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Introduction

All compact Riemann surfaces (vis-à-vis complex projective curves) of genus
g ≥ 2 share the same universal topological covering space, and hence admit a
uniformization by a discrete subgroup ofPSL(2,R). This description leads to a
fruitful dualism in the theory of complex curves, visible in both its theorems and
their proofs. The most appropriate instance of this to be quoted here is probably
the fact that Hurwitz’s upper bound 84(g− 1) on the number of automorphisms
of a compact Riemann surface of genusg ≥ 2 is equivalent to Siegel’s lower
boundπ/21 on the volume of the fundamental domain of a Fuchsian group (cf.
Lehner, [19], p. 402-405).

Although over anon-archimedeanvalued fieldk, compact rigid-analytic and
projective algebraic curves can still be identified, the analogue of the dualism to
discrete group theory is of quite a different nature, as not all curves admit the
same universal topological covering space (e.g., curves having good reduction
are analytically simply connected). But Mumford has shown that curves whose
stable reduction is split multiplicative (i.e.,a union of rational curves intersecting
in k̄-rational points) are isomorphic to ananalytic spaceof the formΓ \(P1

k−LΓ ),
whereΓ is a discontinuous group inPGL(2, k) with LΓ as set of limit points.
Thus, the theory of non-archimedean discrete groups is both more restrictive
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than the complex analytic one (as it cannot be applied to any curve), and more
powerful, as it can lead to stronger results for such so-called Mumford curves.

As an example of this, Herrlich has shown that forp-adic Mumford curves
of genusg ≥ 2, Hurwitz’s bound can be strengthened to 12(g− 1) (if p ≥ 7,cf.
[12]). One canwonder what happens for Mumford curves over non-archimedean
fields ofpositive characteristic.

It ought to be mentioned that in positive characteristic, general algebraic
curves canhavemanymoreautomorphisms thanexpected fromHurwitz’s bound,
e.g., there exist algebraic curves of arbitrary high genus with more than 16g4

automorphisms (Stichtenoth, [29]). It has been observed on many occasions that
the most anomalous examples invariably have a lowp-rank. One is therefore led
to expect better properties for so-called ordinary curves,i.e.,curvesX of genus
g for which

dimZ/p Jac(X)[p] = g,

which are Zariski-dense in the moduli space of curves of genusg. Indeed, S.
Nakajima ([22]) has shown that for such curves,|Aut(X)| ≤ 84g(g − 1). How-
ever, one knows of no infinite set of ordinary curves of arbitrary high genus all
of whose elements attain this bound. Rather, the number of automorphisms in
all such known collections does not exceed a cubic polynomial in

√
g, and it has

been suggested that worse cannot happen.
Mumford curves are known to be ordinary (Sect.1), whence the aforemen-

tioned pathologies are moderated by Nakajima’s result. It is our aim to show that
a bound of the type suggested before indeed holds for Mumford curves:

Theorem. LetX be a Mumford curve of genusg ≥ 2 over a non-archimedean
valued field of characteristicp > 0. Then

|Aut(X)| ≤ max{12(g − 1),2
√
g(
√
g + 1)2}.

Actually, the proof yields more: it provides a kind of classification of those
curvesX for which |Aut(X)| > 12(g − 1) (Sect.4).

Remark. A reformulation of the above theorem in the style of Siegel’s lower
bound is as follows:if Γ is a Schottky group of rankg, then theµ-invariant of
its normalizerN (cf. [18], [12]) is bounded from below by

µ(N) ≥ min{ 1
12
,

√
g − 1

2
√
g(
√
g + 1)

}.

Theproof of themain theoremuses thedescriptionof theautomorphismgroup
by thenormalizerN of itsSchottky groupΓ , whose structure canbestudiedby its
action on the Bruhat-Tits treeT of PGL(2, k). Although this principle of proof
was also usedbyHerrlich in thep-adic case, the quintessence of our techniques is



Automorphisms of Mumford curves

rather different. In thep-adic case the expected bound is linear in the genus, and
this allows Herrlich to restrict to normalizers that are the amalgam oftwofinite
groups. In positive characteristic, the expected bound is not linear in the genus,
so we have to consider more complicated normalizers. We therefore investigate
directly the link between the ramification inπ : X → S := Aut(X)\X
and the combinatorial geometry of the analytic reduction ofS. From Hurwitz’s
formula applied toπ , it is immediate that the bound 12(g−1) on the order of the
automorphism group holds, unlessS = P1 andπ is branched abovem = 2 or
m = 3 points. LetTN (respectivelyT ∗

N ) be the subtree ofT which is generated
by the limit points ofΓ , seen as ends ofT (respectively the limit points together
with the fixed points of torsion elements inN ). The quotientsTN = N\TN and
T ∗
N = N\T ∗

N are homotopic to the intersection graph of the analytic reduction of
S as a rigid analytic space, butT ∗

N has finitely many ends attached to it, which are
in bijection with the points above whichπ is branched. The advantage of using
T ∗
N instead of the usualTN lies in the following key proposition, which replaces

the “restriction to an amalgam of two groups” in thep-adic case:

Proposition 1. If T is a subtree ofT ∗
N having the same ends asT ∗

N , thenT is a
contraction ofT ∗

N , i.e.,every geodesic connecting a point fromT ∗
N − T to T is a

path on which the stabilizers of vertices are ordered increasingly w.r.t. inclusion
in the direction ofT . In particular, the amalgams associated toT andT ∗

N are
the same(= N).

The proof of this result is very combinatorial and depends on the structure
theorem for finite subgroups ofPGL(2, k) (Sect.3).

By applying proposition 1, it is enough to consider a simpler subtreeT of T ∗
N

which is a “line” ifm = 2 and a “star” ifm = 3.We then show that only finitely
many types of such treesT (and hence, of such groupsN ) exist (Sect.4). For
each such type of group, we use the link between the ends of the corresponding
T and the ramification inπ to prove the desired bound (Sect.5).

Remark.Proposition 1 holds in any characteristic, and can be applied to obtain a
classification of Galois covers ofP1

Cp which are Mumford curves ramified above
three points, as in [16].

We now turn to some comments on the main theorem. Note that 12(g−1) >
2
√
g(
√
g+ 1)2 only for g ∈ {5,6,7,8}. But there do exist curves of such genus

for which the bound is attained. LetMg (respectively,Mg) denote the moduli
space of algebraic curves of genusg (respectively, of Mumford curves of genus
g), considered as algebraic space (respectively, rigid analytic space). We then
have the following result, which identifies a very special locus inM6:

Proposition 2. IfX is a Mumford curve of genusg over a fieldk of characteristic
p > 0 such thatAut(X) is a non-solvable group of order> 2

√
g(
√
g + 1)2,

thenp �= 2,5 andX is a curve of genus 6 with an icosahedral isomorphism
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group. Forp > 5, there is a one-dimensional open stratumM6, along which the
automorphism group is icosahedral. It intersectsM6 in a one-dimensional rigid
analytic open set(Sect.7).

Let ∗ denote amalgamated product. The bound in the above theorem is sharp
in the following sense:

Proposition 3. For fixedp, there exist Mumford curvesXt,c of arbitrary high
genusgt = (pt − 1)2 that attain the bound in the main theorem;Xt,c is the
projective curve with affine equation(xp

t − x)(yp
t − y) = c, for somec ∈ k∗

with |c| < 1. The normalizer of its Schottky group is isomorphic to

Nt = (Zt
p � Zpt−1) ∗Zpt−1

Dpt−1,

whereZn,Dn are the cyclic and dihedral group of ordern and2n respectively.
The Schottky group ofXt,c is generated by the commutators[ε, γ εγ ], for all
ε ∈ Zt

p, whereγ is a fixed involution inDpt−1 − Zpt−1. For varyingc, theXt,c

form a one-dimensional open rigid analytic stratum of curves inMgt that attain
the bound(Sect.9).

Another less obvious family of Mumford curves whose number of auto-
morphisms exceeds Hurwitz’s bound is given by moduli schemes for rank two
Drinfeld modules with principal level structure (e.g.,Gekeler & Reversat [6]).
The analytic description is as follows: Letq = pt, F = Fq(T ), andA = Fq[T ];
letF∞ = Fq((T −1)) be the completion ofF andC a completion of the algebraic
closure ofF∞. OnDrinfeld’s “upper half plane”Ω := P1

C−P1
F∞ (which is a rigid

analytic space overC), the groupGL(2, A) acts by fractional transformations.
Let Z ∼= F∗q be its center. Forn ∈ A, the quotients ofΩ by congruence sub-
groupsΓ (n) = {γ ∈ GL(2, A) : γ = 1modn} are open analytic curves which
can be compactified to projective curvesX(n) by adding finitely many cusps.
They turn out to be Mumford curves for the free group which splits the inclusion
Γ (n)tor ✁ Γ (n), whereΓ (n)tor is the subgroup generated by torsion elements (cf.
Reversat [24]).

Proposition 4. Let p �= 2 or q �= 3. The automorphism group of the Drin-
feld modular curvesX(n) is the “modular” automorphism groupG(n) :=
Γ (1)/Γ (n)Z. The normalizer of its Schottky group is isomorphic to

PGL(2, pt) ∗Zt
p�Zpt−1

Ztdp � Zpt−1,

which only depends ond = deg(n). For fixedg with g = g(X(n)) for somen,
X(n) is one of at most finitely many Mumford curves withG(n) as automorphism
group(Sect.10).

Note that, whereas the corresponding statement for classical modular curves
is easy to prove using the Hurwitz formula ([27]), the occurrence of wild ram-
ification inX(n) → X(1) prevents us from giving an easy proof of the above
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result. Note also that the final statement of proposition 4 highlights the excep-
tional status (as a point of themoduli space) of suchmodular curves which admit
simultaneousuniformization by a Schottky group and by an arithmetic group on
an open part.

We want to finish this introduction by mentioning a few questions raised by
this work.

Question 1 (ordinary curves).Does the above bound with 12(g − 1) replaced
by 84(g − 1) hold for all ordinary curves?

