lower
bound is as followsif I' is a Schottky group of rank, then theu-invariant of
its normalizerN (cf. [18], [12]) is bounded from below by

N >min{i L
wN) = min{7=, 2/2(J3+ 1)

}.

The proof of the main theorem uses the description of the automorphism group
by the normalizen of its Schottky groug™, whose structure can be studied by its
action on the Bruhat-Tits treég of PG L(2, k). Although this principle of proof
was also used by Herrlich in theadic case, the quintessence of our techniquesiis
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rather different. In the-adic case the expected bound is linear in the genus, and
this allows Herrlich to restrict to normalizers that are the amalgatwofinite
groups. In positive characteristic, the expected bound is not linear in the genus,
so we have to consider more complicated normalizers. We therefore investigate
directly the link between the ramification im : X — § := Aut(X)\X

and the combinatorial geometry of the analytic reductio§.dfrom Hurwitz's
formula applied tor, it is immediate that the bound 4@— 1) on the order of the
automorphism group holds, unleSs= P! andr is branched above = 2 or

m = 3 points. LetTy (respectively7,) be the subtree of which is generated

by the limit points ofl", seen as ends §f (respectively the limit points together
with the fixed points of torsion elements M). The quotientdy = N\7y and

Ty = N\T, are homotopic to the intersection graph of the analytic reduction of
S as arigid analytic space, biif; has finitely many ends attached to it, which are

in bijection with the points above which is branched. The advantage of using

Ty instead of the usudly lies in the following key proposition, which replaces
the “restriction to an amalgam of two groups” in theadic case:

Proposition 1. If T is a subtree of’y having the same ends &, thenT is a
contraction of7y;, i.e.,every geodesic connecting a point frdth— T to T is a

path on which the stabilizers of vertices are ordered increasingly w.r.t. inclusion
in the direction ofT'. In particular, the amalgams associated Toand T, are

the samé= N).

The proof of this result is very combinatorial and depends on the structure
theorem for finite subgroups ¢fG L (2, k) (Sect. 3).

By applying proposition 1, it is enough to consider a simpler suliftre€7
which is a“line” if m = 2 and a “star” ifm = 3. We then show that only finitely
many types of such trees (and hence, of such groupg) exist (Sect.4). For
each such type of group, we use the link between the ends of the corresponding
T and the ramification ier to prove the desired bound (Sect. 5).

Remark. Proposition 1 holds in any characteristic, and can be applied to obtain a
classification of Galois covers 8¢ which are Mumford curves ramified above
three points, as in [16].

We now turn to some comments on the main theorem. Note thjat-12) >
2,/8( /8 + 1)2 only for g € {5, 6, 7, 8}. But there do exist curves of such genus
for which the bound is attained. L##, (respectively,M,) denote the moduli
space of algebraic curves of gernu&espectively, of Mumford curves of genus
g), considered as algebraic space (respectively, rigid analytic space). We then
have the following result, which identifies a very special locusfin

Proposition 2. If X isa Mumford curve of genysover a fieldk of characteristic
p > 0such thatAut(X) is a non-solvable group of order 2,/g(,/g + 1),
thenp # 2,5and X is a curve of genus 6 with an icosahedral isomorphism
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group. Forp > 5, there is a one-dimensional open stratig, along which the
automorphism group is icosahedral. It intersedts; in a one-dimensional rigid
analytic open setSect. 7).

Let x denote amalgamated product. The bound in the above theorem is sharp
in the following sense:

Proposition 3. For fixed p, there exist Mumford curves, . of arbitrary high
genusg, = (p' — 1)? that attain the bound in the main theorer; . is the
projective curve with affine equatian”' — x)(y”' — y) = ¢, for somec € k*
with |¢| < 1. The normalizer of its Schottky group is isomorphic to

N, = (Z; X Zpt—l) *Zpt—l Dpl_]_,

whereZ,, D, are the cyclic and dihedral group of orderand2n respectively.
The Schottky group of; . is generated by the commutatdes y ey ], for all
e € Z!,, wherey is a fixed involution inD,:_; — Z:_y. For varyingc, the X,
form a one-dimensional open rigid analytic stratum of curves1p, that attain
the boundSect. 9).

Another less obvious family of Mumford curves whose number of auto-
morphisms exceeds Hurwitz’s bound is given by moduli schemes for rank two
Drinfeld modules with principal level structure.f.,Gekeler & Reversat [6]).
The analytic description is as follows: Let= p', F = F,(T), andA = F,[T];
let Fiyo = Fq((T‘i)) be the completion of andC a completion of the algebraic
closure ofF,. On Drinfeld’s “upper half plane2 := P% — P}Vm (whichis arigid
analytic space ovef), the groupG L(2, A) acts by fractional transformations.
Let Z = F; be its center. Fon € A, the quotients of2 by congruence sub-
groupsl"(n) = {y € GL(2, A) : y = 1 modn} are open analytic curves which
can be compactified to projective curvEsn) by adding finitely many cusps.
They turn out to be Mumford curves for the free group which splits the inclusion
I (n), < I'(n), wherel” (n),, is the subgroup generated by torsion elemextfts (
Reversat [24]).

Proposition 4. Letp # 2 or g # 3. The automorphism group of the Drin-
feld modular curvesX (n) is the “modular” automorphism groupG(n) :=
I'(1)/I'(n)Z. The normalizer of its Schottky group is isomorphic to

PGL(2, p') ¥zyxz,_, Z) % Zp-1,

which only depends oih = degn). For fixedg with g = g(X(n)) for somen,
X (n) is one of at most finitely many Mumford curves witfn) as automorphism
group(Sect. 10).

Note that, whereas the corresponding statement for classical modular curves
is easy to prove using the Hurwitz formula ([27]), the occurrence of wild ram-
ification in X (n) — X (1) prevents us from giving an easy proof of the above
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result. Note also that the final statement of proposition 4 highlights the excep-
tional status (as a point of the moduli space) of such modular curves which admit
simultaneousiniformization by a Schottky group and by an arithmetic group on
an open part.

We want to finish this introduction by mentioning a few questions raised by
this work.

Question 1 (ordinary curves).Does the above bound with (¢— 1) replaced
by 84(g — 1) hold for all ordinary curves?

Question 2 (Drinfeld modular curves).Can one be more precise about the
abstract structure of the Schottky groupXfn)? It should depend, not only on
degn), but also on the decomposition minto prime ideals ofA.

1. Automorphisms and uniformization in positive characteristic

(1.1) Let X be a complete irreducible curve of gengs> 2 over a fieldk

of characteristico > 0. Let K denote the algebraic closure bf andk its
residue field. Let denote thep-rank of X, i.e.,y = dimz,, JadX)(K)[p]. If

y = g, thenX is calledordinary (such curves are dense in the moduli space
of curves of genug). Recall ([8], [21]) thatX is called aMumford curveif it

is “uniformized overk by a Schottky group”. This means that ¢ajs complete
with respect to a non-archimedean valuation; (b) there exists a free gradip
rankg in PGL(2, k), acting onP{ with limit set £; (c) the analytificationX™

of X satisfiesx™ = I"\(P; — L) as rigid analytic spaces. Mumford has shown
that these conditions are equivalent to the stable reductiaxi ohly having
rational components withk-rational double points. Because of the “GAGA’-
correspondence for one-dimensional rigid analytic spaces, we do not have to
(and will not) distinguish between analytic and algebraic curves. The following
result is folklore:

(1.2) Lemma. Mumford curves are ordinary.

Proof. It is known by the works of Manin-Drinfeld ([20]) and Gerritzen ([7])
that the Jacobian of a Mumford curvé associated to a free group can be
uniformized as a rigid analytic abelian variety by a “multiplicative lattideg,,

JagX)(K) = (K)#/A

for some latticeA (actually, A = I"*) with multiplicative basis{A, ..., A,}.
Then

JaagX)[pl = ¥A/4,
where {/A is generated by{/A1, ..., {/A,} (since thep-th roots of unity are
trivial in k), which clearly hag / p-rank= g. ]
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The following is the rigid analytic analogue of a well known theorem on
conformal automorphisms of Riemann surfaceg.([19], VI.3.L):

(1.3) Theorem(Gerritzen [8], VII.1). Let X be a Mumford curve over uni-
formized by a Schottky group. Let N be the normalizer of” in PGL(2, k).
ThenAut(X) = N/T. O

Although N is not free, it makes sense to consider the 1-dimensional analytic
quotient spaceS := N\(P; — Ly), which can be algebraized, since it is the
quotient ofX by the finite group AutX) = N/I".

(1.4) Notation. Denote the genus of by r, and denote by: the number of
points ofS above whichr : X — S is branched.

(1.5) Lemma. If r > 0orm > 3, then|Aut(X)| < 12(g — 1). Furthermore,
the case- = 0, m = 1 cannot occur.

Proof. The first part is an easy consequence of the Riemann-Hurwitz formula
applied tor. (cf. Stichtenoth’s proof o6atz3 in [29]). The second part follows
from (1.2) and the same formula, since S. Nakajima has shown in [22], Theorem
2, that for ordinaryX, the ramification groups of ordef 2 in 7 vanish. O

2. Structure of Ty,

From now on, we will assume that= 0 and give a description of the mapby
looking at its analytic reduction.

(2.1) The Bruhat-Tits tree. By taking a finite extension of if necessary, we
can assume that all fixed points 8facting onP} arek-valued ¢f. [8], 1.3.3.2).

Let 7 denote the Bruhat-Tits tree #fGL(2, k) (i.e., its vertices are similarity
classest of rank twoO-lattices ink?, and two vertices are connected by an edge
if the corresponding quotient module has length oseeSerre [26], Gerritzen

& van der Put [8]). Itis a regular tree in which the edges emanating from a given
vertex are in one-one correspondence Wtlk), wherek is the residue field of

k. The treel admits a left action by G L (2, k), and hence also by any subgroup
G C N; by our assumption on the fixed poin,acts without inversions of.

(2.2) Notations.For any subtred of 7, let Ends$7) denote its set of end&é€.,
equivalence classes of half-lines differing by a finite segment). There is a natural
correspondence betweBh(k) and EndsT). Let V(T) andE(T) denote the set

of vertices and edges @frespectively. Forany € V(T), o € E(T),leto - A

mean that originates atA. Let G, denote the stabilizer of a vertex or edgef

T for the action ofG. Vertical barg - | will denote geometric realization. For any
u,v € P(k), let]u, v[ denote the apartment ifi connecting: andv (seen as
ends of7"). Furthermore, for a vertex € V(7), let[A, u[ denote the half-line



Automorphisms of Mumford curves

connectingA to u (seen as an end @f). The natural metric offff | is denoted
byd.

(2.3)Action of elements of finite orderLet G be a subgroup aWv. If y € G is
an element of finite order, let thmirror M (y) of y be defined as the smallest
subtree off” generated by pointwise-fixed vertices off” (this definition differs
from the one given in [16]).

If y is an elliptic elementi(e., an element irG of finite order having two
distinct eigenvalues of the same valuation), then it has two fixed poiRtin,
andM (y) is just the geodesic connecting them (recall thit of positive char-
acteristic).

If y is a parabolic element.€., an element irG of finite order having only
one eigenvalue), then it has a unique fixed pairkssume thak is discretely
valued andk is finite. LetO be the ring of integers df andw a uniformizer
of k. For everyw e P(k) different fromz, there is a unique vertest,, elw, z[
such thatM (y)N]w, z[= [Ay, z[. For any twow, w’, A,, and A, lie at the
same distance frof,,, z[N[ A, z[. Indeed, leteq, e1} be the standard basis
for k2, and let the parabolic elemeptbe a translatiory : X — X + ¢ for some
t € k*, so that its fixed point is z = co. Letw = 0. Vertices in the apartment
connecting 0 ando are similarity classes of lattice$; = Oeg + Ow’/e1, and
a short computation shows that € M (y) ifand only if j > —uv(z).

Fig. 1. The mirror of a parabolic elementgf = 2

(2.4) Trees associated to subsetddtk). We can construct a locally finite tree
T (L) (possibly empty) from any compact subgebf P(k): it is the minimal
subtree of]” whose set of ends coincides with or equivalently, the minimal
subtree of7” containinglJ, .. lu, vl.

For any subgrou of N we defin€7; to be the tree associated to the subset
L consisting of the limit points o7 in P(k). If G is finite, 7; is empty. On
the other hand, i€ is a finitely generated discrete group, tl&ncoincides with
the tree ofG as it is defined in Gerritzen & van der Put [8]. We also defifieo
be the tree associated to the set consisting of all limit points ahdall fixed
points of elements of finite order if.

7T and7/ admit a natural action af, and we denote the quotient graphs by
T = G\Tg andT} := G\7T; respectively, and both corresponding quotient
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maps will be written ag s, by slight abuse of notation. If they are trees, we can
considerT; andT/ as subtrees of; and7/ by choosing any section af.

Let S be as in (1.4). The dual graph of the analytic reduction of the curve
S (with the admissible covering arising from the standard on®pn- Ly) is
exactly the quotient graphy. SincesS is assumed to have genus= 0, Ty has
no cycles, and hence is a tree. Sitscis compact Ty is finite.

The treeT has finitely many ends which are in one-to-one correspondence
with the branch pointsin : X — S. Actually, the stabilizer of such an endX.,
the eventual stabilizer of edges and vertices in the end) is exactly the ramification
group of the corresponding branching pointSinNote that sinceX is ordinary,
only the first ramification groups im : X — S are non-trivial (Nakajima,
loc. cit), and hence the stabilizer of an end7i}) is a semi-direct product of
a cyclic group and an elementary abeljggroup by the structure theorem for
decomposition groups in global field extensiook $erre [25], IV Sect. 2).

(2.5) Example. If G is a cyclic group generated by an elliptic elemgnthen
TG = M(y).

(2.6) Graphs of groups. We turn both ofTy andTy; into graphs of groups by
labeling every vertex € V(Ty) and edge = [vw] € E(Ty) with the stabilizer

of its lifts (by any fixed section aty) A € V(7Ty) ando € E(Ty) for the action

of N, denoted by, andN, = N,,, = N, N N,, respectively. Note that these
groups are finite sinc# is discrete. TherV equals the “tree product” dfy,
viz., N is the amalgam of th&/, along theN, (Serre, [26], 4.4). In view of what
follows in Sect. 4, let us give two examples of how to deal explicitly with such
amalgams:

(2.6.1) Examplelf Ty is just a segmentiz.,

G1 G
Ty = olToz ,
thenN = G1x*y G isthe ordinary “product with amalgamatiowiz,, if (g¥|R;)
is a presentation fo;, and¢; : H — G; are the occurring injections, thév
admits the presentatiod = (g2, g4 | Ry, Rz, p1(h)da(h)~L, Vh € H).

From such explicit presentations, it is easy to deduce an isomorphism

(G1><IH)>X<H(G2><IH)=(G1*G2)>4H

for any finite groupsG1, G, and H. Such an isomorphism is used in the proof
of (6.8).
Also observe that, iTl’\,, is the following tree:
’ Gl H/ G2

T,,, = e———e—o

N H H
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thenN = N’ althoughTy # TN Thus, Ty determinesV uniquely, but the
converse is not true. This is why, later on, we will classNyinstead ofTy,
and also why we denote the growp by a slightly different diagram (using
amalgamation signs) as the tree (using realizations as plane graphs). O

(2.6.2) ExampleSuppose thaly is a “star”:

G
H> 3

G2
Hog

Iv=G1*p,

Gy

We denote the corresponding grodpby a similar diagram, in which the edges
have been replaced bysymbols €f. (4.7), where such tree products occur). The
above picture means that, (| R;) is a presentation fo6;, andqsl.lj D Hijj —

G, ¢,.2j : H;; — G; are the occurring injections, thevi admits a presentation
of the form

N = (g%, 85. 85|R1, Ro, R, ¢ (hip)@% (hij) ™", Vhij € Hy).

O

The following observation is easy, but it allows us to deduce properties about
the local structure of our tree from information about finite groups acting on the
projective line:

(2.7) Lemma. Letv be any vertex of y corresponding taA in 7y and N,

its stabilizer. The canonical bijectiofy € 7 : 0 4 A} — P(k) induces a
representatiorp : N, — PGL(2, k). Then for every subgroug < N, there
is a bijection betweefo € E(7y) : 0 4 A andN, 2 G} and points orP(k)

fixed byp (G). Taking quotients by, this leads to a bijection

an N,-conjugate oG abovex in P1(k) are fixed by g0 (Ny)-

1,7 .
{e € E(T}) withe v ande is fixed b;} ~ )x € pNp)\PZ(K) such that point
—

conjugate ofo(G)

O
We now turn to a description of the possilig.