Question 2 (Drinfeld modular curves).Can one be more precise about the
abstract structure of the Schottky group ofX(n)? It should depend, not only on
deg(n), but also on the decomposition ofn into prime ideals ofA.

1. Automorphisms and uniformization in positive characteristic

(1.1) LetX be a complete irreducible curve of genusg ≥ 2 over a fieldk
of characteristicp > 0. Let K denote the algebraic closure ofk, and k̄ its
residue field. Letγ denote thep-rank ofX, i.e.,γ = dimZ/p Jac(X)(K)[p]. If
γ = g, thenX is calledordinary (such curves are dense in the moduli space
of curves of genusg). Recall ([8], [21]) thatX is called aMumford curveif it
is “uniformized overk by a Schottky group”. This means that (a)k is complete
with respect to a non-archimedean valuation; (b) there exists a free groupΓ of
rankg in PGL(2, k), acting onP1

k with limit setLΓ ; (c) the analytificationXan

ofX satisfiesXan ∼= Γ \(P1
k −LΓ ) as rigid analytic spaces. Mumford has shown

that these conditions are equivalent to the stable reduction ofX only having
rational components with̄k-rational double points. Because of the “GAGA”-
correspondence for one-dimensional rigid analytic spaces, we do not have to
(and will not) distinguish between analytic and algebraic curves. The following
result is folklore:

(1.2) Lemma. Mumford curves are ordinary.

Proof. It is known by the works of Manin-Drinfeld ([20]) and Gerritzen ([7])
that the Jacobian of a Mumford curveX associated to a free groupΓ can be
uniformized as a rigid analytic abelian variety by a “multiplicative lattice”,i.e.,

Jac(X)(K) ∼= (K∗)g/Λ

for some latticeΛ (actually,Λ ∼= Γ ab) with multiplicative basis{λ1, ..., λg}.
Then

Jac(X)[p] ∼= p
√
Λ/Λ,

where p
√
Λ is generated by{ p

√
λ1, ...,

p
√
λg} (since thep-th roots of unity are

trivial in k), which clearly hasZ/p-rank= g. ��
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The following is the rigid analytic analogue of a well known theorem on
conformal automorphisms of Riemann surfaces (e.g.,[19], VI.3.L):

(1.3) Theorem(Gerritzen [8], VII.1). LetX be a Mumford curve overk uni-
formized by a Schottky groupΓ . LetN be the normalizer ofΓ in PGL(2, k).
ThenAut(X) ∼= N/Γ . ��

AlthoughN is not free, it makes sense to consider the 1-dimensional analytic
quotient spaceS := N\(P1

k − LN), which can be algebraized, since it is the
quotient ofX by the finite group Aut(X) = N/Γ .

(1.4) Notation. Denote the genus ofS by r, and denote bym the number of
points ofS above whichπ : X → S is branched.

(1.5) Lemma. If r > 0 or m > 3, then|Aut(X)| ≤ 12(g − 1). Furthermore,
the caser = 0,m = 1 cannot occur.

Proof. The first part is an easy consequence of the Riemann-Hurwitz formula
applied toπ . (cf.Stichtenoth’s proof ofSatz3 in [29]). The second part follows
from (1.2) and the same formula, since S. Nakajima has shown in [22], Theorem
2, that for ordinaryX, the ramification groups of order≥ 2 in π vanish. ��

2. Structure of T ∗
N

From now on, we will assume thatr = 0 and give a description of the mapπ by
looking at its analytic reduction.

(2.1)The Bruhat-Tits tree. By taking a finite extension ofk if necessary, we
can assume that all fixed points ofN acting onP1

k arek-valued (cf. [8], I.3.3.2).
Let T denote the Bruhat-Tits tree ofPGL(2, k) (i.e., its vertices are similarity
classesΛ of rank twoO-lattices ink2, and two vertices are connected by an edge
if the corresponding quotient module has length one –seeSerre [26], Gerritzen
& van der Put [8]). It is a regular tree in which the edges emanating from a given
vertex are in one-one correspondence withP1(k̄), wherek̄ is the residue field of
k. The treeT admits a left action byPGL(2, k), and hence also by any subgroup
G ⊆ N ; by our assumption on the fixed points,G acts without inversions onT .

(2.2) Notations.For any subtreeT of T , let Ends(T ) denote its set of ends (i.e.,
equivalence classes of half-lines differing by a finite segment). There is a natural
correspondence betweenP1(k) and Ends(T ). LetV (T ) andE(T ) denote the set
of vertices and edges ofT respectively. For anyΛ ∈ V (T ), σ ∈ E(T ), letσ � Λ

mean thatσ originates atΛ. LetGx denote the stabilizer of a vertex or edgex of
T for the action ofG. Vertical bars| · |will denote geometric realization. For any
u, v ∈ P1(k), let ]u, v[ denote the apartment inT connectingu andv (seen as
ends ofT ). Furthermore, for a vertexΛ ∈ V (T ), let [Λ,u[ denote the half-line
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connectingΛ to u (seen as an end ofT ). The natural metric on|T | is denoted
by d.

(2.3)Action of elements of finite order.LetG be a subgroup ofN . If γ ∈ G is
an element of finite order, let themirror M(γ ) of γ be defined as the smallest
subtree ofT generated by pointwiseγ -fixed vertices ofT (this definition differs
from the one given in [16]).

If γ is an elliptic element (i.e., an element inG of finite order having two
distinct eigenvalues of the same valuation), then it has two fixed points inP1(k),
andM(γ ) is just the geodesic connecting them (recall thatk is of positive char-
acteristic).

If γ is a parabolic element (i.e., an element inG of finite order having only
one eigenvalue), then it has a unique fixed pointz. Assume thatk is discretely
valued andk̄ is finite. LetO be the ring of integers ofk and/ a uniformizer
of k. For everyw ∈ P1(k) different fromz, there is a unique vertexΛw ∈]w, z[
such thatM(γ )∩]w, z[= [Λw, z[. For any twow,w′, Λw andΛw′ lie at the
same distance from[Λw, z[∩[Λw′, z[. Indeed, let{e0, e1} be the standard basis
for k2, and let the parabolic elementγ be a translationγ : X �→ X+ t for some
t ∈ k∗, so that its fixed pointz is z = ∞. Letw = 0. Vertices in the apartment
connecting 0 and∞ are similarity classes of latticesΛj = Oe0 + O/je1, and
a short computation shows thatΛj ∈ M(γ ) if and only if j ≥ −v(t).

Fig. 1.The mirror of a parabolic element ifq = 2

(2.4)Trees associated to subsets ofP1(k). We can construct a locally finite tree
T (L) (possibly empty) from any compact subsetL of P1(k): it is the minimal
subtree ofT whose set of ends coincides withL, or equivalently, the minimal
subtree ofT containing

⋃
u,v∈L ]u, v[.

For any subgroupG ofN we defineTG to be the tree associated to the subset
LG consisting of the limit points ofG in P1(k). If G is finite,TG is empty. On
the other hand, ifG is a finitely generated discrete group, thenTG coincides with
the tree ofG as it is defined in Gerritzen & van der Put [8]. We also defineT ∗

G to
be the tree associated to the set consisting of all limit points ofG andall fixed
points of elements of finite order inG.

TG andT ∗
G admit a natural action ofG, and we denote the quotient graphs by

TG := G\TG andT ∗
G := G\T ∗

G respectively, and both corresponding quotient
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maps will be written asπG, by slight abuse of notation. If they are trees, we can
considerTG andT ∗

G as subtrees ofTG andT ∗
G by choosing any section ofπG.

Let S be as in (1.4). The dual graph of the analytic reduction of the curve
S (with the admissible covering arising from the standard one onP1

k − LN ) is
exactly the quotient graphTN . SinceS is assumed to have genusr = 0, TN has
no cycles, and hence is a tree. SinceS is compact,TN is finite.

The treeT ∗
N has finitely many ends which are in one-to-one correspondence

with the branch points inπ : X → S.Actually, the stabilizer of such an end (viz.,
the eventual stabilizer of edges and vertices in the end) is exactly the ramification
group of the corresponding branching point inS. Note that sinceX is ordinary,
only the first ramification groups inπ : X → S are non-trivial (Nakajima,
loc. cit.), and hence the stabilizer of an end inT ∗

N is a semi-direct product of
a cyclic group and an elementary abelianp-group by the structure theorem for
decomposition groups in global field extensions (cf.Serre [25], IV Sect.2).

(2.5) Example. If G is a cyclic group generated by an elliptic elementγ , then
T ∗
G = M(γ ).

(2.6)Graphs of groups. We turn both ofTN andT ∗
N into graphs of groups by

labeling every vertexv ∈ V (TN) and edgee = [vw] ∈ E(TN)with the stabilizer
of its lifts (by any fixed section ofπN )Λ ∈ V (TN) andσ ∈ E(TN) for the action
of N , denoted byNv andNe = Nvw = Nv ∩ Nw respectively. Note that these
groups are finite sinceN is discrete. ThenN equals the “tree product” ofTN ,
viz.,N is the amalgam of theNv along theNe (Serre, [26], 4.4). In view of what
follows in Sect. 4, let us give two examples of how to deal explicitly with such
amalgams:

(2.6.1) Example.If TN is just a segment,viz.,

TN = G1 G2

H
,

thenN = G1∗H G2 is the ordinary “product with amalgamation”,viz., if 〈gαi |Ri〉
is a presentation forGi , andφi : H → Gi are the occurring injections, thenN
admits the presentationN = 〈gα1 , gβ2 | R1, R2, φ1(h)φ2(h)

−1, ∀h ∈ H 〉.
From such explicit presentations, it is easy to deduce an isomorphism

(G1 �H) ∗H (G2 �H) = (G1 ∗G2)�H

for any finite groupsG1,G2 andH . Such an isomorphism is used in the proof
of (6.8).