(2.8) Notation. We letZ,, denote the cyclic group of order, D, the dihedral
group of order 2 and E,, the elementary abeliap-groupZ;, of order p”. Let

T = A4, O = 84, 1 = As be the tetrahedral, octahedral and icosahedral groups
respectively. We also introduce the following short hand notat®m; n) :=

E, xZ, forn|pt—1;if n = p' — 1, this is a Borel subgroup ?fGL(2, p"). Let

(y) denote the cyclic group generated pyGroups not containing a-group

will be calledclassical.
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We will write P (2, g) to denote eithePGL(2, g) or PSL(2, g) by slight
abuse of notation, with the convention that any related numerical quantities that
appear between set delimitgsare only to be considered fétSL(2, q).

We recall the classification of finite subgroups @& L(2, k), due to L.E.
Dickson ¢f. Huppert, [15], 11.8.27). A geometric formulation, which is more
convenient for our purpose, is due to Valentini and Madan ([30]). From our point
of view, the geometric form of the theorem describes the structufg fur finite
subgroupss of PGL(2, k).

(2.9) Theorem. Any finite subgroup oPGL(2, k) is isomorphic to a finite
subgroup of PGL(2, p™) for somem > 0. The groupPGL(2, p™) has the
following finite subgroups;, such thatrg is branched oved points with rami-
fication groups isomorphic t&4, ..., G4:
G=2Z,for(n;p)=1,d=2,G1=G,=12,;

(i) G =D, withp £2 n|p"+1,d=3,G1 =Gy, =12, Gz =2, or also,
p=2mn;2)=1d=2andG1=2,,G, =2,

(i) G = B(t,n) fort < m andn|p™ — 1,n|p' — Lwithd = 2andG; =
G,Go=27,ifn>1andd = 1, G, = G otherwise;

(iv) G = P(2, p') withd = 2and Gy = B(t. {3}(p' — 1)), G2 = Z,
(V)TOfp752,3,d:3,G1222,G2:G3:Zs;

(VI) 0ifp#2,3,d:3, G1=25,Gy =Gz =124

(VII) Iif 5|p2’"—1andp 7+— 2,3, 5withd = 3andG1 =275,Go =23, Gz =25
orp=3,d=2andG; = B(1,2),G, = Zs. O

(2.10) Lemma. Letv € V(Ty) with preimageA € V(7). The group represen-
tationp : N, — PGL(2, k) arising from the action oV, on its neighbouring
vertices inT is faithful, except possibly whew, = B(z, n), and if so, ke¢p) is
a p-group.

Proof. An elementy € ker(p) fixes all edges 4 A, hence all neighbouring
vertices ofA are in its mirrorM (y). But if y is elliptic, then its mirror consists
of only one apartment, whence cannot stabilize more than two non-collinear
vertices inT, whereas the valency @f is¢g + 1 > 2. Soy has to be paraboalic,
and kerp) is a normalp-subgroup ofV 4. SincePSL(2, ¢) is simple, it follows
from (2.9) that the only finite subgroups B8iG L(2, k) which have such a non-
trivial normal p-subgroup are of the form (¢, n). O

hot+y

3. Contraction of Ty — proof of proposition 1

(3.1) Definition. Let T be a tree of groups iff. A subtree of groupg” of T

is called acontractionof T if every geodesic connecting a point frafn— 7~

to 7’ is a path on which the stabilizers of vertices are ordered increasingly w.r.t.
inclusion upon approaching’. Obviously, the tree products @f and 7’ are
isomorphic.
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(3.2) Example.The mirror of a parabolic element can be contracted to a half-line.

(3.3) Definition. LetT and7’ be subtrees ¢f,;. We say thal™ is perpendicular
to T (notation: 7 LT") if for every half-line¢ = [A, x[ C T’ and every edge
o € E(T) witho 4 A, we havery (o) # my(o”), whereo' is the unique edge
o’ € L witho' H A.
Sinceo ando’ emanate from the same vertex, the last condition is equivalent
too ¢ Ny - o'

(3.4) Lemma. LetA e V(Ty). If there existsy € Ny ando = A such that
{y)-o| > 1 (i.e, o is not fixed by all powers of), then there exists a non-
trivial ' € N, whose mirror is perpendicular to the-orbit of o, i.e., such that

My L(y)-o.

Proof. Letv = [(y) - o, and fix a numberindy) - o = {o;};_;. By the
identification in (2.7), (lettingd = p(G), G = N,), it suffices to prove the
following: if p1, ..., py11 := p1isasequence of points &t which are cyclically
permuted by an elememt € H (identified withoy, ..., 0,,1 = 01), then there
exists a non-triviay’ € H whose fixed points oR* are not mapped toy (p1) (=
T (pi))-

Notice thatH # 1 sincey acts non-trivially, and thaty (p1) is not totally
ramified sincer > 1. It follows from (2.9) that ifH is cyclic, then every ramifi-
cation point ofry must be totally ramified, and hence none of there fixed
by H. Hence we can let’ = y in this case.

If H is not cyclic nor of typeB(z, n), then by (2.9), the mapy is branched
above at least two points, and since (again, by (2.9)) there exist at least two points
on P! with disjoint decomposition groups, one can chopsi the decomposi-
tion group of a ramified point that does not fix any point aboyé p;).

On the other hand, if = B(t, n), it suffices to take’ € B(¢t, 1) C B(t, n),
since theny’ fixes a unique (totally ramified) point, which does not map to
7 (p1)- a

(3.5) Lemma. Let7 ' be a subtree dfj such thaEndg7y) = EndgT), where
T = ny(T ). Thenthere is no half-linéin 7, emanating from avertex € 7'
which is perpendicular tq .

Proof. Suppose that such a half-lifestarting atA € 7' and pointing to

x € PY(k) is perpendicular t&7’. Then by our assumption on the ends, the
imagerny (£) is not a half-line, and hence there exists a vertig>on £ which is
not contained ir7’, andy € N,, which mapg Ao, x[ to a half-line containing
[Ag, A] (say we chooselg nearest tod). SetTp := T ' U £ andvg = my (Ap).

Let To = 7y (7o), which is the union off and the finite pathv, vg] (Wwhere

v =y (A)). Then:
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(3.5.1) There exist an infinite sequeneg = [A,, x,[ };2, of half-lines in7
and an infinite sequende, }°°, of finite paths of length- 0 in 7}, such that for
all i, j:

(@) Ao - £o andTo N o = {vo},

(b) ¢i € (L),

()¢;N¢; =dandg; Ng; =P unlessi — j| <1,

(d) i Nliy1 = Ajqa,

(e) ¢ N g;11 is @ unique vertex, namely; .1 := mwy(A;;1); moreover,g; =
[vi, vigal,

(f) there exists an elemem in N4, which maps A;, x;_1[ to a half-line con-
taining[A;, A;_1].

)4 TN*
a0 '
Y2
A2
| n@*(ﬁrel
’
T Y
Lo H

Fig. 2. The infinite sequencg;}

The proof of (3.5.1) is inductive. Singe does not fix all edges emanating
from Ao, the conditions of (3.4) are satisfied. Hence there ekists 7, starting
at Ag (say, pointing toxg € P(k)) which is perpendicular t@g. Since the
ends ofry (7o U €o) coincide with those of” by assumption, there has to be a
vertexA; notin7, and an element; € N4, which mapg A1, xo[ to a half-line
containing[ A1, Ag]. Take such a verted; nearest tolg, and sev; = my(A7).
Let co = [vo, v1]. Then (a) follows from the fact thd is perpendicular tdy,
(b) is clear by definition, and we also have (f).

Assume that we have constructedgllandg; for j < n. By lemma (3.4),
there exists a half-liné, with

€, LT, whereT, := To U ((_J4;. Aj ).
j<n
ReplacingTy by 7, in the argumentation above, we obtaip, 1, v,y1 andg,.
Since a tree does not contain a cycle, all the properties(fppre clear. This

finishes the proof of the (3.5.1).
Finally,

€=v.v0l U (e

n=0
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is a half-line inTy such that? N T = {v}. But this means théf}; has an end
which is not ofT, contradicting the assumption. |

(3.6) Proof of Proposition 1. Fix alift 7' of T to 7. Let A € T — T '. Since
Ty is connected, there exist a vertax € 7 ' closest toA. The proof proceeds
by induction ord (A, A").