Also observe that, ifT
′
N ′ is the following tree:

T
′
N ′ = G1 H ′ G2

H ′ H
,
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thenN = N ′ althoughTN �= T
′
N ′ . Thus,TN determinesN uniquely, but the

converse is not true. This is why, later on, we will classifyN instead ofTN ,
and also why we denote the groupN by a slightly different diagram (using
amalgamation signs) as the tree (using realizations as plane graphs). ��
(2.6.2) Example.Suppose thatTN is a “star”:

TN = G1 G2H12

G3

G4

H23

H24

.

We denote the corresponding groupN by a similar diagram, in which the edges
have been replaced by∗-symbols (cf. (4.7), where such tree products occur). The
above picture means that, if〈gαi |Ri〉 is a presentation forGi , andφ1

ij : Hij →
Gi, φ

2
ij : Hij → Gj are the occurring injections, thenN admits a presentation

of the form

N = 〈gα1 , gβ2 , gγ3 |R1, R2, R3, φ
1
ij (hij )φ

2
ij (hij )

−1, ∀hij ∈ Hij 〉.
��

The following observation is easy, but it allows us to deduce properties about
the local structure of our tree from information about finite groups acting on the
projective line:

(2.7) Lemma. Let v be any vertex ofTN corresponding toΛ in TN andNv

its stabilizer. The canonical bijection{σ ∈ T : σ � Λ} ∼−→ P1(k̄) induces a
representationρ : Nv → PGL(2, k̄). Then for every subgroupG ⊆ Nv there
is a bijection between{σ ∈ E(T ∗

N ) : σ � Λ andNσ ⊇ G} and points onP1(k̄)

fixed byρ(G). Taking quotients byN , this leads to a bijection

{
e ∈ E(T ∗

N
) with e � v ande is fixed by

anNv-conjugate ofG

} ∼−→
{
x ∈ ρ(Nv)\P1(k̄) such that points
abovex in P1(k̄) are fixed by aρ(Nv)-
conjugate ofρ(G)

}
.

��
We now turn to a description of the possibleNv.

(2.8) Notation. We letZn denote the cyclic group of ordern, Dn the dihedral
group of order 2n andEn the elementary abelianp-groupZnp of orderpn. Let
T = A4,O = S4, I = A5 be the tetrahedral, octahedral and icosahedral groups
respectively. We also introduce the following short hand notation:B(t, n) :=
Et �Zn for n|pt−1; if n = pt−1, this is a Borel subgroup ofPGL(2, pt). Let
〈γ 〉 denote the cyclic group generated byγ . Groups not containing ap-group
will be calledclassical.
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We will write P(2, q) to denote eitherPGL(2, q) or PSL(2, q) by slight
abuse of notation, with the convention that any related numerical quantities that
appear between set delimiters{} are only to be considered forPSL(2, q).

We recall the classification of finite subgroups ofPGL(2, k), due to L.E.
Dickson (cf. Huppert, [15], II.8.27). A geometric formulation, which is more
convenient for our purpose, is due toValentini andMadan ([30]). From our point
of view, the geometric form of the theorem describes the structure ofT ∗

G for finite
subgroupsG of PGL(2, k).

(2.9) Theorem. Any finite subgroup ofPGL(2, k) is isomorphic to a finite
subgroup ofPGL(2, pm) for somem > 0. The groupPGL(2, pm) has the
following finite subgroupsG, such thatπG is branched overd points with rami-
fication groups isomorphic toG1, ...,Gd :
(i) G = Zn for (n;p) = 1, d = 2,G1 = G2 = Zn;
(ii) G = Dn with p �= 2, n|pm ± 1, d = 3, G1 = G2 = Z2,G3 = Zn or also,
p = 2, (n;2) = 1, d = 2 andG1 = Z2,G2 = Zn;
(iii) G = B(t, n) for t ≤ m and n|pm − 1, n|pt − 1 with d = 2 andG1 =
G,G2 = Zn if n > 1 andd = 1,G1 = G otherwise;
(iv) G = P(2, pt) with d = 2 andG1 = B(t, {12}(pt − 1)),G2 = Z{ 12 }(pt+1);
(v) T of p �= 2,3, d = 3,G1 = Z2,G2 = G3 = Z3;
(vi) O if p �= 2,3, d = 3,G1 = Z2,G2 = G3 = Z4;
(vii) I if 5|p2m−1andp �= 2,3,5withd = 3andG1 = Z2,G2 = Z3,G3 = Z5

or p = 3, d = 2 andG1 = B(1,2),G2 = Z5. ��
(2.10) Lemma. Letv ∈ V (T ∗

N)with preimageΛ ∈ V (T ∗
N ). The group represen-

tationρ : Nv → PGL(2, k) arising from the action ofNΛ on its neighbouring
vertices inT is faithful, except possibly whenNv = B(t, n), and if so, ker(ρ) is
a p-group.

Proof. An elementγ ∈ ker(ρ) fixes all edgesσ � Λ, hence all neighbouring
vertices ofΛ are in its mirrorM(γ ). But if γ is elliptic, then its mirror consists
of only one apartment, whence cannot stabilize more than two non-collinear
vertices inT , whereas the valency ofT is q + 1> 2. Soγ has to be parabolic,
and ker(ρ) is a normalp-subgroup ofNΛ. SincePSL(2, q) is simple, it follows
from (2.9) that the only finite subgroups ofPGL(2, k) which have such a non-
trivial normalp-subgroup are of the formB(t, n). ��

3. Contraction of T ∗
N – proof of proposition 1

(3.1) Definition. Let T be a tree of groups inT . A subtree of groupsT ′ of T
is called acontractionof T if every geodesic connecting a point fromT − T ′
to T ′ is a path on which the stabilizers of vertices are ordered increasingly w.r.t.
inclusion upon approachingT ′. Obviously, the tree products ofT andT ′ are
isomorphic.
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(3.2) Example.Themirror of a parabolic element canbe contracted to a half-line.

(3.3) Definition. LetT andT ′ be subtrees ofT ∗
N .We say thatT ′ isperpendicular

to T (notation:T⊥T ′) if for every half-line> = [Λ, ∗[ ⊂ T ′ and every edge
σ ∈ E(T ) with σ � Λ, we haveπN(σ) �= πN(σ

′), whereσ ′ is the unique edge
σ ′ ∈ > with σ ′ � Λ.

Sinceσ andσ ′ emanate from the same vertex, the last condition is equivalent
to σ /∈ NΛ · σ ′.

(3.4) Lemma. LetΛ ∈ V (T ∗
N ). If there existsγ ∈ NΛ andσ � Λ such that

|〈γ 〉 · σ | > 1 (i.e., σ is not fixed by all powers ofγ ), then there exists a non-
trivial γ ′ ∈ NΛ whose mirror is perpendicular to theγ -orbit of σ , i.e., such that
M(γ ′)⊥〈γ 〉 · σ.
Proof. Let ν = |〈γ 〉 · σ |, and fix a numbering〈γ 〉 · σ = {σi}νi=1. By the
identification in (2.7), (lettingH = ρ(G),G = Nv), it suffices to prove the
following: if p1, ..., pν+1 := p1 is a sequenceof points onP1 which are cyclically
permuted by an elementγ ∈ H (identified withσ1, ..., σν+1 = σ1), then there
exists a non-trivialγ ′ ∈ H whose fixed points onP1 are notmapped toπH(p1)(=
πH(pi)).

Notice thatH �= 1 sinceγ acts non-trivially, and thatπH(p1) is not totally
ramified sinceν > 1. It follows from (2.9) that ifH is cyclic, then every ramifi-
cation point ofπH must be totally ramified, and hence none of thepi are fixed
byH . Hence we can letγ ′ = γ in this case.

If H is not cyclic nor of typeB(t, n), then by (2.9), the mapπH is branched
above at least two points, and since (again, by (2.9)) there exist at least two points
onP1 with disjoint decomposition groups, one can chooseγ ′ in the decomposi-
tion group of a ramified point that does not fix any point aboveπH(p1).

On the other hand, ifH = B(t, n), it suffices to takeγ ′ ∈ B(t,1) ⊆ B(t, n),
since then,γ ′ fixes a unique (totally ramified) point, which does not map to
πH(p1). ��
(3.5) Lemma. LetT ′ be a subtree ofT ∗

N such thatEnds(T ∗
N) = Ends(T ), where

T = πN(T ′). Then there is no half-line> in T ∗
N emanating from a vertexΛ ∈ T ′

which is perpendicular toT ′.

Proof. Suppose that such a half-line> starting atΛ ∈ T ′ and pointing to
x ∈ P1(k) is perpendicular toT ′. Then by our assumption on the ends, the
imageπN(>) is not a half-line, and hence there exists a vertexΛ0 on > which is
not contained inT ′, andγ ∈ NΛ0 which maps[Λ0, x[ to a half-line containing
[Λ0,Λ] (say we chooseΛ0 nearest toΛ). SetT0 := T ′ ∪ > andv0 = πN(Λ0).
Let T0 = πN(T0), which is the union ofT and the finite path[v, v0] (where
v = πN(Λ)). Then:
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(3.5.1) There exist an infinite sequence{>n = [Λn, xn[ }∞n=0 of half-lines inT ∗
N

and an infinite sequence{ςn}∞n=0 of finite paths of length> 0 inT ∗
N , such that for

all i, j :
(a)Λ0 ' >0 andT0 ∩ ς0 = {v0},
(b) ςi ⊆ πN(>i),
(c) >i ∩ >j = ∅ andςi ∩ ςj = ∅ unless|i − j | ≤ 1,
(d) >i ∩ >i+1 = Λi+1,
(e) ςi ∩ ςi+1 is a unique vertex, namelyvi+1 := πN(Λi+1); moreover,ςi =
[vi, vi+1],
(f) there exists an elementγi in NΛi

which maps[Λi, xi−1[ to a half-line con-
taining[Λi,Λi−1].

T ′

T ∗
N

>0
❄

>✲

>1
✲

γ

❄

γ1

Λ0

✲
γ2

Λ1
❄Λ2

Fig. 2.The infinite sequence{>i}

The proof of (3.5.1) is inductive. Sinceγ does not fix all edges emanating
fromΛ0, the conditions of (3.4) are satisfied. Hence there exists>0 ∈ T ∗

N starting
at Λ0 (say, pointing tox0 ∈ P1(k)) which is perpendicular toT0. Since the
ends ofπN(T0 ∪ >0) coincide with those ofT by assumption, there has to be a
vertexΛ1 not inT0 and an elementγ1 ∈ NΛ1 which maps[Λ1, x0[ to a half-line
containing[Λ1,Λ0]. Take such a vertexΛ1 nearest toΛ0, and setv1 = πN(Λ1).
Let ς0 = [v0, v1]. Then (a) follows from the fact that>0 is perpendicular toT0,
(b) is clear by definition, and we also have (f).

Assume that we have constructed all>j andςj for j < n. By lemma (3.4),
there exists a half-line>n with

>n⊥Tn, whereTn := T0 ∪ (
⋃
j<n

[Λj,Λj+1]).

ReplacingT0 by Tn in the argumentation above, we obtainΛn+1, vn+1 andςn.
Since a tree does not contain a cycle, all the properties (b)∼(f) are clear. This
finishes the proof of the (3.5.1).

Finally,

> = [v, v0] ∪ (

∞⋃
n=0

ςn)
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is a half-line inT ∗
N such that> ∩ T = {v}. But this means thatT ∗

N has an end
which is not ofT , contradicting the assumption. ��
(3.6)Proof of Proposition 1.Fix a lift T ′ of T to T ∗

N . LetΛ ∈ T ∗
N − T ′. Since

T ∗
N is connected, there exist a vertexΛ′ ∈ T ′ closest toΛ. The proof proceeds

by induction ond(Λ,Λ′).
Assumed(Λ,Λ′) = 1. If NΛ = 1, then contraction is clear. Otherwise,

take any non-trivial elementγ ∈ NΛ, and consider a half-line> which starts
at Λ and converges to an end ofM(γ ). We can then apply (3.5) to the tree
T ′′ := T ′ ∪ [Λ,Λ′] to find that> is not perpendicular toT ′′, and hence there
existsγ ′ ∈ NΛ such thatγ ′ · > passes through the edgeσ = [Λ,Λ′]. Since> is
pointwise fixed byγ , γ ′ · > is pointwise fixed byγ ′γ γ ′−1. Hence

NΛ =
⋃
γ ′∈NΛ

γ ′Nσγ
′−1
,

i.e., NΛ is the union of the conjugates of its subgroupNσ . Hence ([15], I.2,
Aufgabe4) NΛ = Nσ , so thatT ′′ can be contracted toT ′. It is clear how to
proceed by induction. ��

4. Mumford covers of P1 branched above at most three points

We will now describe the abstract group structure ofN if π is only branched
abovem = 2 orm = 3 points.

The possible structure of stabilizers of edges inTN turns out to be further
restricted by the following lemma:

(4.1) Lemma. If p > 0, then stabilizers of edges inTN are of the formEt �Zn.

Proof. As is shown in Proposition (4.5.1) of [8], the stabilizer group of an edge
contains a normalp-group with cyclic quotient. The statement follows from
(2.9). ��

We also have some information on the “relative position” of thep-prime part
of the stabilizer of an edge in the stabilizers of the corresponding vertices. We
say a subgroup of a group ismaximally cyclicif it is not contained in any bigger
cyclic subgroup.

(4.2) Lemma(Herrlich [12], Lemma 1). If it is non-trivial, then the prime-to-p
part of the stabilizer of an edge is amaximalcyclic subgroup of the stabilizer of
each of the corresponding vertices. ��
(4.3) Lemma. Letv ∈ V (TN), q = pt. If Nv = P(2, q), then for alle ∈ E(TN)
with e � v, eitherNe = B(t, {12}(q − 1)) or Ne = Z{ 12 }(q+1) (i.e., thep-part is
also maximally cyclic inNv).
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Proof. The action ofNv on the edges emanating from a liftΛ of v toTN induces
a representationρ : Nv → PGL(2, k̄), which is faithful by (2.10). It suffices to
invoke (2.7) and (2.9). ��
(4.4) Lemma. (i) The stabilizer of a vertex on the interior of a mirror of a
parabolic element is a Borel group (interior meaning not an end point).

(ii) If T ∗
N contains a half-line>which is pointwise fixed by a parabolic element

ofN , thenπN(>) ⊆ T ∗
N is not finite (whence, a half-line).

Proof. (i) LetΛ be such a vertex onM(γ ) for a parabolic elementγ of N . By
the description ofM(γ ) given in (2.3), one sees that all edges emanating from
Λ are fixed byγ ; hence the group representationρ : NΛ → PGL(2, k̄) is not
faithful, so the result follows from (2.10).

(ii) Let > be fixed byγ and letΛ be any interior vertex of>∩M(γ ). It suffices
to show that any two edges emanating fromΛ are mapped to different edges by
πN , viz., they are not identified by an element fromNΛ, which we know is a
Borel group by (i). Lete be such an edge on> pointing in the direction of the
fixed point (say,∞) of γ . Since all elements ofNΛ fix the same point (they are
upper-triagonal), in particular,e is fixed byNΛ, and hence cannot be identified
with any other edge emanating fromΛ. ��
(4.5) Remark. If the mirror of a parabolic element is contracted to a half-line
[v0, v1, ...[ as in (3.2), its structure as a tree of groups is as follows:

– the stabilizerNv0 can be larger than a Borel group (we see from (2.9) that it
is then of typeP(2, q) since it should contain parabolic elements);

– however, all interior points are stabilized by a groupNvi = B(ti, n) (this
follows from part (i) of the above lemma), wheren is a fixed integer (by
(4.2));

– the sequencet1, t2, ... is increasing since eachNvi stabilizes the half-line
[vi, ...[ (by the definition of mirror), andNvi = N[vi ,vi+1] ⊆ Nvi+1.

(4.6) Proposition. If π : X → S is branched above two points, thenN is
isomorphic to one of the following:

(A1) P(2, q) ∗B(t,n−) B(t1, n−);
(A2) B(t2, n+) ∗Zn+ P(2, q) ∗B(t,n−) B(t1, n−);
(A3) B(t3, n−) ∗B(t,n−) P (2, q) ∗Zn+ P(2, q) ∗B(t,n−) B(t1, n−);
(A4) B(t4, n+) ∗Zn+ P(2, q);
(A5) B(t5, n−) ∗B(t,n−) P (2, q) ∗Zn+ P(2, q);
(B) B(t ′1, n) ∗Zn B(t ′2, n);
(C) Et ′3 ∗ Et ′4,

for q = pt, t |ti(i = 1,3,5),2t |t2j (j = 1,2), n|pt ′1 − 1, n|pt ′2 − 1 andn± =
{12}(q ± 1).
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If p = 3, a list (Ai ′)5i=1 similar to (Ai)5i=1 can occur withP(2, q), t, n+, n−
replaced byI,1,5,2 respectively.

If p = 2, there are the following extra possibilities:

(A1′′) Et2 ∗E1 Dn ∗Zn B(t1, n);
(A2′′) Et2 ∗E1 Dn ∗Zn Dn ∗E1 Et1;
(A3′′) Et2 ∗E1 Dn+ ∗Zn+ PGL(2, q) ∗B(t,n−) B(t1, n−),
wheren is odd (andn|pt1−1 in the first case),q is a power of2andn± = q±1.

Proof. Let T0 be a straight line inT ∗
N such that Ends(T0) = Ends(T ∗

N); such a
line exists, since we assume that there are only two branch points, so thatT ∗

N has
only two ends. By Proposition 1, we can contractT ∗

N to T0 without affecting the
structure ofN .

There exists at least one vertex inT0 whose stabilizer is not classical, since
there is wild ramification inπ : X → S. Let v be such a vertex. Then there are
the following possibilities:

(A) There is a vertexv such thatNv = P(2, q = pt). By (4.4), the end
emanating from a representative ofv in T ∗

N which is fixed by the Borel subgroup
B := B(t, n−) is mapped to a half-line ofT0 by πN . Let {vi} be a numbering of
the vertices on this half-line inT0 such thatvi is at distancei from v = v0. Since
all vi are fixed byB, the stabilizerNvi can only be a group of the formB(ti, ni)
by (2.9 iii). Indeed, ifNvi = P(2, pti ), thenvi+1 would have to be stabilized by
bothZn+ and the Borel groupN[vi−1vi ] = B(ti, n−) (using (4.3) and (4.4)), and
hence by a group containingB(2ti , n+), contradicting (4.3).

Actually, ni = n0 = n− by (4.2), and{ti} is increasing sincevi is stabilized
by theNvj for j ≤ i, and eventually terminates sinceNvj converges to the (finite)
stabilizer of the corresponding end (compare with the argument in (4.5)).

From (2.7) and (2.9 iv), we see that the edge emanating fromv0 in the other
direction is stabilized byZn+ . For the stabilizer of the first neighbouring vertex
v′ of v onT0 in the other direction for whichNv′ �= Nv, by (2.7) and (2.9) there
are three possibilities:

(A1)Nv′ = Zn+ ; If all further vertices in thedirectionofv
′ haveacyclic stabilizer,

they must all be equal by (4.2), and hence we are in case (A1).
(A2-A5) On the other hand, should one of those further vertices, say,v′′, have
a larger stabilizer, then we can first of all assume thatv′′ = v′. Furthermore, if
p > 3,Nv′ can only be either (a)Nv′ = B(t ′, n+) (with q + 1|pt ′ − 1, t ′ > 0 by
(4.2)) or (b)Nv′ = P(2, q) (with the sameq by (4.3)). Indeed, no other case from
(2.9) can occur (dihedral or classical), because each time, lemma (3.4) applies to
Nv′ , leading to an extra (third) endM(γ ′) (in the notations of (3.4)) emanating
from v′ in T0, and thus contradicting (3.5).