Assumed(A, A) = 1. If Ny = 1, then contraction is clear. Otherwise,
take any non-trivial element € N,, and consider a half-liné which starts
at A and converges to an end #(y). We can then apply (3.5) to the tree
T :=T ' U[A, A’]tofind thatt is not perpendicular tg 7, and hence there
existsy’ € N, such that’ - £ passes through the edge= [A, A’]. Sincel is
pointwise fixed byy, 3’ - £ is pointwise fixed by'yy’~. Hence

/ =1
Na= | v'Noy' ™,
y'eNy

i.e., N, is the union of the conjugates of its subgrop. Hence ([15], 1.2,
Aufgabe4) N, = N,, so that7 ” can be contracted t¢ '. It is clear how to
proceed by induction. ]

4. Mumford covers of P* branched above at most three points

We will now describe the abstract group structureNoff s is only branched
abovem = 2 orm = 3 points.

The possible structure of stabilizers of edgedinturns out to be further
restricted by the following lemma:

(4.1) Lemma. If p > O, then stabilizers of edges iy are of the formE; x Z,,.

Proof. Asis shown in Proposition (4.5.1) of [8], the stabilizer group of an edge
contains a normap-group with cyclic quotient. The statement follows from
(2.9). ]

We also have some information on the “relative position” of phgrime part
of the stabilizer of an edge in the stabilizers of the corresponding vertices. We
say a subgroup of a groupnsaximally cyclidf it is not contained in any bigger
cyclic subgroup.
(4.2) Lemma(Herrlich [12], Lemma 1). If it is non-trivial, then the prime-tg

part of the stabilizer of an edge istaaximalcyclic subgroup of the stabilizer of
each of the corresponding vertices. |

(4.3) Lemma. Letv € V(Ty),q = p'. If N, = P(2,q),thenforalle € E(Ty)
with e - v, either N, = B(z, {3}(q — 1) or N = Z 3,4, (i-e.,the p-part is
also maximally cyclic inv,).
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Proof. The action ofV, on the edges emanating from a liftof v to 7y induces
arepresentatiop : N, — PGL(2, k), which is faithful by (2.10). It suffices to
invoke (2.7) and (2.9). ]

(4.4) Lemma. (i) The stabilizer of a vertex on the interior of a mirror of a
parabolic element is a Borel group (interior meaning not an end point).

(i) If Ty contains a half-ling which is pointwise fixed by a parabolic element
of N, thenmy (¢) C Ty is not finite (whence, a half-line).

Proof. (i) Let A be such a vertex oM (y) for a parabolic element of N. By
the description oM (y) given in (2.3), one sees that all edges emanating from
A are fixed byy; hence the group representation N, — PGL(2, k) is not
faithful, so the result follows from (2.10).

(ii) Let £ be fixed byy and letA be any interior vertex of N M (y). It suffices
to show that any two edges emanating franare mapped to different edges by
Ty, Viz, they are not identified by an element frasy, which we know is a
Borel group by (i). Lete be such an edge ohpointing in the direction of the
fixed point (saypo) of y. Since all elements a¥ 4 fix the same point (they are
upper-triagonal), in particulag, is fixed by N4, and hence cannot be identified
with any other edge emanating from |

(4.5) Remark. If the mirror of a parabolic element is contracted to a half-line
[vo, v1, ...[ @sin (3.2), its structure as a tree of groups is as follows:

— the stabilizerv,, can be larger than a Borel group (we see from (2.9) that it
is then of typeP (2, ¢) since it should contain parabolic elements);

— however, all interior points are stabilized by a grodp = B(z;, n) (this
follows from part (i) of the above lemma), wheneis a fixed integer (by
(4.2));

— the sequence,, 1, ... is increasing since eacN,, stabilizes the half-line
[v;, ...[ (by the definition of mirror), andV,, = N, v,.11 S Ny,y-

(4.6) Proposition. If = : X — S is branched above two points, thenis

isomorphic to one of the following:

(Al) P(2,q) *p@ny B(tr,n-);

(A2) B(tz,ny) *z,, P(2,q) *pqn ) B(tr,n-);

(A3) B(tz, n-) *pan ) P(2,q) *z,, P(2,q) *pan) B(t1,n-);
(Ad) B(ta,ny) *z,, P(2,q);

(AS) B(ts,n-) *pa.n_) P(2,q) *z, P(2,q);

(B) B(t1,n) xz, B(ty, n),

(©) Ey x Ey,

for g = p',1ln(i = 1,3,5), 2t11;(j = 1,2),n|p"t — L, n|p2 — Landny =
{3}g £
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If p =3, alist(Ai’)>_; similar to (Ai)>_, can occur withP (2, g), t, ny, n_
replaced byl, 1, 5, 2 respectively.
If p = 2, there are the following extra possibilities:
(A1) E, xg, D, *z, B(t1,n),
(Az//) Etz *E, Dn *Z, Dn *EqL Etl;
(A3")  Ey, *g, Dy, %z, PGL(2,q) *pun ) B(t1,n-),
wheren is odd (and:| p™* — 1in the first case)q is a power oR andny = g £ 1.

Proof. Let T, be a straight line irf'y such that Endgp) = EndgT7}); such a
line exists, since we assume that there are only two branch points, §¢thas
only two ends. By Proposition 1, we can contrégtto 7o without affecting the
structure ofN.

There exists at least one vertexZipwhose stabilizer is not classical, since
there is wild ramification int : X — S. Letv be such a vertex. Then there are
the following possibilities:

(A) There is a vertex such thatN, = P(2,q = p'). By (4.4), the end
emanating from a representativewah 7, which is fixed by the Borel subgroup
B := B(t,n_) is mapped to a half-line dfy by 7. Let{v;} be a numbering of
the vertices on this half-line iy such that; is at distanceé from v = vg. Since
all v; are fixed byB, the stabilizewv,, can only be a group of the forB(z;, n;)
by (2.9iii). Indeed, ifN,, = P (2, p"), thenv;;1 would have to be stabilized by
bothZ,, and the Borel grougv;,, ,,,; = B(t;, n—) (using (4.3) and (4.4)), and
hence by a group containirgy2;, n..), contradicting (4.3).

Actually, n; = ng = n_ by (4.2), and{#;} is increasing since; is stabilized
by theN,, for j < i, and eventually terminates sindg, converges to the (finite)
stabilizer of the corresponding end (compare with the argument in (4.5)).

From (2.7) and (2.9 iv), we see that the edge emanating foimthe other
direction is stabilized by, , . For the stabilizer of the first neighbouring vertex
v’ of v on T in the other direction for whictv,, # N,, by (2.7) and (2.9) there
are three possibilities:

(A1) N, = Z,_; Ifallfurther vertices in the direction af have a cyclic stabilizer,
they must all be equal by (4.2), and hence we are in case (Al).
(A2-A5) On the other hand, should one of those further vertices,.$Sapave
a larger stabilizer, then we can first of all assume tat v'. Furthermore, if
p > 3, N, can only be either (a),, = B(¢', ny) (Withg +1|p" —1,¢ > O by
(4.2)) or (b)N, = P(2, q) (with the same by (4.3)). Indeed, no other case from
(2.9) can occur (dihedral or classical), because each time, lemma (3.4) applies to
Ny, leading to an extra (third) ent (y’) (in the notations of (3.4)) emanating
from v’ in Ty, and thus contradicting (3.5).

With only these two possibilities at hand, the subsequent neighbouring ver-
tices ofv” in Ty can be dealt with as aboves.,their stabilizers form an increasing
stabilizing chain of Borel groups. This leads in the end to the prescribed form of
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N, which is (A2) in case (a) ify > r and (A4) in case (a) if, = ¢; (A3) in case
(b) if t; > ¢ and (A5) in case (b) if;, = 1.

(A’) Suppose we are not in caés), but p = 3 andN, = I for some vertex
v € To. By (2.9), one end of is stabilized by the Borel group(1, 2) and one
end by the cyclic grou@s. A similar reasoning as ifd) can be performed.

(B) Suppose we are not in casg) or (A'), but there is a vertex witv, =
B(t,n),n > 1. One of the half-lines emanating fromis stabilized by an in-
creasing sequence of Borel groups as in ¢dseWe can assume that the edge
emanating fromv in the other direction is not fixed by parabolic elements (since
all parabolic elements a¥, have the same unique fixed point), whenge= Z,,

by (4.2). Letv’ be the vertex closest toin this direction, such thav,, # Z,
(which exists, since otherwis®, would be finite). Therv,, can only be a Borel
group (since it cannot b&(2, ¢g) by assumption, and it is not a classical group
as in (A2-A5)). We find in the end th&f = B(z, n) xz, B(t', n).