With only these two possibilities at hand, the subsequent neighbouring ver-
tices ofv′′ inT0 canbedealtwith asabove,i.e.,their stabilizers forman increasing
stabilizing chain of Borel groups. This leads in the end to the prescribed form of
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N , which is (A2) in case (a) ift1 > t and (A4) in case (a) ift1 = t ; (A3) in case
(b) if t1 > t and (A5) in case (b) ift1 = t .

(A′) Suppose we are not in case(A), butp = 3 andNv = I for some vertex
v ∈ T0. By (2.9), one end ofT ∗

Nv
is stabilized by the Borel groupB(1,2) and one

end by the cyclic groupZ5. A similar reasoning as in(A) can be performed.

(B) Suppose we are not in case(A) or (A′), but there is a vertex withNv =
B(t, n), n > 1. One of the half-lines emanating fromv is stabilized by an in-
creasing sequence of Borel groups as in case(A).We can assume that the edgee
emanating fromv in the other direction is not fixed by parabolic elements (since
all parabolic elements ofNv have the same unique fixed point), whenceNe = Zn
by (4.2). Letv′ be the vertex closest tov in this direction, such thatNv′ �= Zn
(which exists, since otherwise,N would be finite). ThenNv′ can only be a Borel
group (since it cannot beP(2, q) by assumption, and it is not a classical group
as in (A2-A5)). We find in the end thatN = B(t, n) ∗Zn B(t ′, n).
(C) Suppose that allNv, v ∈ V (T0) arep-groups, say,Nv = Etv . Because of
lemma (4.4), there exist at least two verticesv, v′ such that the mirrors of their
respective stabilizersNv,Nv′ map to different ends ofT0 underπN . If we take
suchv andv′ at minimal distance of each other, then all vertices between them
are stabilized only by the trivial group, since themirrors of elements inNv and in
Nv′ have to map to disjoint half-lines inT0. On edges outside of such a minimal
segment, thep-groups are ordered increasingly and eventually stabilize. Hence,
N = Et ∗ Et ′ .

The proofs ifp = 2 and there is a vertexv onT0 with Nv = Dn are entirely
similar. ��
(4.7) Proposition.If π : X → S is branched above three points, thenT ∗

N can
be contracted to a treeT0 consisting of three half-lines meeting at one common
vertexv0. Furthermore, either:

(D) There is an edgee emanating fromv0 withNe = {1};
(E) The stabilizer ofv0 is classical non-dihedral,i.e.,Nv0 ∈ {T ,O, I };
(F) p �= 2 andN is isomorphic to one of the following:

Q(t1)∗Z2
B(t3, n−) ∗B(t,n−) P (2, q) ∗Zn+ Dn+ ;

∗Z2
Q(t2)

(F1)

Q(t1)∗Z2
B(t, n) ∗Zn Dn ,∗Z2

Q(t2)

(F2)
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whereq = pt, t |t3,Q(ti) = B(ti,2) (i = 1,2) and the two cyclic subgroupsZ2

occuring in(F ) are the same in the dihedral groupDn.
If p = 3, a case(F1′) similar to(F1) can occur, whereQ(ti) is eitherB(ti,2)

or PSL(2,3) ∗B(1,2) B(ti,2), andP(2, q), t, n+, n− is replaced byI,1,5,2,
respectively.

Proof. Let T0 be the subtree ofT ∗
N which is the union of three half-lines>1, >2

and>3 such that>i
⋂
>j = {v0} for i �= j for some (uniquely determined)v0.

ThisT0 exists, since we assume that only three points are branched inπ , so that
T ∗
N has three ends. By Proposition 1, we can contractT ∗

N to T0.
SupposeG = Nv0 is such thatπG is branched over at most 2 points (cf. (2.9)).

Then it follows from (2.7) that at least one of the edges emanating fromv0 has
trivial stabilizer; hence(D) occurs.

Next, we supposeπG is branched over 3 points. If we are not in case(D),
thenp �= 2 and the groupNv0 is a dihedral groupDn. Letv1 be the neighbouring
vertex ofv0 such that the edge connectingv0 andv1 is stabilized byZn. ForNv1,
by (2.7) and (2.9) there are three possibilities: (a)Nv1 = Zn; (b)Nv1 = B(t, n)

for t > 0 or (c)Nv1 = P(2, q). Then an argument similar to that in the proof of
(4.6) can be applied to classify all the possible groups appearing in the amalgam
product in this direction. The other directions and the case(F1′) can be treated
similarly. ��

5. The classical bound

In this section, we will prove that|Aut(X)| is bounded “classically” by 12(g−1)
in case(Ai ′)5i=1, (D) and(E). The proof is very similar to Herrlich’s computa-
tions in thep-adic case ([12]).

(5.1) Definition. If (T ,G∗) is a finite tree of groups, we define itsµ-invariant
µ(T ) to be

(∗) µ(T ) =
∑

[vw]∈E(T )

1

|Gvw| −
∑

v∈V (T )

1

|Gv| .

The following group theoretical result provides the direct link betweenTN as
a tree of groups and the automorphism group ofX.

(5.2) Theorem(Karrass, Pietrowski, Solitar [18]).With notations as above,
|N/Γ | · µ(TN) = (g − 1). ��

This theorem, together with (1.3), implies that in order to bound|Aut(X)|
from above, one has to boundµ(TN) from below.

(5.3) Lemma([8], (4.7.1)). If in the above situation,B is a subtree ofTN , then
µ(TN) ≥ µ(B). ��
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(5.4) Proposition. The bound|Aut(X)| ≤ 12(g−1) holds in case(D) and(E)
and(Ai ′)5i=1.

Proof. Suppose that, in the notations of the proof of (4.6) and (4.7),Nv0 is
non-trivial such thatNe = 1 for some edge emanating fromv0 in T0. Suppose
thate ∈ >1 for some half-line>1 of T0. Letv1 be the vertex closest tov0 on>1 such
thatNv1 �= 1 (which exists, since eventually the stabilizer of>1 is a (non-trivial)
ramification group ofπ ), and letB be the subtree ofT0 consisting of the path
from v0 to v1. Then

µ(B) = 1− 1

|Nv0|
− 1

|Nv1|
≥ 1− 1

2
− 1

3
= 1

6
,

unlessNv0 andNv1 are both isomorphic toZ2 (whence,p �= 2). LetΛ1 be a lift
of v1 to T ∗

N . If Nv1 = Z2 is generated byγ , then the mirror ofγ is an apartment
]x, y[ in TN , and since[v0, v1] is not stabilized byγ , by (3.4) there has to exist
an elementγ ′ �= γ ∈ Nv1 which maps]x,Λ1] to [Λ1, y[; a contradiction.

In case(E), lete be any edge emanating fromv0.We can assume thatNe �= 1,
since otherwise, case(D) occurs. Letv1 be the vertex closest tov0 onT0 in the
direction ofe such thatNv1 �= Ne. LetB be the segment connectingv0 andv1.
We will now prove thatµ(B) ≥ 1

12 for all such possibleB. Recall thatNe is
maximally cyclic in bothNvi (i = 0,1).

(5.4.1) The following table provides the necessary data in caseNv1 is also a
classical group:

Nv1, Ne,Nv0 µB Nv1, Ne,Nv0 µB

Dn1,Z2, T ≥ 1
6 D3,Z3, T = 1

12

Dn1,Z2,O ≥ 5
24 D3,Z3,O = 1

8

D4,Z4,O = 1
12 Dn1,Z2, I ≥ 7

30

D3,Z3, I = 3
20 D5,Z5, I = 1

12

T ,Z2,3, T = 1
3,

1
6 T ,Z2,3,O = 3

8,
5
24

T ,Z2,3, I = 2
5,

7
30 O,Z2,3,4,O = 5

12,
1
4,

1
6

O,Z2,3, I = 53
120,

11
40 I,Z2,3,5, I = 7

15,
3
10,

1
6

(5.4.2) Now suppose thatNv1 contains ap-group. The classification theorem
(2.9) shows that, except ifp = 3, we can assume thatNe is cyclic of order
n prime top; and it is maximally cyclic in bothNv0, Nv1. This implies that
n = 2,3 if Nv0 = T , n = 2,3,4 if Nv0 = O andn = 2,3,5 if Nv0 = I . If
Nv1 = PGL(2, q), thenn = q + 1 by (4.3). This leads toq = 3,4 forNv0 = T

andq = 2,3,4,5 for Nv0 = O andNv0 = I . We can argue similarly using
2n = q + 1 forNv1 = PSL(2, q). Consulting (2.9), the following possibilities
remain:



Automorphisms of Mumford curves

Nv1, Ne,Nv0 µB

PSL(2,5),Z3, T = 7
30

PSL(2,7),Z4,O = 17
84

PSL(2,9),Z5, I = 13
72

Et � Z2,3,Z2,3, T ≥ 19
60,

1
8

Et � Z2,3,4,Z2,3,4,O ≥ 43
120,

41
168,

19
120

Et � Z2,3,5,Z2,3,5, I ≥ 23
60,

113
420,

109
660

(5.4.3) We are left to considerp = 3 with Ne = D3 = E1 � Z2 andNv0 = I .
The following cases remain: (i) ifNv1 = PGL(2,3) = O, thenµ(B) = 13

120;
(ii) if Nv1 = Et1 � Z2, thenµ(B) ≥ 17

180; (iii) if Nv1 = I , thenµ(B) = 2
15.

(5.4.4) In each of the cases(Ai ′)5i=1, one easily computes thatµ(T0) ≥ 1
12 from

the definition (5.1). ��

6. The extreme cases

We will now prove the bound in all remaining cases. Since the bound is not
linear in the genus, one cannot simply restrict to a suitably chosen segment ofT0
and apply the techniques of the previous section. Instead, we use the following
lemma to further eliminate cases.

(6.1) Notation. Let F be the real function

F : R → R : g �→ F(g) := 2
√
g(
√
g + 1)2.