(C) Suppose that alv,, v € V(Tp) are p-groups, sayN, = E,,. Because of
lemma (4.4), there exist at least two vertiag®’ such that the mirrors of their
respective stabilizer&,, N, map to different ends ofy underzy. If we take
suchv andv’ at minimal distance of each other, then all vertices between them
are stabilized only by the trivial group, since the mirrors of elementg iand in

N, have to map to disjoint half-lines ify. On edges outside of such a minimal
segment, the-groups are ordered increasingly and eventually stabilize. Hence,
N =E;x E,.

The proofs ifp = 2 and there is a vertexon Ty with N, = D,, are entirely
similar. O

(4.7) Proposition.If = : X — S is branched above three points, th&f can
be contracted to a tre&, consisting of three half-lines meeting at one common
vertexvg. Furthermore, either:

(D) There is an edge emanating fromvg with N, = {1};
(E) The stabilizer ofy is classical non-dihedrai,e., N,, € {T, O, I};
(F) p # 2and N is isomorphic to one of the following:

Q(r1)
* 2
(F1) B(tz,n_) *pan_y P(2,q) *z,, Dy, ‘ ;
* 2
‘ Q(t2)
0(n)
*22
(FZ) B(t9 n) *Zn Dn 1
*22

0(t2)
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whereg = pt, t|t3, Q(t;) = B(#;, 2) (i = 1, 2) and the two cyclic subgrouf%,
occuring in(F) are the same in the dihedral group,.

If p = 3,acasq F1) similarto(F1) can occur, wher@ (1;) is eitherB(z;, 2)
or PSL(2,3) a2 B(t;,2), and P(2,q),t,ny,n_ is replaced byl, 1,5, 2,
respectively.

Proof. Let Ty be the subtree df;; which is the union of three half-lineg, ¢,
and{z such that; () ¢; = {vo} for i # j for some (uniquely determineda).
This T, exists, since we assume that only three points are branchedsmthat
Ty has three ends. By Proposition 1, we can contfgcto 7p.

Suppos& = N,, is such thair; is branched over at most 2 points.(2.9)).
Then it follows from (2.7) that at least one of the edges emanating fgonas
trivial stabilizer; hence&D) occurs.

Next, we suppose is branched over 3 points. If we are not in c&gp,
thenp # 2 and the groupv,, is a dihedral grou@®, . Letv, be the neighbouring
vertex ofvg such that the edge connectingandv; is stabilized byZ,,. Forn,,,
by (2.7) and (2.9) there are three possibilities:Na) = Z,; (b) N,, = B(t, n)
fortz > 0 or (C)N,, = P(2, g). Then an argument similar to that in the proof of
(4.6) can be applied to classify all the possible groups appearing in the amalgam
product in this direction. The other directions and the q@E) can be treated
similarly. |

5. The classical bound

In this section, we will prove thafut(X)| is bounded “classically” by 12 — 1)
in case(Ai/)f.":l, (D) and(E). The proof is very similar to Herrlich’'s computa-
tions in thep-adic case ([12]).

(5.1) Definition. If (T, G,) is a finite tree of groups, we define jtsinvariant

w(T) to be
) wM= 3

[vw]eE(T)

1

1Goul 2

veV(T)

1
Gl

The following group theoretical result provides the direct link betwEgas
a tree of groups and the automorphism groux of

(5.2) Theorem(Karrass, Pietrowski, Solitar [18]). With notations as above,
IN/T'|- u(Ty) = (g — D). O

This theorem, together with (1.3), implies that in order to boifat(X)|
from above, one has to boupdTy) from below.

(5.3) Lemma([8], (4.7.1)). If in the above situationB is a subtree of’y, then
w(Tn) = n(B). i
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(5.4) Proposition. The boundAut(X)| < 12(g — 1) holds in cas€ D) and(E)
and (Ai")>_;.

Proof. Suppose that, in the notations of the proof of (4.6) and (4V{),is
non-trivial such thatv, = 1 for some edge emanating from in Tp. Suppose
thate € £, for some half-line; of Ty. Letv; be the vertex closest ig on£; such
thatN,, # 1 (which exists, since eventually the stabilizefgfs a (non-trivial)

ramification group ofr), and letB be the subtree df, consisting of the path
from vg to v1. Then

. | 1 1 1

_ — >1— — — — = -,
INool  [Nuy| — 2 3 6
unlessN,, andN,, are both isomorphic td, (whence,p # 2). Let A; be a lift
of vy to 7. If N, = Z» is generated by, then the mirror of/ is an apartment
1x, y[ in Ty, and sincduvyg, v1] is not stabilized by, by (3.4) there has to exist
an elemeny’ # y € N,, which mapslx, A1] to [A4, y[; a contradiction.
In casg(E), lete be any edge emanating fram We can assume that, # 1,
since otherwise, cagd) occurs. Letv; be the vertex closest tg on Ty in the
direction ofe such thatv,, # N,. Let B be the segment connecting andv;.

We will now prove thatu(B) > %2 for all such possibleB. Recall thatN, is
maximally cyclic in bothwv,, (i = 0, 1).

w(B) =1

(5.4.1) The following table provides the necessary data in ¢gses also a
classical group:

Ny, Ne, Nyg | B Ny, Ne, Nyg | B
Dny.Z2.T | >4 D3.Z3. T =5
Dny.Z2.0 | =5 D3.Z3, 0 =3

D4, 24,0 -5 Duy,Z2,1 | = 4

D3, Z3, 1 = Ds, Zs, I =35
T,223,T = % % T,223,0 = %, 2%1
T,223,1 = % 3—70 0,2234,0 | = %, %, %
0.225.1 | =35045 | 122351 | =15 105

(5.4.2) Now suppose tha¥,, contains ap-group. The classification theorem
(2.9) shows that, except p = 3, we can assume that, is cyclic of order
n prime to p; and it is maximally cyclic in bothw,,, N,,. This implies that
n=23ifNy,=T,n=234if Ny, =0andn = 2,3,5if N, = 1. If
N,, = PGL(2,q),thenn = g +1by (4.3). Thisleadstg = 3,4 forN,, =T
andg = 2,3,4,5 for N, = O andN,, = I. We can argue similarly using
2n = g + 1for N,, = PSL(2, q). Consulting (2.9), the following possibilities
remain:
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Nuy, Ne, Nog KB
PSL(2,5),2Z3,T =
PSL(2,7),Z4, 0 =4
PSL(2,9),Zs, I =33

E; xZ23.223.T >3

Er XZ334,2234,0 | > 14‘2%, %lg, le%
EixZ335.2235 1 | > 8. 353 8%

(5.4.3) We are left to considgr = 3 with N, = D3 = E; X Zp andN,, = I.
The following cases remain: (i) i¥,, = PGL(2,3) = O, thenu(B) = =,

ma
(ii) if Ny, = E,, x Zp, thenu(B) > 1 (iii) if N,, = I, thenu(B) = .

(5.4.4) In each of the casegi’)>_,, one easily computes tha{(Tp) > %2 from
the definition (5.1). |

6. The extreme cases

We will now prove the bound in all remaining cases. Since the bound is not
linear in the genus, one cannot simply restrict to a suitably chosen segnignt of
and apply the techniques of the previous section. Instead, we use the following
lemma to further eliminate cases.

(6.1) Notation. Let F be the real function

F:R—>R:gr F(g) :=2/g(Jg+ D>
Let pr : N — N/I be the projection map.
Recall that for any finite grou C N, pr(G) = G sincer is free.

(6.2) Lemma. LetX be a Mumford curve of genus Let A be the greatest
common divisor of — 1 and]Aut(X)|, and writeg — 1 = A -a, |AUt(X)| = A-b.
If we can find a lower bound for A such that
Mlb < F(hoa + 1),
then the boundAut(X)| < F(g) holds.
Proof. We have
Aob F(hoa + 1)
U] = (g — D < (g = D
od koa

Since the functiomr — F(x)/(x — 1) is increasing forx > 2 andiga + 1 <
ra + 1 = g, the result follows. O
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(6.3) Proposition. The boundAut(X)| < F(g) holds for all cases{Ai)l.Szl,
except possiblyAl) with; = 2t and (A5) with 15 = 1.