Let pΓ : N → N/Γ be the projection map.

Recall that for any finite groupG ⊂ N , pΓ (G) ∼= G sinceΓ is free.

(6.2) Lemma. LetX be a Mumford curve of genusg. Let λ be the greatest
common divisor ofg−1and|Aut(X)|, and writeg−1= λ ·a, |Aut(X)| = λ ·b.
If we can find a lower boundλ0 for λ such that

λ0b ≤ F(λ0a + 1),

then the bound|Aut(X)| ≤ F(g) holds.

Proof. We have

|Aut(X)| = (g − 1)
λ0b

λ0a
≤ (g − 1)

F (λ0a + 1)

λ0a
.

Since the functionx �→ F(x)/(x − 1) is increasing forx ≥ 2 andλ0a + 1 ≤
λa + 1= g, the result follows. ��
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(6.3) Proposition. The bound|Aut(X)| ≤ F(g) holds for all cases(Ai)5i=1,
except possibly(A1) with t1 = 2t and(A5) with t5 = t .

Proof. We know that the ramification groups ofπ : X → S are the stabilizers
of the ends ofT0. The Riemann-Hurwitz formula applied toπ allows us to
compute the ratio ofg − 1 to |Aut(X)|, and one finds the following values ofa
andb in each of the cases(Ai)5i=1:

a b where

(A1) qn − q − 1 {12}qn(q2 − 1) nt = t1

(A2) qn+1− qn−m+1− qn−m − q + 1 {12}qn(q2 − 1) nt = 2t2 ≥ mt = t1

qm+1− qm−n+1+ qm−n − q − 1 {12}qm(q2 − 1) nt = 2t2 ≤ mt = t1

(A3) qm − qm−n − 1 {12}qm(q − 1) nt = t1 ≤ mt = t3

(A4) qn+1− qn − qn−1− q + 1 {12}qn(q2 − 1) nt = t4

(A5) qn − qn−1− 1 {12}qn(q − 1) nt = t5

One computes that the above lemma can be applied withλ0 = 1 in all but the
above mentioned cases. ��
(6.4) Proposition. The bound|Aut(X)| ≤ F(g) holds in case(A1)with t1 = 2t ,
i.e.,n = 2 in the above table.

Proof. Paradoxically, we will show that|Aut(X)| is bounded frombelownon-
trivially. Let N1 = P(2, q),N2 = B(2t, n−), B = B(t, n−) be the subgroups
of PGL(2, k) occurring inT0, i.e., N = N1 ∗B N2. We can assume thatN1 is
the “standard” copyP(2,Fq) of P(2, q) in PGL(2, k) induced by the inclusion
Fq ⊂ k. Since thep-part ofN1 equalsB, hence is a subgroup ofN2, thep-parts
of N1 andN2 have to commute inN ; so they can be simultaneously put into
upper triagonal form,i.e., we can suppose that they are of the form

τ(αi) ∈ N1 ∩N2; τ(βj ) ∈ N2 −N1

for some{αi}ti=1, {βj }tj=1 ∈ k, where we set

τ(x) :=
(
1 x
0 1

)

Now observe that the images of these matrices under the mappΓ : N → N/Γ

(whereΓ is the Schottky group ofX), remain distinct. Indeed, ifpΓ (τ(x)) =
pΓ (τ(y)), thenτ(x − y) ∈ Γ ; but τ(x − y) is of finite order, sox = y sinceΓ
is free.

On the other hand,N1 contains the “non-split” element

γ =
(

0 1
−1 0

)
,
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so also the lower triagonal elementsτ t(x) = γ τ(x)γ−1 are contained inN for all
x ∈ {αi, βj }. For the same reason as above, the elementsτ t(x) remain mutually
distinct moduloΓ .

We will now prove thatpΓ (τ(x)) �= pΓ (τ
t(y)) for all x, y ∈ {αi, βj }. This is

clear ifx, y are both in{αi}, since thenτ(x) �= τ t(y) in N1 andpΓ (N1) ∼= N1.
Now suppose thatpΓ (τ(αi)) = pΓ (τ

t(βj )) for somei, j . Since the commu-
tator[αi, βj ] = 1 inN , we have

[pΓ (τ t(βi), pΓ (τ t(αi))] = 1.

We conclude that
[pΓ (τ(αi)), pΓ (τ t(αi))] = 1.

But asτ(αi) andτ t(αi) are both inpΓ (N1) ∼= N1, this gives a contradiction,
sinceτ(αi) andτ t(αi) are not commuting inN1 = PGL(2, q).

Finally, if pΓ (τ(βi)) = pΓ (τ
t(βj )), then since the first element commutes

with pΓ (τ(α1)) and the second withpΓ (τ t(α1)), we would find thatpΓ (τ(α1))
andpΓ (τ t(α1)) commute, leading to the same contradiction.

We find in the end that the order ofA = N/Γ is at least divisible byq4

(viz., the number of distinctp-order elements constructed above), which means
that we can chooseλ0 = q2 in lemma (6.2) and this leads to the desired bound,
except ifq = 2, but then,PGL(2,2) = D3 and another case applies. ��
(6.5) Proposition. The bound|Aut(X)| ≤ F(g) holds in case(A5) with t5 = t .

Proof. We see that the grouppΓ (Zn+) = Zn+ which stabilizes the central edge
of T0 acts without fixed point onX (by the correspondence between fixed points
and ends). By Hurwitz’s formula applied to this unramified action,n+ divides
g − 1. Hence we can setλ0 = n+ to see that the criterion of lemma (6.2) is
satisfied. ��
(6.6) Lemma. ([26], I.1., Prop. 4) If G1 andG2 are finite groups, then we have
a natural exact sequence

1→ [G1,G2] → G1 ∗G2 → G1 ×G2 → 1,

where the group[G1,G2] generated by the commutators[g1, g2] := g1g2g
−1
1 g−1

2
for g1 ∈ G1− {1} andg2 ∈ G2 − {1} is a maximal free subgroup ofG1 ∗G2 of
rank (|G1| − 1)(|G2| − 1). ��
(6.7) Lemma. LetX be an ordinary curve, admitting a Galois coverX → P1

branched above two points. If its Galois group is of the formG = B(t, n), then
n = 2.

Proof. Let Ē be a subgroup of indexp in ap-Sylow group ofG and consider
the curveY := Ē\X, which is a Galois cover ofG\X = P1, totally ramified
above two points with Galois groupZp � Zn. It follows that the intermediate
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curveY ′ := Zp\Y is a cyclicp-prime Galois cover ofP1 ramified above two
points, and hence equal toP1. Let x be a coordinate onY ′; then the equation of
Y is of the form

yp − y = B, B := c
x − α

x
for someα �= 0

andc ∈ k. Indeed, the ramification points are the poles ofB, and sinceX is
ordinary, they are simple (Subrao [28]). This curve has to admit an automorphism
of ordern. It is easy to see that such an automorphism has to be of the form
B �→ ζB + B

p

0 − B0, y �→ ζy + B0 for somen-th root of unityζ and some
B0(x) ∈ k(x) (cf.Hasse [9], p. 38). On the other hand, the automorphism should
be induced from an automorphism ofk(x) of ordern, i.e., of the formx �→ ζ ·x.
This leads to the identity

B(ζx)− ζB(x) = B0(x)
p − B0(x),

which is only satisfied ifζ = ±1withB0 a (constant) root ofc(1−ζ ) = B
p

0 −B0.
Hencen = 2 as claimed. ��
(6.8) Proposition. The bound|Aut(X)| ≤ F(g) holds in case(B) and(C).

Proof. Recall that in this case,N = N1∗BN2 withN1 = B(t, n),N2 = B(t ′, n)
andB = Zn for n|(pt − 1;pt ′ − 1). The criterion in lemma (6.2) fails to hold
with λ0 = 1 only if t = t ′, which we will assume from now on. Observe that
then,N = (E1 ∗ E2) � Zn, whereE1 andE2 are the respectivep-parts ofN1

andN2.
We will distinguish two cases. First of all, assume thatE1 = E2 modΓ . It

follows from this that[E1, E2] ⊆ Γ . In particular, we find that Aut(X) = N/Γ

is a quotient of(E1 ∗ E2) � Zn/[E1, E2] = (E1 × E2) � Zn by (6.6). Since
E1 = E2 modΓ , Aut(X) is even a quotient ofE1�Zn. On the other hand, since
E1 � Zn ∼= N1 ⊆ N/Γ , we find in the end that

Aut(X) = E1 � Zn.

The previous lemma implies thatn = 2, and knowing this, the boundµ(T0) ≥ 1
12

is easy to check.
Let E′

1 denote the part ofE1 which is identified with a part (calledE′
2) of

E2 moduloΓ . Denote byE′′
i the respective complements ofE′

i in Ei , and let
pτ be the order ofE′′

i . By the result of the previous paragraph, we can assume
that τ > 0. We claim thatE′′

i areZn-modules (for the action of conjugation).
Indeed, it suffices to show this forE′

i . Let ε be an element ofE′
1, and choose an

elementε̄ ∈ E′
2 with pΓ (ε) = pΓ (ε̄). We have to show that for everyσ ∈ Zn,

σεσ−1 ∈ E′
1, viz., pΓ (σεσ−1) = pΓ (x) for somex ∈ E2, and it suffices to let

x = σ ε̄σ−1.
SinceP1 does not admit unramified extensions, the automorphism group of

X is generated by its decomposition groups, and in particular, it contains the
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group generated byE1 � Zn andE2 � Zn. By assumption,E1 andE2 intersect
moduloΓ in a group of orderpt−τ , so that

|Aut(X)| ≥ |E1||E2||Zn|
|E1 ∩ E2| = pt+τ n,

hence we can letλ0 = pτ in (6.2). If we then use thatn ≤ pτ − 1 (sinceE′′
1 is a

Zn-module,n dividespτ − 1), we find that the inequality in (6.2) is fulfilled, so
that the desired bound holds (note that ifpt = 2, we haveg = 1). ��
(6.9) Proposition. The bound|Aut(X)| ≤ F(g) holds in case(F1), (F1′) and
(F2).

Proof. In all such cases, one can compute a corresponding table of(a, b)

depending on the values oft, t1, t2. We will skip the detailed computation; let it
suffice to say that lemma (6.2) cannot be applied withλ0 = 1 only if t1 = t2 = 0,
in which case the order of the ramification groups is(2,2, nq) (with q = pt)
anda = q − 2, b = 2nq (respectively,a = 1

2(q − 2), b = nq if p = 2).
For the case(F1), observe that, as in the proof of (6.5), the groupZn+ acts

freely onX, leading toλ0 ≥ n+, and with this value, the bound follows from
(6.2).

The only case that remains to be settled is(F2), viz., N = N1 ∗B N2, with
N1 = B(t, n), B = Zn andN2 = Dn. Let E be ap-Sylow ofN1, let γ be an
involution inDn − Zn and set

E′ = {ε ∈ E : pΓ (γ εγ ) ∈ pΓ (E)}.
By lemma (6.7), ifE = E′, thenn = 2 and the bound follows easily.

LetE′′ be the complementaryZn-module ofE′ inE, and let|E′′| = pτ ; then
we can assume thatτ > 0. We find as in (6.8) that Aut(X) ≥ 2npt+τ , and the
desired bound follows from (6.2) takingλ0 = 2pτ . ��
(6.10) Remark.Stichtenoth has shown in [29] that Aut(X) ≤ 84(g − 1) if π is
ramified above three points and at least two ramification indices are> 2.

(6.11) Proposition. The bound|Aut(X)| ≤ F(g) holds if p = 2 in case
(Ai ′′)3i=1.

Proof. Unconditionally in case(A2′′) and in case(A1′′) and(A3′′) if t2 �= 1, it
is easy to compute thatµ(T0) ≥ 1

12.
In case(A1′′) with t2 = 1, one finds thata = 2t1−1 − 1, b = 2t1n, andπ

has ramification type(2,2t1n). As in (6.9), letE be thep-part ofB(t1, n) andE′
the image of the conjugate ofE by an involution ofDn. If E = E′, then again,
n = 2 and the bound holds. If we letτ be the order of a complement ofE′ in E,
then we can seta = 2t1 − 1, b = 2t1n, λ0 = 2τ+1 and usingn ≤ 2τ − 1, prove
that (6.2) is satisfied (note thatt ≥ τ ).
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In case(A3′′) with t2 = 1, we definen by tn = t1; thena = 1
2q

n − 1, b =
qn(q −1), and sinceZn+ acts freely onX, we can letλ0 = q +1 as in (6.5). ��
(6.12) Remark.A careful inspection of the estimates shows that, ifp �= 2, only
case(F2) with t1 = t2 = 0, n = pt − 1 exactly attains the bound of the main
theorem; similarly, ifp = 2, then only case(A1′′)with t1 = t, t2 = 1, n = pt−1
doesso (if a free subgroupofN of rankg = (pt−1)2with normalizerN exists,cf.
infra). Observe that in both cases, the groupN has the same form (amalgamation
of a dihedral with aBorel group over a cyclic group), but there are 3 branch points
if p �= 2, whereas ifp = 2, there are only 2 branch points (compare with the
two different cases in (2.9ii)).

7. The icosahedral group – proof of proposition 2

(7.1) We have already remarked that 12(g − 1) > F(g) only if g ∈ {5,6,7,8},
and hence there is only a finite number of groupsA (namely, 134) for which
12(g − 1) < |A| ≤ F(g). These, one can easily write down,e.g., usingGAP
([31]). The only non-solvable such group isI , whose order is 60. It follows that
g = 6. Note thatI is a subgroup ofPGL(2, k) only if p �= 2,5, and then, a
geometric construction of aMumford curveX of genus 6with 60 automorphisms
was given by Herrlich in [11],pp.50-51. The normalizer of its Schottky group
is of the form

N = I ∗Z5 D5,

andX is acoverofP1 ramifiedabove4pointswith ramification indices(2,2,2,3)
if p �= 3 and(2,2,6) if p = 3.

(7.2)We will now compute the dimension of the stratum of the moduli spaceM6

(which we consider as an algebraic space) of curves of genus 6 containing this
particular example. Observe that the dimension of the infinitesimal deformation
space ofX consisting of curves whose automorphism group containsI is given
by h1(X, TX)I , whereTX is the tangent sheaf ofX and the superscriptI means
taking group invariants. By Serre duality,h1(X, TX)I = h0(X,Ω⊗2

X )I , where
ΩX is the sheaf of regular differentials onX. Finally, this space of invariant 2-
differentials is computed for(p, |I |) = 1 to be of dimension 3̄g − 3+ n, where
ḡ is the genus ofI\X andn is the number of branch points ofX → I\X ([4],
pp.254-255). Hence in our case, the closed stratumS̄I of curves inM6 whose
automorphism group containsI is one-dimensional. We do not know whether
S̄I is connected, and whether or not it equals the open stratumSI .

(7.3) Let us now switch toMg, the moduli space of Mumford curves of genus g
overk (which can conveniently be described by non-archimedean Teichm¨uller
theory,cf.Herrlich [14]). Recall thatK is the algebraic closure ofk. We use the
following (folklore) fact about this moduli space:
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(7.3.1) Claim. Mg,K is an open analytic subspace of the analytificationM an

g,K

of the moduli spaceMg,K .

A sketch of the proof goes as follows: For each of the moduli spacesM

that we consider, let̄M denote its Deligne-Mumford compactification. First one
resolves the technical problem thatM̄g,K is not afinemoduli space by adding
some level-n structure forn large enough so that̄Mg,K [n] is a fine moduli space,
and note thatM̄ an

g,K [n] → M̄ an

g,K is an open map with respect to the analytic
topology. This follows because (by a short local calculation using the fact that
the corresponding algebraic map̄Mg,K [n] → M̄g,K is algebraically finite flat), it
is analytically flat quasi-finite in the sense of Berkovich ([2], 3.2), and applying
(3.2.7) ofloc. cit.

Let M̄ an

g,K [n] → M̄ an

g,K̄
[n] be the reduction map that associates to any curve

its stable reduction over the residue field̄K of K, and letZ be the locus of
multiplicative reduction onM̄ an

g,K̄
[n]. Then, by deformation theory,Z is a Zariski

closed set, say, given locally by equationsf1 = ... = fr = 0. The locus of
Mumford curves inM̄ an

g,K [n] is given by the “tube”]Z[ of Z, where]Z[ is
defined locally by

]Z[:= {x ∈ M̄ an

g,K [n] : |Fi(x)| < 1 for all i = 1, ..., r},

whereFi are lifts offi to M̄ an

g,K [n]. Since]Z[= lim−→
e

]Z[e where the limit is over

all “values” e ∈ |K∗|, and
]Z[e= {x ∈ M̄ an

g,K [n] : |Fi(x)| ≤ e for all i = 1, ..., r}
are affinoid open sets, we find that]Z[ is open with respect to the strong rigid
topology. The claim follows. ��

It follows immediately from the computation in (7.2) that the stratumS̄I
intersectsM6 in a one-dimensional space. Since we know that|Aut(X)| ≤ 60
onM6, we haveSI ∩M6 = S̄I ∩M6, hence all curves in this one-dimensional
rigid analytic stratum have automorphism group exactly equal toI .

However, there is a more direct way to the computation of the dimension of
closed strata in the space of Mumford curves that avoids the use of invariant
theory (hence, of the assumption that the characteristic is coprime to the order
of the automorphism group):

(7.4) Theorem(Herrlich [14]). With the above notations, letA = N/Γ . If
g ≥ 4, then the closed stratum̄SA ⊂ Mg of curves whose automorphism group
containsA intersects the Mumford locusMg in a space of dimension

dim(S̄A ∩Mg) = 3(f + dv − de − 1)+ 2(cv − ce),
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wherecv (resp.dv) is the number of non-trivial cyclic (resp. non-cyclic) vertex
groups ofTN , ce, de are similarly defined for edges ofTN , andf is the number
of free generators ofN .

Using (7.4), one computes that in our case, dim(S̄I ∩ M6) = 1 as expected,
and the same result as in (7.3) follows. Note, however, that (7.4) does not say
anything about the dimension of the corresponding stratum inMg.

(7.5) Remark.Dolgachev has pointed out to the authors that the one-parameter
family of curvesSI can be made explicit by a classical geometric construction
as a pencil of curves on the Del Pezzo quintic,cf.Edge [3].

(7.6) Remark.The original version of theorem (7.4) also included the statement
that the open stratumSA∩Mg is rigid-analyticallyconnected. However, a careful
study revealed that this connectedness statement, which is theorem 2 in [14], is
violated by the pencil mentioned in (7.5). Herrlich agrees with the authors of the
current paper that this is due to the fact that proposition 1 in [14] is not true as it
is stated. However, this does not further affect the results of this paper. A more
detailed analysis of the connectedness of the stratification in the Mumford locus
can be found in [17].

8. Discreteness – attaining the bound

(8.1) It has not yet been proven that the groups on the lists in (4.6) and (4.7)
actually occur as discrete subgroups ofPGL(2, k). It happens exactly when
there is an action ofN onT whose quotient equalsTN . For this, it suffices that
the action ofN is well-defined, and has a finite stabilizer at at least one point of
T . Checking this is not always so obvious, but there is a direct criterion to see
whether afreeproduct exists as a discrete subgroup ofPGL(2, k).

(8.2) Definition.The isometric circleof a non-trivial elementγ of finite order
in PGL(2, k) is defined byĪγ = {z ∈ P1(k) : |cz+ d| ≤ 1}, where(c, d) is the
second row ofγ .

(8.3) Lemma([12]). If G,H are finite subgroups ofPGL(2, k), thenG ∗ H
exists as a discrete subgroup ofPGL(2, k) if and only if Īγ ∩ Īδ = ∅ for all
non-trivial γ ∈ G andδ ∈ H .