Proof. We know that the ramification groupsof: X — S are the stabilizers
of the ends offy. The Riemann-Hurwitz formula applied te allows us to
compute the ratio of — 1 to |Aut(X)|, and one finds the following values of
andb in each of the casesti)?_;:

a b where

(AD | ¢"—q—1 {3)4"@? -1 | nt=n

(A2) | g"tL—gnmtl—gn=m —g 41 | {3)g"(q* =1 | mt=2p=mt=1
gL g g — 1| (3)¢M (G- | nt=2p<mt=1

(A3) | gm —gm 1 (3Yg"(q -1 |nt=n<mt=r3
(A4) | ¢t g —g" 1 g +1 (34"@? =D | ni=1
(A5) | ¢" — qnfl _1 {%}q”(q -1 nt =1g

One computes that the above lemma can be appliedawyitk 1 in all but the
above mentioned cases. O

(6.4) Proposition. The boundAut(X)| < F(g) holdsin cas€Al) witht; = 2r,
i.e.,n = 2in the above table.

Proof. Paradoxically, we will show thdgAut(X)| is bounded fronbelownon-
trivially. Let Ny = P(2,¢9), No = B(2t,n_), B = B(t,n_) be the subgroups
of PGL(2, k) occurring inTy, i.e, N = N1 xz N,. We can assume thaf; is
the “standard” copy’ (2, F,) of P(2, q) in PGL(2, k) induced by the inclusion
F, C k. Since thep-part of N, equalsB, hence is a subgroup of,, the p-parts

of N1 and N, have to commute irV; so they can be simultaneously put into
upper triagonal formi.e., we can suppose that they are of the form

T(a;) € N1 N N2; T(Bj) € N2 — N

for some{w;}i_;, {B;}j_1 € k, where we set

T(x) ;= (éi)

Now observe that the images of these matrices under thepapN — N/I”
(wherer is the Schottky group oK), remain distinct. Indeed, if-(z(x)) =
pr(t(y)), thent(x — y) € I'; butt(x — y) is of finite order, soc = y sincel’
is free.

On the other handy; contains the “non-split” element

(01
Y=\_-10)
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so also the lower triagonal elementgx) = y r(x)y ~* are contained iV for all
x € {a;, B;}. For the same reason as above, the eleménts remain mutually
distinct modulor".
We will now prove thaipr(t(x)) # pr(t'(y)) forallx, y € {«;, B;}. Thisis
clear ifx, y are both in{e;}, since thenr (x) # t'(y) in Ny andppr(N1) = Ni.
Now suppose thatr(z(«;)) = pr(t'(8;)) for somei, j. Since the commu-
tator[e;, Bj] = 1in N, we have

[pr (' (B). prz'(@)] = 1.

We conclude that
[pr(T(@)), prt'(e)] = 1.

But ast(«;) andt'(a;) are both inp(N1) = N, this gives a contradiction,
sincer (o;) andt!(e;) are not commuting iy = PGL(2, q).

Finally, if pr(t(8:)) = pr(z'(B;)), then since the first element commutes
with pr(z(a1)) and the second witp(t'(«1)), we would find thatp - (7 (1))
andpr(t'(a1)) commute, leading to the same contradiction.

We find in the end that the order of = N/I is at least divisible by*
(viz., the number of distinch-order elements constructed above), which means
that we can choosk = ¢2 in lemma (6.2) and this leads to the desired bound,
except ifg = 2, butthen,PGL(2, 2) = D3 and another case applies. ]

(6.5) Proposition. The boundAut(X)| < F(g) holds in cas€A5) with 75 = ¢.

Proof. We see that the group-(Z,,) = Z,, which stabilizes the central edge
of Ty acts without fixed point oX (by the correspondence between fixed points
and ends). By Hurwitz's formula applied to this unramified action divides

g — 1. Hence we can sy = n, to see that the criterion of lemma (6.2) is
satisfied. O

(6.6) Lemma. ([26], I.1., Prop. 4) If G, and G are finite groups, then we have
a natural exact sequence

1—>[G1,G2]—>G1*G2—>G1XG2—>1,

where the groupG1, G,] generated by the commutatdes, g2] := g18287 -85 -
for g1 € G1 — {1} andg, € G, — {1} is a maximal free subgroup ¢f; *x G, of
rank (|G1| — D) (|G| — 1). O

(6.7) Lemma. LetX be an ordinary curve, admitting a Galois cov&r— P!
branched above two points. If its Galois group is of the farma= B(z, n), then
n=2.

Proof. LetE be a subgroup of indep in a p-Sylow group ofG and consider
the curveY := E\X, which is a Galois cover of;\ X = P!, totally ramified
above two points with Galois group, x Z,. It follows that the intermediate
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curveY’ := Z,\Y is a cyclic p-prime Galois cover oP! ramified above two
points, and hence equal B3. Letx be a coordinate o#i’; then the equation of
Y is of the form

y”—y:B,B::cx for somea # 0

andc e k. Indeed, the ramification points are the polesBofand sinceX is
ordinary, they are simple (Subrao [28]). This curve has to admit an automorphism
of ordern. It is easy to see that such an automorphism has to be of the form
B +— (B + Bf — Bo,y — (y + Bg for somen-th root of unity¢ and some
Bo(x) € k(x) (cf. Hasse [9], p. 38). On the other hand, the automorphism should
be induced from an automorphismiafc) of ordern, i.e., of the formx — ¢ - x.

This leads to the identity

B(¢x) — ¢ B(x) = Bo(x)” — Bo(x),

whichis only satisfied if = 41 with By a (constant) rootaf(1—¢) = B — Bo.
Hencen = 2 as claimed. |

(6.8) Proposition. The boundAut(X)| < F(g) holds in casgB) and (C).

Proof. Recallthatinthiscas& = Nixz Nowith Ny = B(¢, n), N, = B(t', n)
andB = Z, for n|(p' — 1; p" — 1). The criterion in lemma (6.2) fails to hold
with Ao = 1 only if + = ¢/, which we will assume from now on. Observe that
then,N = (E1 % E») x Z,, whereE; and E; are the respective-parts of Ny
andN,.

We will distinguish two cases. First of all, assume that= E, modI. It
follows from this thaf E1, E»] € I'. In particular, we find that AUX) = N/I
is a quotient of(E1 x E») x Z,,/[E1, E2] = (E1 x E2) x Z, by (6.6). Since
E1 = E; modI', Aut(X) is even a quotient af; x Z,,. On the other hand, since
EixZ,= N, C N/I',we find in the end that

Aut(X) = E1 ¥ Z,.

The previous lemma implies that= 2, and knowing this, the bound7p) > 1i2
is easy to check.

Let E; denote the part of; which is identified with a part (called?) of
E> moduloI". Denote byE! the respective complements 8f in E;, and let
p" be the order of!. By the result of the previous paragraph, we can assume
thatt > 0. We claim thatt!" areZ,-modules (for the action of conjugation).
Indeed, it suffices to show this fd’. Lete be an element of’, and choose an
element € E, with pr(e) = pr(g). We have to show that for evety € Z,,,
oeo~t € E},viz, pr(ocea™t) = pr(x) for somex € E5, and it suffices to let
x =080 L.

SinceP! does not admit unramified extensions, the automorphism group of
X is generated by its decomposition groups, and in particular, it contains the
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group generated b¥, x Z, andE, x Z,. By assumptionE; andE» intersect
modulo " in a group of ordep’~7, so that

t+t

’

|Exl|E2[|Za]

JAut(X)| >
|[E1 N Ey|

hence we can lety = p* in (6.2). If we then use that < p® — 1 (sinceE’ is a
Z,-modulen dividesp™ — 1), we find that the inequality in (6.2) is fulfilled, so
that the desired bound holds (note thap'if= 2, we haveg = 1). O

(6.9) Proposition. The boundAut(X)| < F(g) holds in cas€F1), (F1) and
(F2).

Proof. In all such cases, one can compute a corresponding table, 6
depending on the values afty, t,. We will skip the detailed computation; let it
suffice to say that lemma (6.2) cannot be applied with= 1 only ifr; =, = 0,

in which case the order of the ramification group$ds2, nq) (with g = p')
anda = q — 2, b = 2nq (respectivelyg = 1(¢ — 2),b = nq if p = 2).

For the cas€F1), observe that, as in the proof of (6.5), the grap acts
freely onX, leading torq > n,, and with this value, the bound follows from
(6.2).

The only case that remains to be settledA®), viz, N = N1 *p N», with
N1 = B(t,n), B = Z, andN, = D,. Let E be ap-Sylow of Ny, let y be an
involution in D,, — Z,, and set

E'={e € E:pr(yey) € pr(E)}.