(8.4) We will use the above criterion to prove that the segment that attains the
bound of the main theorem ((F2) with t1 = t2 = 0, n = pt − 1 if p �= 2
and (A1′′) with t1 = t, t2 = 0, n = pt − 1 if p = 2) does correspond to a
discontinuous group, and hence a corresponding Mumford curve exists. Let us
consider the segmentΣ with N1 = B(t, n) andN2 = Dn = Zn � 〈γ 〉 for some
elementγ of order 2. We will study this case as a kind of “cover” of case(B).
LetΣ ′ be the segment defined byN1 = B(t, n) = Et � Zn,N2 = E′

t � Zn and
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H = Zn, whereEt,E
′
t are two disjointp-groups generated by{εi}t1i=1 and{ε′i}t1i=1

respectively, andonwhich, by definition,Zn acts componentwise by conjugation.
Looking at explicit presentations, one sees that

NΣ = NΣ ′ ∗ 〈γ 〉/〈γ 2 = 1, γ σγ = σ−1, γ εiγ = ε′i , i = 1...t〉,
with obvious notations.

Remark. Geometrically, the link between the segmentsΣ andΣ ′ is as follows:
one subdivides the segmentΣ like

(Et � Zn) ∗Zn Zn ∗Zn (E′
t � Zn),

and then lets an elementγ of order two act on this as a vertical “mirror” along the
central vertex; viaγ , one identifiesEt andE′

t by conjugation and the elements
on the stabilizers of edges by inversion.

Rearranging words shows thatNΣ = 〈γ 〉 ·NΣ ′ , so thatNΣ ′ is a subgroup of
(finite) index 2 inNΣ (of course, we actually mean the image ofNΣ ′ in NΣ ). To
show thatNΣ is discontinuous, it therefore suffices to show this forNΣ ′ . One sees
thatNΣ ′ = (Et ∗E′

t )�Zn.We can letE′
t = QEtQ

−1 for someQ ∈ PGL(2, k).
It suffices to show that the free productEt ∗E′

t is contained inPGL(2, k). Now
the isometric circles of elements inE′

t are translates byQ of the corresponding
circles inEt , which we can assume to be unit circles with centers at finitely many
elements of̄Fp (if we letEt be generated by suitable lower triagonal matrices).
Call their unionI . It then suffices to chooseQ such thatQ · I ∩ I = ∅, which is
clearly possible sincek contains elements of non-unit valuation, so that we can
letQ be translation over an element of high enough valuation.

The corresponding Schottky groupΓt = [Et, γEtγ ] is free of rankg =
(pt − 1), and normal inN . By our main theorem,N is then exactly equal to the
normalizer ofΓ .

9. Artin-Schreier-Mumford curves – proof of proposition 3

(9.1) Letq = pt. To avoid problems with the singularities of the particular plane
model given, we think of the curveXt,c : (yq − y)(xq − x) = c as embedded in
P1 × P1. Since|c| < 1, its analytic reduction is given by the “chess board” of
lines(xq − x)(yq − y) = 0, and hence it is a Mumford curve whose genus (the
number of squares of the board) is given bygt = (q − 1)2. It seems appropriate
to call these curvesArtin-Schreier-Mumfordcurves.

(9.2) One can see from the equation that the curve admits the following auto-
morphisms:(x �→ αx, y �→ α−1y) for α ∈ F∗q , (x �→ x + β, y �→ y + γ )

for β, γ ∈ Fq and(x �→ y, y �→ x). This accounts for 2q2(q − 1) = F(gt)

automorphisms, and hence by the main theorem, there are no more, andNt is as
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q︷ ︸︸ ︷

q




Fig. 3.The analytic reduction ofXt,c

expected (note that this gives a less intricate proof of the fact thatNt is discrete).
It is also clear that the automorphism group is given byAut(Xt) = Z2t

p �Dpt−1,

andhence theSchottky group (which is the kernel ofNt → Aut(Xt)) is generated
by the commutators[Zt

p, γZ
t
pγ ] for a fixed involutionγ ∈ Dpt−1 − Zpt−1.

(9.3) The dimension of the stratum of curvesX in Mgt whose automorphism
group contains Aut(Xt,c) can not be determined in a straightforward way be-
cause of wild ramification inπ ([4] does not apply immediately), but Herrlich’s
formula (7.4) does imply that the intersection of the closed stratumS̄Aut(Xt ) with
the Mumford locus is a one-dimensional subspace. By the main theorem, this
is also the intersection with the open stratum. Note that the familyXt,c → A1

k

(given by projection ontoc) is not constant asc varies, since it is a stable curve
having a singular fibre over the origin (so it has moving moduli). Asc varies
through{|c| < 1}, we move through the open stratum inMgt (andγ changes).

10. Drinfeld modular curves – proof of proposition 4

(10.1) Lemma(Gekeler [5], VII.5). The coverX(n)→ X(1) = P1 of Drinfeld
modular curves is ramified above two points with respective indicesq + 1 and
qd(q − 1), whered = deg(n). The genus ofX(n) satisfies

g(X(n))− 1= |G(n)|q
d − q − 1

qd(q2 − 1)
, whereG(n) = Γ (1)/Γ (n)Z

is of order

|G(n)| = q3d
∏
p|n
(1− 1

q2 deg(p)
).

(10.2) Notation. If G is a group of automorphisms acting on a curveX, we
denote byGi,P for a pointP ∈ G\X andi ∈ Z≥0 thei-th ramification group of
X → G\X atP . As usual, letπG denote the corresponding covering morphism.

The following lemma characterizes (in a very special situation) when a group
of automorphisms of a curve is the full group of automorphisms in terms of
ramification data.
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(10.3) Lemma. Assumep �= 2. LetA be a group of automorphisms acting on
an ordinary curveX with quotientA\X = P1 wildly branched above two points
P,Q and unramified elsewhere, and suppose that there exists a subgroupG of
A such thatX → G\X = P1 is branched above two pointsx, y, with x tamely
ramified andy wildly ramified, such thatx andy map toP andQ respectively
onA\X. Then|A0,P | = |A1,P |(|A1,P | − 1).

The same holds ifπA is wildly branched above one pointP , branched of
order 2 above two more points, and unramified elsewhere, ifx andy map toP
onA\X.

Proof. SinceX is ordinary, the second ramification groups in both covers are
trivial. Let g be the genus ofX. The Riemann-Hurwitz formula applied toπG
gives that

M := 2(g − 1)

|G| = |G1,y | − 2

|G0,y | − 1

|G0,x | ,

so that 0< M < 1. Applying similarly Hurwitz’s formula toπA and dividing
M by the result gives that

[A : G] = M
|A0,P | · |A0,Q|

|A0,Q|(|A1,P | − 2)+ |A0,P |(|A1,Q| − 2)
.

Since both terms in the denominator are positive (asP andQ are wildly ramified
andp > 2),

[A : G] ≤ M
|A0,P |

|A1,P | − 2
.

Henn has proved ([10], Lemma 1) that|A0,P |
|A1,P | divides |A1,P | − 1, so unless if

|A0,P | = |A1,P |(|A1,P | − 1), we have[A : G] ≤ M|A1,P |. Since ramification
abovex in πG is only tame, thep-part |A1,P | is bounded by[A : G], so that
finally, [A : G] ≤ M[A : G], a contradiction toM < 1.

A similar computation works for the second case. ��
(10.4) Proof of proposition 4. We see from (10.1) that, except forq = 2,3,
X(n) has more than 12(g(X(n))− 1) automorphisms.

Let Γ be the Schottky group ofX(n) andN its normalizer. We observe
thatG(n) ⊆ A := Aut(X(n)), and the coverX(n) → X(1) is a cover ofP1

by a Mumford curve ramified above exactly two pointsP,Q with ramification
indicesq + 1 andqd(q − 1) (by (10.1)). But such covers where classified in
(4.6), and the only case in which the ramification behaviour is compatible with
the one ofX(n)→ X(1) is case(A1) with P = PGL, t1 = dt . Since we have
a tower of coverings of the formX(n)→ X(1)→ A\X(n), this implies thatN
containsN ′ = PGL(2, q) ∗B(t,n−) B(td, n−). Again, the coverπA has to belong
to one of the cases in (4.6) and (4.7), sinceX(n) has more than 12(g(X(n))−1)
automorphisms (forq > 3). The only possible suchN containingN ′ are(A1)
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and (F1) with t1 = t2 = 0 (the latter since the bound 12(g(X(n)) − 1) is
exceeded). By the previous lemma (sincep �= 2), we conclude that|A0,P | =
|A1,P |(|A1,P |−1). In case(A1), we have|A0,P | = pt2n+, and the above identity
leads tot = t2. On the other hand, 2t |t2; a contradiction. Similarly, in case(F1)
with t1 = t2 = 0, we have|A0,P | = pt3n−, leading tot = t3. On the other hand,
dt |t3 for d > 1 sinceN containsN ′; a contradiction. We conclude thatN = N ′
and Aut(X(n)) = G(n).

Application of (7.4) to this situation now leads to the fact that closed the
stratum of Mumford curves of genusg(X(n)) having an automorphism group
containingG(n) (hence,N as normalizer of their Schottky group) has dimension
zero.One of the points in this finite set corresponds to theDrinfeldmodular curve
above; this proves the final claim of proposition 4. ��
(10.5) Remark. The curveX(n) is defined over a finite extensionFn of F ,
generated by then-torsion of the Carlitz module overF . A standard argument
in model theory implies that for all but a finite number of primesp of Fn, the
curveX(n)×FnFn/p has the same automorphism group. It would be interesting
to know what happens at such special primes (cf.Adler [1], Rajan [23]).
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Note added in proof.The final sentence of Proposition 4 is incorrect. This is
due to the fact that Theorem (7.4), quoted from [14], can fail to hold in positive
characteristic. However, it does apply in the case of Proposition 2 and 3 – see
forthcoming work of the first two authors.