By lemma (6.7), ifE = E’, thenn = 2 and the bound follows easily.

Let E” be the complementai;,,-module ofE’ in E, and let| E”| = p~; then
we can assume that > 0. We find as in (6.8) that AUK) > 2np'**, and the
desired bound follows from (6.2) taking = 2p°. ]

(6.10) Remark. Stichtenoth has shown in [29] that Ait) < 84(g — 1) if  is
ramified above three points and at least two ramification indices d&e

(6.11) Proposition. The bound/Aut(X)| < F(g) holds if p = 2 in case
(Ai")3,.

Proof. Unconditionally in cas€A2”) and in cas€Al”) and(A3") if 1, # 1, it
is easy to compute that(7p) > L.

In case(A1”) with t, = 1, one finds thatt = 2171 — 1, b = 2, andx
has ramification typ€2, 2'1n). As in (6.9), letE be thep-part of B(#1, n) andE’
the image of the conjugate @& by an involution ofD,,. If E = E’, then again,
n = 2 and the bound holds. If we letbe the order of a complement &f in E,
then we can set = 2 — 1, b = 2n, Ao = 21 and using: < 2° — 1, prove
that (6.2) is satisfied (note that- 7).
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In case(A3") with r, = 1, we definen by tn = 1; thena = %q" —1.b=
q"(q —1), and sinc&,,, acts freely onX, we canlet.o = ¢ +1asin(6.5). O

(6.12) Remark.A careful inspection of the estimates shows thap, i 2, only
case(F2) witht, = 1, = 0,n = p' — 1 exactly attains the bound of the main
theorem; similarly, ifp = 2, thenonly caséAl”’)witht; =t, b =1, n = p'—1

does so (if afree subgroup dfof rankg = (p'—1)?with normalizerV exists cf.
infra). Observe that in both cases, the graupas the same form (amalgamation

of a dihedral with a Borel group over a cyclic group), but there are 3 branch points
if p # 2, whereas ifp = 2, there are only 2 branch points (compare with the
two different cases in (2.9ii)).

7. The icosahedral group — proof of proposition 2

(7.1) We have already remarked thai{d2 1) > F(g) onlyif g € {5, 6, 7, 8},
and hence there is only a finite number of groupgnamely, 134) for which
12(g — 1) < |A| < F(g). These, one can easily write dowag, usingGAP
([31]). The only non-solvable such groupliswhose order is 60. It follows that
g = 6. Note that/ is a subgroup oPGL(2, k) only if p # 2,5, and then, a
geometric construction of a Mumford cur¥eof genus 6 with 60 automorphisms
was given by Herrlich in [11]pp.50-51. The normalizer of its Schottky group
is of the form

N=1 *Zg D5,

andX is a cover oP! ramified above 4 points with ramification indio@s 2, 2, 3)
if p£A3and(2,2,6)if p=3.

(7.2) We will now compute the dimension of the stratum of the moduli space
(which we consider as an algebraic space) of curves of genus 6 containing this
particular example. Observe that the dimension of the infinitesimal deformation
space ofX consisting of curves whose automorphism group conthissgyiven

by h(X, Tx)!, whereTy is the tangent sheaf &f and the superscripgt means
taking group invariants. By Serre duality*(X, Tx)' = h°(X, 2$%!, where

2y is the sheaf of regular differentials ai Finally, this space of invariant 2-
differentials is computed fatp, |1]) = 1 to be of dimension@— 3 + n, where

g is the genus of \ X andn is the number of branch points &f — 7\ X ([4],

pp. 254-255). Hence in our case, the closed strafiyrof curves inMg whose
automorphism group contairisis one-dimensional. We do not know whether
S, is connected, and whether or not it equals the open strajum

(7.3) Let us now switch taM,, the moduli space of Mumford curves of genus g
overk (which can conveniently be described by non-archimedean Teilb&m ™
theory,cf. Herrlich [14]). Recall tha is the algebraic closure &t We use the
following (folklore) fact about this moduli space:
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(7.3.1) Claim. M, x is an open analytic subspace of the analytificathi
of the moduli spacé/, .

A sketch of the proof goes as follows: For each of the moduli spates
that we consider, le¥ denote its Deligne-Mumford compactification. First one
resolves the technical problem thet, x is not afine moduli space by adding
some levek structure fom large enough so that, «[»] is a fine moduli space,
and note thaM;fK[n] — M;fK is an open map with respect to the analytic
topology. This follows because (by a short local calculation using the fact that
the corresponding algebraic mafy x[n] — M, kis algebraically finite flat), it
is analytically flat quasi-finite in the sense of Berkovich ([2], 3.2), and applying
(3.2.7) ofloc. cit.

Let M;f xnl — Mg zlnl be the reduction map that associates to any curve

its stable reduction over the residue figldof K, and letZ be the locus of
multiplicative reduction oM;”k[n]. Then, by deformation theor¥, is a Zariski
closed set, say, given locally by equatiofis= ... = f, = 0. The locus of
Mumford curves inM;jK[n] is given by the “tube”]Z[ of Z, where]Z[ is

defined locally by

1Z[:={x € M;fk[n] c|Fi(x)| < 1foralli =1,...,r},

whereF; are lifts of f; to M;fK[n]. Since]Z[= IiLn 1Z[. where the limit is over

all “values”e € |K*|, and
1Z[.= {x € M;",K[”] D F(x)| <eforalli =1, ...,r}

are affinoid open sets, we find thig[ is open with respect to the strong rigid
topology. The claim follows. ]

It follows immediately from the computation in (7.2) that the strat§m
intersectsMs in a one-dimensional space. Since we know tAat(X)| < 60
on Ms, we haveS; N Mg = S; N Ms, hence all curves in this one-dimensional
rigid analytic stratum have automorphism group exactly equal to

However, there is a more direct way to the computation of the dimension of
closed strata in the space of Mumford curves that avoids the use of invariant
theory (hence, of the assumption that the characteristic is coprime to the order
of the automorphism group):

(7.4) Theorem(Herrlich [14]). With the above notations, let = N/I". If
g > 4, then the closed stratusy C M, of curves whose automorphism group
containsA intersects the Mumford locu$1, in a space of dimension

dim(Sa N M) =3(f +dy, —d, — 1) + 2(c, — c.),
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wherec, (resp.d,) is the number of non-trivial cyclic (resp. non-cyclic) vertex
groups ofTy, c., d, are similarly defined for edges @}y, and f is the number
of free generators aWv.

Using (7.4), one computes that in our case, dipn Mg) = 1 as expected,
and the same result as in (7.3) follows. Note, however, that (7.4) does not say
anything about the dimension of the corresponding stratui,in

(7.5) Remark. Dolgachev has pointed out to the authors that the one-parameter
family of curvesS; can be made explicit by a classical geometric construction
as a pencil of curves on the Del Pezzo quinticEdge [3].

(7.6) Remark.The original version of theorem (7.4) also included the statement
that the open stratusy N M, is rigid-analyticallyconnectedHowever, a careful
study revealed that this connectedness statement, which is theorem 2 in [14], is
violated by the pencil mentioned in (7.5). Herrlich agrees with the authors of the
current paper that this is due to the fact that proposition 1 in [14] is not true as it
is stated. However, this does not further affect the results of this paper. A more
detailed analysis of the connectedness of the stratification in the Mumford locus
can be found in [17].

8. Discreteness — attaining the bound

(8.1) It has not yet been proven that the groups on the lists in (4.6) and (4.7)
actually occur as discrete subgroupsi L (2, k). It happens exactly when
there is an action oV on 7 whose quotient equalBy. For this, it suffices that

the action ofN is well-defined, and has a finite stabilizer at at least one point of
T. Checking this is not always so obvious, but there is a direct criterion to see
whether &reeproduct exists as a discrete subgroupPa@i L (2, k).

(8.2) Definition. Theisometric circleof a non-trivial elemeny of finite order
in PGL(2, k) is defined byl, = {z € P1(k) : |cz +d| < 1}, where(c, d) is the
second row ofy.

(8.3) Lemma([12]). If G, H are finite subgroups oPGL(2, k), thenG = H
exists as a discrete subgroup BIGL(2, k) if and only if7, N Iy = ¢ for all
non-trivial y € G and$ € H.

(8.4) We will use the above criterion to prove that the segment that attains the
bound of the main theorem(K2) withty = t, = O,n = pt — 1if p # 2

and (A1") witht; = t,tp = O,n = p' — 1if p = 2) does correspond to a
discontinuous group, and hence a corresponding Mumford curve exists. Let us
consider the segmett with Ny = B(¢,n) andN, = D, = Z,, x {y) for some
elementy of order 2. We will study this case as a kind of “cover” of c&sg.

Let 2’ be the segment defined 4 = B(¢t,n) = E; x Z,, N = E; x Z, and
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H = Z,,whereE,, E| are two disjoinp-groups generated Hy; }i ; and{e/}’*
respectively, and on which, by definitiof, acts componentwise by conjugation.
Looking at explicit presentations, one sees that

Ny =Nz (y)/(y?=1yoy =0, yey =¢, i =1.1),
with obvious notations.

Remark. Geometrically, the link between the segmehtand X’ is as follows:
one subdivides the segmehtlike

(E, X Zn) *z, Zn *z, (Et/ X Zn),

and then lets an elementof order two act on this as a vertical “mirror” along the
central vertex; viay, one identifiesE, and E; by conjugation and the elements
on the stabilizers of edges by inversion.

Rearranging words shows thill, = (y) - Nx/, so thatNx is a subgroup of
(finite) index 2 inN 5 (of course, we actually mean the image\of in Nx). To
show thatVy is discontinuous, it therefore suffices to show thisNgr. One sees
thatNy = (E,*xE])xZ,.We canlett| = QE, Q' forsomeQ € PGL(2, k).

It suffices to show that the free products E; is contained inrPGL(2, k). Now

the isometric circles of elements Ky are translates b@ of the corresponding
circlesinE,, which we can assume to be unit circles with centers at finitely many
elements ofzp (if we let E, be generated by suitable lower triagonal matrices).
Call their union!. It then suffices to choos@ such thatQ - I NI = @, which is
clearly possible sinck contains elements of non-unit valuation, so that we can
let O be translation over an element of high enough valuation.

The corresponding Schottky group = [E,, Y E,y] is free of rankg =
(p' — 1), and normal inV. By our main theoremy is then exactly equal to the
normalizer ofl".

9. Artin-Schreier-Mumford curves — proof of proposition 3

(9.1) Letg = p'. To avoid problems with the singularities of the particular plane
model given, we think of the curvg, . : (y? — y)(x? — x) = c as embedded in
P! x PL. Since|c| < 1, its analytic reduction is given by the “chess board” of
lines(x? — x)(y? — y) = 0, and hence it is a Mumford curve whose genus (the
number of squares of the board) is givendpy= (¢ — 1)2. It seems appropriate
to call these curveArtin-Schreier-Mumfordurves.

(9.2) One can see from the equation that the curve admits the following auto-
morphisms:(x +— ax,y = a ly)fora e F*, x > x+ 8,y = y +y)
for B,y € F, and(x — y,y — x). This accounts for (g — 1) = F(g)
automorphisms, and hence by the main theorem, there are no mor€, s
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Fig. 3. The analytic reduction oX; .

expected (note that this gives a less intricate proof of the faciMhistdiscrete).
Itis also clear that the automorphism group is given by(Xut = ij X Dpyt_q,
and hence the Schottky group (whichis the kern&lof> Aut(X,)) is generated
by the commutatorgZ},, yZ} y] for a fixed involutiony € Dty — Z 5.

(9.3) The dimension of the stratum of curv&sin M,, whose automorphism
group contains AutX, .) can not be determined in a straightforward way be-
cause of wild ramification irr ([4] does not apply immediately), but Herrlich’s
formula (7.4) does imply that the intersection of the closed strafm,, with

the Mumford locus is a one-dimensional subspace. By the main theorem, this
is also the intersection with the open stratum. Note that the family— A}
(given by projection onte) is not constant as varies, since it is a stable curve
having a singular fibre over the origin (so it has moving moduli).cAsries
through{|c| < 1}, we move through the open stratumir,, (andy changes).

10. Drinfeld modular curves — proof of proposition 4

(10.1) Lemma(Gekeler [5], VII.5). The coverX (n) — X (1) = P! of Drinfeld
modular curves is ramified above two points with respective indjcesl and
q%(q — 1), whered = degn). The genus ok (n) satisfies
g’ —q -1
gX(m) —1= IG(n)Im, whereG(n) = I'()/I'(m)Z

is of order
1
_ 3 _
Gl =g* [ A~ g

pln

(10.2) Notation.If G is a group of automorphisms acting on a cuXewe
denote byG; p for a pointP € G\ X andi € Z- thei-th ramification group of
X — G\X atP. As usual, letr; denote the corresponding covering morphism.

The following lemma characterizes (in a very special situation) when a group
of automorphisms of a curve is the full group of automorphisms in terms of
ramification data.
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(10.3) Lemma. Assumep # 2. Let A be a group of automorphisms acting on
an ordinary curveX with quotientA\ X = P* wildly branched above two points
P, Q and unramified elsewhere, and suppose that there exists a subgrofip
A such thatX — G\X = P!is branched above two poinis y, with x tamely
ramified andy wildly ramified, such that and y map toP and Q respectively
onA\X.Then|Ag p| = |[A1p|(|ALp| — D).

The same holds if, is wildly branched above one poiiit, branched of
order 2 above two more points, and unramified elsewheneaiid y map toP
ONA\X.

Proof. SinceX is ordinary, the second ramification groups in both covers are
trivial. Let g be the genus oK. The Riemann-Hurwitz formula applied ig;
gives that
_2g-1  |Gl-2 1
|G| |Go,yl 1Goxl’

so that 0< M < 1. Applying similarly Hurwitz’s formula tar, and dividing
M by the result gives that

[Ao,p| - [Ag, ol
[Ao,0l(|ALp| —2) 4+ |Ag,pl(|AL ol — 2)

Since both terms in the denominator are positiveHasnd Q are wildly ramified
andp > 2),

[A:Gl=M

|Ao.p|
|Arpl =2

Henn has proved ([10], Lemma 1) thg®~ divides|Ay p| — 1, so unless if
|Ao.p| = |A1p|(|A1p| — 1), we have[A : Gl < M|A1 p|. Since ramification
abovex in 7z is only tame, thep-part|Ay p| is bounded by A : G], so that
finally, [A : G] < M[A : G], a contradiction ta/f < 1.

A similar computation works for the second case. ]

[A: Gl <M

(10.4) Proof of proposition 4. We see from (10.1) that, except for= 2, 3,
X (n) has more than 12 (X (n)) — 1) automorphisms.

Let I be the Schottky group oX (n) and N its normalizer. We observe
thatG(n) € A := Aut(X(n)), and the coveX (n) — X (1) is a cover ofP!
by a Mumford curve ramified above exactly two poiftsQ with ramification
indicesq + 1 andg?(¢g — 1) (by (10.1)). But such covers where classified in
(4.6), and the only case in which the ramification behaviour is compatible with
the one ofX (n) — X (1) is casg(Al) with P = PGL, t; = dt. Since we have
a tower of coverings of the form (n) — X (1) — A\ X (n), this implies thatV
containsN' = PGL(2, q) *gu.n_) B(td, n_). Again, the coverr4 has to belong
to one of the cases in (4.6) and (4.7), sidc@) has more than 12(X (n)) — 1)
automorphisms (fog > 3). The only possible sucN containingN’ are (A1)
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and (F1) with = r = 0 (the latter since the bound & X (n)) — 1) is
exceeded). By the previous lemma (since# 2), we conclude thatAg p| =
|A1p|(|A1p|—1). IncaseAl), we have Ag p| = p"2n, and the above identity
leads ta = #,. On the other hand2,; a contradiction. Similarly, in casg'1)
with 11 = 1, = 0, we havg Ag p| = p"n_, leading tor = 3. On the other hand,
dt|r3 for d > 1 sinceN containsN’; a contradiction. We conclude that = N’
and AulX(m)) = G(n).

Application of (7.4) to this situation now leads to the fact that closed the
stratum of Mumford curves of gengg X (n)) having an automorphism group
containingG (n) (hence N as normalizer of their Schottky group) has dimension
zero. One of the points in this finite set corresponds to the Drinfeld modular curve
above; this proves the final claim of proposition 4. O

(10.5) Remark. The curveX (n) is defined over a finite extensiaf, of F,
generated by the-torsion of the Carlitz module over. A standard argument

in model theory implies that for all but a finite number of primesf F,, the
curveX (n) x g, Fy/p has the same automorphism group. It would be interesting
to know what happens at such special prine#sAdler [1], Rajan [23]).
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